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Trip-based model: the 4-step approach

4-step approach

✓ Trip generation

◮ Trip distribution

◮ Modal split

◮ Assignment

Production and attraction
◮ Or , Dr for each zone/centroid r .

◮ Random variables: result of linear
regression.

Transportation networks

◮ One for each mode i .

◮ Network performance.

◮ Generalized cost: c irs , for each mode i

and each OD pair (r , s).

◮ Assumed deterministic.

◮ Define crs = mini c
i
rs for each (r , s).
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Trip distribution

Objective

◮ Origin-destination table.

◮ frs for each OD pair (r , s),

◮ such that E[
∑

s frs ] = E[Or ]

◮ such that E[
∑

r frs ] = E[Ds ]

Issue: incompatibility
when

∑
r E[Or ] 6=

∑
s E[Ds ]

Solutions
◮ Use random variables

◮ Do not impose equality:
E[
∑

s frs ] ≈ E[Or ]

Issue: under-determination
infinite number of solutions.

Solutions
◮ More data.

◮ More assumptions.
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Dealing with under-determination: more data

Surveys

◮ Roadside interviews.

◮ License plate mail-out surveys.

◮ GPS data.

◮ etc.

Traffic counts
◮ Loop detectors.

◮ Pneumatic Road tube.

◮ Magnetic sensors.

◮ etc.
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Road side interviews: screening

North

South
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Road-side interviews

South

North

SouthNorth

Data

Data Few data

Few data

6 / 46



Road side interviews: screening
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Road side interviews: issues

Sampling rate

◮ Expensive data collection.

◮ Example: budget for 1000 interviews.

◮ One screen line: 1000 pieces of data per line.

◮ Seven screen lines: 143 pieces of data per line.

Logistics

◮ Cars: interruption of traffic. May require police intervention.

◮ Public transportation: in-vehicle interviews.

Biases
◮ In-vehicle interviews: travelers with long journeys.

◮ Some travelers may cross several lines.
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Elevator example

True table

0 1 2 3 4
0 0.0 500.0 10.0 0.0 510.0
1 100.0 0.0 0.0 0.0 100.0
2 30.0 0.0 0.0 0.0 30.0
3 60.0 0.0 10.0 0.0 70.0
4 70.0 0.0 0.0 10.0 80.0

260.0 0.0 510.0 20.0 0.0

Data
◮ Sum of rows: 515.5, 98.9, 16.4, 51.3, 96.2. Total: 778.3.

◮ Sum of columns: 248.8, 0, 506.4, 9.6, 0. Total: 764.8.
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Interviews: ground floor

True table

0 1 2 3 4

0 0.0 500.0 10.0 0.0 510.0

1 100.0 0.0 0.0 0.0 100.0

2 30.0 0.0 0.0 0.0 30.0

3 60.0 0.0 10.0 0.0 70.0

4 70.0 0.0 0.0 10.0 80.0

260.0 0.0 510.0 20.0 0.0

Data

0 1 2 3 4

0 0.0 501.9 9.6 0.0

1 100.7

2 29.7

3 59.5

4 70.9
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Least squares

min
f

∑

r

(
Or −

∑

s

frs

)2

+
∑

s

(
Ds −

∑

r

frs

)2

+
∑

rs

(
f̂rs − frs

)2
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Least squares

min
f

∑

r

(
Or −

∑

s

frs

)2

+
∑

s

(
Ds −

∑

r

frs

)2

+
∑

rs

(
f̂rs − frs

)2

Results

0 1 2 3 4
0 -18.0 483.9 -8.4 -18.0 439.4
1 55.8 -154.1 -76.2 197.0 22.5
2 -15.2 36.3 39.3 -120.4 -60.0
3 14.6 74.3 -141.5 27.5 -25.1
4 26.0 -16.1 -111.9 121.8 19.8

81.3 76.4 76.4 76.4 86.0 396.5

11 / 46



Linear regression

Issues
◮ Maximum likelihood estimators are

normally distributed.

◮ Normal distribution has infinite
support.

◮ If the true value is close to zero,
the estimate may be negative with
high probability.

Close to zero

−2 0 2
0

0.5

1

Far from zero

−2 0 2
0

0.5

1
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Solutions

Enforce non negativity

◮ frs = exp(τrs), τrs ∈ R

◮ Estimator of τ is normally distributed

◮ Estimator of f is log normally distributed

◮ Advantage: maximum likelihood.

◮ Inconvenient: nonlinear model.
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Nonlinear least squares

min
τ

∑

r

(
Or −

∑

s

eτrs

)2

+
∑

s

(
Ds −

∑

r

eτrs

)2

+
∑

rs

(
f̄rs − eτrs

)2

Results

0 1 2 3 4
0 57.2 252.1 65.0 65.0 439.2
1 44.1 0.0 0.0 0.0 44.1
2 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
4 26.2 6.4 0.0 0.0 32.6

70.2 63.6 252.1 65.0 65.0 515.9
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Nonlinear least squares

True table

0 1 2 3 4

0 0.0 500.0 10.0 0.0 510.0

1 100.0 0.0 0.0 0.0 100.0

2 30.0 0.0 0.0 0.0 30.0

3 60.0 0.0 10.0 0.0 70.0

4 70.0 0.0 0.0 10.0 80.0

260.0 0.0 510.0 20.0 0.0

Estimated table

0 1 2 3 4

0 57.2 252.1 65.0 65.0 439.2

1 44.1 0.0 0.0 0.0 44.1

2 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0

4 26.2 6.4 0.0 0.0 32.6

70.2 63.6 252.1 65.0 65.0 515.9

We should put more emphasis on the survey data
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Weighted least squares

min
τ

w 2
o

∑

r

(
Or −

∑

s

eτrs

)2

+ w 2
d

∑

s

(
Ds −

∑

r

eτrs

)2

+ w 2
f

∑

rs

(
f̄rs − eτrs

)2

Results with wo = wd = 1, wf = 100

0 1 2 3 4
0 0.0 500.8 9.6 0.0 510.4
1 100.2 0.0 0.0 4.1 104.3
2 29.2 0.0 0.0 0.0 29.2
3 58.9 0.0 0.0 0.2 59.1
4 70.3 11.8 0.0 2.3 84.4

258.6 11.8 500.8 11.9 4.3 787.4
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Weighted least squares

True table

0 1 2 3 4

0 0.0 500.0 10.0 0.0 510.0

1 100.0 0.0 0.0 0.0 100.0

2 30.0 0.0 0.0 0.0 30.0

3 60.0 0.0 10.0 0.0 70.0

4 70.0 0.0 0.0 10.0 80.0

260.0 0.0 510.0 20.0 0.0

Estimated table

0 1 2 3 4

0 0.0 500.8 9.6 0.0 510.4

1 100.2 0.0 0.0 4.1 104.3

2 29.2 0.0 0.0 0.0 29.2

3 58.9 0.0 0.0 0.2 59.1

4 70.3 11.8 0.0 2.3 84.4

258.6 11.8 500.8 11.9 4.3 787.4
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Modeling

Sets
◮ Centroids: r = 1, . . . ,N .

◮ Survey zones: p = 1, . . . ,P .

◮ Set of centroids of zone p: Sp

Data
◮ Production: Or , r = 1, . . . ,N .

◮ Attraction: Ds , s = 1, . . . ,N .

◮ Survey data: f̄rs if r ∈ Sp and
s 6∈ Sp.

Regressions

◮ Or =
∑N

s=1 e
τrs + σoε

o
r

◮ Ds =
∑N

r=1 e
τrs + σdε

d
s

◮ ln f̄rs = τrs + σrsεrs

Warning

◮ σ parameter not the same for all
observations.

◮ Assumption of ordinary regression
violated.

◮ We must use weights
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Weighted least squares

Weights

◮ Each observation is associated with a weight.

◮ The more precise the observation, the higher the weight.

◮ Must be defined before hand.

Roadside interviews
◮ A different weight for each set of data.

◮ Production: wo

◮ Attraction: wd

◮ Surveys: wf

◮ Weights must reflect the quality of the data.

◮ For instance: wf ≥ wo ≈ wd
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Weighted least squares

min
τ

w 2
o

∑

r

(
Or −

∑

s

eτrs

)2

+ w 2
d

∑

s

(
Ds −

∑

r

eτrs

)2

+ w 2
f

∑

rs

(
f̄rs − eτrs

)2

Regression equations

Or =
N∑

s=1

eτrs + σoε
o
r=

N∑

s=1

eτrs +
σ

wo

εor

Ds =
N∑

r=1

eτrs + σdε
d
s=

N∑

r=1

eτrs +
σ

wd

εds

f̄rs = eτrs+σrsεrs= e
τrs+

σ

wf
εrs

Large weight = small variance
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Traffic count data

Data
◮ Flow x̄ℓ on link ℓ, for some links.

◮ Assignment matrix.

Assignment matrix

◮ Transforms OD flows into link flows.

◮ Number of rows = number of links.

◮ Number of columns = number of OD pairs.

◮ Available only after the assignment phase.

x = Qf , xℓ =
∑

q

Qℓqfq, where q = (r , s).
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Assignment matrix

Network topology: path-link

◮ Dimensions: number of links × number of paths.

◮ Pℓp = 1 if link ℓ belongs to path p, 0 otherwise.

Route choice: OD-path

◮ Dimensions: number of paths × number of OD pairs.

◮ Rpq is the proportion of OD flow q using path p.

Assignment matrix: OD-link

◮ Dimensions: number of links × number of OD pairs.

◮ Q = PR .

◮ Qℓq is the proportion of OD flow q using link ℓ.
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Network topology

A

B

C

D

E F

1

2

5

7

3

4

6

A-
C

A-
E-
F-
C

A-
E-
F-
D

B-
E-
F-
C

B-
E-
F-
D

B-
D

1 1 0 0 0 0 0
2 0 1 1 0 0 0
3 0 1 1 1 1 0
4 0 1 0 1 0 0
5 0 0 0 1 1 0
6 0 0 1 0 1 0
7 0 0 0 0 0 1
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Route choice

A

B

C

D

E F

1

2

5

7

3

4

6

A-C A-D B-C B-D
A-C 0.5 0 0 0
A-E-F-C 0.5 0 0 0
A-E-F-D 0 1 0 0
B-E-F-C 0 0 1 0
B-E-F-D 0 0 0 0.5
B-D 0 0 0 0.5

24 / 46



Assignment matrix

A

B

C

D

E F

1

2

3

4

5 6

7

A-C A-D B-C B-D
1 0.5 0 0 0
2 0.5 1 0 0
3 0.5 1 1 0.5
4 0.5 0 1 0
5 0 0 1 0.5
6 0 1 0 0.5
7 0 0 0 0.5

Assignment matrix × OD flows = Link flows
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Assignment

Assignment OD Link
matrix flows flows



0.5 0 0 0
0.5 1 0 0
0.5 1 1 0.5
0.5 0 1 0
0 0 1 0.5
0 1 0 0.5
0 0 0 0.5







100
200
300
400


 =




50
250
750
350
500
400
200



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Assignment

A

B

C

D

E F

50

250

750

35
0

50
0 400

200

100

200

300

400
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Traffic count data

Weighted least squares

min
τ

w 2
o

∑

r

(
Or −

∑

s

eτrs

)2

+w 2
d

∑

s

(
Ds −

∑

r

eτrs

)2

+w 2
ℓ

∑

ℓ

(
x̄ℓ −

∑

q

Qℓqe
τq

)2
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Dealing with under-determination: more assumptions

Gravity model

◮ frs proportional to Or .

◮ frs proportional to Ds .

◮ Decreases when generalized cost crs
increases.

frs ≈
αrOrβsDs

c2rs

frs ≈ αrOrβsDse
−γcrs

frs ≈ αrOrβsDsh(crs), h
′(crs) < 0
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The gravity model

min
τ,α,β,γ

w 2
o

∑

r

(
Or −

∑

s

eτrs

)2

+ w 2
d

∑

s

(
Ds −

∑

r

eτrs

)2

+ w 2
g

∑

rs

(
αrOrβsDse

−γcrs − eτrs
)2

Notes
◮ Here, wg ≤ wo ≈ wd .

◮ Not appropriate for the elevator example. Why?
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The gravity model, survey data and traffic counts

min
τ,α,β,γ

w 2
o

∑

r

(
Or −

∑

s

eτrs

)2

+ w 2
d

∑

s

(
Ds −

∑

r

eτrs

)2

+ w 2
g

∑

rs

(
αrOrβsDse

−γcrs − eτrs
)2

+ w 2
f

∑

rs

(
f̄rs − eτrs

)2

+ w 2
ℓ

∑

ℓ

(
x̄ℓ −

∑

q

Qℓqe
τq

)2

.
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Trip-based model: the 4-step approach

4-step approach

✓ Trip generation

✓ Trip distribution

◮ Modal split

◮ Assignment

Origin-destination table

◮ frs for each pair of zones/centroids
(r , s).

Transportation networks

◮ One for each mode i .

◮ Generalized cost: c irs , for each mode i

and each OD pair (r , s).
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Modal split

Mode choice model
◮ Consider an OD pair (r , s).

◮ Set of modes for (r , s): Crs .

Logit model
Probability to choose mode i in Crs :

πrs
i =

e−θc irs

∑
j∈Crs

e−θc
j
rs

, θ ≥ 0
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Elevator example

Mode choice model
◮ Consider an OD pair (r , s).

◮ Set of modes for (r , s): Crs ={elevator, stairs}.

◮ Number of floors: drs = |r − s|

Logit model: utilities
uelevator = 0
ustairs = −θdrs , θ = 1.1

Logit model: probabilities
Proportion who choose the stairs:
πrs
stairs =

e−1.1drs

1+e−1.1drs

π01
stairs = 0.250, π02

stairs = 0.100,
π03
stairs = 0.0356, π04

stairs = 0.0121.
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Elevator example

0 1 2 3 4

0 0.0 500.8 9.6 0.0 510.4

1 100.2 0.0 0.0 4.1 104.3

2 29.2 0.0 0.0 0.0 29.2

3 58.9 0.0 0.0 0.2 59.1

4 70.3 11.8 0.0 2.3 84.4

258.6 11.8 500.8 11.9 4.3 787.4

Elevator
0 1 2 3 4

0 0.0 450.9 9.2 0.0 460.1

1 75.2 0.0 0.0 4.0 79.2

2 26.3 0.0 0.0 0.0 26.3

3 56.8 0.0 0.0 0.1 56.9

4 69.5 11.3 0.0 1.7 82.5

227.7 11.4 450.9 11.0 4.1 705.0

Stairs
0 1 2 3 4

0 0.0 50.0 0.3 0.0 50.3

1 25.0 0.0 0.0 0.1 25.2

2 2.9 0.0 0.0 0.0 2.9

3 2.1 0.0 0.0 0.0 2.1

4 0.9 0.4 0.0 0.6 1.9

30.9 0.4 50.0 0.9 0.2 82.4

35 / 46



Importance of the parameters

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

θ

P
ro
b
ab
ili
ty

of
st
ai
rs

fo
r
on
e
fl
o
or
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Choice data

Revealed preferences (RP)

◮ Observe actual choices made by travelers.

◮ Critical to reproduce the modal shares.

◮ Collect data for explanatory variables.

Inconvenients of RP data
◮ Limited to existing modes, attributes, and attribute levels.

◮ Lack of variability of some attributes.

◮ High level of correlation.

◮ Expensive data collection.

◮ Lack of information on unchosen alternatives.

37 / 46



Choice data

Stated preferences (SP)

◮ Surveys, interviews.

◮ Hypothetical situations.

◮ Choice context defined by the analyst.

◮ “What would you choose if...?”

Advantages of SP data

◮ Exploring new contexts.

◮ Control of the attributes variability.

◮ Control on all alternatives.

◮ Control on the level of correlation.

◮ One individual can answer several questions.
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Choice data

Inconvenients of SP data
◮ Hypothetical situations.

◮ Cannot be used for market shares.

◮ Decision-makers do not have to assume their choice.

◮ Real constraints not involved.

◮ Credibility.

◮ Valid within the range of the experimental design.

◮ Policy bias (example: “every body else should take the bus”).

◮ Justification bias (or inertia).

◮ Framing: phrasing of the question matters.

◮ Anchoring: one variable explains it all.

◮ Fatigue effect.
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Choice data

Estimation of the parameters

◮ RP data is necessary.

◮ SP data is highly valuable.

◮ They are complementary.

◮ Maximum likelihood estimation.
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Mode choice models

Disaggregate

◮ Actual choice models are disaggregate.

◮ They are different across segments of population.

◮ Typical characterization of segments:
◮ trip purpose,
◮ gender,
◮ income,
◮ age,
◮ employment,
◮ availability of mobility tools,
◮ etc.
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Mode choice models

Aggregation

◮ Suppose that the population is partitioned into N segments.

◮ The proportion of individuals in segment n for OD pair (r , s) is πrs
n .

◮ The probability to choose mode i for OD pair (r , s) in segment n is πrs
in .

◮ The proportion of individuals choosing mode i for OD pair (r , s) is therefore

πrs
i =

∑

n

πrs
inπ

rs
n .
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Elevator example

Mode choice model
◮ Consider an OD pair (r , s).

◮ Set of modes for (r , s): Crs ={elevator, stairs}.

◮ Number of floors: drs = |r − s|

Young
uelevator,young = 0
ustairs,young = −θyoungdrs , θyoung = 1.1
Proportion who choose the stairs:
π01
stairs, young = 0.250,

π02
stairs, young = 0.100,

π03
stairs, young = 0.0356,

π04
stairs, young = 0.0121.

Old
uelevator,old = 0
ustairs,old = −θolddrs , θold = 2.1
Proportion who choose the stairs:
π01
stairs, old = 0.110,

π02
stairs, old = 0.0148,

π03
stairs, old = 0.00183,

π04
stairs, old = 0.000225.
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Elevator example

Young
Proportion who choose the stairs:
π01
stairs, young = 0.250,

π02
stairs, young = 0.100,

π03
stairs, young = 0.0356,

π04
stairs, young = 0.0121.

In the building: πrs
young = 25%, ∀(r , s)

Old
Proportion who choose the stairs:
π01
stairs, old = 0.110,

π02
stairs, old = 0.0148,

π03
stairs, old = 0.00183,

π04
stairs, old = 0.000225.

In the building: πrs
old = 75%, ∀(r , s)

Total population
Proportion who choose the stairs:
π01
stairs = 0.25 π01

stairs, young + 0.75 π01
stairs, old = 0.144,

π02
stairs = 0.25 π02

stairs, young + 0.75 π02
stairs, old = 0.0360,

π03
stairs = 0.25 π03

stairs, young + 0.75 π03
stairs, old = 0.0103,

π04
stairs = 0.25 π04

stairs, young + 0.75 π04
stairs, old = 0.003,
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Elevator example

0 1 2 3 4

0 0.0 500.8 9.6 0.0 510.4

1 100.2 0.0 0.0 4.1 104.3

2 29.2 0.0 0.0 0.0 29.2

3 58.9 0.0 0.0 0.2 59.1

4 70.3 11.8 0.0 2.3 84.4

258.6 11.8 500.8 11.9 4.3 787.4

Elevator
0 1 2 3 4

0 0.0 482.8 9.5 0.0 492.3

1 85.7 0.0 0.0 4.1 89.8

2 28.1 0.0 0.0 0.0 28.1

3 58.3 0.0 0.0 0.1 58.4

4 70.1 11.6 0.0 2.0 83.7

242.2 11.7 482.8 11.5 4.3 752.4

Stairs
0 1 2 3 4

0 0.0 18.0 0.1 0.0 18.1

1 14.5 0.0 0.0 0.0 14.5

2 1.1 0.0 0.0 0.0 1.1

3 0.6 0.0 0.0 0.0 0.6

4 0.2 0.1 0.0 0.3 0.7

16.3 0.1 18.0 0.4 0.1 35.0
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Summary

OD table estimation
◮ Zones production and attraction.

◮ More data (e.g. roadside interviews.)

◮ More assumptions: gravity model.

◮ Weighted least squares.

◮ Non negativity must be enforced.

Modal split

◮ RP and SP data.

◮ Mode choice model.

◮ Need for aggregation.

4-step approach

✓ Trip generation

✓ Trip distribution

✓ Modal split

◮ Assignment
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