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Mathematical modeling

Contingency table and linear regression

Michel Bierlaire

Introduction to transportation systems

1/39



Model development

Specification |« { Theory ]< ..........
’ Estimation }= [ Data ]4 ---------
’ Prediction }: [ Scenarios ]

Analysis, decision
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Example: hypothesis

Theory: hypothesis

» Transportation mode share depends on trip purpose.

» Why? Convenience, flexibility, comfort
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Example: data collection

Sample

» 2000 travelers randomly selected.

» traveler: somebody who made a trip yesterday.

Questions
Consider a trip that you have made yesterday.

1. What was the purpose of your trip? Work/leisure/other.

2. Did you use public transportation? Yes/no.
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Example: data collection

Results
Contingency table:

\ Work Leisure Others
PT 172 191 150
Not PT 345 648 494

Synthetic data generated from Microcensus 2015.
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Example: model

Model

» Y transportation mode. Qualitative with A ={public transport, others}.
» X: trip purpose. Qualitative with A ={work, leisure, others}.
» Model: Y|X.
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Example: model parameters

Y'|work

> 91 - pY|work(PT)

> Pyjwork(not PT) =1 —6;
Y|leisure

> 92 - pY|Ieisure(PT)

> pY|Ieisure(no't PT) =1- 02
Y |others

> 93 - pY|others(PT)
> py|0thers(n0t PT) =1- 93

7/39



Estimation of the parameters

One observation
» Consider a traveler traveling by public transport for work.
» What is the probability that our model correctly predicts this observation?

Pr(Y = PT|X = work) = 0.

All observations in one cell
» Consider all 172 travelers in the sample traveling by public transport for
work.

» What is the probability that our model correctly predicts all these

observations?
172
01
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Estimation of the parameters

All observations
» Consider all travelers in the

le.
sampe. .. ‘ Work Leisure Others
» What is the probability that our PT 1 170 101 150
model correctly predicts all Not PT | 345 648 494

these observations?
9%72(1 . 91)3459%91(1 .
62)6489§50(1 __93)494.
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Estimation of the parameters
Likelihood function

L*(el, 62, 93) — 0%72(1 o 81)3450%91(1 . (92)6480%50(1 o 93)494.
Log likelihood function

L(01,0,,03) =
172log 0, + 345log(1 — 61)+
191 log 6, + 648 log(1 — 62)+
150 log 65 + 494 log(1 — f3) =

L1(61) + L2(02) + L3(63).
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Maximum likelihood estimation

Log likelihood
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Maximum likelihood estimation
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Maximum likelihood estimation

Data
) Work Leisure Others
Estimates PT | 172 101 150
> 0, = 0.333 Not PT | 345 648 494
> Total | 517 830 644
> 0, — 0.233 irz 191 150
517 839 G644
0.333 0.233
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Estimators

My data
‘Work Leisure Others

PT | 172 191 150
Not PT | 345 648 494

My estimate: 6; =33.3%

My colleague's data
‘ Work Leisure Others

PT 168 207 140
Not PT | 317 677 491

Her estimate: 0; =34.6%
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Estimators

Perform the same analysis with 1000 different samples

20

15

10
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Estimators

Estimators are distributed. They are random variables.
True value: #; = 0.320. My estimate: 0.333. Her estimate: 0.346
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Estimators

The larger the sample, the lower the variance of the estimator.
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Maximum likelihood estimation

Likelihood function
Probability that our model reproduces the N observations:

£7(0) = [ Pr(Y = yn X = %01 0) = [ [ Pr(Y = yul X = 50 0) Pr(X = x,)

n=1 n=1

Log likelihood function
In practice, we take the log:

N
L(0) =log L7(0) = Z log Pr(Y = y,|X = x5 0) + log Pr(X = x,)

n=1
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Maximum likelihood estimation

Estimator

N
f = argmax, £(0) = Z log Pr(Y = y,|X = x,;0) + lo =X,

n=1

Asymptotic properties
» Consistency.
» Efficiency.
» Normally distributed.
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Another example

Data: Swiss Microcensus 2015.

Source: ARE.
Theory: hypothesis R
» Daily distance traveled depends £ |
on income z
g
> Why? Individuals with 547 ]
different incomes have different §
socio-professional activities. 5 30, 8
They also have different access ﬁ‘;
to mobility. 20— ‘ ‘ ‘ ‘ ]

2 4 6 8 10 12
Household monthly income (KCHF)
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Another example: data

Monthly income (KCHF) Daily distance (km)

2 22.49
6 36.11
10 45.35

12 51.59
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Another example: model

Model
» Y: daily distance (km). Continuous.
» X: monthly income (KCHF). Continuous.

» Model: Y|X.
Specification: linear regression

Y|(X = x,) = b1x, + &, where &, ~ N(6,603).

Y’(X = Xn) = 01Xn + 90 + 02£n
€n ~ N(0,1), i.i.d. across observations, 6y and ¢, constant across observations
1

2
f(2) = Fm e (-3).
0o, 01 and 0, are parameters to estimate.
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Another example: model

Probability density function

fY|x,,(Z; '90,91792) =

2
1 _ 1 [ z=01xa—bo
27r9§ exp ( 2 < 02 > >
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Estimation of the parameters

One observation

X1 = 2,_)/1 = 22.49.

What is the probability that our model correctly predicts this observation? Zero!
We have a continuous random variable
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Log likelihood function

Intuition
Somehow, the pdf plays the role of the probability.

One observation

X1 = 2,_)/1 = 22.49.

Contribution to the log likelihood:
log fy|x, (y1; 6o, 01, 02) =

-1 ) — |Og(¢92) — %(}ﬁ — 91X1 — 90)2
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Log likelihood function

All observations
N 1 N
L(0) = ; log fy/|x,(Yn: 0) = —Nlog(62) — 0% ;(yn — 01, — 0)?
Maximum likelihood estimation

N

1
2 > (¥n — 01, — 60)
2

n=1

max L(0) = —Nlog(62) —
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Least squares
Procedure
» Denote 6, = 0.
» Fix o and solve for 8y and 6.

» Then solve for o.

Fix o
1N
max £(0) = =Nleg(7) — 27 >
n=1
becomes y
o1
min 3 ;(y,, 01x, — O

Solution: 50 and 51.

27 /39



Least squares

Solve for o
Residuals:
N ~ o~
Z = Z(Yn O1%, — 90)
n=1
Solve
_NI _
max og(o) 52

Derivative: —No 1 +0732=0
Derivative: 02 = z/N
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Least squares: statistical note

Maximum likelihood estimator of the variance

N
1 ~ -
~2 _ Z 2
o = N n:1(yn - 61Xn - 90)
Biased estimator

Unbiased estimator of the variance
» Let K = 2 be the number of parameters.

N
L1 S
02 = N . K ;(Yn - elxn - 90)2

» Not important if N is significantly larger than K.
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Least squares: statistical note
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Linear regression and least squares

Model with X € RK-!

K-1
Y[(X =x) = Oxi + 0o + 0=
k=1

Regression curve of Y on x

K-1
E[YIX =x] = fix+ 6o
k=1
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Linear regression and least squares

| east square estimates

azargmln—z ZQka—QO

n=1

Estimation of the variance

=~
-

K—
Z X — 0p)?
k=1

or

;N K1 R
(@) = N_K Z(}/n - Z 01X — bo)?
=1 k=1
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Back to our example

20

4 15

6 to

0o = 17.6, 0, = 2.84, 5 — 0.896 or & = 1.27
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Regression line

with 99% confidence interval
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Linear regression: matrix form

K parameters, N observations
Data: x € RV*K vy ¢ RV

y =x0 + o¢
where
0 cR 0 cR,ecR"and e~ N(O, /).
Example: K =2
22.49 1 2 €1
36.11 . 1 6 90 +o S5)
45.35 - 1 10 91 €3
51.59 1 12 €4
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Linear regression: matrix form

K parameters, N observations

Data: x € RV*K y ¢ RN
y =x0+ o¢

where
0 c R 0 ecR,ecR"and e~ N(0O, /).

Normal equations and estimator
xTxh=xTy < 0=(x"x)"xTy

Estimator of o
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Example

22.69

| 3611

Y= | 4535 |-
51.59
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Normal equations and estimator
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Example

Residuals
—0.764746
| 1487797 UNTr
y —x0 = 0.639661 (y — x0)" (y — x0) = 3.2145
—0.083390
ML estimator of o Unbiased estimator of o

1 1
Vo —0. \/ s - 32145 = 1.27
5 - 3:2145 = 0.896 T 32145
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Summary

Variables
» Continuous
» Qualitative discrete
» Random

Model

» Causality # correlation.

» Specification based on
theory/hypotheses.

Parameter estimation
» Maximum likelihood estimation.

Models covered so far:
» X and Y are both discrete.
» X and Y are both continuous.

What if Y is discrete and X
continuous?
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