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Parameter estimation

Models covered so far:
» X and Y are both discrete: contingency table.

» X and Y are both continuous: linear regression.

Easy case

» Y is continuous.
» X is discrete.

More complex case
» Y is discrete.

» X is continuous.
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Binary variables

Coding of qualitative variables

» Example: X is level of comfort: A = {very comfortable, comfortable, rather

comfortable, not comfortable}.
» Define binary variables.

| Ze 2 Zic Znc

very comfortable | 1 0 0 O
comfortable | 0 1 0 O
rather comfortable | 0 0 1 O
not comfortable | 0 0 0 1
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Binary variables

Regression

» Now we can write
Y = 6)lzvc + 02Zc + 93Zrc + 04ch + o¢

» We can rely on the methodology for Y and X continuous.

» Linear regression.

4/28



Parameter estimation

Models covered so far:
» X and Y are both discrete.

» X and Y are both continuous.

» Y continuous and X discrete.

More complex case

» Y is discrete.
» X is continuous.
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Discrete choice

Choice situation

» Traveler has the choice to take public
transportation or not.

» Y transportation mode. Qualitative with
C ={public transport, others}.

» X;: travel time. Continuous variables.
» X,: travel cost. Continuous variables.
» We cannot write

Y = 91X1 +92X2 + o€

» We need to go back to utility theory
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Utility theory

Attributes
Attributes
Alternatives | Travel time (t) Travel cost (c)
PT (1) ty (5]
not PT (2) t &)
Utility functions
up = —Ottl — gcCl
Uy = —bity — 0.

where 6; > 0 and 6. > 0 are parameters.
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Utility theory

Alt. 2 is preferred

a—-—a

Alt. 2 is dominant

th—t

Alt. 1 is dominant

Be/fc

Alt. 1 is preferred

— bt — 0. = —bitr —becr
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Utility theory

Alt. 2 is preferred
)

a—-—a

Alt. 2 is dominant

th—t

e
.

— —0ity — Occ; = —0,ty — O

Alt. 1 is chosen
Alt. 2 is chosen

Alt. 1 is dominant

.
Alt. 1 is preferred
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Utility theory

Random utility

» U, is a continuous random variable.

» For example,
U =u+e;=—0:t; — 0.c; + ¢;

» Individuals maximize their utility:
Pr(Y = i) = Pr(U; > U))

» Causality:
Y|U|X
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Random utility model

Latent variable
» X and Y are observed.

» U is not observed. It is latent.

Logit model
» Consider that Y corresponds to a set C of alternatives.
» U; = u; + ¢; is the random utility for alternative i.
» If the ¢; are i.i.d. Extreme Value(0, 1), then
ehui

Pr(Y =i)=Pr(U; > U;,Vj€C) = W‘
jec €
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Random utility model

Shift invariance

Pr(Y = i) =Pr(Ui+ K > U; + K,¥j €C), VK € R.

Scale invariance

Pr(Y =1i) = Pr(uU; > nU;,Vj € C), Vi > 0.

Modeling implications for estimation

» Normalization of one intercept to zero.

» Normalization of the scale parameter to one.
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Discrete choice
1

— Pr(Y = PT|V)
—Pr(Y =not PT|V)

0.8 |

0.6

0.4
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Example

Choice

between Car and PT

Data

Time Time Time Time
#  car PT  Choice | #  car PT  Choice
1 529 4.4 T|11 99.1 8.4 T
2 41 285 T|12 185 84.0 C
3 41 86.9 C| 13 820 380 C
4 562 316 T| 14 8.6 1.6 T
5 518 202 T|15 225 741 C
6 02 091.2 C|16 514 838 C
7 276 797 C|17 810 192 T
8 899 2.2 T|18 510 850 C
9 415 245 T|19 622 90.1 C
10 95.0 435 T|20 951 222 T
21 416 915 C
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The model

Utility functions

Ucph = gltCn
ur, = bOitr, +071

Parameters
Let's assume that 8+ = 0.5 and 6; = —0.1
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First individual

Variables
Let's consider the first observation:

> t-; =529
> tTl — 44
» Choice = PT: year1 =0, ypr1 =1

Likelihood
What's the probability given by the model that this individual indeed chooses PT?
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First individual

Utility functions

uci = 0Oitcq = —-529
urp, = 011’7’14‘67’ 0.06

Contribution of individual 1 to the likelihood

eUTl 6006

P, (PT) = euTt + guct | 006 4 o529

~1
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Second individual

Variables
>t = 4.1
» tr, =285

» Choice = PT: year2 =0, ypr2 =1

Likelihood
What's the probability given by the model that this individual indeed chooses PT?
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Second individual

Utility functions

Ucy = Oitco = —-041
ury = Oitro+01 —2.35

Contribution of individual 2 to the likelihood

urs —2.35
Py(PT) = —— - ° ~0.13

elr2 + elc2 e—2.35 + e—0.41
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Likelihood

Two observations
The probability that the model reproduces both observations is

P,(PT)Py(PT) =0.13

All observations
The probability that the model reproduces all observations is

Py(PT)P,(PT) ... Py (car) = 4.62 10

20/28



Likelihood

Likelihood of the sample

£* — H (Pn(car)}’car,n Pn(PT)YPT,n)

n

where y; , is 1 if individual n has chosen alternative j, 0 otherwise

Log likelihood of the sample

L=logL" = Z (Vear.n log Ps(car) + ypr,, log Py(PT))

n
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Likelihood

Likelihood as a function of the parameters

Or 01 L

0 0 45710°%
0 -1 19710°%
0 -01 41107%
05 -01 4.6210°%
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Log likelihood function

~5.31-1072 0y

01
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Estimated choice model

Assume travel time by car = 30 minutes

O |

—Pr(Y =car|X =1t)
—Pr(Y = PT|X = t)

0 20

40 60 80 100
Travel time PT

24 /28



Back to the contingency table

Use binary variables

Upt = elzwork + 02Z|eis + 93Zothers
‘ Work Leisure Others
PT| 172 191 150 Unot PT = 0
Not PT 345 648 494

Logit model

upT
Pr(PT) = ——

eurT + @Unot PT
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Back to the contingency table

Maximum likelihood estimation

Work  Leisure Others

fr —0.696 —1.22 —1.19

upt —0.696 —1.22 —1.19
Pr(PT) 0333 0.228 0.233

Conclusion

» Model equivalent to the simple model.

» We can always use logit.
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Summary
Dependent variable

» Y continuous: linear regression

K-1

Y‘(X = X,,) = Zekx,,k + 90 + o€
k=1

» Y discrete: random utility model (logit)

e“i(Xn)

Pr(Y = I|X :Xn) = W
jeC

where

K—1
ui(x,) = Z OrXink + 0o
k=1
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Summary

Independent variable
When discrete, can be modeled as a set of binary variables.

Estimation of the parameters
Maximum likelihood
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