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Example: hypothesis

Theory: hypothesis

◮ Transportation mode share depends on trip purpose.

◮ Why? Convenience, flexibility, comfort
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Example: data collection

Sample

◮ 2000 travelers randomly selected.

◮ traveler: somebody who made a trip yesterday.

Questions
Consider a trip that you have made yesterday.

1. What was the purpose of your trip? Work/leisure/other.

2. Did you use public transportation? Yes/no.
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Example: data collection

Results
Contingency table:

Work Leisure Others
PT 172 191 150

Not PT 345 648 494

Synthetic data generated from Microcensus 2015.
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Example: model

Model
◮ Y : transportation mode. Qualitative with A ={public transport, others}.
◮ X : trip purpose. Qualitative with A ={work, leisure, others}.
◮ Model: Y |X .
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Example: model parameters

Y |work
◮ θ1 = pY |work(PT)

◮ pY |work(not PT) = 1− θ1

Y |leisure
◮ θ2 = pY |leisure(PT)

◮ pY |leisure(not PT) = 1− θ2

Y |others
◮ θ3 = pY |others(PT)

◮ pY |others(not PT) = 1− θ3
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Estimation of the parameters

One observation
◮ Consider a traveler traveling by public transport for work.

◮ What is the probability that our model correctly predicts this observation?

Pr(Y = PT|X = work) = θ1.

All observations in one cell
◮ Consider all 172 travelers in the sample traveling by public transport for

work.

◮ What is the probability that our model correctly predicts all these
observations?
θ1721
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Estimation of the parameters

All observations
◮ Consider all travelers in the

sample.

◮ What is the probability that our
model correctly predicts all
these observations?
θ1721 (1− θ1)

345θ1912 (1−
θ2)

648θ1503 (1− θ3)
494.

Work Leisure Others
PT 172 191 150

Not PT 345 648 494
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Estimation of the parameters

Likelihood function

L∗(θ1, θ2, θ3) = θ1721 (1− θ1)
345θ1912 (1− θ2)

648θ1503 (1− θ3)
494.

Log likelihood function

L(θ1, θ2, θ3) =
172 log θ1 + 345 log(1− θ1)+

191 log θ2 + 648 log(1− θ2)+

150 log θ3 + 494 log(1− θ3) =

L1(θ1) + L2(θ2) + L3(θ3).
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Maximum likelihood estimation
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Maximum likelihood estimation
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Maximum likelihood estimation

Estimates
◮ θ̂1 = 0.333

◮ θ̂2 = 0.228

◮ θ̂3 = 0.233

Data

Work Leisure Others
PT 172 191 150

Not PT 345 648 494
Total 517 839 644

172

517

191

839

150

644
= = =

0.333 0.228 0.233
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Estimators

My data

Work Leisure Others
PT 172 191 150

Not PT 345 648 494

My estimate: θ1 =33.3%

My colleague’s data

Work Leisure Others
PT 168 207 140

Not PT 317 677 491

Her estimate: θ1 =34.6%
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Estimators
Perform the same analysis with 1000 different samples
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Estimators
Estimators are distributed. They are random variables.
True value: θ1 = 0.320. My estimate: 0.333. Her estimate: 0.346
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Estimators
The larger the sample, the lower the variance of the estimator.
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Maximum likelihood estimation

Likelihood function
Probability that our model reproduces the N observations:

L∗(θ) =
N∏

n=1

Pr(Y = yn,X = xn; θ) =
N∏

n=1

Pr(Y = yn|X = xn; θ) Pr(X = xn)

Log likelihood function
In practice, we take the log:

L(θ) = logL∗(θ) =
N∑

n=1

log Pr(Y = yn|X = xn; θ) + log Pr(X = xn)
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Maximum likelihood estimation

Estimator

θ̂ = argmaxθ L(θ) =
N∑

n=1

log Pr(Y = yn|X = xn; θ) +✭✭✭✭✭✭✭✭
log Pr(X = xn)

Asymptotic properties

◮ Consistency.

◮ Efficiency.

◮ Normally distributed.
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Another example

Theory: hypothesis

◮ Daily distance traveled depends
on income

◮ Why? Individuals with
different incomes have different
socio-professional activities.
They also have different access
to mobility.

Data: Swiss Microcensus 2015.
Source: ARE.
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Another example: data

Monthly income (KCHF) Daily distance (km)
2 22.49
6 36.11
10 45.35
12 51.59
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Another example: model

Model
◮ Y : daily distance (km). Continuous.

◮ X : monthly income (KCHF). Continuous.

◮ Model: Y |X .

Specification: linear regression

Y |(X = xn) = θ1xn + ξn, where ξn ∼ N(θ0, θ
2
2).

Y |(X = xn) = θ1xn + θ0 + θ2ξn
ξn ∼ N(0, 1), i.i.d. across observations, θ0 and θ2 constant across observations

fξn(z) =
1√
2π

exp
(
− z

2

2

)
.

θ0, θ1 and θ2 are parameters to estimate.
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Another example: model

Probability density function

fY |xn(z ; θ0, θ1, θ2) =

1√
2πθ22

exp

(
−1

2

(
z−θ1xn−θ0

θ2

)2
)
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Estimation of the parameters

One observation

x1 = 2, y1 = 22.49.

What is the probability that our model correctly predicts this observation? Zero!
We have a continuous random variable
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Log likelihood function

Intuition
Somehow, the pdf plays the role of the probability.

One observation

x1 = 2, y1 = 22.49.

Contribution to the log likelihood:

log fY |x1(y1; θ0, θ1, θ2) =

✘✘✘✘✘✘−1
2
log(2π) − log(θ2)− 1

2θ22
(y1 − θ1x1 − θ0)

2
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Log likelihood function

All observations

L(θ) =
N∑

n=1

log fY |xn(yn; θ) = −N log(θ2)−
1

2θ22

N∑

n=1

(yn − θ1xn − θ0)
2

Maximum likelihood estimation

max
θ

L(θ) = −N log(θ2)−
1

2θ22

N∑

n=1

(yn − θ1xn − θ0)
2
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Least squares

Procedure
◮ Denote θ2 = σ.

◮ Fix σ and solve for θ0 and θ1.

◮ Then solve for σ.

Fix σ

max
θ

L(θ) = ✘✘✘✘✘✘−N log(σ) − 1

2��σ
2

N∑

n=1

(yn − θ1xn − θ0)
2

becomes

min
θ

1

2

N∑

n=1

(yn − θ1xn − θ0)
2

Solution: θ̂0 and θ̂1.
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Least squares

Solve for σ
Residuals:

z =
N∑

n=1

(yn − θ̂1xn − θ̂0)
2

Solve

max
σ

−N log(σ)− 1

2σ2
z .

Derivative: −Nσ−1 + σ−3z = 0
Derivative: σ2 = z/N
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Least squares: statistical note

Maximum likelihood estimator of the variance

σ̂2 =
1

N

N∑

n=1

(yn − θ̂1xn − θ̂0)
2

Biased estimator

Unbiased estimator of the variance
◮ Let K = 2 be the number of parameters.

σ̂2 =
1

N − K

N∑

n=1

(yn − θ̂1xn − θ̂0)
2

◮ Not important if N is significantly larger than K .

29 / 39



Least squares: statistical note
K = 100
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Linear regression and least squares

Model with X ∈ R
K−1

Y |(X = x) =
K−1∑

k=1

θkxk + θ0 + σε

Regression curve of Y on x

E[Y |X = x ] =
K−1∑

k=1

θkxk + θ0
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Linear regression and least squares

Least square estimates

θ̂ = argmin
1

2

N∑

n=1

(yn −
K−1∑

k=1

θkXk − θ0)
2

Estimation of the variance

(σ̂)2 =
1

N

N∑

n=1

(yn −
K−1∑

k=1

θ̂kXk − θ̂0)
2

or

(σ̂)2 =
1

N − K

N∑

n=1

(yn −
K−1∑

k=1

θ̂kXk − θ̂0)
2
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Back to our example
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Regression line

with 99% confidence interval
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Linear regression: matrix form

K parameters, N observations
Data: x ∈ R

N×K , y ∈ R
N

y = xθ + σε

where
θ ∈ R

K , σ ∈ R, ε ∈ R
N and ε ∼ N(0, I ).

Example: K = 2




22.49
36.11
45.35
51.59


 =




1 2
1 6
1 10
1 12




(
θ0
θ1

)
+ σ




ε1
ε2
ε3
ε4



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Linear regression: matrix form

K parameters, N observations
Data: x ∈ R

N×K , y ∈ R
N

y = xθ + σε

where
θ ∈ R

K , σ ∈ R, ε ∈ R
N and ε ∼ N(0, I ).

Normal equations and estimator

xTx θ̂ = xTy ⇐⇒ θ̂ = (xTx)−1xTy

Estimator of σ

σ̂2 =
1

N
(y − xθ)T (y − xθ) or σ̂2 =

1

N − K
(y − xθ)T (y − xθ)
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Example

y =




22.69
36.11
45.35
51.59


 , x =




1 2
1 6
1 10
1 12




Normal equations and estimator

(
4 30
30 284

)(
θ0
θ1

)
=

(
155.74
1334.22

)
⇐⇒

(
θ0
θ1

)
=

(
17.6
2.84

)
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Example

Residuals

y − xθ =




−0.764746
1.487797
−0.639661
−0.083390


 (y − xθ)T (y − xθ) = 3.2145

ML estimator of σ
√

1

4
· 3.2145 = 0.896

Unbiased estimator of σ
√

1

4− 2
· 3.2145 = 1.27
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Summary

Variables
◮ Continuous

◮ Qualitative discrete

◮ Random

Model
◮ Causality 6= correlation.

◮ Specification based on
theory/hypotheses.

Parameter estimation
◮ Maximum likelihood estimation.

Models covered so far:
◮ X and Y are both discrete.

◮ X and Y are both continuous.

What if Y is discrete and X

continuous?

39 / 39


