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Parameter estimation

Models covered so far:
◮ X and Y are both discrete: contingency table.

◮ X and Y are both continuous: linear regression.

Easy case

◮ Y is continuous.

◮ X is discrete.

More complex case

◮ Y is discrete.

◮ X is continuous.
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Binary variables

Coding of qualitative variables

◮ Example: X is level of comfort: A = {very comfortable, comfortable, rather
comfortable, not comfortable}.

◮ Define binary variables.

zvc zc zrc znc

very comfortable 1 0 0 0
comfortable 0 1 0 0

rather comfortable 0 0 1 0
not comfortable 0 0 0 1
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Binary variables

Regression

◮ Now we can write

Y = θ1zvc + θ2zc + θ3zrc + θ4znc + σε

◮ We can rely on the methodology for Y and X continuous.

◮ Linear regression.
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Parameter estimation

Models covered so far:
◮ X and Y are both discrete.

◮ X and Y are both continuous.

◮ Y continuous and X discrete.

More complex case

◮ Y is discrete.

◮ X is continuous.

5 / 28



Discrete choice

Choice situation
◮ Traveler has the choice to take public

transportation or not.

◮ Y : transportation mode. Qualitative with
C ={public transport, others}.

◮ X1: travel time. Continuous variables.

◮ X2: travel cost. Continuous variables.

◮ We cannot write

Y = θ1X1 + θ2X2 + σε

◮ We need to go back to utility theory

6 / 28



Utility theory

Attributes

Attributes
Alternatives Travel time (t) Travel cost (c)

PT (1) t1 c1
not PT (2) t2 c2

Utility functions

u1 = −θtt1 − θcc1

u2 = −θtt2 − θcc2

where θt > 0 and θc > 0 are parameters.
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Utility theory

θt/θc

1

Alt. 2 is dominant

Alt. 1 is dominant

Alt. 2 is preferred

Alt. 1 is preferred

t1 − t2

c1 − c2 −θtt1 − θcc1 = −θtt2 − θcc2
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Utility theory

θt/θc

1

Alt. 2 is dominant

Alt. 1 is dominant

Alt. 2 is preferred

Alt. 1 is preferred

t1 − t2

c1 − c2 Alt. 1 is chosen
Alt. 2 is chosen

−θtt1 − θcc1 = −θtt2 − θcc2

9 / 28



Utility theory

Random utility

◮ Ui is a continuous random variable.

◮ For example,
Ui = ui + εi = −θtti − θcci + εi

◮ Individuals maximize their utility:

Pr(Y = i) = Pr(Ui ≥ Uj)

◮ Causality:
Y |U |X
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Random utility model

Latent variable
◮ X and Y are observed.

◮ U is not observed. It is latent.

Logit model

◮ Consider that Y corresponds to a set C of alternatives.

◮ Ui = ui + εi is the random utility for alternative i .

◮ If the εi are i.i.d. Extreme Value(0, µ), then

Pr(Y = i) = Pr(Ui ≥ Uj , ∀j ∈ C) =
eµui∑
j∈C e

µuj
.

11 / 28



Random utility model

Shift invariance

Pr(Y = i) = Pr(Ui + K ≥ Uj + K , ∀j ∈ C), ∀K ∈ R.

Scale invariance

Pr(Y = i) = Pr(µUi ≥ µUj , ∀j ∈ C), ∀µ > 0.

Modeling implications for estimation

◮ Normalization of one intercept to zero.

◮ Normalization of the scale parameter to one.
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Discrete choice
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Pr(Y = PT|U)
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Example

Choice
between Car and PT

Data

Time Time Time Time

# car PT Choice # car PT Choice

1 52.9 4.4 T 11 99.1 8.4 T

2 4.1 28.5 T 12 18.5 84.0 C

3 4.1 86.9 C 13 82.0 38.0 C

4 56.2 31.6 T 14 8.6 1.6 T

5 51.8 20.2 T 15 22.5 74.1 C

6 0.2 91.2 C 16 51.4 83.8 C

7 27.6 79.7 C 17 81.0 19.2 T

8 89.9 2.2 T 18 51.0 85.0 C

9 41.5 24.5 T 19 62.2 90.1 C

10 95.0 43.5 T 20 95.1 22.2 T

21 41.6 91.5 C
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The model

Utility functions

uCn = θ1tCn
uTn = θ1tTn + θT

Parameters
Let’s assume that θT = 0.5 and θ1 = −0.1
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First individual

Variables
Let’s consider the first observation:

◮ tC1 = 52.9

◮ tT1 = 4.4

◮ Choice = PT: ycar,1 = 0, yPT,1 = 1

Likelihood
What’s the probability given by the model that this individual indeed chooses PT?
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First individual

Utility functions

uC1 = θ1tC1 = −5.29
uT1 = θ1tT1 + θT = 0.06

Contribution of individual 1 to the likelihood

P1(PT) =
euT1

euT1 + euC1
=

e0.06

e0.06 + e−5.29
∼= 1
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Second individual

Variables
◮ tC2 = 4.1

◮ tT2 = 28.5

◮ Choice = PT: ycar,2 = 0, yPT,2 = 1

Likelihood
What’s the probability given by the model that this individual indeed chooses PT?
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Second individual

Utility functions

uC2 = θ1tC2 = −0.41
uT2 = θ1tT2 + θT = −2.35

Contribution of individual 2 to the likelihood

P2(PT) =
euT2

euT2 + euC2
=

e−2.35

e−2.35 + e−0.41
∼= 0.13
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Likelihood

Two observations
The probability that the model reproduces both observations is

P1(PT)P2(PT) = 0.13

All observations
The probability that the model reproduces all observations is

P1(PT)P2(PT) . . .P21(car) = 4.62 10−4
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Likelihood

Likelihood of the sample

L∗ =
∏

n

(Pn(car)
ycar,nPn(PT)

yPT,n)

where yj ,n is 1 if individual n has chosen alternative j , 0 otherwise

Log likelihood of the sample

L = logL∗ =
∑

n

(ycar,n logPn(car) + yPT,n logPn(PT))
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Likelihood

Likelihood as a function of the parameters

θT θ1 L∗

0 0 4.57 10−07

0 -1 1.97 10−30

0 -0.1 4.1 10−04

0.5 -0.1 4.62 10−04
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Log likelihood function

−5.31 · 10−2

0.24

−20

−10

θ1

θT
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Estimated choice model

Assume travel time by car = 30 minutes
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Back to the contingency table

Work Leisure Others
PT 172 191 150

Not PT 345 648 494

Use binary variables

uPT = θ1zwork + θ2zleis + θ3zothers

unot PT = 0

Logit model

Pr(PT) =
euPT

euPT + eunot PT
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Back to the contingency table

Maximum likelihood estimation

Work Leisure Others
θ∗i −0.696 −1.22 −1.19

uPT −0.696 −1.22 −1.19
Pr(PT) 0.333 0.228 0.233

Conclusion
◮ Model equivalent to the simple model.

◮ We can always use logit.
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Summary

Dependent variable

◮ Y continuous: linear regression

Y |(X = xn) =
K−1∑

k=1

θkxnk + θ0 + σε

◮ Y discrete: random utility model (logit)

Pr(Y = i |X = xn) =
eui (xn)∑
j∈C e

uj (xn)

where

ui(xn) =
K−1∑

k=1

θkxink + θ0
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Summary

Independent variable
When discrete, can be modeled as a set of binary variables.

Estimation of the parameters
Maximum likelihood
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