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Preface

These lecture notes accompany the course Introduction to Transportation
Systems, offered to bachelor students in civil engineering at EPFL.

The course begins by situating transportation systems within a broader
societal and economic context. It examines how costs and externalities influ-
ence transportation decisions and outcomes. The discussion then moves to
engineering aspects, introducing performance indicators used to assess system
design, operational efficiency, and maintenance effectiveness. These ideas are
illustrated through a series of case studies focused on vertical transportation,
road maintenance, and shuttle operations.

The next part introduces fundamental economic principles relevant to
transportation. Concepts such as equilibrium, elasticities, and consumer
surplus are presented to explain how demand responds to changes in price and
service levels. Different behavioral assumptions are discussed, providing a
basis for understanding how individuals make transportation-related choices.

Discrete choice theory is introduced as a method for representing decision-
making among alternatives, with particular attention given to the notion of
value of time. This framework is essential for modeling traveler preferences
and evaluating transport policies.

The course then presents mathematical modeling approaches, explaining
how models are constructed and interpreted. The treatment of causality is
followed by an overview of model development strategies for different types
of variables — discrete, continuous, and mixed.

A general overview of travel demand is provided, introducing the con-
cepts of trip production and attraction. Methods for constructing origin-
destination matrices are described, including challenges such as under-deter-
mination and incompatibility. The structure of travel behavior is further
detailed through the analysis of mode and route choice, as well as the com-
ponents of the four-step model. These include trip generation, distribution,
mode choice, and assignment.

Transportation networks are examined across various modes, including
road systems, public transport, pedestrian infrastructure, and multimodal
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configurations. The representation of paths within these networks is dis-
cussed, along with methods for analyzing accessibility and connectivity.

The four-step model is further developed, with attention to data require-
ments and calibration. Techniques for collecting and interpreting survey
data and traffic counts are outlined. The gravity model is introduced as an
approach to model trip distribution. Modal split is examined in more de-
tail through logit models, including treatment of choice data and behavioral
heterogeneity.

Traffic assignment models are explored next, starting with all-or-nothing
assignment and continuing with user equilibrium formulations. Beckmann’s
model is presented along with its algorithmic solution and its equivalence
with equilibrium conditions. Examples illustrate the computational process.
Conceptual frameworks such as Braess’s paradox and the prisoner’s dilemma
are used to highlight tensions between individual decisions and collective
outcomes. The idea of system optimum is introduced as a target for network
performance.

The course concludes with an introduction to congestion pricing, showing
how pricing mechanisms can be used to steer demand towards more efficient
outcomes. The theoretical underpinnings are linked to practical implemen-
tation challenges.

A final component introduces freight transportation. Topics include facil-
ity location problems, inventory management under fixed and variable con-
sumption scenarios, and vehicle routing. These are presented through nu-
merical examples and scenario analysis, emphasizing the role of spatial and
temporal constraints in freight logistics.
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Chapter 1

Introduction

Transportation systems play a fundamental role in modern society, serving
as the backbone of economic, social, and environmental well-being. They
enable the efficient movement of people and goods, fostering productivity,
accessibility, and sustainability. The primary objectives of transportation
systems revolve around enhancing mobility and promoting accessibility, each
contributing to broader societal benefits.

Mobility is a key goal of transportation systems, as saving travel time is
a critical resource for individuals and businesses alike. Increased productiv-
ity is one of the major benefits of efficient transportation networks. When
commuting times are reduced, individuals can allocate more time to work,
education, or personal development. For instance, well-functioning metro
systems in major cities allow workers to reach their offices more quickly,
leading to higher economic output. Economic growth is another significant
impact, as businesses benefit from faster deliveries and reduced transporta-
tion costs. High-speed rail networks, such as France’s TGV, have drastically
shortened travel times between major cities, fostering business interactions
and regional economic integration.

Beyond economic benefits, efficient transportation can contribute to en-
vironmental sustainability. Shorter travel times translate to lower fuel con-
sumption and fewer emissions. Investments in express bus lanes or optimized
traffic signals help to alleviate congestion and reduce urban air pollution.
Additionally, improvements in transportation systems enhance work-life bal-
ance, as employees with shorter commutes have more time for family, leisure,
and rest, ultimately improving their mental and physical well-being. Cities
that promote flexible transit1 options provide a better quality of life for their
residents. Another important aspect of mobility is its role in emergency re-

1“transit” is synonymous with “public transportation systems.”
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sponse efficiency. Well-designed transportation networks ensure that ambu-
lances, fire trucks, and law enforcement agencies can reach their destinations
faster, which can be critical in life-threatening situations.

Accessibility is another fundamental objective of transportation systems,
as it promotes travel and thereby contributes to social and economic devel-
opment. Social inclusion is enhanced when public transport is made accessi-
ble to all individuals, including those with disabilities, the elderly, and low-
income populations. Vienna, for example, has implemented fully accessible
trams and buses, significantly improving social equity (Emberger et al., 2013).
Economic opportunities are also expanded through well-developed trans-
portation networks. By connecting individuals to better job prospects, par-
ticularly those in low-income or suburban areas, mobility contributes to
reducing economic disparities. Bogotá’s TransMilenio Bus Rapid Transit
(BRT) system has successfully improved job accessibility for residents in pe-
ripheral areas (Hidalgo et al., 2013).

Transportation infrastructure also plays an important role in public health.
Cities that prioritize pedestrian-friendly environments and cycling infrastruc-
ture, such as Amsterdam, encourage active modes of transportation, reducing
obesity and related health risks. Additionally, well-integrated transport net-
works strengthen urban-rural connections, providing rural populations with
better access to healthcare, education, and markets for agricultural goods.
Efficient transportation systems also have a direct impact on tourism and
local businesses. Well-connected cities attract more visitors and customers,
thereby stimulating local economies and enhancing cultural exchange.

To summarize, transportation systems serve as a vital component of mod-
ern society, with far-reaching implications for productivity, economic growth,
environmental sustainability, social inclusion, and public health. By priori-
tizing both mobility and accessibility, policymakers and planners can ensure
that transportation networks contribute to a more efficient, equitable, and
sustainable society.

Transportation has evolved significantly over millennia. A simplified
timeline is reported in Table 1.1.

From a technological point of view, while the airplane, introduced in
1904, was a major breakthrough, subsequent advances have been largely
incremental. No fundamentally new mode of transportation has emerged in
recent times. On the contrary, there is an emerging trend toward promoting
slower, sustainable modes (e.g., walking). This is surprising, compared to the
huge technological progresses in computers and communication technologies.

In order to understand why, let’s explore an interesting technology: the
magnetic levitation (maglev) train that operates in Shanghai. This train
connects Shanghai Pudong International Airport to Longyang Road station
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4000 BC Horses
3500 BC Wheel, river boats
2000 BC Chariots
312 BC Paved roads (Romans)

1662 Horse-drawn public bus
1783 Hot air balloon
1801 Steam road locomotive
1814 Steam-powered railway train
1816 Bicycle
1900 Airship (Zeppelin)
1904 Airplane
1908 Ford car

Source: www.twinkl.ae/teaching-wiki/transportation

Table 1.1: Historical milestones in transportation.

over a distance of 30 km. It is designed to reach a maximum speed of 430
km/h, meaning that if it traveled at full speed for the entire journey, the
travel time would be approximately 4 minutes (source: Wikipedia).

However, in reality, the trip takes 8 minutes. Why is that? The train
needs time to accelerate and decelerate, meaning it cannot maintain its top
speed for the entire journey. Because of this, the average speed over the 30
km trip is 225 km/h.

We also need to consider another important factor: the headway. The
headway is the time between two consecutive trains. In this case, the maglev
runs every 15 minutes, meaning that the waiting time for passengers is 7.5
minutes on average. This waiting time affects the effective travel time, which
now becomes:

8 minutes (train ride)+ 7.5 minutes (average waiting time) = 15.5 minutes
(1.1)

From this, we can compute the overall average speed, considering both
the travel and waiting time:

30 km

15.5 min
≈ 116 km/h. (1.2)

This is much lower than the potential speed of 430 km/h! Even though
the maglev train is an impressive technology, its advantages are underutilized
because of the short distance and waiting time.
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Would it be more beneficial if it were used for longer distances, where it
could maintain high speeds for a greater portion of the trip? Given that the
construction cost of the Shanghai maglev is reported to be 40 million USD
per kilometer, we might ask: Is such an expensive technology justified for a
short route?

In Chapter 11, we explore cost-benefit analysis, a tool used to assess
projects like this one. This method helps determine whether the costs of a
project are justified by the benefits it brings, considering factors like travel
time savings, passenger demand, and alternative transportation options.

An additional aspect to consider is the travel demand. Indeed, most pas-
sengers do not have Longyang Road station as their final destination. Instead,
they must continue their journey using another mode of transportation, such
as a bus, taxi, or metro, to reach their actual destination. This additional
transfer increases the total travel time and reduces the overall convenience
of the trip.

In contrast, a taxi ride from the airport, which takes about 30 minutes
and brings passengers directly to their final destination, may be preferable
for many travelers due to the door-to-door convenience and flexibility it of-
fers. This highlights an important consideration in transportation planning:
speed alone does not determine the attractiveness of a mode of transport.
While the maglev train represents a significant technological achievement,
its competitiveness depends on how well it integrates into the broader trans-
portation network and meets passengers’ needs in terms of accessibility and
overall travel efficiency.

1.1 Costs and Externalities

Transportation systems involve a variety of costs, which can be distributed
among different stakeholders. These costs are typically covered by three main
groups:

• Travelers, who bear expenses such as fares.

• Transport operators, who manage the infrastructure and provide ser-
vices, incurring costs for maintenance, labor, and operations such as
vehicle acquisition, wages and administrative expenses.

• Governments (i.e., taxpayers), who finance public infrastructure projects,
subsidies, and policy enforcement.

Recognizing how these costs are allocated is important in decision-making,
particularly in cost-benefit analysis. A key challenge in transportation plan-
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ning is that those who pay for a transportation system are not always those
who benefit the most from it.

For instance, if a city plans to build a new metro line. The financial
implications for each stakeholder include:

• Travelers : Pay for tickets but benefit from shorter commute times.

• Operators : Invest in trains, staff, and maintenance.

• Government : Provides funding but expects long-term benefits like re-
duced congestion and pollution.

If the taxpayer-funded costs exceed the benefits to society, the project may
not be justified unless external benefits (e.g., sustainability) outweigh the
direct financial losses.

Transportation systems generate effects beyond direct monetary costs.
These additional consequences, known as externalities, represent impacts on
society that are not directly accounted for in the pricing of transport services.

An externality is a side effect or consequence of an activity that affects
other parties without being reflected in the market price. Externalities can
be either positive or negative, influencing various aspects of society and the
environment.

Positive externalities generate benefits for society without direct compen-
sation. Examples include:

Social Growth: Improved accessibility fosters social interactions and com-
munity engagement.

Economic Growth: Efficient transport networks stimulate business devel-
opment, job creation, and market expansion.

Equity and Accessibility: Public transportation enhances mobility for dis-
advantaged populations, reducing social inequalities.

Negative externalities impose costs on society without corresponding pay-
ment. Examples include:

Pollution: Vehicle emissions contribute to air and water pollution, leading
to health and environmental damages.

Energy and Space Consumption: Road congestion and land use for in-
frastructure reduce urban efficiency.

Noise and Safety Concerns: High traffic volumes increase noise pollution
and the risk of accidents.
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Inequity: Disparities in transportation accessibility can reinforce economic
and social inequalities.

While externalities are often not priced into transport systems, they play
a critical role in policy-making. Governments use measures such as taxes,
subsidies, and regulations to mitigate negative externalities and encourage
positive ones.

As an example, consider space consumption. Indeed, transportation in-
frastructure occupies a significant portion of land, impacting urban develop-
ment, environmental sustainability, and land availability for other uses. In
Switzerland, transport infrastructure covers approximately 800 km2, repre-
senting about 2% of the country’s total territory.

The space required for transport infrastructure competes with other es-
sential land uses. One-third of Switzerland’s surface is dedicated to housing
and infrastructure, highlighting the challenge of balancing mobility needs
with environmental and urban planning considerations. The country has an
extensive road network of 84,000 km and a railway system spanning 5,200 km.
While rail transport is generally more space-efficient than roads, both con-
tribute to landscape fragmentation, ecological disruption, and urban sprawl.
Managing these externalities requires policies that promote land-efficient mo-
bility solutions, such as multimodal transport integration, compact city plan-
ning, and investment in high-capacity public transit systems.

1.2 Engineering Challenges and Performance

Indicators

Engineers play an important role in transportation systems, ensuring their
efficiency, safety, and sustainability. Their work spans multiple stages, from
the initial design and planning to the continuous operation and maintenance
of infrastructure. Each stage presents unique challenges that require special-
ized knowledge and innovative solutions.

In the design phase, engineers focus on long-term planning and construc-
tion. This involves designing road networks, rail systems, and public trans-
portation infrastructure to meet growing mobility needs while considering
environmental impact, land use, and economic feasibility. Engineers use ad-
vanced modeling techniques to optimize traffic flow, reduce congestion, and
improve accessibility, ensuring that transportation systems are resilient and
adaptable to evolving demands.

Beyond the initial construction, engineers are responsible for the mainte-
nance of transportation infrastructure. Roads, bridges, tunnels, and railway
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tracks require regular inspections and repairs to ensure safety and longevity.
Well-maintained infrastructure reduces the risk of accidents, minimizes eco-
nomic disruptions, and extends the lifespan of costly investments.

In the operations phase, engineers oversee the day-to-day functioning of
transportation systems. This includes traffic management, railway signaling,
and optimizing public transit schedules to maximize efficiency. Engineers
leverage real-time data to monitor network performance, adjust capacity
during peak hours, and integrate emerging technologies such as autonomous
vehicles and intelligent traffic systems. Their expertise ensures that trans-
portation networks remain reliable, responsive, and aligned with user needs.

1.2.1 Performance Indicators

To ensure efficient and sustainable transportation systems, engineers must
develop objective performance indicators that help evaluate their effective-
ness. These indicators provide a quantitative basis for decision-making, al-
lowing engineers to assess trade-offs between different aspects of system per-
formance. A well-functioning transportation network should balance multi-
ple, sometimes conflicting, criteria to meet user needs, minimize costs, and
reduce societal impacts.

One key measure is the level of service, which encompasses travel time,
comfort, convenience, and flexibility. Engineers analyze factors such as con-
gestion levels, frequency of public transit, and overall accessibility to ensure
that transportation systems provide a reliable and user-friendly experience.
At the same time, costs must be carefully managed, including those asso-
ciated with infrastructure design, maintenance, and daily operations. Engi-
neers work to optimize efficiency while ensuring that investments are finan-
cially sustainable. Beyond direct costs and service quality, transportation
systems also generate externalities, which can be either positive, such as
economic development and improved connectivity, or negative, such as en-
vironmental pollution and noise. By incorporating these factors into their
evaluations, engineers can design systems that are not only functional but
also equitable and environmentally responsible.

1.3 Design case study: vertical transporta-

tion

A common design challenge faced by engineers is ensuring efficient mobility
and accessibility in high-rise buildings. Consider the case of a 40-story build-
ing with no internal transportation system, such as elevators. Without an
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efficient means to move between floors, significant mobility and accessibility
issues arise, directly affecting the building’s usability and appeal.

From a mobility perspective, reaching the upper floors solely by stairs is
highly impractical. If an individual were to walk at a fast pace, taking ap-
proximately 15 seconds per floor, reaching the top floor would require around
10 minutes. At a slower pace of 22 seconds per floor, the total time would
increase to approximately 15 minutes. This prolonged travel time makes
daily movement within the building inconvenient, particularly for individu-
als who need to access higher floors multiple times a day. The lack of a fast
and efficient transportation solution could significantly reduce the building’s
functionality for both residential and commercial use.

Beyond mobility concerns, accessibility also becomes a major issue. If
reaching the top floors is time-consuming and physically demanding, these
spaces may become undesirable for tenants, leading to economic inefficiencies.
Prospective residents and businesses are unlikely to rent or purchase units
on higher floors if they are deemed too difficult to access. This creates a
fundamental design problem: without an effective transportation system,
a significant portion of the building may remain underutilized, ultimately
diminishing its economic viability.

To address this challenge, engineers must design a transportation system
that ensures both mobility efficiency and universal accessibility. Elevators
become an essential component, but their placement, capacity, and speed
must be carefully optimized to prevent congestion and long wait times.

One possible solution to address the mobility and accessibility challenges
in a 40-story building is to install an elevator system that minimizes travel
time. A simple yet extreme approach would be to provide one dedicated
direct elevator for each floor. Assuming that an elevator takes approximately
five seconds per floor, a trip from the ground floor to the top floor would take
about 200 seconds, or roughly three minutes. This significantly reduces the
time required for vertical movement compared to using stairs, making the
building far more functional and accessible.

However, the practicality of such a design raises several important con-
siderations. If each floor were to have its own dedicated elevator, the total
number of elevators would be 40, which would require an enormous amount
of space and entail prohibitively high construction and maintenance costs.
On the other hand, having only one shared elevator for the entire build-
ing may create excessively long waiting times, especially during peak hours,
leading to congestion and inefficiencies. Engineers must therefore strike a
balance between the level of service provided and the financial and spatial
constraints of the system.

Another key factor in the design of the elevator system is understanding
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demand patterns. Not all floors may have the same level of importance or
usage. For instance, if there is a secondary entrance at the fourth floor, a
significant number of users may not require transportation from the ground
level. Similarly, if the building includes an observation deck at the top floor,
there may be higher demand for direct access to that level. These factors
highlight the necessity of a well-planned elevator network that considers user
behavior, travel patterns, and operational efficiency to optimize both cost
and service quality.

The same considerations that apply to the design of vertical transporta-
tion systems in buildings also extend to horizontal transportation networks
in cities and regions. Just as elevators must balance travel time, cost, and
capacity, road and public transit systems must be designed to efficiently
manage demand, minimize congestion, and optimize infrastructure use. A
citywide transportation system that builds a separate road for every possible
route would be unrealistic due to excessive space consumption, high con-
struction costs, and environmental impact. Similarly, having only one road
or transit line serving an entire city would result in severe congestion and
long travel times. Engineers must therefore strike a balance, designing an
optimal number of roads, rail lines, and public transit routes that efficiently
serve demand while minimizing costs and negative externalities. Addition-
ally, just as some floors in a building experience more traffic than others,
certain areas in a city—such as business districts, commercial centers, or
major transit hubs—require more transportation capacity than low-density
residential areas. Understanding travel demand patterns, implementing mul-
timodal solutions, and leveraging smart traffic management technologies are
important for ensuring that horizontal transportation systems remain effi-
cient, accessible, and sustainable.

1.4 Maintenance case-study: road maintenance

One fundamental aspect of transportation system management is mainte-
nance, which ensures infrastructure remains functional, safe, and efficient
over time. Consider the example of road maintenance, where the quality
of a road surface degrades at a constant rate over time due to traffic loads,
weather conditions, and material wear. Assume that the road quality is char-
acterized by a “pavement condition index” (Setyawan et al., 2015), ranging
from g0 to gmax, where gmax represents a newly paved road and g0 indicates
a failed pavement.

If we define the initial road quality as g0 = 0 and assume that degradation
occurs at a constant rate τ, then the quality of the road will progressively
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decline unless repairs are carried out. The cost of repairing the road at a
given time t consists of two components: a fixed cost cf that is independent
of when maintenance is performed, and a variable cost cvτt that increases
with the level of deterioration.

Given these dynamics, an important question arises: how frequently
should maintenance be performed to minimize overall costs while keeping the
road in an acceptable condition? If repairs are conducted too frequently, ex-
penses accumulate due to repeated fixed costs, and resources may be wasted
on roads that are still in good condition. Conversely, if maintenance is de-
layed too long, degradation becomes severe, leading to higher variable costs
and potentially requiring extensive reconstruction rather than simple resur-
facing. Engineers must therefore determine an optimal maintenance sched-
ule that balances cost efficiency with infrastructure longevity, ensuring that
roads remain safe and operational while minimizing financial and logistical
burdens.

A road maintenance model relies on several key components to determine
the optimal strategy for preserving pavement quality while minimizing costs.
One example of such a model is represented in Figure 1.1, where the x-axis
represents time, and the y-axis represents the pavement condition index.

Number of days
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τδt

δt

gmax

Figure 1.1: A model for road maintenance

The deterioration rate, denoted as τ, represents the rate at which the
road surface degrades over time due to factors such as traffic load, weather
conditions, and material wear. Engineers must decide on the appropriate
maintenance interval, δt, which defines how frequently maintenance inter-
ventions should be performed to maintain an acceptable road quality level.
The planning horizon, tH, represents the total period over which maintenance
decisions are evaluated.
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The interval δt must be chosen such that the pavement condition does
not deteriorate beyond g0 = 0, that is

δt ⩽ gmax/τ.

Given a fixed time horizon, the total number of maintenance interventions
required is determined by tH/δt. During each interval, road quality follows
a predictable pattern, starting at the maximum level, gmax, and gradually
declining due to wear and tear. The average quality over one interval is given
by the surface under the curve, that is calculated as

gmaxδt −
τδ2t
2

.

Summing over the full horizon results in a total quality measure of

tH(gmax −
τδt

2
).

Each intervention consists of a fixed cost, cf and a variable cost, cVτδt.
Over the entire planning horizon, the total cost of maintenance is expressed
as

tH(cf/δt + cVτ).

This formulation illustrates the fundamental trade-off in road mainte-
nance planning: frequent but lower-cost interventions versus less frequent yet
more expensive repairs. If maintenance is performed often, each intervention
may require only minor repairs, reducing variable costs per intervention but
increasing the number of interventions over the planning horizon. On the
other hand, if maintenance is postponed for longer periods, the extent of
road deterioration before each repair is greater, leading to higher costs per
intervention, even though the total number of interventions is lower.

An important observation is that the contribution of variable costs re-
mains independent of the chosen maintenance interval, δt. Regardless of
how frequently maintenance is carried out, the total degradation accumu-
lated over the entire time horizon must eventually be repaired. This means
that while the timing of interventions affects the distribution of costs over
time, it does not change the overall variable cost associated with repairing the
accumulated wear and tear. The key decision, therefore, is to determine the
optimal balance between the timing of interventions and the associated fixed
costs, ensuring that the road remains in good condition while minimizing
long-term expenses.

Figure 1.2 presents a numerical example that illustrates the relationship
between the total quality index and the total cost as a function of the interval

17



between two maintenance interventions. The total quality index, represented
on the left axis, decreases linearly as the interval increases. This reflects the
fact that the longer the period between interventions, the more the road de-
teriorates before being repaired, leading to a steady decline in overall quality.
In contrast, the total cost, shown on the right axis, follows an inverse rela-
tionship with the interval length. Initially, frequent interventions lead to high
costs due to recurring fixed expenses, but as the interval increases, the cost
per unit of time decreases significantly.

A key observation from the figure is that beyond approximately 100 days,
extending the interval further has little effect on total cost, as the marginal
reduction in cost becomes negligible. However, road quality continues to
decline at a constant rate, indicating that longer intervals compromise road
conditions without substantial financial benefit. This type of visualization
provides valuable insights for engineers responsible for maintenance planning.
By analyzing the trade-off between cost and quality, they can determine
the most appropriate maintenance frequency that balances infrastructure
longevity with economic efficiency.

τ = 1, gmax = 100, tH = 365, cf = 100, cv = 5
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Figure 1.2: Trade-off between maintenance costs and quality index
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1.5 Operations case-study: shuttle service

Consider the operation of a shuttle service designed to transport spectators
from a stadium to a parking area at the end of a football game. Once
the game concludes, a large number of people exit the stadium and need
transportation. To accommodate this demand efficiently, a shuttle service is
implemented, running at regular intervals to transfer spectators in a timely
manner.

The key operational challenge is determining the optimal frequency at
which the shuttles should be deployed. The flow of people leaving the stadium
is assumed to be uniform, with a rate of f persons per minute. This means
that every minute, a fixed number of spectators arrive at the shuttle boarding
area, awaiting transport. If the service frequency is too low, long queues will
form, increasing waiting times and causing dissatisfaction among passengers.
Conversely, if the service frequency is too high, shuttles may operate with
many empty seats, leading to inefficient resource utilization and unnecessarily
high operating costs.

Each shuttle incurs a fixed cost of operation, denoted as c. Running more
frequent shuttles increases total costs, while running fewer shuttles reduces
costs but may compromise service quality by extending passenger waiting
times. The goal is to strike a balance between cost efficiency and passenger
convenience.

Figure 1.3 provides a graphical representation of the shuttle operations,
illustrating how passengers are transported over time. The horizontal axis
represents time, while the vertical axis corresponds to the cumulative number
of travelers.

The red line in the figure represents the demand, indicating the total
number of passengers requesting transportation. Since spectators leave the
stadium at a uniform rate, this line increases steadily over time. The purple
curve, on the other hand, represents the actual number of passengers trans-
ported. This curve exhibits two distinct behaviors: horizontal segments,
which correspond to the periods when the shuttle is stationed at the stadium
and passengers are boarding, and vertical segments, which represent the ac-
tual journey to the parking area. For the sake of simplicity, the travel time is
assumed to be instantaneous in this illustration, meaning that once a shuttle
departs, it immediately reaches its destination.

Each point on the vertical axis corresponds to a specific passenger, and
the horizontal gap between the red demand curve and the purple transport
curve indicates the waiting time experienced by that passenger. The larger
this horizontal gap, the longer the individual waits before being accommo-
dated on a shuttle. As a result, the grey triangular area between the two
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Figure 1.3: Illustration of the operations of the shuttle service

curves represents the total waiting time accumulated by all passengers within
a single shuttle departure cycle. This waiting time is a function of the shuttle
headway, denoted as δt, which defines the time interval between two consec-
utive shuttle departures.

The shuttle operation can be modeled mathematically to analyze the
trade-off between operational costs and passenger waiting times. The model
assumes that travelers arrive at a constant rate of f passengers per minute,
and the entire transportation process takes place over a planning horizon of
tH minutes. Given this arrival rate, the total number of travelers requiring
transportation during the entire period is ftH.

The shuttle headway, δt directly influences both the frequency of shuttle
trips and the service quality experienced by passengers. The total number of
shuttle trips required over the horizon is tH/δt, ensuring that all passengers
are transported within the specified period. Each shuttle trip accommodates
δtf passengers, meaning that the number of passengers per vehicle is deter-
mined by how frequently the shuttles operate.

From a cost perspective, each shuttle trip incurs a fixed operational cost of
c CHF. Consequently, the total cost of operating the shuttle service over the
entire horizon is given by tHc/δt, indicating that as the headway increases,
the total cost decreases, since fewer trips are required.

Since travelers arrive continuously at a uniform rate, the waiting time for
a given passenger depends on their arrival time relative to the next available
shuttle departure. As explained above, the total waiting time per trip is the
area of the grey triangle, that is δ2tf/2 passenger-minutes. Aggregating over
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the full planning horizon, the total waiting time for all passengers is given
by tHδtf/2 passenger-minutes. This formulation highlights a fundamental
trade-off: a larger headway reduces the total operational cost but increases
total waiting time, whereas a smaller headway improves passenger service
but raises costs.

Figure 1.4 provides a visual representation of the trade-off between oper-
ational cost and passenger waiting time in the context of the shuttle service.
The horizontal axis represents the headway, measured in minutes, which cor-
responds to the time interval between consecutive shuttle departures. The
vertical axis on the left displays the total operational cost, while the vertical
axis on the right shows the total accumulated passenger waiting time. This
figure illustrates a specific scenario in which the planning horizon is set to
tH = 60 minutes, with an arrival rate of f = 60 passengers per minute, and
a fixed cost of c = 200 CHF per shuttle trip.

As the headway increases, the total cost follows a decreasing trend, re-
flecting the fact that fewer shuttles are needed when departures are spaced
farther apart. Since each trip incurs a fixed operational cost, reducing the
number of trips results in lower overall expenses. However, this reduction in
cost comes at the expense of increased passenger waiting time. With a longer
headway, passengers must wait longer before boarding a shuttle, leading to
a proportional increase in total waiting time. This relationship is depicted
on the right vertical axis, where the total waiting time grows as the headway
increases.

The figure clearly demonstrates the fundamental trade-off in shuttle oper-
ations: reducing costs by increasing the headway leads to a decline in service
quality, while minimizing waiting time requires running more frequent trips,
thereby increasing costs. This type of graphical representation is particu-
larly useful for transportation planners, as it provides a concrete means of
evaluating different operational strategies.

1.6 Summary

The development and management of transportation systems present a range
of engineering challenges that require careful consideration at every stage.
Engineers are responsible for designing and constructing infrastructure that
meets current and future needs, ensuring that roads, rail networks, and pub-
lic transport systems are both functional and sustainable. Once built, these
systems must be maintained to preserve their quality and reliability, requir-
ing strategic planning to minimize degradation while optimizing costs. In
addition, the daily operation of transportation services involves complex co-
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Figure 1.4: Trade-off between costs and level of service

ordination to ensure efficiency, safety, and accessibility for all users.
To assess the performance of a transportation system, engineers rely on

various indicators that provide valuable insights into its effectiveness. One of
the most critical measures is the level of service, which evaluates the quality
of transportation from the user’s perspective, including factors such as travel
time, reliability, and comfort. Costs are another essential consideration, en-
compassing both direct expenses, such as construction and operational costs,
and long-term maintenance expenditures. Beyond these financial aspects, ex-
ternalities must also be taken into account, including both positive and neg-
ative effects on society, such as environmental impact, congestion, and social
equity. Since these indicators are measured in different units—time, money,
environmental impact, and social factors—transportation planning involves
complex trade-offs that require a multidimensional approach to decision-
making.

Transportation systems also involve multiple stakeholders, each with dif-
ferent interests and priorities. Travelers seek affordable, convenient, and
efficient mobility solutions that minimize their travel time and maximize
accessibility. Transport operators are responsible for delivering services effi-
ciently while managing costs and maintaining infrastructure. Governments
and taxpayers play an important role in funding transportation projects, en-
suring that investments serve the broader public interest and contribute to
economic growth and sustainability.

Understanding the role of demand is fundamental in transportation plan-
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ning. Identifying who needs the service, who will benefit from it, and who is
willing to pay for it helps shape investment decisions and operational strate-
gies. The design of transportation systems must align with actual user de-
mand to ensure that resources are allocated effectively and that services
are both financially viable and socially beneficial. By integrating engineer-
ing principles with a thorough analysis of demand and stakeholder interests,
transportation planners can create systems that are efficient, sustainable,
and responsive to the evolving needs of society.
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Chapter 2

Fundamentals

In this chapter, we review the fundamental concepts that underpin the anal-
ysis of transportation systems, drawing on principles from microeconomics.
Transportation systems are complex, involving interactions between infras-
tructure, users, and service providers, and their analysis requires a rigorous
framework to understand how travel choices emerge and how transport ser-
vices operate. By leveraging economic theories and behavioral models, we
can develop tools to evaluate system performance, predict demand, and as-
sess the impact of policy interventions.

A central concept in transportation analysis is equilibrium, which de-
scribes a state in which no traveler has an incentive to unilaterally change
their behavior. Understanding equilibrium dynamics is important for de-
signing efficient and fair transportation policies, whether in road networks,
public transit systems, or multimodal mobility solutions.

A central aspect of transportation system analysis emphasized in this
course is understanding travel demand, as it serves as the foundation for
evaluating system performance, planning infrastructure investments, and de-
signing effective policies. Travel demand reflects the choices individuals make
regarding when, where, and how to travel, based on factors such as cost,
travel time, convenience, and personal preferences.

To quantify and analyze travel demand, we introduce two key economic
indicators: demand elasticities and consumer surplus. Demand elasticities
measure the sensitivity of travel demand to changes in key variables, such
as travel cost or travel time. For example, price elasticity of demand cap-
tures how a change in transport fares influences ridership levels, while time
elasticity reflects how variations in travel time affect mode choice.

Another fundamental concept is consumer surplus, which represents the
economic benefit that travelers receive from using a transportation service
beyond what they actually pay for it. In essence, consumer surplus quan-
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tifies the difference between the maximum amount a traveler is willing to
pay for a trip and the actual cost incurred. This measure is particularly
useful for evaluating the social benefits of transportation projects, as it helps
policymakers assess whether an investment improves overall welfare. For in-
stance, a new public transit line that reduces travel costs and travel time for
commuters generates additional consumer surplus by making transportation
more affordable and efficient.

Finally, we explore the behavioral foundations of travel demand, which
help explain how individuals make decisions about when, where, and how
to travel. Travel choices depend on a variety of factors, including economic
constraints, time availability, personal preferences, and social influences. By
incorporating behavioral models into transportation analysis, we can bet-
ter predict demand patterns, assess the impact of policy measures, and
design systems that align with user needs. The integration of these con-
cepts—equilibrium theory, quantitative performance indicators, and behav-
ioral modeling—forms the foundation for a systematic and comprehensive
approach to transportation system analysis.

2.1 Equilibrium

Consider1 a flight from Geneva (GVA) to Tenerife (TFS), where ticket pricing
is influenced by the principles of supply and demand. The airline uses a
dynamic pricing strategy in which the price of a seat depends on the level of
demand, represented by the number of passengers willing to book the flight.
Specifically, the ticket price follows the function:

p = 200+ 0.02q.

This equation indicates that the base price of a ticket is 200 CHF, and for
each additional passenger willing to purchase a seat, the price increases by
0.02 CHF. This reflects a common airline pricing mechanism, where higher
demand leads to higher fares, as fewer seats remain available.

At the same time, the popularity of the flight, measured by the number
of passengers q willing to buy a ticket, depends on the ticket price. As prices
rise, fewer travelers choose to book the flight. This relationship is modeled
by the demand function:

q = 5000− 20p.

1Example inspired by Khisty and Lall, 2003.
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This equation suggests that if the ticket price were to rise, fewer pas-
sengers would be interested in flying, while lower prices would attract more
travelers. The parameters in the equation indicate that at a price of 0 CHF
(hypothetically), 5000 passengers would be interested in the flight, while for
every 1 CHF increase in price, the demand drops by 20 passengers.

To determine the equilibrium price and the number of passengers, we solve
the system of equations by substituting the first equation into the second:

q = 5000− 20(200+ 0.02q).

Expanding and solving for q:

q = 5000− 4000− 0.4q.

q+ 0.4q = 1000.

1.4q = 1000.

q =
1000

1.4
≈ 714.

Now, substituting this value into the price equation:

p = 200+ 0.02× 714.

p = 200+ 14.28 = 214.28.

Thus, the equilibrium ticket price is approximately 214.28 CHF, and the
number of passengers who will fly on this route is around 714. This example
illustrates the fundamental economic interaction between price and demand,
showing how airlines adjust fares dynamically based on booking levels. By
understanding these principles, transportation planners and airline operators
can optimize pricing strategies to balance profitability and passenger demand.

To compare the demand and the supply functions directly, it is necessary
to rewrite the demand function in a form that expresses p as a function of q.
This process, known as inverting the demand function, allows it to be plotted
on the same set of axes as the supply function (Figure 2.1). Solving for p in
terms of q, we rearrange the equation:

q = 5000− 20p.
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20p = 5000− q.

p = 250−
q

20
.

This inverse demand function now expresses ticket price as a function of
passenger quantity, making it directly comparable to the supply function.
By plotting both equations on the same graph, we can visually identify the
equilibrium point where the airline’s pricing strategy intersects with traveler
demand. This equilibrium determines both the final ticket price and the
number of passengers flying on the route.
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Figure 2.1: Supply and demand: airline example

To further illustrate the concept of equilibrium in transportation systems,
we consider a case where there is no monetary price involved: traffic flow on a
highway. Specifically, we analyze the relationship between traffic volume and
travel time on Highway A1 between Morges and Rolle. Unlike pricing in air-
line tickets, where demand and supply interact through financial incentives,
highway traffic operates under a different dynamic—one where congestion
itself regulates demand.

In this example, travel time is influenced by the number of vehicles on the
road. As more vehicles enter the highway, congestion builds up, leading to
longer travel times. This relationship is captured by the following equation:

t = 15+ 0.02x,
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where t represents the travel time in minutes, and x is the number of vehicles
per hour. This equation indicates that in free-flow conditions, when there
is no congestion, the travel time is t0 = 15 minutes. However, as traffic
increases, the additional congestion adds 0.02 minutes (or 1.2 seconds) per
additional vehicle per hour.

At the same time, the number of vehicles using the highway depends on
the perceived travel time. When travel time is low, more drivers choose to
take the highway, as it offers a convenient and time-efficient route. However,
as congestion builds up and delays increase, some drivers may opt for alter-
native routes, adjust their departure times, or even switch to other modes of
transportation. This dynamic relationship between traffic volume and travel
time is represented by the following equation:

x = 4000− 120(t0 + ∆t) = 4000− 120t = 2200− 120∆t.

Here, t represents the total travel time, which can be decomposed into two
components: the free-flow travel time t0, which corresponds to the minimum
possible travel time when there is no congestion, and the congestion delay ∆t,
which accounts for additional delays caused by traffic. In this example, we
assume a free-flow travel time of t0 = 15 minutes. As congestion increases,
the total travel time t grows beyond this minimum value, with ∆t capturing
the excess time spent due to vehicle interactions, lane-changing maneuvers,
and speed reductions.

Rewriting the equation in terms of free-flow and congested conditions, we
see that when the highway operates at free-flow speed (∆t = 0), the maxi-
mum demand is 2200 vehicles per hour. This reflects the number of travelers
who would choose the highway if it offered an optimal, uncongested travel
experience. However, as congestion builds and ∆t increases, the number of
vehicles willing to use the highway decreases at a rate of 120 vehicles per ad-
ditional minute of travel time. This means that for each extra minute spent
in congestion, 120 drivers opt out of using the highway, choosing alternative
routes or modes of transport instead.

To determine the equilibrium, we solve for the values of t and x that
satisfy both equations simultaneously. Substituting the travel time equation
into the traffic demand equation:

x = 4000− 120(15+ 0.02x).

Expanding and rearranging,

x = 4000− 1800− 2.4x,
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x+ 2.4x = 2200,

3.4x = 2200,

x = 647 vehicles per hour.

Substituting this value back into the travel time equation,

t = 15+ 0.02× 647,

t = 15+ 12.94 = 27.94 minutes.

Thus, the equilibrium state of the highway is a traffic flow of 647 vehicles
per hour, with each vehicle experiencing a travel time of approximately 27.94
minutes. This equilibrium represents the point where the congestion level
naturally regulates itself: if travel times were lower, more drivers would enter
the highway, increasing congestion and pushing the travel time back up;
if travel times were higher, fewer drivers would choose the route, reducing
congestion and bringing travel times down.

To facilitate a direct comparison between traffic supply and demand, we
rewrite the demand function in its inverse form, expressing travel time as a
function of traffic volume:

t =
100

3
−

x

120
.

By plotting both the travel time function and this inverse demand func-
tion on the same graph, we can visualize how equilibrium is reached at their
intersection (see Figure 2.2). This example highlights the fundamental eco-
nomic principles at play in transportation systems, where congestion serves
as an implicit pricing mechanism, regulating demand in the absence of mon-
etary costs.

One common strategy to improve highway performance is to expand its
capacity by adding an additional lane. This modification increases the road’s
ability to accommodate more vehicles while reducing congestion and travel
delays. To illustrate this, we analyze the impact of adding a new lane to
Highway A1 between Morges and Rolle, a key corridor experiencing regular
congestion.

Before the improvement, the travel time on the highway followed the
equation:

t = 15+ 0.02x,
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Figure 2.2: Supply and demand: highway example

where t represents the travel time in minutes and x is the number of vehicles
per hour using the highway. In equilibrium, this relationship resulted in an
average travel time of 27.94 minutes with a traffic volume of 647 vehicles per
hour.

With the addition of a new lane, the supply of road space increases,
effectively doubling the capacity available to vehicles. This improvement
reduces the congestion effect per vehicle, modifying the travel time equation
to:

t = 15+ 0.01x.

Here, the congestion impact per vehicle is reduced from 0.02 minutes per
additional vehicle to 0.01 minutes, reflecting the added capacity. At first
glance, one might assume that simply inserting the previous traffic volume
(x = 647) into the new travel time equation would yield an improved travel
time of:

t = 15+ 0.01× 647 = 21.5 minutes.

However, this approach, illustrated in Figure 2.3, is incorrect because
traffic volume is not constant—it reacts dynamically to changes in travel
conditions. When travel time improves, more drivers are encouraged to use
the highway, increasing demand. The number of vehicles on the road adjusts
until a new equilibrium is reached.

To find this new equilibrium, we combine the updated travel time function
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with the demand equation:

x = 4000− 120t.

Substituting the new travel time equation into this demand function:

x = 4000− 120(15+ 0.01x).

Expanding and solving for x,

x = 4000− 1800− 1.2x,

x+ 1.2x = 2200,

2.2x = 2200,

x = 1000 vehicles per hour.

With this new traffic volume, the corresponding travel time is:

t = 15+ 0.01× 1000 = 25 minutes.

Thus, after adding a lane, the highway experiences both an increase in
traffic volume, rising from 647 to 1000 vehicles per hour, and an improvement
in travel time, decreasing from 27.94 minutes to 25 minutes, as illustrated
in Figure 2.4. While the travel time reduction is not as large as initially
expected, the highway now serves significantly more travelers while still pro-
viding a slightly faster journey.

This example highlights a fundamental characteristic of transportation
systems: induced demand. When road capacity is increased, travel becomes
more attractive, leading to an increase in usage. This self-regulating effect
means that infrastructure improvements do not always lead to proportional
reductions in congestion but rather a redistribution of travel behavior. Un-
derstanding this dynamic is essential for making informed decisions about
road expansion projects and evaluating their true long-term benefits.

As we have seen, the interaction between supply and demand plays an
important role in transportation systems, shaping how infrastructure is uti-
lized and how travelers make decisions. Engineers have the ability to modify
the supply function by introducing capacity enhancements, optimizing traffic
management, or implementing new technologies to improve system perfor-
mance. However, any change in supply inevitably affects demand, as travelers
adjust their behavior in response to improved or degraded travel conditions.
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Figure 2.3: Travel time improvement after capacity increase: wrong analysis

Understanding this interdependence is essential for designing effective and
sustainable transportation solutions.

One of the most important lessons in transportation analysis is that de-
mand is not fixed — it responds dynamically to changes in supply. When
road capacity is expanded, congestion effects may initially be reduced, but
over time, increased attractiveness can lead to a rise in demand, partially
offsetting the benefits of the capacity increase. Conversely, measures such
as congestion pricing or improved public transport options can shift demand
away from road networks, leading to a more balanced distribution of traffic.
Engineers must therefore not only focus on modifying infrastructure but also
anticipate how users will respond to these changes.

Note that, in real-world applications, supply and demand functions are
nonlinear. Unlike the simplified linear models used for illustrative purposes,
actual travel time and demand relationships exhibit more complex behavior.
A more realistic supply function accounts for the fact that congestion effects
grow exponentially as traffic approaches capacity, while a more sophisticated
demand function reflects behavioral patterns where sensitivity to travel time
varies across users.

For instance, a more realistic supply function could be expressed as:

t = 10

(
1+ 0.15

( x

2000

)4)
,

indicating that as traffic volume increases, travel time rises sharply due
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Figure 2.4: Travel time improvement after capacity increase: correct analysis

to congestion effects. Meanwhile, a more refined demand function might take
the form:

x = 8000
1

1+ e0.06t
,

which represents a demand curve where travel time reductions attract
more users but at a diminishing rate.

As for the linear examples, the graphical representation of these functions
(Figure 2.5) highlights the equilibrium point, where supply and demand inter-
sect, determining both the actual travel time and traffic volume. Engineers
and policymakers must carefully evaluate these nonlinear dynamics when
proposing interventions, ensuring that transportation improvements lead to
long-term benefits rather than unintended consequences such as induced de-
mand.

2.2 Elasticities

The concept of elasticity plays a fundamental role in understanding how
travel demand responds to changes in external conditions, such as travel
time or cost. Elasticities provide a measure of the sensitivity of demand to
these changes, helping transportation planners anticipate traveler behavior
and assess the potential impact of policy interventions.
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Figure 2.5: Supply and demand: nonlinear functions

To illustrate this concept, consider the demand function for a highway:

x = 4000− 120t.

This equation indicates that as travel time t increases, the number of
vehicles x using the highway decreases, following a linear relationship. To
assess how sensitive demand is to travel time, we analyze what happens when
t is increased by 1%.

For an initial travel time of t = 27.94 minutes and traffic volume x = 647.2
vehicles per hour, a 1% increase in t results in a new travel time of t = 28.2194
minutes. The corresponding traffic volume drops to x = 613.672 vehicles per
hour, representing a relative change of approximately −5.18%. Similarly, for
an initial travel time of t = 25 minutes with traffic volume x = 1000 vehicles
per hour, a 1% increase in t leads to a decrease in x to 970, corresponding
to a relative change of −3%.

These observations suggest that demand sensitivity varies depending on
the initial conditions. To formalize this, we introduce the concept of point
elasticity, which quantifies the percentage change in demand relative to the
percentage change in travel time:

et =
dx/x

dt/t
=

dx

dt

t

x
.

Applying this formula to our example, we differentiate the demand func-
tion:
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dx

dt
= −120.

Substituting into the elasticity formula,

et = −120
t

x
= −120

4000− x

120x
= 1−

4000

x
.

Evaluating this at x = 1000 gives:

et = 1−
4000

1000
= −3,

that corresponds to the value calculated above. Note that this result indicates
that demand is highly sensitive to changes in travel time in this scenario.

Elasticities are commonly classified into two categories based on their
magnitude. If the absolute value of the elasticity is greater than 1, meaning
that demand changes proportionally more than the change in travel time,
the demand is considered elastic. As the elasticity in negative, this happens
when

et < −1.

In contrast, if the absolute value is less than 1, meaning that demand is
less responsive to changes in travel time, it is considered inelastic:

et > −1.

Understanding whether demand is elastic or inelastic is important for
transportation policy and pricing strategies. For example, if demand is elas-
tic, small increases in congestion or toll pricing can lead to significant reduc-
tions in traffic volume, which may be desirable for congestion management.
Conversely, if demand is inelastic, even substantial increases in travel time
may not significantly reduce the number of travelers, indicating that alterna-
tive policies such as infrastructure expansion or improved public transit may
be needed to influence travel behavior effectively.

Figure 2.6 provides a graphical representation of the demand elasticity
with respect to travel time in the highway example discussed earlier. This
visualization helps illustrate how the sensitivity of travelers to congestion
varies depending on traffic conditions. The horizontal axis represents traffic
flow, measured in vehicles per hour, while the left vertical axis corresponds
to travel time in minutes. Additionally, the right vertical axis indicates the
demand elasticity.

One key insight from this figure is that the demand elasticity is not con-
stant across different levels of traffic, although the demand function is linear.

35



When traffic flow is below 2000 vehicles per hour, demand is elastic, mean-
ing that small increases in travel time lead to significant reductions in the
number of vehicles using the highway.

However, as traffic flow exceeds 2000 vehicles per hour, demand becomes
inelastic, indicating that further increases in travel time have a relatively
smaller effect on the number of vehicles on the road.

Note that the minimum possible travel time is 15 minutes, which repre-
sents the free-flow condition where there is no congestion, and the maximum
flow is 2200 vehicles per hour. Therefore, the part of the graph beyond
2200 does not represent any real situation, and we observe that demand is
almost always elastic in this example, meaning that a small percentage in-
crease in travel time leads to a proportionally larger percentage decrease in
the number of vehicles using the road. This implies that travelers are highly
responsive to congestion: when travel times worsen, many users opt out of
using the highway. Such elasticity suggests that policies aimed at reduc-
ing congestion—such as road pricing, high-occupancy vehicle (HOV) lanes,
or improved public transportation—can have a significant impact on travel
behavior.

The high elasticity of demand in this scenario also means that even minor
improvements in travel time can lead to substantial increases in road usage.
For instance, infrastructure projects that reduce travel times by just a few
minutes can significantly boost demand, potentially leading to induced traffic
effects. This highlights the need for careful planning when implementing road
expansions, as increased capacity may initially reduce congestion but could
later attract additional travelers, partially offsetting the benefits.
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Figure 2.6: Point elasticity

While point elasticity evaluates the sensitivity at a specific travel time,
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arc elasticity offers a more general measure by comparing demand changes
over a finite interval. The arc elasticity of demand with respect to travel
time is defined as:

e∆t =
∆x/x

∆t/t
=

∆x

∆t

t

x
.

This formula expresses the relative change in traffic flow (x) over a given
change in travel time (t), providing an average elasticity value over a specific
range rather than at an infinitesimal point.

In practical applications, the quantities ∆x and ∆t are typically computed
from two distinct scenarios: a before and an after situation, such as the
implementation of a new policy or infrastructure change. For instance, xbefore
and tbefore represent the observed demand and travel time prior to the change,
while xafter and tafter are the corresponding values following the change. The
differences ∆x = xafter − xbefore and ∆t = tafter − tbefore capture the overall
impact. This approach may be more meaningful for engineers and decision-
makers, as it reflects tangible, scenario-based changes rather than theoretical
sensitivity at a single point.

A key distinction arises when comparing linear and nonlinear demand
functions. Indeed, for a linear demand function, the arc elasticity and point
elasticity are equal:

et = e∆t.

However, for a nonlinear demand function, elasticity varies across dif-
ferent travel times. In such cases, arc elasticity serves as an approximation
of elasticity over a range, while point elasticity corresponds to the instan-
taneous sensitivity of demand at a particular travel time. Mathematically,
point elasticity is obtained by taking the limit of arc elasticity as the interval
shrinks to zero:

et = lim
∆t→0

e∆t.

Figure 2.7 illustrates the difference between arc elasticity and point elas-
ticity for a nonlinear demand function. The horizontal axis represents travel
time, while the vertical axis represents traffic flow. In this graph, point elas-
ticity is associated with the slope of the tangent line at a specific travel time,
capturing the local responsiveness of demand to small changes in travel time.
In contrast, arc elasticity corresponds to the slope of the secant line between
two points on the demand curve, representing an average elasticity over a
broader interval.
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The distinction between arc and point elasticity is particularly relevant
for transportation policy and planning. When demand functions are nonlin-
ear, using a single point elasticity may not accurately capture variations in
traveler sensitivity across different traffic conditions. Arc elasticity provides
a more practical approach when evaluating the impact of large-scale changes,
such as infrastructure expansions or pricing adjustments, allowing planners
to estimate the overall effect of a policy rather than just its local impact.
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Figure 2.7: Arc elasticity for nonlinear demand functions

2.3 Consumer surplus

The concept of consumer surplus is a fundamental principle in economics and
transportation analysis, providing a measure of the benefits that consumers
receive from a service beyond what they actually pay for it. In the context
of transportation systems, consumer surplus helps quantify the value that
travelers derive from access to infrastructure and mobility services.

Consumer surplus is formally defined as the difference between what con-
sumers are willing to pay for a service and the price they actually pay. In
transportation, this means that if a traveler is willing to pay a high price for
a trip but only needs to pay a lower fare, the difference represents a surplus
or benefit to the traveler. This concept is particularly useful in assessing the
economic impact of transportation policies, pricing strategies, and infrastruc-
ture investments.

Figure 2.8 provides a graphical illustration of consumer surplus for the
airline example discussed in Section 2.1. The horizontal axis represents the
number of sold seats, while the vertical axis corresponds to the price of
a ticket. The figure includes the supply function and the inverse demand
function.

Consumer surplus is the area between the demand curve and the equilib-
rium price. It represents the total monetary benefit received by passengers
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who were willing to pay more than the actual ticket price. For example, some
travelers might have been willing to pay 250 CHF for a ticket, but because
of the market equilibrium, they only pay 214.3 CHF, thus gaining a surplus
of 35.7 CHF per ticket. The sum of such differences across all passengers
forms the total consumer surplus, shown as the triangular region above the
equilibrium price and below the demand curve.

The formula for consumer surplus is given by the area of a triangle. In
this context, the height of the triangle corresponds to the difference between
the maximum willingness to pay (the highest price on the demand curve) and
the equilibrium price. From the demand function, we see that the highest
willingness to pay is 250 CHF, while the equilibrium price is 214.3 CHF.
Thus, the height is:

250− 214.3 = 35.7 CHF.

The base of the triangle corresponds to the number of tickets sold at equi-
librium, which is 714 seats. Therefore,

Consumer Surplus =
714× 35.7

2
= 12744.9 CHF.

Thus, the total consumer surplus for this airline pricing scenario is 12,744.9
CHF. This value represents the total economic benefit passengers receive due
to the pricing strategy, as many travelers are paying less than their maximum
willingness to pay.
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Figure 2.8: Consumer surplus: airline example
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Consumer surplus can also be calculated for the highway example. Fig-
ures 2.9 and 2.10 illustrate the increase in consumer surplus following an
improvement in highway capacity.
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Figure 2.9: Consumer surplus: highway example

In the initial situation, before the capacity increase, the highway operated
at an equilibrium where 647 vehicles per hour were using the road, with an
average travel time of 27.94 minutes. The consumer surplus, represented by
the gray area between the demand curve and the equilibrium travel time, is
calculated as:

Consumer surplus =
(33.33− 27.94)× 647

2
= 1744.5 minutes.

After adding an extra lane, the highway’s capacity increased, effectively
shifting the supply curve downward. The new equilibrium occurs at a higher
traffic volume of 1000 vehicles per hour, with a reduced travel time of 25
minutes. With this improvement, the new consumer surplus increases to:

Consumer surplus =
(33.33− 25)× 1000

2
= 4165 minutes.

This represents a significant gain in consumer surplus, indicating that
travelers experience a net benefit due to reduced congestion and lower travel
times.

The additional consumer surplus consists of two components:
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Figure 2.10: Consumer surplus: highway example with one more lane

1. The travelers who were already using the highway before the capacity
improvement now experience shorter travel times, leading to an in-
crease in their individual consumer surplus. This is represented by the
rectangular gray area in Figure 2.11 between the old and new travel
times for the original 647 users.

2. The reduced travel time attracts additional travelers who previously
avoided the highway due to excessive delays. These new users con-
tribute to an additional gain in consumer surplus, represented by the
triangular region formed between the old and new equilibrium points.

When the supply and demand functions are linear, the calculation of the
additional consumer surplus follows the rule of half, which states that the
total increase in consumer surplus is given by:

1

2
(x1 + x2)(t1 − t2),

where x1 and x2 represent the traffic volumes before and after the capacity
expansion, and t1 and t2 denote the corresponding travel times (see Fig-
ure 2.12).

From a broader perspective, consumer surplus serves as a key indicator
of social welfare, reflecting the overall benefits that a transportation system
provides to society. A well-designed transportation network — whether it
includes highways, public transit, or multimodal options — can generate
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Figure 2.11: Additional consumer surplus for the highway example

significant consumer surplus by offering affordable and efficient mobility op-
tions. When a new facility, such as a highway or railway line, is introduced,
the increased accessibility and reduced travel times often enhance consumer
surplus, as travelers experience greater convenience without necessarily in-
curring higher costs.

Consumer surplus is not only influenced by changes in the supply func-
tion, such as increasing road capacity, but also by modifications in the de-
mand function. As described above, demand reflects how travelers respond to
travel conditions, and various policies or interventions can shift this relation-
ship. For example, improving public transportation, promoting flexible work
hours, or introducing pricing mechanisms can all alter the demand function
by changing how travelers perceive and experience congestion.

Initially, the demand function for the highway follows:

x = 4000− 120t.

This equation indicates that as travel time increases, fewer drivers choose
to use the highway, leading to a decrease in traffic volume. However, suppose
an intervention modifies the demand function to:

x = 4000− 90t.

This new demand function suggests that travelers are now less sensitive
to increases in travel time, meaning that a higher number of vehicles will
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Figure 2.12: Additional consumer surplus: rule of half

continue using the highway even as congestion worsens. Such a shift might
result from improved road reliability, better infrastructure design, or behav-
ioral changes among commuters.

Figure 2.13 illustrates how this change affects the equilibrium. Before
the demand shift, the highway operated at an equilibrium of 647 vehicles
per hour, with an average travel time of 27.94 minutes. After modifying
the demand function, the new equilibrium occurs at a higher traffic flow of
946 vehicles per hour, with a corresponding travel time determined by the
intersection of the new demand function with the supply curve.

This demand shift leads to a significant increase in consumer surplus.
Previously, the consumer surplus was:

(33.33− 27.94)× 647

2
= 1744.5 minutes.

After the demand modification, the consumer surplus rises to:

(33.33− 25)× 946

2
= 4976.3 minutes.

This increase in consumer surplus indicates that travelers are now ex-
periencing greater overall benefits from the highway system, because their
perception, their behavioral response, has changed.

Figure 2.14 highlights this increase in consumer surplus. The gray area
before the demand shift represents the initial consumer surplus, while the ex-
panded gray region after the shift accounts for the additional benefits gained.
The larger consumer surplus suggests that policies or infrastructure improve-
ments that alter travel behavior can have a profound impact on user benefits,
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Figure 2.13: Modified demand function: new equilibrium

even without directly modifying road capacity.
In summary, engineers manage mobility by influencing both the supply

and demand functions. Traditionally, engineering efforts have focused on
modifying the supply function, which involves designing, building, and im-
proving infrastructure, as well as introducing new transportation services.
By increasing capacity, optimizing traffic flow, or enhancing public transit
networks, engineers can directly impact travel conditions and system perfor-
mance.

However, another equally important approach is to modify the demand
function. Instead of increasing supply, demand-side strategies aim to influ-
ence traveler behavior and perceptions. This can be achieved through in-
centives, such as discounted transit fares or carpooling benefits, or penalties,
such as congestion pricing or restricted access to certain areas during peak
hours. By adjusting how travelers make decisions, these interventions can
help reduce congestion, promote sustainable mobility choices, and improve
overall efficiency without necessarily expanding infrastructure.

This leads to a fundamental question: Where does the demand func-
tion come from? Understanding travel demand requires insights into human
decision-making, behavioral responses, and economic factors that influence
mobility choices. To answer this question, we now turn to the behavioral
foundations of travel demand, exploring how individuals make transporta-
tion decisions and how these choices can be modeled and predicted.
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Figure 2.14: Modifed demand function: consumer surplus

2.4 Behavioral assumptions

In microeconomic theory, decision-makers are often faced with choices re-
garding the consumption of multiple goods or services. These choices are
represented as a consumption bundle, where the individual selects quantities
of different goods, taking into account their prices and a budget constraint.

In this framework, the decision-maker’s objective is to determine the op-
timal quantity of each good to consume. The consumption bundle is repre-
sented as a vector:

q =

 q1
...
qK

 ,

where each qk represents the quantity of a specific good k. The prices of
these goods are also given as a vector:

p =

 p1
...
pK

 .

The key constraint in this decision process is the budget constraint, which
ensures that the total expenditure does not exceed the available budget b.
Mathematically, this is expressed as:
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pTq =

K∑
k=1

pkqk = b.

This equation states that the total cost of purchasing the chosen quanti-
ties of goods, considering their respective prices, must be equal to the budget.

The budget constraint, illustrated in Figure 2.15, defines a hyperplane in
the space of goods. The feasible set of consumption bundles lies within this
constraint, meaning that the decision-maker must allocate their resources
efficiently to maximize utility while remaining within their budget.

p1q1 + p2q2 + p3q3 = b

q1

q2

q3

Figure 2.15: Budget constraint

A fundamental assumption in microeconomics is the concept of Homo
economicus, which describes an idealized decision-maker who behaves in a
rational and self-interested manner when making choices. This assumption
provides a foundation for many economic models, including those used in
transportation analysis.

The decision-maker is assumed to be consistently rational, meaning that
they evaluate available options logically and systematically, making choices
that maximize their personal benefit. This rationality implies that individu-
als process information without cognitive biases and always make decisions
that align with their best interests.

Additionally, the decision-maker is considered to be narrowly self-interested.
This means that their decisions are guided primarily by personal gain, rather
than broader social, ethical, or altruistic considerations. In the context of
transportation, this assumption suggests that travelers choose routes, modes,
and departure times that minimize their own travel costs and time, without
directly accounting for the impact on other users.
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Finally, the decision-maker is assumed to optimize her outcome, meaning
that given all available choices and constraints, she selects the option that
provides the highest possible utility. In transportation, this translates to
travelers selecting the fastest, cheapest, or most convenient mode of transport
based on their preferences and constraints.

In decision theory and microeconomics, preferences describe how a decision-
maker ranks different alternatives based on their desirability. The preference-
indifference operator provides a formal way to compare these alternatives and
establish a consistent ranking system.

The notation qk ≻ qℓ indicates that the decision-maker strictly prefers
bundle qk to bundle qℓ, meaning that given a choice between the two, the
decision-maker would always select qk. If the decision-maker perceives both
qk and qℓ as equally desirable, the relationship is expressed as qk ∼ qℓ,
signifying indifference between the two bundles. The relation qk ≿ qℓ states
that qk is at least as preferred as qℓ, meaning that either qk is strictly
preferred or the decision-maker is indifferent between the two.

For preferences to be rational, they must satisfy key properties. The
first is completeness, which ensures that for any two bundles qk and qℓ, the
decision-maker is able to compare them in some way, meaning that one of
the three relations qk ≻ qℓ, qk ≺ qℓ, or qk ∼ qℓ must always hold. This
guarantees that there are no situations where the decision-maker is unable
to express a preference or indifference.

The second property is transitivity, which ensures logical consistency in
rankings. If the decision-maker prefers qk to qℓ and also prefers qℓ to qm,
then rationality requires that qk must also be preferred to qm. Formally, if
qk ≿ qℓ and qℓ ≿ qm, then it must follow that qk ≿ qm. This property pre-
vents circular preferences, ensuring that choices remain logically structured.

The third property is continuity, which states that if qk is preferred to
qℓ, then any bundle qc that is arbitrarily close to qk must also be preferred
to qℓ. This condition ensures that small variations in a bundle do not lead
to abrupt or irrational shifts in preferences.

The concept of a utility function provides a formal mathematical rep-
resentation of preferences, allowing for the quantification and comparison of
different consumption bundles. Instead of expressing choices directly through
preference relations, the utility function assigns a numerical value to each
bundle, capturing the level of satisfaction or benefit derived from it.

The utility function is parameterized and written as:

ũ = ũ(q1, . . . ,qK; θ) = ũ(q; θ),

where q = (q1, . . . ,qK) represents the consumption bundle, and θ includes
any parameters that may influence individual preferences. This function is
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designed to be consistent with the preference-indifference operator, meaning
that the ranking of consumption bundles based on utility values must align
with the original preference relations.

Formally, if a decision-maker considers bundle qk at least as preferred as
bundle qℓ, this relationship must hold in terms of utility values:

qk ≿ qℓ ⇐⇒ ũ(qk; θ) ⩾ ũ(qℓ; θ).

This equivalence ensures that the utility function correctly captures the
decision-maker’s underlying preferences. If a bundle has a higher utility
value, it is preferred over other bundles with lower utility values.

Any preference indicator that is complete, transitive and continuous can
be associated with a consistent utility function. Moreover, this function is
unique up to an order-preserving transformation. This means that differ-
ent mathematical transformations of the utility function, as long as they
maintain the ranking of choices, result in equivalent representations of pref-
erences. For example, applying a strictly increasing transformation such as
the exponential function preserves the preference order:

qk ≿ qℓ ⇐⇒ ũ(qk; θ) ⩾ ũ(qℓ; θ) ⇐⇒ exp ũ(qk; θ) ⩾ exp ũ(qℓ; θ).

While utility values themselves may not have direct numerical meaning,
their relative comparisons are what matter for decision-making. The utility
function serves as a mathematical representation of the structure of prefer-
ences of ecomonic actors.

An example from microeconomics is the Cobb-Douglas utility function,
which provides a simple yet powerful way to model consumer preferences.
Illustrated in Figure 2.16, this function takes the form:

ũ(q) = qθ1
1 qθ2

2 · · ·qθK

K ,

where q = (q1,q2, . . . ,qK) represents the quantities of different goods, and
θ1, θ2, . . . , θK are positive parameters that reflect the relative importance of
each good in the consumer’s preferences.

The Cobb-Douglas utility function has several key properties that make
it useful for economic analysis. First, it exhibits positive marginal utility,
meaning that consuming more of any good increases the overall utility, but
at a decreasing rate. This property aligns with the intuitive idea that while
additional consumption brings satisfaction, each extra unit of a good con-
tributes less than the previous one.

Second, the Cobb-Douglas function exhibits constant elasticity of sub-
stitution, meaning that the way consumers trade off one good for another
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remains stable across different consumption levels. The parameters θk de-
termine the relative preference for each good. If one good has a higher θk,
it means that the consumer derives more benefit from it compared to the
others.
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Figure 2.16: Example of a utility function: Cobb-Douglas

Figure 2.17 illustrates the indifference curves, which correspond to the
level curves of the Cobb-Douglas utility function. These curves represent
sets of consumption bundles that provide the same level of satisfaction to
the decision-maker. If two bundles, denoted as A and B, lie on the same
indifference curve, this means that they yield the same utility value. As a
result, the decision-maker perceives no difference in preference between these
two bundles and is indifferent when choosing between them.

Indifference curves capture the fundamental idea that individuals make
trade-offs when consuming multiple goods. For example, if a person consumes
less of one good, they may need more of another to maintain the same level
of utility. This trade-off is reflected in the shape of the curves. In the case
of the Cobb-Douglas utility function, indifference curves exhibit a smooth,
convex shape, indicating that the decision-maker is willing to substitute one
good for another, but at a diminishing rate.

The further an indifference curve is from the origin, the higher the level
of utility it represents. This means that any bundle located on a higher
indifference curve provides greater overall satisfaction compared to bundles
on a lower curve. However, movement along the same curve does not change
the utility level, as the decision-maker remains equally satisfied regardless of
which bundle along the curve is chosen.
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Figure 2.17: Cobb-Douglas utility function: indifference curve

Thanks to the representation of the preferences by a utility function,
the behavior can be formally described as an optimization problem, where
individuals seek to achieve the highest possible level of satisfaction or benefit
given their available resources.

The decision-maker’s objective is to maximize their utility function, which
represents their preferences over different consumption bundles. The problem
is expressed as:

max
q

ũ(q; θ),

where q is the vector of quantities of different goods or services consumed,
and θ represents parameters influencing preferences, such as individual tastes
or external conditions.

This optimization is subject to the budget constraint, which ensures that
total expenditure does not exceed available resources:

pTq = b.

Here, p is the vector of prices for each good, and b is the total budget
available to the decision-maker. This equation ensures that the total cost of
purchasing the chosen quantities remains within the financial means of the
individual.

Additionally, there is a non-negativity constraint :

q ⩾ 0.
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Figure 2.18 provides a visual representation of how a decision-maker se-
lects an optimal consumption bundle by combining indifference curves with
the budget constraint. This figure illustrates the fundamental principle of
utility maximization, which states that individuals make choices to achieve
the highest possible satisfaction while staying within their financial limita-
tions.

The budget constraint is represented as a straight line, reflecting the total
expenditure available for different combinations of goods. The slope of this
line is determined by the relative prices of the goods, indicating how much
of one good must be sacrificed to afford more of the other. The constraint
ensures that the decision-maker does not exceed their available financial re-
sources.

The optimal consumption bundle, denoted as q∗, corresponds to the point
where the highest possible indifference curve is tangential to the budget con-
straint. At this point, the decision-maker achieves the maximum attainable
utility given their financial limitations.
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Figure 2.18: Cobb-Douglas utility function and budget constraint

To derive the demand functions from the utility maximization problem,
we use the Karush-Kuhn-Tucker (KKT) optimality conditions. The opti-
mization problem consists of maximizing a Cobb-Douglas utility function,
which takes the form:

max
q1,q2

ũ(q1,q2; θ0, θ1, θ2) = θ0q
θ1
1 qθ2

2
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subject to the budget constraint:

p1q1 + p2q2 = b.

Since the logarithm is a monotonic transformation, we can equivalently
maximize the log-utility function:

max
q1,q2

ln ũ(q1,q2; θ0, θ1, θ2) = θ1 lnq1 + θ2 lnq2

under the same budget constraint. This transformation simplifies the opti-
mization process while preserving the optimal solution.

To solve this constrained optimization problem, we construct the La-
grangian function:

L(q1,q2, λ) = θ1 lnq1 + θ2 lnq2 + λ(b− p1q1 − p2q2).

The necessary first-order conditions for optimality require that the gra-
dient of the Lagrangian function be equal to zero:

∂L

∂q1

=
θ1

q1

− λp1 = 0.

∂L

∂q2

=
θ2

q2

− λp2 = 0.

∂L

∂λ
= b− p1q1 − p2q2 = 0.

Rearranging the first two equations, we express λ in terms of the optimal
quantities:

θ1 = λp1q1, θ2 = λp2q2.

Summing these equations and using the budget constraint:

λp1q1 + λp2q2 = θ1 + θ2.

Since p1q1 + p2q2 = b, solving for λ gives:

λ =
θ1 + θ2

b
.

Substituting this back into the expression for q1:

q1 =
θ1

λp1

=
bθ1

p1(θ1 + θ2)
.
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Similarly, for q2:

q2 =
bθ2

p2(θ1 + θ2)
.

These expressions represent the demand functions, which describe how
the optimal quantities of each good depend on income b, prices p1,p2, and
the parameters θ1, θ2, which capture the consumer’s relative preferences for
each good.

The final result shows that the fraction of the budget allocated to each
good is proportional to the preference parameter θk. This means that as
income increases, the demand for each good scales proportionally, maintain-
ing the same expenditure shares. These demand functions are fundamental
in consumer theory and provide key insights into how individuals allocate
resources in response to price and income changes.

2.5 Summary

This chapter introduced the fundamental principles of supply and demand
in transportation systems, exploring how they interact to determine equi-
librium conditions. The supply function, represented as p = fs(q), char-
acterizes how the system responds to different levels of demand, while the
demand function, q = fd(p), reflects how users make choices based on prices
or generalized costs. The equilibrium price p∗ is the fixed point that satisfies
p∗ = fs(fd(p

∗)), balancing supply and demand. Understanding these func-
tions is important, as any modification to the system — whether through
infrastructure improvements, policy changes, or behavioral interventions —
affects both supply and demand dynamics.

The concept of demand elasticity was introduced to quantify how sensi-
tive demand is to changes in price. Elasticity measures the percentage change
in quantity demanded in response to a price variation, helping to evaluate
the effectiveness of pricing policies, congestion charges, or transit fare adjust-
ments. Both point elasticities, which measure sensitivity at a specific price,
and arc elasticities, which capture the effect over a range of prices, provide
valuable insights into user behavior.

Consumer surplus was presented as a key economic indicator, represent-
ing the difference between what consumers are willing to pay for a service and
what they actually pay. This surplus serves as a measure of social welfare,
as higher consumer surplus indicates that users receive greater value from
the transportation system. Improvements in infrastructure, pricing strate-
gies, and demand management policies can all influence consumer surplus,
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making it a critical tool for evaluating transportation investments.
The chapter also covered demand functions, which are derived from be-

havioral assumptions using the principle of utility maximization. By model-
ing individual choices mathematically, demand functions can be obtained by
solving optimization problems under budget constraints.

Finally, the discussion highlighted two primary ways to influence trans-
portation systems: modifying the supply function and modifying the demand
function. Supply-side changes involve infrastructure expansions or the intro-
duction of new services to improve system performance. Demand-side inter-
ventions, on the other hand, focus on shaping user behavior through incen-
tives, penalties, or informational campaigns. Both approaches are essential
in transportation planning, and their effects must be carefully analyzed to
ensure efficient and equitable mobility solutions.
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Chapter 3

Discrete choice and value of
time

In the previous chapter, we introduced the concept of utility, which allowed
us to derive demand functions based on the principle of utility maximization.
However, the framework we developed was primarily suited for continuous
choices, where individuals select quantities of various goods while adhering to
a budget constraint. This formulation, relying on the Karush-Kuhn-Tucker
optimality conditions, applies naturally to decisions such as how much fuel
to purchase, how many kilometers to drive, or how much money to allocate
to different travel options.

3.1 Discrete choice

In transportation, however, many fundamental decisions are inherently dis-
crete, not continuous. Travelers must choose between a finite set of mutually
exclusive alternatives, such as selecting a mode of transport (private car,
public transportation, cycling, or ride-hailing), deciding on a travel destina-
tion (shopping in the city center versus a suburban mall), determining an
itinerary (using a highway or taking local roads), or even deciding whether
to commute to the office or work from home. These choices do not involve
gradual adjustments in quantities but rather involve selecting one option over
others.

Clearly, the analysis based on the first-order optimality conditions of con-
tinuous optimization does not directly apply in this discrete choice setting.
In particular, the classical demand functions derived in the previous chap-
ter—where quantities vary smoothly in response to price and income—are
not valid when individuals are faced with discrete alternatives. Instead, a
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different analytical framework is required, one that models the probability
of choosing each alternative based on the underlying utility associated with
each option.

A comprehensive theory of discrete choice goes beyond the scope of this
introduction course. However, in this chapter, we extend the concept of
utility to the discrete choice context and introduce models that explain how
individuals make such categorical decisions. A key concept that emerges
from this analysis is the value of time, an essential measure in transportation
economics. The value of time quantifies how individuals trade off travel
time against monetary cost when making travel decisions. It plays a crucial
role in evaluating transportation policies, infrastructure investments, pricing
strategies, and congestion management measures. By understanding how
travelers value their time, we can develop models that predict travel behavior
and inform decision-making at both the individual and policy levels.

In the context of discrete choice, individuals select one option from a finite
set of alternatives based on their perceived utility. This example illustrates
how travelers decide between two transportation options: public transporta-
tion (PT) and not using public transportation (which could include driving,
walking, or cycling). The decision is influenced by key attributes associated
with each alternative, namely travel time and travel cost.

Each alternative is characterized by a specific travel time and cost, de-
noted as t1, c1 for public transportation and t2, c2 for the other option. Trav-
elers assess these attributes when making their choice, trading off time and
cost in a way that reflects their personal preferences.

To formally represent this decision process, we introduce utility functions,
which assign a numerical value to each alternative based on its attributes.
The utility function for each option is given by:

u1 = −θtt1 − θcc1, u2 = −θtt2 − θcc2.

In this formulation, the parameters θt > 0 and θc > 0 capture the
traveler’s sensitivity to travel time and cost, respectively. The negative sign
indicates that both time and cost reduce the perceived attractiveness of an
option, meaning that travelers prefer shorter and cheaper trips.

Consistently with utility theory in the continuous case, the choice between
alternatives depends on a comparison of these utility values. If u1 > u2,
the traveler selects public transportation; otherwise, they choose the other
mode. This framework provides a systematic way to model travel decisions
and understand how different factors—such as fare changes, travel time im-
provements, or personal preferences—affect mode choice.

Clearly, this modeling approach extends naturally to situations with more
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than two alternatives. Unlike traditional consumer choice models, where a
budget constraint explicitly limits spending, no such constraint is imposed
here. Instead, if an option is unaffordable for the decision-maker, it is effec-
tively eliminated from consideration. In practice, this means that its utility
function will not be evaluated, as individuals inherently disregard alterna-
tives that are beyond their financial means.

This example highlights a fundamental principle in transportation mod-
eling: individuals make choices by evaluating the trade-offs between time
and cost. By estimating the parameters θt and θc, researchers can quantify
the relative importance of travel time and cost in decision-making. This, in
turn, allows policymakers to predict the impact of interventions such as fare
reductions, service improvements, or congestion pricing on traveler behavior.

Figure 3.1 illustrates the trade-off between travel time and travel cost in
the discrete choice framework. The horizontal axis represents the difference
in travel time between the two alternatives, t1 − t2, while the vertical axis
represents the difference in travel cost, c1 − c2. Each point in this space
corresponds to a specific comparison between the two alternatives, based on
their relative time and cost attributes.

The diagonal line in the figure represents the indifference condition, where
both alternatives provide the same level of utility:

−θtt1 − θcc1 = −θtt2 − θcc2.

Along this line, the decision-maker is indifferent between the two options,
meaning that the trade-off between time and cost is exactly balanced. The
slope of this line is given by θt/θc, which represents the ratio of the sensitivity
to travel time relative to the sensitivity to travel cost. This slope quantifies
how much additional cost a traveler is willing to accept in exchange for saving
one unit of travel time.

The figure is divided into four quadrants, each representing a different
decision scenario. In the upper-right quadrant, where both t1 > t2 and c1 >

c2, alternative 2 dominates, as it is both faster and cheaper than alternative 1.
Conversely, in the lower-left quadrant, where t1 < t2 and c1 < c2, alternative
1 dominates, as it is superior in both dimensions. In these two quadrants,
there is no trade-off; one alternative is strictly better than the other.

In the remaining two quadrants, a trade-off occurs. In the upper-left
quadrant, alternative 1 has a shorter travel time but a higher cost, while in
the lower-right quadrant, alternative 1 has a lower cost but a longer travel
time. In these cases, the decision depends on the traveler’s relative valuation
of time versus money. If the point lies above the indifference line, alterna-
tive 2 is preferred, as the additional cost of alternative 1 outweighs its time
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advantage. If the point lies below the line, alternative 1 is preferred, as the
time savings justify the extra cost.

This figure provides an intuitive graphical representation of how discrete
choices are made based on time and cost attributes. By estimating the pa-
rameters θt and θc, we can quantify the value of time, which is a key concept
in transportation economics and policy analysis.

θt/θc

1

Alt. 2 is dominant

Alt. 1 is dominant

Alt. 2 is preferred

Alt. 1 is preferred

t1 − t2

c1 − c2 −θtt1 − θcc1 = −θtt2 − θcc2

Figure 3.1: Trade-off between cost and time

While the simplest models consider only travel time and cost, additional
attributes can be incorporated to better capture real-world decision-making.
These additional attributes, denoted as xin, may include variables such as
waiting time, number of transfers, comfort level, or even weather conditions,
depending on the context of the choice being modeled.

The general form of the utility function is given by:

uin = −θttin − θccin − θxxin,
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where tin represents travel time, cin represents travel cost, and xin cap-
tures another relevant attribute influencing the decision. The coefficients
θt, θc, θx are parameters that measure the sensitivity of the decision-maker
to each attribute. Since utility itself has no intrinsic unit, these coefficients
serve to convert each attribute into the same unit of measurement, ensuring
comparability across different factors.

Consequently, each coefficient has a unit that is the reciprocal of the
corresponding attribute’s unit. For instance, if travel time is measured in
minutes, then θt has units of 1/minute, ensuring that θttin is dimensionless.
Similarly, if cost is measured in Swiss Francs (CHF), then θc has units of
1/CHF. This allows the model to combine attributes with different units
into a single numerical value of utility.

A key property of utility functions is that multiplying or dividing the
entire function by a positive constant does not affect the ranking of alterna-
tives. This means that utility can be rescaled without changing the relative
preference between options. For example, dividing the utility function by θx

results in:

ux
in =

uin

θx

= −
θt

θx

tin −
θc

θx

cin − xin.

Since utility comparisons remain unchanged under such transformations,
this operation effectively expresses utility in terms of the units of xin. In
particular, dividing by θc allows utility to be expressed in monetary terms.

3.2 Value of time

A key concept that emerges from this framework is the value of time, which
represents the price a traveler is willing to pay to reduce their travel time.
This concept plays a central role in transportation economics, influencing
policy decisions, infrastructure investments, and pricing strategies.

To understand the value of time, we start with the general utility function:

uin = −θttin − θccin − θxxin.

We then express utility in terms of monetary units by dividing the func-
tion by θc, the coefficient associated with cost:

uc
in =

uin

θc

= −
θt

θc

tin − cin −
θx

θc

xin.

This transformation ensures that all terms in the equation are expressed
in the same unit, namely monetary value (e.g., Swiss Francs, Euros, or Dol-
lars). The coefficient θt/θc then has units of currency per unit of time (e.g.,
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CHF/minute), representing the amount of money an individual is willing to
pay to save one minute of travel time. This quantity is formally defined as
the value of time:

Value of Time =
θt

θc

.

Geometrically, this corresponds to the slope of the indifference line in
the cost-time trade-off diagram in Figure 3.1, indicating the rate at which a
traveler is willing to exchange travel time for money.

The value of time reflects a fundamental economic trade-off: given the
choice between a cheaper but slower option and a more expensive but faster
option, how much is an individual willing to pay to reduce their travel time?
The answer varies depending on personal income, trip purpose, urgency, and
external conditions. For instance, business travelers or commuters on tight
schedules may have a higher value of time than leisure travelers who are less
time-sensitive.

More generally, the concept of willingness to pay extends beyond time
to other attributes in the model. Any coefficient ratio of the form θx/θc

represents the monetary equivalent of a given attribute, measuring how much
a traveler is willing to pay for a specific improvement in travel conditions,
such as increased comfort, reduced waiting time, or fewer transfers.

After introducing the value of time in a simple context, we now present
a more general definition that applies to any utility-based discrete choice
model. The value of time quantifies how much additional cost an individual
is willing to pay to reduce their travel time while maintaining the same level
of utility.

Consider a decision-maker choosing between alternatives, where cin rep-
resents the cost of alternative i for individual n, and tin represents the cor-
responding travel time. The utility associated with this alternative is given
by a function u(cin, tin), which encapsulates the individual’s preferences.

Now, suppose there is an improvement in travel conditions that reduces
the travel time by δtin, leading to a new travel time:

t ′in = tin − δtin.

However, reducing travel time may come at an additional monetary cost.
We denote this additional cost by δcin, which is the amount that must be
added to the original cost so that the overall utility remains unchanged:

u(cin + δcin, tin − δtin) = u(cin, tin).
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The value of time is then defined as the marginal rate of substitution
between cost and time:

δcin
δtin

.

This quantity expresses the additional cost per unit of saved time, in-
dicating the monetary value an individual assigns to reducing their travel
time.

To formally derive the value of time, we apply Taylor’s theorem to ap-
proximate the change in utility:

u(cin, tin) ≈ u(cin, tin) + δcin
∂u

∂cin
(cin, tin) − δtin

∂u

∂tin
(cin, tin).

Since utility remains constant, setting the change in utility to zero gives:

δcin
δtin

=

∂u
∂tin
∂u
∂cin

.

This ratio captures how changes in cost and travel time compensate for
each other in the utility function. It provides an economic interpretation of
how travelers perceive the trade-off between time and money.

For instance, in the commonly used linear utility function:

uin = −θttin − θccin − θxxin,

the value of time simplifies to:

δcin
δtin

=
θt

θc

.

This result confirms our earlier finding: when the utility function is linear
in time and cost, the value of time is the ratio of the sensitivity to time (θt)
and the sensitivity to cost (θc).

The concept of willingness to pay extends beyond travel time and can
be applied to any attribute that influences an individual’s choice. In trans-
portation, travelers may be willing to pay for various improvements in service
quality, such as fewer transfers, reduced waiting times, better seat availabil-
ity, or access to amenities like WiFi. Understanding willingness to pay for
these attributes helps policymakers and transit operators design services that
align with users’ preferences.

For continuous attributes, such as travel time or waiting time, willingness
to pay is derived using Taylor’s theorem as described above. However, when
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the attribute is discrete, such as whether WiFi is available on a bus, Tay-
lor’s theorem does not apply, since the attribute changes in a discontinuous
manner.

To illustrate, consider a simple utility function that includes travel cost
cin and a binary variable win, which equals 1 if WiFi is available and 0
otherwise:

uin = −θccin + θwwin.

If a traveler compares two scenarios — one where WiFi is unavailable
(win = 0) and one where it is available (win = 1) — the difference in utility
can be expressed as follows:

Without WiFi, at current cost:

uin = −θccin.

With WiFi, but with an additional cost:

uin = −θc(cin + δcin) + θw.

Setting these two utility expressions equal (since willingness to pay en-
sures the traveler is indifferent between the two cases):

−θccin = −θc(cin + δcin) + θw.

Rearranging,

0 = −θcδ
c
in + θw.

Solving for δcin, we obtain:

δcin =
θw

θc

.

This result shows that, even in the case of a discrete variable, willingness
to pay can still be expressed as a ratio of coefficients. In this example, θw/θc

represents the monetary value that an individual assigns to having WiFi
available on their trip. This same approach can be applied to other discrete
attributes, such as the presence of air conditioning, priority boarding, or a
direct route without transfers.

By quantifying willingness to pay for different service features, transit
agencies can evaluate whether the benefits of investing in such improvements
outweigh the costs. This approach is particularly useful in pricing strategies,
where service enhancements can be offered at a premium price to users who
value them most.

62



3.3 Summary

This chapter extended the concept of utility theory to discrete choice models,
where individuals select one alternative from a set of mutually exclusive
options. The fundamental assumption in this framework is that travelers
choose the alternative that provides the highest utility, which is influenced
by attributes such as travel time, cost, and service quality.

A key property of utility functions is that they have no inherent unit.
However, by normalizing with respect to a specific variable, such as cost, we
can express utility in meaningful units. This transformation allows utility to
be interpreted in monetary terms, leading to the concept of generalized cost,
which represents the total perceived burden of travel in a common unit, such
as Swiss Francs.

The chapter also introduced the concept of willingness to pay, which
quantifies how much a traveler is prepared to spend to improve a particular
travel attribute. A primary application is the value of time, which measures
the trade-off between time savings and cost. This principle extends to other
factors, such as waiting time reductions, fewer transfers, or improved service
features like WiFi availability.

By understanding how travelers evaluate trade-offs between different at-
tributes, these models provide a foundation for predicting behavior and de-
signing transportation policies. Applications range from pricing strategies
and infrastructure planning to service improvements that align with traveler
preferences. The insights gained from discrete choice models help in assess-
ing the impact of policy decisions and optimizing transportation systems to
better meet user needs.
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Chapter 4

Mathematical modeling

Before exploring the operational models used for the planning and manage-
ment of transportation systems, this chapter provides a refresher on fun-
damental mathematical concepts that serve as essential tools for modeling
complex systems. The concepts introduced here are not limited to trans-
portation applications; they are widely applicable across various domains
where mathematical modeling plays a significant role.

Mathematical modeling is a structured approach to representing real-
world systems through variables, equations, functions, and logical relation-
ships. It allows us to describe interactions, analyze dependencies, and make
informed predictions. In the context of transportation, these models sup-
port decision-making by capturing the dynamics of travel demand, network
performance, and user behavior.

This chapter introduces key elements of mathematical modeling, begin-
ning with the definition of variables and random variables, which form the
building blocks of any model. A distinction is made between deterministic
models, where outcomes are fully determined by input variables, and prob-
abilistic models, which incorporate uncertainty. The concept of causality is
also discussed, highlighting the importance of distinguishing correlation from
causal relationships when developing models.

The process of model development is then presented, focusing on how
model parameters can be estimated from collected data to ensure that the
mathematical representation accurately reflects observed reality. We intro-
duce the concept of maximum likelihood estimation, a fundamental method
for determining parameter values that maximize the probability of reproduc-
ing the observed data. Initially applied in the context of contingency tables,
where both independent and dependent variables are discrete, this approach
is then extended to cases where both variables are continuous, leading to the
introduction of linear regression. Finally, the chapter broadens these meth-
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ods to encompass models with discrete dependent variables and independent
variables of any type, including continuous. These models are particularly
relevant in transportation modeling, where they play a key role in analyzing
travel behavior and decision-making processes.

4.1 Mathematical models

A mathematical model is a structured representation of a system using math-
ematical concepts and notation. It provides a way to describe complex rela-
tionships, dependencies, and behaviors in a formalized manner, allowing for
systematic analysis and interpretation.

Mathematical models serve several important roles. First, they help
to understand a system by identifying key variables and their interactions.
Through abstraction, models simplify real-world complexities while retain-
ing essential features, making it easier to analyze how different components
influence each other.

Second, models enable prediction. By incorporating observed data and
logical relationships, they can forecast future states of a system under vary-
ing conditions. This predictive capability is particularly useful in decision-
making, as it allows for the evaluation of potential outcomes before imple-
menting changes in practice.

Finally, mathematical models support optimization. By formulating ob-
jectives and constraints, they provide a framework for finding the best pos-
sible solutions to problems, whether it be minimizing costs, maximizing ef-
ficiency, or balancing competing factors. Optimization techniques help im-
prove system performance and guide policy decisions.

In mathematical modeling, a variable is a symbol used to represent a
quantity that can take different values. Variables allow models to describe
how different components of a system interact and change over time or under
different conditions. They serve as the foundation for formulating relation-
ships and expressing dependencies between elements within a system.

Variables play multiple roles in mathematical models, depending on the
aspect of the system being represented. One important function is to capture
the state of the system. For example, in transportation models, variables
may represent traffic flow, indicating the number of vehicles passing through
a specific point on a roadway over time.

Another key role of variables is to capture the decisions made by engineers
and planners. Design choices, such as the number of lanes on a road or the
frequency of public transportation services, can be represented as variables
that influence system performance.
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Variables also help to measure system performance. Metrics such as travel
time, congestion levels, or energy consumption can be expressed mathemat-
ically to assess the efficiency and effectiveness of a transportation network.

Finally, models must account for external factors that influence the sys-
tem but are not directly controlled by decision-makers. These include weather
conditions, economic fluctuations, or unexpected events such as accidents, all
of which can be represented using variables.

Variables can take different forms depending on the nature of the data
they represent.

A continuous variable is one that can take any real value within a given
range. These variables are often associated with a unit of measurement,
making them useful for representing quantities that can be measured with
precision. Examples include travel time, which can be expressed in minutes
or seconds, and distance, which can be measured in kilometers or miles.

A qualitative discrete variable takes values from a predefined set of cat-
egories or labels, rather than a numerical range. These variables are used
to represent attributes that do not have a natural numerical interpretation.
For example, the mode of transportation a traveler chooses — such as driv-
ing, taking the bus, or cycling — can be represented as a qualitative discrete
variable. Similarly, subjective measures like comfort level (e.g., very comfort-
able, comfortable, rather comfortable, not comfortable) can also be modeled
using categorical variables. These variables often require special handling in
mathematical models, as traditional arithmetic operations do not apply.

A binary variable is a special case of a discrete variable that can take
only two possible values, typically represented as 0 or 1. These variables
are frequently used to model decision-making situations, where an option is
either selected or not. For example, in transportation planning, a binary
variable could represent whether to open a new lane on a highway (1 for
yes, 0 for no). Binary variables are fundamental in optimization problems,
particularly in decision-making models that involve yes/no choices.

A counting discrete variable takes values from the set of natural numbers
(N), representing quantities that can only be whole numbers. Examples
include the number of people in a household, the number of buses operating
on a route, or the number of trips a person makes in a day. Although counting
variables are technically discrete, they are often treated as continuous in
mathematical models when the numbers involved are large enough that the
distinction becomes negligible.

Each type of variable plays a specific role in modeling complex systems.
Continuous variables capture measurable quantities, discrete variables cate-
gorize attributes, binary variables represent decisions, and counting variables
quantify distinct elements.
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A random variable is a function that assigns numerical values to outcomes
of a random process. Formally, a random variable X maps an element from
a sample space Ω, which represents all possible events, to the real numbers:

X : Ω → R.

Random variables are used to quantify uncertainty in models, allowing
for the representation of unpredictable elements in real-world systems. For
example, in a transportation study, where individuals are randomly selected
for a survey, an event ω ∈ Ω can the fact that a specific individual is selected
in the sample, and the corresponding value is her income or the number of
cars in her household.

When we write X = x, we are actually describing the set of outcomes in
Ω that lead to the value x:

X = x ⇐⇒ {ω : ω ∈ Ω and X(ω) = x}.

This notation means that X = x defines a subset of Ω, representing the
collection of outcomes where the random variable takes on a specific value.

Similarly, when we write X ⩽ x, we are describing another event: the set
of all outcomes ω that lead to values of X that are less than or equal to x:

X ⩽ x ⇐⇒ {ω : ω ∈ Ω and X(ω) ⩽ x}.

This means that the event X ⩽ x includes all possible realizations of the
random variable where its value does not exceed x.

By viewing expressions like X = x and X ⩽ x as sets of possible outcomes,
we connect random variables to probability theory. The probability of an
event, such as Pr(X = x) or Pr(X ⩽ x), is then computed by summing or
integrating over these subsets of Ω, depending on whether X is discrete or
continuous.

A key aspect of random variables is the set of values they can take, known
as their range. A random variable is discrete if it takes values from a finite
or countably infinite set, such as the number of vehicles a person owns. In
contrast, it is continuous if it can take any value within an interval, such as
the travel time for a trip.

The behavior of a random variable is described by its cumulative distri-
bution function (CDF), which gives the probability that the variable takes a
value less than or equal to a given number:

FX(x) = Pr(X ⩽ x).
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This function has some mathematical properties that help describe the
behavior of probability distributions. First, the function is monotonic, mean-
ing that as x increases, FX(x) does not decrease. More formally:

x < y =⇒ FX(x) ⩽ FX(y).

This property makes intuitive sense because if we increase the threshold
x, the probability of X being less than or equal to x can either stay the same
or grow larger, but it can never decrease. In other words, as we expand the
range of possible values, the probability accumulates.

Additionally, the cumulative distribution function has well-defined limits
over any bounded or unbounded interval [a,b], which defines the range of
possible values for the random variable X.

If X takes values in the interval [a,b], then the cumulative distribution
function satisfies:

lim
x→a

FX(x) = 0, lim
x→b

FX(x) = 1.

For an unbounded support, such as the real line (−∞,+∞), the cumulative
distribution function satisfies:

lim
x→−∞ FX(x) = 0, lim

x→+∞ FX(x) = 1.

Thus, the CDF always increases from 0 to 1 over the support of the distri-
bution, regardless of whether the interval is finite or infinite.

For discrete variables, probabilities are assigned to specific values using
the probability mass function (PMF), defined as:

pX(x) = Pr(X = x),

where the sum of all probabilities must equal one. For continuous variables,
probabilities are described by the probability density function (PDF), which
is the derivative of the cumulative distribution function:

fX(x) =
dFX(x)

dx
.

Unlike discrete variables, for which each value may have a nonzero proba-
bility, a strictly continuous variable has Pr(X = x) = 0 for any specific value
x; instead, probabilities are assigned to intervals:

Pr(x < X ⩽ x+ dx) = FX(x+ dx) − FX(x) =

∫x+dx

x

fX(t)dt.

This means that fX(x) itself does not represent a probability, but rather
a density, describing the relative likelihood of different values of X.
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Despite this, in many modeling applications, it is useful to think of the
pdf as a “probability” in an informal sense. It may simplify the analysis and
enhance the intuition behind probabilistic modeling.

Two fundamental properties of random variables are expectation and vari-
ance. The expectation, or mean, represents the average value of the variable:

E[X] =
∑
x∈A

xpX(x) (X discrete),

E[X] =

∫
x∈A

x f(x)dx (X continuous).

The variance measures the dispersion of the values around the mean:

Var[X] = E[X2] − E[X]2.

When working with random variables in mathematical models, it is often
convenient to use an abuse of notation and treat them as if they were regular
numerical variables. This simplifies the formulation of equations and allows
for a more intuitive representation of probabilistic relationships.

Strictly speaking, a random variable is a function that maps outcomes
from a sample space Ω to real numbers, meaning that statements like X ∈ R
are not entirely precise. However, in practice, we often write:

X ∈ R

to indicate that the possible values taken by X belong to the real number
set. Similarly, when dealing with multiple random variables, we may define
a vector:

X =

 X1
...
Xn

 ∈ Rn.

This notation allows us to work with vectors of random variables as if
they were elements of a standard n-dimensional space.

A common example of this notation appears in linear operations involving
random variables. We often write expressions such as:

αX+ βY

where α and β are deterministic scalars, and X and Y are random variables.
While the true mathematical meaning involves transformations of probability
distributions, this notation simplifies analysis and computation.
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Despite this simplification, it is important to remember that working
with random variables requires keeping track of their underlying probability
distributions. For instance, performing transformations on random variables
affects their probability density functions (pdf) or probability mass functions
(pmf), which must be considered when analyzing results.

For a discrete random variable X, if we define a new variable Y as a linear
transformation of X, given by Y = αX+β, then the probability mass function
of Y is directly related to the probability mass function of X. Specifically, the
probability of Y taking a particular value y is equal to the probability that X
takes the corresponding value x = (y− β)/α. This relationship is expressed
as:

pY(y) = pX

(
y− β

α

)
.

This equation shows that while the transformation shifts and scales the
values of X, the probability masses remain unchanged. The new pmf is simply
a re-indexing of the original one.

For a continuous random variable X, a similar transformation applies. If
we define Y = αX + β, then the probability density function of Y, denoted
as fY(y), is given by:

fY(y) =
1

|α|
fX

(
y− β

α

)
.

Unlike the discrete case, the transformation does not just shift values but
also modifies the density of the distribution. The presence of the term 1

|α|

ensures that the total probability remains normalized to one. This factor
accounts for the fact that scaling X by α either stretches or compresses the
distribution, affecting the density accordingly. The absolute value in the
denominator is necessary because a negative α would reverse the order of
values, but probability densities must remain positive.

The shift parameter β simply moves the entire distribution to the left
or right without affecting its shape. The scaling parameter α changes the
spread of the distribution. If |α| > 1, the values are stretched apart, making
the distribution more spread out and lowering the density. If |α| < 1, the
values are compressed, increasing the density.

A mathematical model is designed to describe relationships between dif-
ferent variables in a system. Its purpose is to explain or predict the behavior
of one or more variables based on the values of others.

Formally, we consider a situation where a random variable Y depends on
another variable X. Given a specific value X = x, we analyze the correspond-
ing distribution of Y, denoted as:
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Y|X = x.

The variable Y is referred to as the dependent, endogenous, or explained
variable. This means that its value is determined by or influenced by the
value of X. The goal of the model is to describe how Y behaves based on
different values of X.

On the other hand, X is called the independent, exogenous, or explanatory
variable. This implies that X is known or chosen, and it serves as an input
to the model.

Consider the example where X represents the travel time on a stretch of
highway, and Y represents the traffic flow on that highway. In this case, a
model seeks to understand how travel time affects the number of vehicles
passing through. For instance, as travel time increases due to congestion,
one might expect a reduction in traffic flow, reflecting the impact of delays
on overall road capacity.

Another example examines household characteristics. Suppose X is the
number of persons in a household, and Y is the number of cars owned by
the household. Here, a model captures the tendency for larger households
to own more vehicles. However, constraints such as parking availability and
financial considerations may influence the shape of this relationship.

A third example considers the effect of weather conditions on transporta-
tion choices. Let X represent weather conditions, quantified through tem-
perature, precipitation, or a categorical rating, and let Y denote the number
of bike trips recorded in a given area. The model would capture the fact
that, on rainy or cold days, the number of bike trips may decrease, while in
pleasant weather, cycling activity might increase.

4.2 Causality

In mathematical modeling, one of the key objectives is to capture causal
effects, meaning that changes in one variable X lead to changes in another
variable Y. A necessary condition for a causal relationship is that the two
variables must be correlated, but correlation alone does not imply causation.

Mathematically, correlation measures the strength and direction of the
linear relationship between two variables. The correlation coefficient between
X and Y, denoted as ρXY , is defined in terms of their covariance:

ρXY =
Cov(X, Y)

σXσY

.
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The covariance between two random variables X and Y, denoted as Cov(X, Y),
measures the degree to which they vary together and is defined as:

Cov(X, Y) = E[(X− E[X])(Y − E[Y])].

Here, σX and σY represent the standard deviations of X and Y, respectively:

σX =
√

Var(X), σY =
√
Var(Y).

This coefficient quantifies how closely changes in X correspond to changes
in Y. If ρXY > 0, there is a positive correlation, meaning that when X in-
creases, Y tends to increase as well. If ρXY < 0, there is a negative correlation,
indicating that when X increases, Y tends to decrease. If ρXY = 0, there is
no linear relationship between the two variables.

While causality always implies correlation, correlation alone does not im-
ply causality. Just because two variables X and Y are correlated does not
mean that X causes Y, or Y causes X.

Figure 4.1 presents data from the Swiss Microcensus 2015, illustrating
the relationship between household monthly income and daily distance trav-
eled using different modes of transport. The figure shows that as household
income increases, the total daily distance traveled also rises. This pattern is
observed consistently across different transport modes, including slow modes,
public transport, and private cars.
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Figure 4.1: Swiss Microcensus 2015. Source: ARE

In this case, it is reasonable to assume that the correlation between in-
come and travel distance reflects an underlying causal relationship. One ex-
planation is that higher-income households have greater financial resources
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to afford mobility, enabling them to own and use private vehicles more fre-
quently. As a result, they can travel longer distances for work, leisure, or
other activities. Additionally, individuals with higher incomes may have jobs
that require commuting over greater distances, particularly in urban regions
where housing prices push higher-income households toward suburban areas.

Although the relationship between income and travel distance is likely
to be causal, other factors could also play a role. For instance, urban ver-
sus rural living conditions, workplace locations, and lifestyle preferences may
influence both income and mobility patterns. Nonetheless, given the eco-
nomic constraints associated with transportation and the clear financial im-
plications of travel choices, the assumption of a causal link in this case is
well-founded.

Figure 4.2 presents an intriguing relationship between chocolate consump-
tion and the number of Nobel laureates per 10 million inhabitants across var-
ious countries (Messerli, 2012). The x-axis represents the average chocolate
consumption per capita in kilograms per year, while the y-axis measures the
number of Nobel laureates per 10 million people. Each country is represented
by its flag, plotting its position based on these two variables.

Figure 4.2: Nobels laureates and chocolate

The data reveal a strong correlation between these two variables, with
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a correlation coefficient of r = 0.791. The high value of r suggests that
countries with higher chocolate consumption also tend to have more Nobel
laureates per capita.

However, correlation does not imply causation. There is no logical reason
to believe that eating more chocolate directly leads to an increased likeli-
hood of winning a Nobel Prize, nor that having more Nobel laureates causes
a country to consume more chocolate. The observed relationship may in-
stead be explained by a third factor, such as the overall wealth of a country.
Wealthier nations tend to have better-funded education and research insti-
tutions, which could contribute to a higher number of Nobel laureates. At
the same time, wealthier populations may also have greater access to luxury
goods such as chocolate.

Thus, instead of a direct causal link between chocolate consumption and
Nobel laureates, it is plausible that both variables are influenced by national
wealth. This scenario can be represented as:

Nobel laureates | Wealth and Chocolate consumption | Wealth.

The concept of spurious correlation is well illustrated by various amusing
but misleading statistical relationships collected on the website

www.tylervigen.com.

These examples highlight cases where two variables appear strongly corre-
lated, yet there is no logical causal connection between them. One such case
is the observed correlation between U.S. spending on science, space, and
technology and suicides by hanging, strangulation, and suffocation. Another
example shows a strong correlation between the divorce rate in Maine and
per capita consumption of margarine. Similarly, the number of civil engineer-
ing doctorates awarded appears to be correlated with per capita consumption
of mozzarella cheese, but it is highly unlikely that cheese consumption influ-
ences academic achievements in engineering.

Understanding causality in mathematical modeling requires careful anal-
ysis of whether changes in one variable directly influence another. In some
cases, causality can be bidirectional, while in others, it only makes sense in
one direction.

Consider the relationship between travel time on a highway (X) and traffic
flow (Y). There are two potential causal directions. First, if we consider Y|X,
we are examining how traffic flow responds to a given travel time. This per-
spective aligns with demand functions, as travelers make behavioral choices
based on perceived travel times. On the other hand, if we consider X|Y, we
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are looking at how travel time is affected by traffic flow, which corresponds
to the supply function and system performance. As congestion increases,
travel times generally rise due to reduced speeds and bottlenecks. In this
case, causality works in both directions: behavior affects the system, and the
system in turn affects behavior.

A different example is the relationship between income (X) and distance
traveled (Y). It is reasonable to assume that higher-income individuals travel
longer distances, either because they can afford to commute farther for better
housing, take more leisure trips, or own private vehicles that enable long-
distance travel. Thus, Y|X makes sense as a causal direction. However, the
reverse relationship, X|Y, does not hold in the same way. Simply traveling a
greater distance does not cause an individual’s income to increase, making
this direction of causality implausible.

Another scenario involves bus fares (X) and the number of riders (Y).
Here, causality can again work in both directions. The number of riders is
influenced by fare prices, meaning that Y|X captures demand functions, as
travelers decide whether to use public transport based on cost. However,
transit operators may also adjust bus fares in response to demand levels,
which corresponds to X|Y. If ridership declines, an operator may lower fares
to attract more passengers, demonstrating how supply-side decisions influ-
ence pricing.

Finally, the relationship between weather (X) and the number of bike trips
(Y) provides an example where causality is unidirectional. It is clear that
weather conditions affect biking activity: rainy or cold weather discourages
cycling, while warm and sunny weather increases ridership. Thus, Y|X is a
valid causal direction. However, the reverse relationship, X|Y, does not hold.
The number of people riding bicycles does not influence the weather, making
this direction nonsensical.

These examples illustrate the importance of distinguishing between cor-
relation and causation. While two variables may be statistically related, it is
essential to determine whether the relationship is truly causal and, if so, in
which direction it operates. This distinction is fundamental for developing
reliable predictive models and making informed policy decisions.

Causality is inherently context-dependent, meaning that the same vari-
able can be considered exogenous in one setting and endogenous in another.
A clear example of this is the distinction between supply and demand func-
tions, where the roles of variables shift depending on the perspective taken.
Theoretical assumptions play a fundamental role in defining causal relation-
ships, as they provide the necessary structure for interpreting data and mak-
ing meaningful predictions. Without a strong theoretical foundation, corre-
lations may be misinterpreted, leading to incorrect conclusions about cause

75



and effect.
A well-constructed model is always grounded in theory. For example,

in transportation analysis, utility theory provides a structured approach to
understanding behavioral choices. Theoretical models are particularly essen-
tial when making predictions or extrapolating beyond observed data. Un-
like purely data-driven approaches such as machine learning, which primar-
ily identify patterns without necessarily understanding causal mechanisms,
theory-based models assume that causal relationships remain stable over time
and across different configurations of the system. This stability allows for
more robust predictions and policy analysis, reinforcing the need for carefully
considering causality in mathematical modeling.

4.3 Model development

Model development is an iterative process that involves several intercon-
nected steps: specification, estimation, prediction, analysis, and decision-
making. Each of these stages plays a fundamental role in ensuring that the
model accurately represents reality and serves its intended purpose. This
process is illustrated in Figure 4.3.

Specification Theory

Estimation Data

Prediction Scenarios

Analysis,
decision

Figure 4.3: Model development

The first stage, specification, involves defining the mathematical struc-
ture of the model based on an underlying theory. This theory provides the
logical foundation for identifying the key variables, their relationships, and
the assumptions governing the model. The choice of specification determines
how well the model can explain the system being studied.
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Once the model is specified, the next step is estimation, which relies on
empirical data to calibrate the model parameters. Using statistical tech-
niques, the model parameters are adjusted to ensure the best possible fit to
the observed data. If the model does not perform adequately, it may indicate
the need to collect additional data or refine the theoretical assumptions.

Following estimation, the model can be used for prediction. In this stage,
the model is applied to new input scenarios to forecast possible outcomes.
These scenarios can reflect policy changes, infrastructure developments, or
external factors such as economic conditions. The predictive power of the
model is essential for assessing potential future states of the system.

After generating predictions, the results undergo analysis, leading to in-
formed decisions. This phase involves evaluating the model’s output to sup-
port decision-making processes. If the predictions suggest unexpected or un-
reliable outcomes, it may be necessary to revisit the specification or collect
additional data to refine the model.

The model development process is rarely linear. As shown in Figure 4.3,
the insights gained from estimation and prediction can highlight gaps in the
existing data or weaknesses in the theoretical framework. In such cases, re-
searchers may decide to gather more data or refine the theoretical model
before proceeding with further predictions and decisions. This iterative re-
finement ensures that the model remains relevant and improves in accuracy
over time.

4.3.1 The case of discrete variables

In transportation research, one possible hypothesis is that the choice of trans-
portation mode depends on the purpose of the trip. This hypothesis suggests
that travelers select their mode of transport based on the nature of their jour-
ney, rather than making random or habitual choices.

The reasoning behind this hypothesis stems from factors such as con-
venience, flexibility, and comfort. For example, individuals commuting to
work may prioritize reliability and travel time, making public transport or
private vehicles preferable. In contrast, shopping trips may favor trans-
portation modes that allow for carrying goods easily, such as private cars
or ride-hailing services. Similarly, recreational trips may involve preferences
for active modes like walking or cycling, where enjoyment and health benefits
outweigh time constraints.

To investigate the hypothesis that transportation mode choice depends on
trip purpose, a data collection campaign is designed to gather empirical evi-
dence. The study involves surveying a representative sample of travelers and
recording their travel behavior. This approach allows researchers to quantify
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the relationship between trip purpose and the use of public transportation.
The data collection campaign selects a random sample of 2000 individuals

who qualify as travelers, meaning they made at least one trip the previous
day. By ensuring that the sample is randomly chosen, the survey minimizes
bias and enhances the reliability of the findings.

Each participant is asked a set of simple yet informative questions about
one of their trips from the previous day. The first question identifies the
purpose of the trip, distinguishing between work-related travel, leisure activ-
ities, and other purposes. The second question determines whether public
transportation was used for that trip.

A contingency table is a type of table used in statistics to summarize the
frequency distribution of categorical variables. It provides a structured way
to analyze the relationship between two categorical variables by displaying
their joint distribution in a matrix format. In the context of this study,
the contingency table in Table 4.1 captures the responses from the data
collection campaign and organizes them to highlight the connection between
trip purpose and public transportation usage.

Work Leisure Others
PT 172 191 150

Not PT 345 648 494

Table 4.1: Synthetic data generated from Microcensus 2015.

The table consists of two dimensions. The rows represent the transporta-
tion mode choice, distinguishing between travelers who used public trans-
portation (PT) and those who did not (Not PT). The columns represent
the purpose of the trip, categorized into work, leisure, and other activities.
Each cell in the table indicates the number of travelers who fall into the
corresponding category, effectively summarizing the entire dataset.

With the data collected and summarized in the contingency table, we
can now specify a mathematical model that formalizes our hypothesis. The
goal of the model is to describe and quantify the relationship between trip
purpose and transportation mode choice.

In this case, the dependent variable, denoted as Y, represents the trans-
portation mode chosen by the traveler. It is a qualitative variable that takes
values from the set A = {public transport, others}, meaning that a traveler
either uses public transportation or another mode. The explanatory variable,
denoted as X, represents the purpose of the trip, also a qualitative variable,
with possible values in the set A = {work, leisure, others}.
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The model is specified as Y|X, indicating that the transportation mode
choice Y is modeled as a function of the trip purpose X. In probabilistic
terms, the objective is to determine the probability distribution of Y given
X, expressed as:

P(Y = public transport | X = x), x ∈ {work, leisure, others}.

The mathematical model we have specified involves unknown parameters
that need to be estimated from the data. These parameters represent the
probabilities of choosing public transport for different trip purposes.

For trips made for work purposes, we define the parameter θ1 as the
probability that a traveler chooses public transport:

θ1 = P(Y = PT | X = work).

Since the traveler must either use public transport or another mode, the
probability of not using public transport is simply:

P(Y = not PT | X = work) = 1− θ1.

Similarly, for trips made for leisure, we define another parameter θ2, which
represents the probability of choosing public transport for leisure trips:

θ2 = P(Y = PT | X = leisure).

Again, the probability of using another mode is:

P(Y = not PT | X = leisure) = 1− θ2.

For trips classified as “other,” a third parameter θ3 is introduced, represent-
ing the probability of choosing public transport:

θ3 = P(Y = PT | X = others).

And the probability of using another mode is:

P(Y = not PT | X = others) = 1− θ3.

These parameters θ1, θ2, and θ3 are unknown and must be estimated
from the data collected in the survey. To perform this task, we introduce the
concept of likelihood function.

The likelihood function quantifies the probability that a given model cor-
rectly predicts the observations in the dataset. It measures how well the
model parameters align with the actual data.
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To begin, consider a single observation. Suppose a traveler makes a trip
for work and chooses public transport. According to our model, the proba-
bility of this event occurring is given by:

P(Y = PT | X = work) = θ1.

If another traveler in the sample also makes the same choice, the proba-
bility of correctly predicting both observations would be the product of the
probabilities, assuming independence.

Now, consider all travelers in the sample who make work-related trips
and use public transport. There are 172 such travelers. The probability of
correctly predicting all of them is:

θ172
1 .

Similarly, the probability of correctly predicting all 345 travelers who travel
for work but do not use public transport is:

(1− θ1)
345.

Extending this to all categories of trip purposes in our contingency table,
the overall probability that our model correctly predicts the entire dataset is
given by:

θ172
1 (1− θ1)

345θ191
2 (1− θ2)

648θ150
3 (1− θ3)

494.

This expression defines the likelihood function, denoted as:

L∗(θ1, θ2, θ3) = θ172
1 (1− θ1)

345θ191
2 (1− θ2)

648θ150
3 (1− θ3)

494.

Since likelihood values are often very small due to the multiplication of many
probabilities, it is common to work with the logarithm of the likelihood
function. This transformation, called the log-likelihood function, simplifies
computations and converts the product into a sum:

L(θ1, θ2, θ3) = 172 log θ1 + 345 log(1− θ1)+

191 log θ2 + 648 log(1− θ2)+

150 log θ3 + 494 log(1− θ3).

This expression decomposes into three independent terms:

L1(θ1) + L2(θ2) + L3(θ3),

represented in Figure 4.4, where the x-axis represent the value of the unknown
parameter, and the y-axis the corresponding log-likelihood.
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Figure 4.4: Three terms of the log-likelihood function

Figure 4.5 illustrates the maximum likelihood estimates (MLE) for the
model parameters. For each parameter, we identify the point where the func-
tion reaches its peak. This corresponds to the maximum likelihood estimate,
which represents the most probable value given the observed data.

In the figure, the maximum likelihood estimates of the probabilities as-
sociated with choosing public transport for each trip purpose are:

θ̂1 = 0.333

for work-related trips (marked in red),

θ̂2 = 0.228

for leisure trips (marked in orange), and

θ̂3 = 0.233

for other trips (marked in green).
It is important to note that the maximum likelihood estimates of the

parameters correspond exactly to the observed frequencies in the contingency
table. Since the likelihood function is maximized when the model accurately
reflects the observed data, the estimated probabilities align with the relative
frequencies of each category.

For each trip purpose, the probability of choosing public transport is
given by the proportion of travelers who reported using public transport
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Figure 4.5: Maximum likelihood estimates of the parameters

within that category. Mathematically, this is expressed as:

θ̂1 =
172

517
= 0.333, θ̂2 =

191

839
= 0.228, θ̂3 =

150

644
= 0.233.

When analyzing data, it is important to recognize that different samples
can lead to different estimates of the same underlying parameters. Suppose
a colleague conducted an identical data collection process (reported in Ta-
ble 4.2) and performed the same analysis. However, their results differ from
ours. In our study, we estimated that the probability of choosing public
transport for work-related trips is:

θ̂1 =
172

517
= 33.3%.

In contrast, our colleague’s data produced a slightly different estimate:

θ̂1 =
168

485
= 34.6%.

This discrepancy arises because the sample of travelers surveyed is dif-
ferent. Even though the same methodology was applied, the random nature
of data collection means that each sample provides a different realization of
the estimator.

This introduces the concept of an estimator as a random variable. The
estimated parameters are not fixed values but vary depending on the specific
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Work Leisure Others
PT 168 207 140

Not PT 317 677 491

Table 4.2: Data collected by another analyst.

sample drawn from the population. If another researcher repeated the study
with a new random sample, they would likely obtain yet another slightly
different estimate.

This variation highlights a fundamental challenge in statistical inference:
how to draw reliable conclusions about the underlying population from a
single sample. Since different samples yield different results, it becomes nec-
essary to quantify the uncertainty associated with our estimates. This leads
to further questions, such as how to measure the variability of an estima-
tor and how to construct confidence intervals to assess the precision of our
estimates.

The variation in the estimation of θ̂1 across different samples is illustrated
in Figure 4.6. The histogram represents the distribution of θ̂1 computed
from 1000 different random samples, each drawn from the same underlying
population. The blue curve represents a probability density function that
approximates this distribution.
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Figure 4.6: Distribution of θ̂1 across 1000 different samples

The key insight from this figure is that θ̂1 is not a fixed value but instead
varies depending on the specific sample used for estimation. The variation
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in θ̂1 is due to the randomness inherent in data collection. Even though each
sample follows the same methodology, the individuals surveyed differ slightly,
leading to fluctuations in the estimated parameter.

This variability suggests that our estimator θ̂1 is itself a random variable
with a probability distribution. The shape of this distribution provides useful
information about the reliability of our estimate. A narrower distribution
(smaller spread) implies that θ̂1 is more stable across samples, meaning the
estimate is more precise. Conversely, a wider distribution (larger spread)
suggests greater uncertainty in the estimation.

Figure 4.6 illustrates the concept that estimators are random variables.
The blue curve represents the probability density function of θ̂1, the estimator
of θ1. The true value of the parameter is θ1 = 0.320, shown by the green
vertical line. However, different samples yield different estimates due to the
randomness in data collection.

Two specific estimates are marked in orange: my estimate (θ̂1 = 0.333)

and my colleague’s estimate (θ̂1 = 0.346). These values are different from the
true parameter because each sample contains a different set of travelers, lead-
ing to variations in the observed proportions. However, if we repeated this
estimation process across many samples, the estimates would be distributed
around the true value, forming the distribution seen in the figure.

Maximum likelihood estimation (MLE) ensures that, on average, the es-
timator is unbiased, meaning that the mean of this distribution coincides
with the true value θ1. This property implies that while any individual sam-
ple may produce an estimate that deviates from the true value, the overall
estimation method is systematically correct in the long run.

The figure visually demonstrates how the estimator varies across samples.
Some estimates will be below the true value, while others will be above, but
the distribution is centered around θ1. The spread of this distribution, deter-
mined by its standard deviation (standard error), quantifies the uncertainty
associated with the estimator. A smaller standard error would result in a
more concentrated distribution, leading to more precise estimates.

Figure 4.8 illustrates the relationship between sample size and the vari-
ance of an estimator. The blue curve represents the probability density func-
tion of the estimator θ̂1 when the sample size for work trips is Nwork = 2000,
while the orange curve corresponds to the case where the sample size is dou-
bled to Nwork = 4000. The true value of θ1 = 0.32 is marked by the green
vertical line.

The figure demonstrates that as the sample size increases, the variance of
the estimator decreases. This is reflected in the fact that the orange curve is
more concentrated around θ1, meaning that estimates are more precise when
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Figure 4.7: Estimator as a random variable

more data is available. Mathematically, this phenomenon is explained by the
fact that the standard error of an estimator decreases with the square root
of the sample size:

SE(θ̂1) ∝
1√
N
.

Thus, when the sample size is quadrupled, the standard error is halved,
leading to a narrower distribution of possible estimates.

In summary, maximum likelihood estimation (MLE) is a fundamental
method for estimating parameters in statistical models. The key idea be-
hind MLE is to find the parameter values that maximize the probability of
observing the given data.

Formally, the likelihood function represents the probability that the model
correctly predicts all observed values in the dataset. Given N observations
(xn,yn), the likelihood function is defined as:

L∗(θ) =

N∏
n=1

Pr(Y = yn,X = xn; θ)

=

N∏
n=1

Pr(Y = yn|X = xn; θ)Pr(X = xn).

In practice, working with the product of many probabilities can be compu-
tationally challenging due to numerical underflow. To simplify calculations,
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the log-likelihood function is used:

L(θ) = logL∗(θ) =

N∑
n=1

log Pr(Y = yn|X = xn; θ) + log Pr(X = xn).

Since the second term does not depend on θ, it is omitted.
The goal of MLE is to find the parameter θ that maximizes this log-

likelihood function:
θ̂ = argmaxθL(θ).

This results in the set of parameter values θ̂ that make the observed data
most probable under the model.

MLE has several desirable properties. It is consistent, meaning asympot-
ically unbiased. Additionally, among all consistent estimators, MLE has the
lowest possible variance, making it efficient. Finally, under standard regu-
larity conditions, the MLE estimator is approximately normally distributed
for large samples.

In summary, MLE provides a systematic way to estimate model parame-
ters by maximizing the probability of the observed data. Its strong theoretical
properties make it a widely used technique in statistical modeling and data
analysis.

4.3.2 The case of continuous variables

We now introduce another example that involves continuous rather than
discrete variables. This example is motivated by the data represented in

86



Figure 4.1 and Table 4.3, which originates from the Swiss Microcensus 2015
and provides insights into travel behavior.

The hypothesis in this case is that the daily distance traveled by indi-
viduals depends on their household income. The rationale behind this hy-
pothesis is that individuals with different income levels engage in different
socio-professional activities, which may influence their travel patterns. Addi-
tionally, income can affect access to various modes of mobility, such as private
vehicles or long-distance public transport, further shaping travel behavior.

Monthly income (KCHF) Daily distance (km)
2 22.49
6 36.11
10 45.35
12 51.59

Table 4.3: Collected data

To model the relationship between daily distance traveled and household
income, we introduce a mathematical framework that describes how one con-
tinuous variable depends on another. Specifically, we define a model where
the dependent variable Y represents the daily distance traveled (in kilome-
ters), and the explanatory variable X corresponds to the household’s monthly
income (in thousands of Swiss francs). Given the nature of both variables,
we seek to establish a functional relationship that captures how Y varies as
a function of X.

A commonly used approach for modeling such relationships is linear re-
gression, which assumes that the expected value of the dependent variable Y
given X follows a linear function of X. Mathematically, we express this as:

Y|(X = xn) = θ1xn + ξn, where ξn ∼ N(θ0, θ
2
2).

In this formulation, the parameter θ1 represents the effect of income on the
expected daily travel distance, while ξn captures random deviations from
this relationship. These deviations are assumed to follow a normal distribu-
tion with mean θ0 and variance θ2

2. This accounts for the fact that while
income may influence travel behavior, other unobserved factors contribute to
variations in daily distance traveled.

Equivalently, the model can be rewritten as:

Y|(X = xn) = θ1xn + θ0 + θ2ξn,
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where ξn ∼ N(0, 1) represents an independent standard normal random vari-
able across observations. The parameters θ0, θ1, and θ2 are unknown and
need to be estimated from the data.

Since we assume that the deviations from the linear relationship follow a
normal distribution, the conditional distribution of Y given X = xn is also
normally distributed. This allows us to write the probability density function
as:

fY|xn
(z; θ0, θ1, θ2) =

1√
2πθ2

2

exp

(
−
1

2

(
z− θ1xn − θ0

θ2

)2
)
.

This expression follows from the standard normal density function, where
the mean of the distribution is given by the linear regression equation θ1xn+
θ0, and the standard deviation is θ2.

In the discrete case, the likelihood function represents the probability of
observing the data given the model parameters. However, in the continuous
case, the probability of any specific observation occurring is technically zero,
since a continuous variable can take infinitely many values. Instead of using
probability directly, we rely on the probability density function (pdf), which
plays a similar role in expressing the likelihood of observing the given data.

To illustrate this, consider a single observation where x1 = 2 and y1 =
22.49. In the discrete case, we would compute the probability that our model
predicts this observation correctly. However, since we are dealing with a
continuous variable, the probability of observing exactly y1 = 22.49 is zero.
Instead, we use the pdf:

fY|x1
(y1; θ0, θ1, θ2) =

1√
2πθ2

2

exp

(
−
1

2

(
y1 − θ1x1 − θ0

θ2

)2
)
.

The log-likelihood function then follows naturally by taking the logarithm
of the pdf. For a single observation:

log fY|x1
(y1; θ0, θ1, θ2) = −

1

2
log(2π) − log(θ2) −

1

2θ2
2

(y1 − θ1x1 − θ0)
2.

By summing over all observations in the dataset, we obtain the total log-
likelihood function:

L(θ) =

N∑
n=1

log fY|xn
(yn; θ) = −N log(θ2) −

1

2θ2
2

N∑
n=1

(yn − θ1xn − θ0)
2.

To estimate the parameters θ0, θ1, and θ2, we use the maximum likelihood
estimation (MLE) approach, which consists of maximizing the log-likelihood
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function:

max
θ

L(θ) = −N log(θ2) −
1

2θ2
2

N∑
n=1

(yn − θ1xn − θ0)
2.

The least-squares method provides a practical way to estimate the pa-
rameters of a linear regression model. Since the logarithm of the variance
term, θ2, is independent of θ0 and θ1, we begin by fixing θ2 = σ and solving
for these parameters.

L(θ) = −N log(σ) −
1

2σ2

N∑
n=1

(yn − θ1xn − θ0)
2.

As the first term does not depend on θ, and the second term is associated with
a negative sign, this transforms the optimization problem into minimizing the
sum of squared residuals:

min
θ

1

2

N∑
n=1

(yn − θ1xn − θ0)
2.

The solution to this minimization problem provides the estimates θ̂0 and θ̂1.
Once these parameters are estimated, we turn to the estimation of σ. The

residual sum of squares is given by:

z =

N∑
n=1

(yn − θ̂1xn − θ̂0)
2.

Maximizing the log-likelihood function with respect to σ, we obtain:

max
σ

−N log(σ) −
1

2σ2
z.

Taking the derivative and solving for σ, we find:

σ̂2 =
z

N
.

It is important to note that the two-step procedure of first estimating θ0

and θ1 using least squares and then estimating σ2 separately does not provide
the exact maximum likelihood estimates of the original model formulation.
The primary reason for this discrepancy lies in the estimation of the variance
σ2.
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This estimator is known to be biased. Specifically, it systematically un-
derestimates the true variance because it does not account for the degrees of
freedom lost due to estimating θ0 and θ1.

To correct for this bias, an unbiased estimator for the variance is given
by:

σ̂2
unbiased =

1

N− K

N∑
n=1

(yn − θ̂1xn − θ̂0)
2,

where K = 2 is the number of estimated parameters in the regression model.
The adjustment fromN toN−K in the denominator accounts for the fact that
the residuals are computed using estimated parameters, thereby reducing the
available degrees of freedom.

While this correction provides an unbiased estimator for the variance, it
also highlights that the two-step procedure is an approximation rather than
the exact MLE solution. Despite this, the least squares approach remains
widely used due to its simplicity and desirable properties, particularly when
N is large, as the bias in σ̂2 becomes negligible in such cases, as illustrated
in Figure 4.9.
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Figure 4.9: Ratio between two-step and unbiased estimate of σ, for K = 100

To summarize, linear regression is a statistical method used to model the
relationship between a dependent variable Y and one or more explanatory
variables X. The general formulation of a linear regression model assumes
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that Y, given X, follows a linear function plus an error term:

Y|(X = x) =

K−1∑
k=1

θkxk + θ0 + σε.

Here, the parameters θ0, θ1, . . . , θK−1 define the linear relationship, while σε
represents a random error term that accounts for variations not explained by
the model.

The expected value of Y given X, also known as the regression line, ex-
presses the deterministic part of the relationship:

E[Y|X = x] =

K−1∑
k=1

θkxk + θ0.

In summary, the goal of estimation is to find the values of θ0, θ1, . . . , θK−1

that best fit the observed data. This is achieved through the least squares
method, which minimizes the sum of squared residuals:

θ̂ = argminθ

1

2

N∑
n=1

(yn −

K−1∑
k=1

θkXk − θ0)
2.

Once the parameters are estimated, the variance σ2 of the residuals can also
be estimated. Two commonly used estimators for the variance are:

σ̂2 =
1

N

N∑
n=1

(yn −

K−1∑
k=1

θ̂kXk − θ̂0)
2

or, to obtain an unbiased estimator:

σ̂2 =
1

N− K

N∑
n=1

(yn −

K−1∑
k=1

θ̂kXk − θ̂0)
2.

The unbiased version accounts for the fact that K parameters have been
estimated from the data, reducing the degrees of freedom. This adjustment
ensures that the variance estimate is not systematically underestimated.

Figures 4.10 and 4.11 illustrate the optimization process for estimating the
parameters in the least squares regression model. The first figure represents
the objective function of the least squares problem in three dimensions, where
the horizontal axes correspond to the regression parameters θ0 and θ1, and
the vertical dimension represents the sum of squared residuals.
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Figure 4.10: Objective function of the least-squares method

The second figure, Figure 4.11, presents the same objective function in
the form of level curves, viewed from above. Each contour line represents a
set of parameter values that yield the same sum of squared residuals. The
contours become denser as they approach the minimum, indicating the region
where the optimal parameter values are located. The estimated values, θ̂0 =
17.6 and θ̂1 = 2.84, are marked at the point where the function reaches its
minimum.

These estimates suggest that the expected daily distance traveled by an
individual is approximately 17.6 km when household monthly income is zero,
and for every additional 1,000 CHF in income, the predicted travel distance
increases by approximately 2.84 km. Additionally, the estimated standard
deviation of the residuals, σ̂, is either 0.896 or 1.27, depending on whether
the biased or unbiased estimator is used.

Figure 4.12 illustrates the estimated regression line along with a 99%
confidence interval. The regression line, shown in red, represents the pre-
dicted relationship between household monthly income (in thousand CHF)
and daily distance traveled (in km). It is given by the equation:

Ŷ = 2.84X+ 17.6.

The shaded region around the regression line represents the 99% con-
fidence interval, which accounts for the uncertainty in our estimates. The
confidence interval is computed using the estimated standard deviation of
the residuals, σ̂ = 1.27, and the critical value from the standard normal dis-
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Figure 4.11: Objective function of the least-squares method: level curves

tribution corresponding to a 99% confidence level, which is approximately
2.576. The upper and lower bounds of the confidence interval are given by:

Ŷ ± 2.576 · σ̂.

This means that for a given income level X, the true mean value of Y is
expected to fall within this shaded region 99% of the time. The confidence
interval reflects the variability in the data and the uncertainty in the esti-
mated regression parameters. A wider confidence interval suggests greater
uncertainty in predictions, while a narrower interval indicates more precise
estimates.

Linear regression can be conveniently expressed in matrix form, which
allows for a more compact representation of the problem and facilitates com-
putational implementation. The general formulation of a linear regression
model with K explanatory variables and N observations is given by:

y = xθ+ σε

where y is an N-dimensional vector representing the dependent variable, x is
an N×K matrix containing the independent variables, θ is a K-dimensional
vector of parameters to be estimated, and σε represents the error term, where
ε ∼ N(0, I) is a standard normal error term.

For our specific example with K = 2, we consider the relationship between
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Figure 4.12: Regression line with confidence interval

household income and daily travel distance. The model can be written as:
22.49
36.11
45.35
51.59

 =


1 2
1 6
1 10
1 12

[θ0

θ1

]
+ σ


ε1
ε2
ε3
ε4


where the first column of x corresponds to the intercept term (a column of
ones), and the second column contains the observed values of income.

To estimate the parameters, we solve the normal equations:

xTxθ̂ = xTy

which leads to the closed-form solution:

θ̂ = (xTx)−1xTy.

For our example, computing xTx and xTy, we obtain:[
4 30
30 284

] [
θ̂0

θ̂1

]
=

[
155.74
1334.22

]
.

Solving for θ̂, we find:

θ̂0 = 17.6, θ̂1 = 2.84.
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The residuals, representing the differences between observed and predicted
values, are given by:

y− xθ̂ =


−0.7647
1.4878
−0.6397
−0.0834

 .

The sum of squared residuals is:

(y− xθ̂)T (y− xθ̂) = 3.2145.

From this, we estimate the standard deviation of the residuals. The maxi-
mum likelihood estimator of σ is:

σ̂ =

√√√√ 1

N

N∑
n=1

(yn − xTnθ̂)
2 =

√
3.2145

4
= 0.896.

The unbiased estimator of σ, which accounts for the degrees of freedom, is:

σ̂ =

√√√√ 1

N− K

N∑
n=1

(yn − xTnθ̂)
2 =

√
3.2145

4− 2
= 1.27.

This formulation in matrix notation generalizes naturally to multiple ex-
planatory variables and provides an efficient way to estimate regression pa-
rameters.

4.3.3 The case of both discrete and continuous vari-
ables

So far, we have explored different approaches to parameter estimation, de-
pending on the nature of the dependent variable Y and the explanatory vari-
able X. When both X and Y are discrete, we used contingency tables to
estimate probabilities and analyze relationships. In contrast, when both vari-
ables are continuous, we applied linear regression, deriving estimates using
the least-squares method. We now investigate the case when some variables
are discrete, and some are continuous.

A straightforward case arises when the dependent variable Y is contin-
uous, while the explanatory variable X is discrete. In order to be used as
an explanatory variable in a regression model, it must first be encoded in a
way that allows it to be incorporated into a mathematical framework. This is
typically achieved by introducing binary (or dummy) variables that represent
the different categories of the qualitative variable.
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For example, consider the categorical variable X representing the level of
comfort, which has four possible values: “very comfortable,” “comfortable,”
“rather comfortable,” and “not comfortable.” Since these categories are not
naturally numerical, we define four binary variables:

zvc, zc, zrc, znc.

Each of these variables takes a value of 1 if the observation belongs to the
corresponding category and 0 otherwise. This encoding is summarized in the
following table:

zvc zc zrc znc

very comfortable 1 0 0 0
comfortable 0 1 0 0

rather comfortable 0 0 1 0
not comfortable 0 0 0 1

Once the categorical variable is represented in this way, it can be incorporated
into a regression model. The dependent variable Y, which may represent a
continuous outcome such as user satisfaction or willingness to pay, can be
expressed as a function of these binary variables:

Y = · · ·+ θ1zvc + θ2zc + θ3zrc + θ4znc + σε.

This formulation allows us to estimate the impact of each comfort level on Y

using standard linear regression techniques. The coefficients θ1, θ2, θ3, and
θ4 represent the expected value of Y for each category. The model can be
estimated using least squares, following the same principles as in a standard
regression with continuous variables.

A more complex situation occurs when Y is discrete and X is continuous.
This setup requires different modeling techniques since neither contingency
tables nor standard regression are directly applicable.

Indeed, predicting a discrete outcome from continuous explanatory vari-
ables presents challenges that do not arise in standard regression models.
Consider a traveler’s decision to use public transportation or an alternative
mode of transport. This choice can be represented by a qualitative variable
Y that takes two possible values: “public transport” or “other.” The decision
is influenced by factors such as travel time X1 and travel cost X2, both of
which are continuous variables.

A natural first attempt might be to apply a linear regression model:

Y = θ1X1 + θ2X2 + σε.
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However, this approach is inappropriate because the left-hand side of the
equation, Y, represents a categorical choice, while the right-hand side is a
continuous function. The model would predict values of Y that are not con-
strained to discrete outcomes, making interpretation difficult and leading to
meaningless results.

A better approach is to return to utility theory, which models the decision-
making process by assuming that each traveler associates a level of utility
with each available choice. The traveler selects the option that provides the
highest utility.

Consider again the example of a choice between “public transportation”
and “not public transportation” described in Section 3.1, illustrated in Fig-
ure 3.1. Suppose we have collected data on travelers’ choices. For each
traveler, we observe the travel time for both alternatives, the travel cost for
both alternatives, and the mode of transportation that was actually chosen.

In Figure 4.13, each point represents an individual traveler’s data. The
x-coordinate of each point corresponds to the observed difference in travel
times between the two alternatives, t1−t2, while the y-coordinate represents
the observed difference in travel costs, c1 − c2. The shape of each point
indicates the traveler’s actual choice: circles represent travelers who chose
alternative 1, while squares represent those who selected alternative 2.

θt/θc

1

Alt. 2 is dominant

Alt. 1 is dominant

Alt. 2 is preferred

Alt. 1 is preferred

t1 − t2

c1 − c2 Alt. 1 is chosen
Alt. 2 is chosen

−θtt1 − θcc1 = −θtt2 − θcc2

Figure 4.13: Utility model and observed data

Intuitively, the slope of the line, defined by the ratio of parameters θt/θc

(that is, the value of time) should be estimated in such a way that the in-
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difference line acts as an optimal separator between the observed choices,
completely distinguishing the circles (representing travelers who chose al-
ternative 1) from the squares (representing travelers who chose alternative
2).

This is because the indifference line, defined by the equation

−θt(t1 − t2) − θc(c1 − c2) = 0,

represents the threshold at which a traveler is equally likely to choose either
alternative, as discussed in Section 3.1. If the estimated parameters accu-
rately reflect real-world decision-making, then all observations corresponding
to alternative 1 should ideally fall on one side of the indifference line, while
all observations corresponding to alternative 2 should lie on the other side.

However, it is clearly impossible to find a single slope that perfectly sepa-
rates the two sets of observations. In other words, no choice of the parameter
ratio θt/θc can define an indifference line that completely divides the circles
(representing travelers who chose alternative 1) from the squares (represent-
ing travelers who chose alternative 2).

The reason for this is that real-world choice data is inherently noisy and
influenced by many unobserved factors. Travelers do not make perfectly
deterministic decisions based solely on travel time and cost. Instead, their
choices are affected by personal preferences, habitual behaviors, comfort,
reliability, accessibility, and other latent1 variables that are not explicitly
captured in the observed data.

Mathematically, this means that there will always be some travelers whose
choices appear inconsistent with a strict deterministic model. For example,
some travelers may opt for public transportation even when it is slower and
more expensive, perhaps due to factors like convenience or the ability to work
during the trip. Conversely, others may prefer driving despite a longer and
costlier journey due to personal comfort or flexibility. As a result, the data
points corresponding to different choices are mixed in the (t1 − t2, c1 − c2)
plane, with no clear linear boundary that can separate them entirely.

This observation suggests that a purely deterministic approach to mod-
eling discrete choices is insufficient. Instead, we must adopt a probabilistic
framework that acknowledges the inherent variability in human decision-
making.

In practice, the analyst does not have direct access to the true preference
structure of the decision-maker and, consequently, to the exact utility func-
tion. Approximation arises from various sources, such as missing variables,
an incorrect functional form, or measurement errors in observed variables.

1A latent variable is actually an unobserved variable.
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To account for these unobserved factors, the concept of random utility is
introduced. In this framework, the utility of an alternative is represented as
a continuous random variable, composed of a deterministic component and
an unobserved random component.

Mathematically, this can be expressed as

Ui = ui + εi = −θtti − θcci + εi,

where ui represents the deterministic component, which depends on observ-
able attributes such as travel time ti and cost ci. The term εi is a ran-
dom component that captures unobserved factors, including individual pref-
erences, past experiences, and contextual influences.

This equation closely resembles a linear regression model. However, a fun-
damental difference is that the dependent variableUi is not directly observed.
As a result, the least-squares estimation method described in Section 4.3.2
cannot be applied in this context.

Since individuals seek to maximize their utility, they choose the alterna-
tive that provides the highest utility. From the point of view of the analyst,
this leads to the probability of selecting an alternative i over another alter-
native j being given by

Pr(Y = i) = Pr(Ui ⩾ Uj).

The probability of making a particular choice depends not only on the deter-
ministic utility difference but also on the distribution of the random compo-
nents εi and εj. Because these random components introduce uncertainty,
the model predicts the probability of each alternative being chosen rather
than determining choices with absolute certainty.

The structure of the model follows a causal relationship where the ob-
served choice Y is determined by the underlying latent utilities Ui, which in
turn depend on the observed explanatory variables X. This relationship can
be written as

Y|U|X.

This notation emphasizes that the explanatory variables X influence the
choice indirectly through the latent utilities. Unlike standard regression mod-
els, where both explanatory and dependent variables are observed, random
utility models introduce an additional layer of complexity by incorporating
latent variables. The true utilities Ui are never observed directly; instead,
only the final choice Y is recorded.

The logit model is a widely used discrete choice model that describes
the probability of selecting an alternative from a given set of choices. Con-
sider a decision-maker faced with a set of alternatives, denoted by C. Each
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alternative i ∈ C is associated with a utility Ui, which is composed of a
deterministic component ui and an unobserved random component εi, such
that Ui = ui + εi.

If the unobserved components εi are independently and identically dis-
tributed (i.i.d.) following the Extreme Value distribution with parameters
(0,µ), then the probability that alternative i is chosen is given by:

Pr(Y = i) = Pr(Ui ⩾ Uj,∀j ∈ C) =
eµui∑
j∈C e

µuj
.

The parameter µ scales the sensitivity of the choice probabilities to differences
in utility, with higher values of µ indicating more deterministic choices and
lower values introducing greater randomness in decision-making.

In random utility models, the probabilities of choosing an alternative
depend only on differences in utility rather than their absolute values. This
property leads to two fundamental invariances: shift invariance and scale
invariance.

Shift invariance means that adding a constant K to all utility values does
not change the choice probabilities. Formally, if each utility function is shifted
by the same constant, the probability of selecting an alternative remains the
same:

Pr(Y = i) = Pr(Ui + K ⩾ Uj + K,∀j ∈ C), ∀K ∈ R.

This implies that only differences in utility matter, not their absolute levels.
As a consequence, one of the utility functions can be normalized by setting
one intercept to zero without loss of generality.

Scale invariance refers to the property that multiplying all utilities by a
positive constant µ does not affect the choice probabilities:

Pr(Y = i) = Pr(µUi ⩾ µUj,∀j ∈ C), ∀µ > 0.

Since utility is a latent construct without a natural unit of measurement,
the scale of the utility function is arbitrary. This means that the model is
identified only up to scale, and for estimation purposes, the scale parameter
is typically normalized to one.

These two properties imply that when estimating discrete choice models,
a normalization is required. One intercept is often fixed at zero to account
for shift invariance, and the scale of the utility function is standardized by
setting a parameter (often µ in logit models) to one.

Back to the example, Figure 4.14 illustrates the probability of choosing
public transportation (PT) or not (not PT) as a function of the difference in
utility between these two alternatives. The x-axis represents the difference in
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Figure 4.14: Example of a logit model

deterministic utility, defined as uPT − unot PT. This difference quantifies the
relative attractiveness of public transportation compared to the alternative.

The y-axis represents the probability of selecting each alternative. The
orange curve corresponds to Pr(Y = PT|U), which is the probability that
a traveler chooses public transportation given the utility values. The green
curve corresponds to Pr(Y = not PT|U), representing the probability of se-
lecting the alternative option.

The logit function governs the shape of these curves. When uPT −
unot PT = 0, meaning both alternatives provide the same deterministic util-
ity, the probability of choosing either option is 50%. As uPT − unot PT in-
creases, public transportation becomes more attractive, and its probability
approaches 1. Conversely, as uPT − unot PT decreases, the probability of
choosing not PT approaches 1, meaning the alternative mode is preferred.

To estimate the parameters of a choice model, we need data, that is,
observation of real choices. Table 4.4 presents an example of choice data
collected from individual travelers. Each row in the table corresponds to a
separate observation, representing the travel decision of a single individual.
The first column, labeled ‘#’, is an index that uniquely identifies each ob-
servation. The second and third columns provide information on the travel
times associated with two alternative modes: the time taken by car (‘Time
car’) and the time taken by public transportation (‘Time PT’). These values
are measured in consistent units, typically minutes, and reflect the travel
conditions faced by each individual at the time of decision-making.
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The fourth column, labeled ‘Choice’, records the mode of transportation
that was actually chosen by each traveler. The notation ‘T’ indicates that the
traveler opted for public transportation, while ‘C’ indicates that the traveler
chose to travel by car. Since each individual has only one chosen alternative
per observation, this column provides the outcome variable for estimating
the choice model.

# Time car Time PT Choice
1 52.9 4.4 T
2 4.1 28.5 T
3 4.1 86.9 C
4 56.2 31.6 T
5 51.8 20.2 T
6 0.2 91.2 C
7 27.6 79.7 C
8 89.9 2.2 T
9 41.5 24.5 T
10 95.0 43.5 T
11 99.1 8.4 T
12 18.5 84.0 C
13 82.0 38.0 C
14 8.6 1.6 T
15 22.5 74.1 C
16 51.4 83.8 C
17 81.0 19.2 T
18 51.0 85.0 C
19 62.2 90.1 C
20 95.1 22.2 T
21 41.6 91.5 C

Table 4.4: Example of choice data

Assume that the utility of traveling by car, denoted as uC1, is given by:

uC1 = θ1tC1.

Similarly, the utility of traveling by public transportation, denoted as uT1,
incorporates an additional parameter θT :

uT1 = θ1tT1 + θT .

For the sake of illustration, consider the following parameter values θT = 0.5
and θ1 = −0.1. Using the travel times observed for the first individual
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(tC1 = 52.9 minutes and tT1 = 4.4 minutes), we can compute the specific
utility values:

uC1 = (−0.1)× 52.9 = −5.29,

uT1 = (−0.1)× 4.4+ 0.5 = 0.06.

Since the first individual chose public transportation (PT ), the probabil-
ity assigned by the model to this choice must be computed using the logit
formula, where we have normalized µ = 1:

P1(PT) =
euT1

euT1 + euC1
.

Substituting the computed utility values:

P1(PT) =
e0.06

e0.06 + e−5.29
.

Since e−5.29 is a very small number compared to e0.06, the denominator is
approximately equal to e0.06, leading to a probability close to 1. This result
indicates that, given the model parameters, the choice of public transporta-
tion for this individual is almost fully explained by the estimated utility
function.

For the second individual, we use the given parameter values θT = 0.5
and θ1 = −0.1, along with the observed travel times: tC2 = 4.1 minutes and
tT2 = 28.5 minutes. Substituting these values into the utility equations:

uC2 = (−0.1)× 4.1 = −0.41,

uT2 = (−0.1)× 28.5+ 0.5 = −2.35.

Since the second individual also chose public transportation (PT ), the prob-
ability assigned by the model to this choice is computed using the logit
formula:

P2(PT) =
euT2

euT2 + euC2

Substituting the computed utility values:

P2(PT) =
e−2.35

e−2.35 + e−0.41

The probability of choosing public transportation for this individual is ap-
proximately 0.13.

If we consider the two first individuals, the probability that the model
correctly predicts both choices is:

P1(PT)P2(PT) = 0.13.
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This quantity is the likelihood, introduced in Section 4.3.1. It is a function of
the unknown parameters. The value obtained above assummes θT = 0.5 and
θ1 = −0.1. When extended to all individuals in the dataset, the likelihood
function becomes:

L∗(θ) =
∏
n

(Pn(car|θ)
ycar,nPn(PT|θ)

yPT,n)

where yj,n is an indicator variable that takes the value 1 if individual n has
chosen alternative j and 0 otherwise. This ensures that only the probability
corresponding to the chosen alternative contributes to the likelihood.

Since the likelihood function involves the product of many probabilities, it
is often more convenient to work with the logarithm of the likelihood, known
as the log-likelihood function:

L(θ) = logL∗(θ)

=
∑
n

(ycar,n log Pn(car|θ) + yPT,n log Pn(PT|θ)) .

Table 4.5 presents the values of the likelihood function for different pa-
rameter values in the choice model. The table includes four rows, each cor-
responding to a different combination of the parameters θT and θ1, and the
resulting value of the likelihood function L∗.

θT θ1 L∗

0 0 4.57 10−07

0 -1 1.97 10−30

0 -0.1 4.1 10−04

0.5 -0.1 4.62 10−04

Table 4.5: Value of th elikelihood for some values of the parameters

The first column represents θT , the alternative-specific constant asso-
ciated with public transportation. The second column represents θ1, the
coefficient associated with travel time. The third column provides the corre-
sponding likelihood value L∗.

Examining the values in the table, we observe that the likelihood is 4.57×
10−7. When θ1 is set to -1, the likelihood drops significantly to 1.97 ×
10−30, meaning that a very strong sensitivity to travel time leads to poorer
predictions.

Setting θ1 = −0.1, the likelihood improves considerably, reaching 4.1 ×
10−4. When θT is also adjusted to 0.5 while keeping θ1 = −0.1, the likelihood
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slightly increases to 4.62 × 10−4. This suggests that incorporating a small
alternative-specific preference for public transportation improves the model’s
predictive power.

Overall, this table highlights the importance of selecting appropriate pa-
rameter values to maximize the likelihood function. The goal of estimation is
to identify the values of θT and θ1 that yield the highest likelihood, ensuring
that the model best represents the observed choices.

Figure 4.15 represents the log-likelihood function for the example choice
model. The plot visualizes how the log-likelihood varies as a function of the
two parameters θ1 and θT , which are estimated to best explain the observed
choices.

−5.31 · 10−2

0.24

−20

−10

θ1

θT

Figure 4.15: Log-likelihood function for the example

The horizontal axes represent the parameters of the model. The x-axis
corresponds to θ1, the coefficient associated with travel time, and the y-axis
corresponds to θT , the alternative-specific constant for public transportation.
The vertical axis represents the value of the log-likelihood function, which
measures how well a given pair of parameters explains the observed choices.

The surface plot illustrates how different parameter values affect the log-
likelihood. The maximum of the log-likelihood function is indicated by the
orange lines and the black dot, which corresponds to the optimal parameter
estimates. The maximum occurs at approximately θ1 = −0.0531 and θT =
0.2376. These values maximize the probability of correctly predicting the
choices observed in the dataset.
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Since the log-likelihood function is concave, it ensures that the estimation
process leads to a unique maximum. The contour of the surface suggests how
sensitive the likelihood is to changes in the parameters: a steep slope indicates
that small changes in the parameters significantly affect the likelihood, while
a flatter region indicates that small changes have a minimal impact.

Figure 4.16 illustrates how the probability of choosing public transporta-
tion or car varies as a function of travel time by public transportation.
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Figure 4.16: Choice probability of public transportation, assuming travel time by car
is 30 minutes

The x-axis represents the travel time by public transportation, measured
in minutes. The y-axis represents the probability of choosing each trans-
portation mode. The two curves correspond to the probabilities predicted
by the estimated choice model, assuming that the travel time by car is fixed
at 30 minutes.

The orange curve represents Pr(Y = car|X = t), the probability that
an individual chooses to travel by car given that the travel time by public
transportation is t. The green curve represents Pr(Y = PT|X = t), the
probability of choosing public transportation.

The model predicts that when public transportation is significantly faster
than 30 minutes, the probability of choosing it is high, and the probability
of choosing the car is low. Conversely, when the travel time by public trans-
portation is much longer than 30 minutes, the probability of choosing the car
increases, while the probability of choosing public transportation decreases.
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The two probabilities sum to one for any given value of t, as an individual
must choose exactly one of the two alternatives.

4.3.4 Back to the contingency table

We now revisit the treatment of discrete variables described in Section 4.3.1.
Consider the contingency table shown in Table 4.1, that summarizes the
observed choices of individuals based on their trip purpose. The rows cor-
respond to whether an individual chose public transportation (PT) or not,
while the columns correspond to the purpose of the trip: work, leisure, or
other. The goal is to model the probability of choosing PT as a function of
the trip purpose.

To achieve this, we introduce a utility-based framework similar to the
logit model used in discrete choice analysis. We define a utility function for
the public transportation alternative:

uPT = θ1zwork + θ2zleis + θ3zothers

where zwork, zleis, and zothers are binary variables indicating the trip purpose.
For example, if an individual is traveling for work, then zwork = 1 and the
other two variables are zero. Similarly, if the purpose is leisure, then zleis = 1,
and for other purposes, zothers = 1. The utility of the “not PT” alternative
is normalized to zero:

unot PT = 0.

Following the logit model formulation, the probability of choosing PT is
given by:

Pr(PT) =
euPT

euPT + eunot PT
=

euPT

1+ euPT
.

By estimating the parameters using maximum likelihood estimation, we ob-
tain:

Work Leisure Others
θ∗
i −0.696 −1.22 −1.19

uPT −0.696 −1.22 −1.19
Pr(PT) 0.333 0.228 0.233

These results show that the probabilities predicted by the logit model ex-
actly match the relative frequencies observed in the contingency table. This
confirms that any discrete outcome model, including those derived from con-
tingency tables, can be formulated as a logit model.

In conclusion, the logit model provides a general framework for modeling
discrete choices, whether they come from structured behavioral models (such
as those based on travel time and cost) or from observed categorical data
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(such as trip purpose). The flexibility of the logit model allows it to be
applied in a wide range of settings where the dependent variable is discrete.

4.4 Summary

This chapter provided a structured introduction to mathematical modeling,
focusing on different types of variables, the distinction between correlation
and causality, and the estimation of model parameters.

The first part of the chapter explored the nature of variables used in
models. Variables can be continuous, such as travel time or income, qualita-
tive discrete, such as transportation mode choice, or random, incorporating
uncertainty into the model.

A key concept discussed was causality, which is distinct from correlation.
While correlation measures the association between two variables, it does
not imply a cause-and-effect relationship. Causality is context-dependent
and must be justified through theoretical assumptions and hypotheses. This
distinction is fundamental when developing models that aim to explain and
predict behavior.

The chapter then introduced two primary modeling frameworks based on
the nature of the dependent variable. When the dependent variable Y is con-
tinuous, linear regression provides a suitable modeling approach, expressed
as:

Y|(X = xn) =

K−1∑
k=1

θkxnk + θ0 + σε.

For cases where the dependent variable is discrete, the random utility model
forms the basis of choice modeling. The logit model was introduced as a
method to estimate the probability of selecting an alternative i, given by:

Pr(Y = i|X = xn) =
eui(xn)∑
j∈C e

uj(xn)
,

where the utility of each alternative is modeled as:

ui(xn) =

K−1∑
k=1

θkxink + θ0.

Another important aspect covered was the treatment of discrete independent
variables. When an explanatory variable is categorical, it can be modeled
using binary variables to represent each possible category. This allows dis-
crete attributes to be seamlessly incorporated into models that traditionally
use continuous predictors.
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Parameter estimation was discussed in detail, emphasizing the use of max-
imum likelihood estimation. This method ensures that model parameters are
estimated in a way that maximizes the probability of reproducing observed
data. Maximum likelihood estimation was applied to both regression models
for continuous outcomes and discrete choice models like the logit model.

In summary, this chapter provided foundational tools for mathematical
modeling, covering different types of variables, model specification, and esti-
mation techniques. The concepts introduced here serve as a basis for devel-
oping models that can explain and predict behaviors in various domains.
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Chapter 5

Travel demand: an introduction

People rarely travel for the sole purpose of moving from one place to another.
Instead, travel demand is a derived demand: it arises because individuals
need to reach different locations to engage in activities such as work, educa-
tion, shopping, or social interactions. The true demand is not for travel itself
but for participation in these activities, which are essential to daily life.

Since activities are spread across space and time, individuals must travel
to access them. This spatial and temporal dispersion shapes mobility pat-
terns, influencing how, when, and why people move. Travel choices depend
on the availability of transportation options, the location of homes and work-
places, personal schedules, and constraints such as time and cost. The de-
mand for transportation services is therefore directly linked to the distribu-
tion and scheduling of activities.

Human activities can be broadly categorized into primary and secondary
activities, each playing a distinct role in shaping travel demand.

Primary activities are essential to daily life and often have fixed locations
and schedules. These include activities that take place at home, such as rest
and personal care, as well as work and education. Work commitments gener-
ally follow regular hours and require commuting to specific locations, while
education, whether at schools or universities, follows structured timetables
that influence mobility patterns. Since these activities are fundamental, they
strongly determine how people organize their time and where they need to
travel.

Secondary activities, on the other hand, are more flexible in nature and in-
clude leisure, shopping, escorting others, and business-related travel. Leisure
activities encompass a wide range of pursuits such as entertainment, sports,
and social gatherings, often undertaken at discretionary times and locations.
Shopping can range from routine grocery purchases to more occasional trips
for other goods and services. Escort trips involve accompanying others, such
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as taking children to school or picking up a family member. Business-related
travel extends beyond commuting to work and includes meetings, site vis-
its, and other professional engagements that require movement across dif-
ferent locations. These secondary activities contribute significantly to travel
patterns, often leading to additional trips beyond the primary commuting
journey.

The distinction between primary and secondary activities is important
for understanding mobility needs. While primary activities create a baseline
structure for travel, secondary activities introduce additional complexity by
adding variability in trip timing, frequency, and destination choice.

Travel demand is the result of a combination of choices made by different
actors at various levels. It is shaped by decisions made by public authorities,
as well as by households and individuals, each contributing to how, when,
and where people travel.

Public authorities play a central role in shaping travel demand through
a series of decisions made at different time horizons. These choices influence
the structure of cities, the availability of transportation options, and the way
people move in response to daily needs and unexpected events.

Some of these decisions have long-term consequences, particularly in the
areas of urban planning and land use. The way cities are designed, where
housing developments are located, and how commercial and industrial zones
are distributed all affect travel patterns for decades. Infrastructure invest-
ments, such as the construction of a new metro line, not only improve ac-
cessibility but also influence real estate values and economic activities in
surrounding areas. These large-scale projects define the overall mobility
landscape and shape the choices available to individuals and businesses.

Other decisions are made on a mid-term basis and focus on regulations
that govern transportation systems and urban activities. Policies such as
traffic restrictions, environmental regulations, and parking rules influence
how people navigate the city. Additionally, the scheduling of public events
such as concerts, sports games, and festivals requires careful planning to
manage crowds and minimize disruptions. By coordinating opening hours
and event logistics, public authorities can reduce congestion and optimize
transportation networks.

Some choices must be made in the short term to respond to immediate
challenges. Crisis management is designed to ensure safety and continuity in
times of disruption. Natural disasters, extreme weather events, and public
health emergencies require rapid decisions such as closing schools during
storms or implementing lockdown measures to control the spread of disease.
These short-term actions, while temporary, can have significant impacts on
travel behavior and mobility patterns.
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At the same time, households and individuals continuously make decisions
that shape their travel demand. These choices also occur at different time
horizons, ranging from long-term commitments to short-term adjustments,
and reflect personal preferences, constraints, and external conditions.

Long-term decisions define an individual’s lifestyle and mobility habits.
Choices such as the type of job, whether to live in a house or an apartment,
and the number of children in the household influence daily routines and
travel needs. Mobility-related decisions, such as purchasing a public trans-
portation pass or owning one or more cars, determine the available travel
options. Regular activities, including participation in sports, theater, or
other hobbies, also shape recurring travel patterns, contributing to a stable
framework of mobility demands.

Mid-term decisions focus on planning activities and travel over weeks or
months. Scheduling work hours, social events, or leisure activities requires
coordination, and these choices directly impact when and where travel occurs.
Individuals must also decide on travel-related aspects, such as selecting a
mode of transport, evaluating travel time, and balancing convenience and
cost. These decisions may vary based on external factors such as weather
conditions, temporary disruptions, or financial considerations.

Short-term choices involve adapting plans in response to immediate cir-
cumstances. Rescheduling activities due to unexpected constraints, such as
last-minute work obligations or personal commitments, can lead to modifi-
cations in travel behavior. Additionally, individuals make use of real-time
travel information, adjusting departure times or selecting alternative routes
to optimize their trips. These short-term adaptations highlight the dynamic
nature of travel decisions, as people continuously respond to changing con-
ditions.

Travel demand also evolves over different time horizons. Some choices,
like infrastructure development or residential location, are long-term and set
the foundation for mobility patterns over decades. Other decisions, such as
choosing a travel mode for a specific trip, are made on a short-term basis
and can change frequently.

The different choices made by public authorities and individuals, as well as
their interactions, are illustrated in Figure 5.1. This figure visually represents
the role of decisions at different time horizons and how they shape travel
demand.

On the left side of the figure, public authorities’ decisions are enclosed
within an orange frame. These decisions operate at three levels: long-term,
mid-term, and short-term. On the right side, household and individual
choices are enclosed within a blue frame. Similarly, these choices span dif-
ferent time horizons.
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Figure 5.1: Choices and decisions

The figure also highlights the dynamic interactions between these two
levels of decision-making. Thick arrows between the public authorities and
households/individuals emphasize the reciprocal influence between govern-
ment policies and personal choices. Policies set by public authorities directly
impact individuals’ travel behavior, while citizens’ mobility needs and be-
haviors, in turn, shape policy responses. Additional arrows between different
time horizons indicate the connections between long-term, mid-term, and
short-term choices, illustrating how decisions made at one level influence the
others.

Modeling travel demand requires representing the choices made by all
actors involved, including households and individuals. Since every person
makes decisions about their daily activities, the number of possible travel
patterns becomes extraordinarily large, making the problem computationally
complex.

An example helps illustrate this complexity. Consider a population of
seven million individuals, each engaging in approximately ten activities per
day. The possible ways in which these activities can be arranged over the
course of a day quickly lead to an enormous number of potential scenarios.
The sequencing of ten activities alone results in 10! possible orderings, already
a significant number.

Beyond sequencing, each activity involves additional choices. Individuals
must decide when to perform each activity, with multiple possible time slots
available throughout the day. They must also choose a location, selecting
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from a variety of destinations that offer the necessary services or opportuni-
ties. Furthermore, each activity requires a decision on the mode of transport,
such as walking, cycling, driving, or using public transportation, and for each
mode, there are multiple possible routes to reach the destination efficiently.

When all these factors are combined, the total number of possible travel
plans becomes astronomically large. The example calculation shows that the
number of possible combinations reaches the order of 1023. This illustrates
the immense complexity involved in modeling travel demand, as capturing
every possible choice for every individual would be computationally infeasi-
ble.

Given this complexity, models must rely on simplifications, approxima-
tions, and behavioral principles to make the problem tractable.

The level of complexity required in a travel demand model depends on
the specific question being addressed. Some situations require only basic
information about people’s movements, while others demand a detailed un-
derstanding of individual behavior and activity patterns. Selecting the ap-
propriate level of complexity ensures that the model is both computationally
efficient and capable of providing meaningful insights.

For simple systems like an elevator, there is no need to model the entire
daily schedule of each individual. What matters is knowing when and where
people press the button to request the elevator. The focus is on local interac-
tions rather than the broader travel behavior of individuals. A similar level
of complexity applies to metro systems, where the most critical information
is where people board and alight. Just as an elevator moves people between
floors, the metro transports passengers between stations, and the model can
often abstract away the details of individual travel plans.

More complex systems, such as park-and-ride facilities, require additional
considerations. Since travelers use multiple modes of transport in a single
journey, it is necessary to account for car availability throughout the entire
tour. A person driving to a park-and-ride lot must be able to retrieve their
vehicle later, so the model must ensure consistency between different legs of
the journey. This introduces interdependencies between choices, increasing
the complexity of the modeling process.

At the highest level of complexity, understanding the impact of lockdown
measures requires a detailed representation of individual activities. In this
case, it is not enough to know where and when people travel; the model must
capture the reasons for their trips and how restrictions on movement affect
daily schedules. Since location is a critical factor in determining whether
activities can still take place under lockdown conditions, the model must
include a fine-grained representation of activity locations and their accessi-
bility.
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These examples highlight how the level of model complexity should be
carefully adjusted to match the needs of the analysis. A simple model may be
sufficient for studying metro ridership, but a detailed, activity-based model
is essential for evaluating the effects of a major disruption like a lockdown.

The complexity of a travel demand model is determined by several key
factors that define the level of detail included in the representation of travel
behavior. Adjusting these factors allows for a balance between computational
efficiency and the accuracy needed to answer specific research questions.

One of the main ingredients is granularity, which includes both time res-
olution and spatial discretization. A model with fine temporal resolution
can capture rapid changes in travel behavior, such as rush hour dynamics or
short-term disruptions, while a coarser resolution may be sufficient for long-
term planning. Similarly, spatial discretization determines whether travel is
represented at the level of entire cities, neighborhoods, or even individual in-
tersections. A finer spatial scale provides more detailed insights but requires
significantly more data and computation.

Another fundamental aspect is the level of aggregation. A model can be
disaggregate, tracking the decisions of each individual separately, or aggre-
gate, focusing on overall flows of travelers between different locations. Disag-
gregate models provide a richer representation of behavior but require more
computational resources. Aggregate models, on the other hand, simplify the
analysis by grouping individuals into categories or by modeling flows rather
than individual movements. The choice between these approaches depends
on the type of insights required and the available data.

The representation of travel patterns is also a important factor in defining
model complexity. The most detailed models simulate full activity schedules,
capturing how individuals organize their daily lives and how different activ-
ities influence their mobility choices. A more simplified approach focuses on
tours, representing sequences of trips that begin and end at the same loca-
tion (typically, home). The least complex models consider individual trips in
isolation, without explicitly linking them to other activities. The choice be-
tween these representations affects how well the model captures dependencies
between different trips and activities.

Figure 5.2 illustrates those three different ways of representing travel be-
havior, all based on the same underlying pattern of activities. In each case,
the individual follows the same daily schedule, visiting home, work, shops,
and dining locations at the same times and in the same sequence. What
differs across the representations is how the interdependence between trips
is considered.

The schedule-based representation on the left captures the full sequence
of activities, preserving all dependencies between trips. It accounts for how
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Figure 5.2: Trip-based, tour-based and schedule-based representations

earlier activities influence later ones, such as the need to return home before
heading out again for dining. By modeling the complete schedule, this ap-
proach allows for a detailed understanding of how individuals structure their
day and how their travel choices are interconnected.

In the middle, the tour-based approach simplifies the representation by
grouping trips that begin and end at home into coherent sequences. Instead
of modeling each trip separately, it recognizes that a person’s journey to
work and their stop at a shop on the way back are linked as part of a larger
tour. While this approach reduces complexity, it still maintains important
relationships between trips and captures dependencies within each tour.

On the right, the trip-based representation treats each trip in isolation,
ignoring how they relate to one another. A trip from home to work is modeled
separately from a shopping trip later in the day, even if both trips are made
by the same individual as part of an overarching schedule. This approach is
computationally simpler but overlooks behavioral connections, such as how a
person’s decision to shop may depend on their prior work schedule or travel
constraints.

All three representations describe the exact same travel behavior, but at
different levels of abstraction. The choice of representation depends on the
research question: a full schedule is necessary to capture the interdependence
of activities, a tour-based approach provides a structured yet simplified alter-
native, and a trip-based approach is useful when focusing only on individual
movements without considering broader patterns.
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5.1 Production and attraction

In order to illustrate the various steps of travel modeling, we consider an
example where we wan to analyze how crowded an elevator becomes during
peak hours. Unlike large-scale transportation systems, where individual dif-
ferences and detailed activity schedules may be important, the focus in this
case is on understanding the overall flow of people using the elevator.

Since the objective is to estimate congestion in the elevators, the granu-
larity of the model can be relatively coarse. Instead of tracking movements
throughout the entire day, the analysis can focus on the morning peak hour
when most people arrive at work or school. Similarly, spatial resolution does
not require mapping entire building layouts in fine detail; a simple list of
floors, representing where passengers enter and exit the elevator, is sufficient.

To keep the model efficient, an aggregate approach can be used. Rather
than distinguishing between individual travelers, the model considers total
flows of people moving between floors. This means that all elevator users
are treated as identical, without accounting for variations in their personal
schedules or specific behaviors. This level of simplification is appropriate
because the primary interest is in estimating the overall demand for elevator
capacity, not in modeling individual preferences.

Finally, travel patterns are represented at the trip level, where each ele-
vator ride is treated as an independent movement from one floor to another.
There is no need to track entire activity schedules or link trips into tours, as
in more complex transportation models. This simplification is justified be-
cause an elevator journey is typically a short, direct trip with no intermediate
decisions, making it reasonable to ignore dependencies between trips.

Before analyzing elevator congestion, it is essential to understand how
many trips are generated and where they are directed. This requires ad-
dressing two fundamental aspects: trip production and trip attraction.

Trip production refers to where people start their journeys. In the morn-
ing peak hour, most trips originate from the floors where people live. Res-
idents leave their apartments to go to work, school, or other activities, and
the elevator becomes their primary means of reaching the ground floor. An
important question is determining how many people will leave during this
peak period, as this directly impacts elevator demand.

Trip attraction, on the other hand, focuses on where these trips are
headed. In this case, the ground floor plays a crucial role, as it serves as
the main exit point from the building. However, not all trips necessarily end
at the ground floor. In buildings with mixed uses, some people may travel
between floors to reach workplaces, offices, or shared spaces within the same
structure.
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The starting point of travel demand analysis is census data, which pro-
vides fundamental demographic information about the population. This data
serves as the foundation for understanding how, when, and why people travel
by capturing key characteristics such as household locations, job locations,
and socioeconomic factors.

Census data records where individuals live, which helps identify residen-
tial areas and estimate the number of people who may need to travel daily.
It also includes information about workplaces, enabling an understanding of
commuting patterns and employment hubs. By linking home and job loca-
tions, analysts can infer major flows of travelers and anticipate demand for
transportation infrastructure.

Going back to our elevator example, Table 5.1 presents synthetic de-
mographic data describing the distribution of residents and workers across
different floors of a building. This data provides essential input for under-
standing elevator demand, as it helps estimate the number of people who will
use the elevators during peak hours.

Floor Residents Workers
0 0 0
1 12 2
2 5 70
3 17 5
4 20 0

Table 5.1: Demographic data for the elevator example

Each row represents a floor, while the two columns provide information
on the number of residents and the number of workers located on that floor.
The ground floor (floor 0) does not have any residents or workers, indicating
that it likely serves as an entrance and exit point rather than a living or
working space. Floors 1, 3, and 4 primarily accommodate residents, with 12,
17, and 20 people living on these floors, respectively. These individuals are
likely to leave their apartments in the morning, contributing to elevator trips
toward the ground floor.

In contrast, floor 2 is primarily a workplace, with 70 workers but only
5 residents. This suggests that a significant number of people will use the
elevator to reach this floor in the morning, creating an inbound flow distinct
from the residential floors where most trips originate. Floor 1 also hosts a
small number of workers, meaning that some elevator trips may be directed
to this level as well. Floor 3 has a minor mix of both residents and workers,
while floor 4 is entirely residential.
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In travel demand analysis, the concepts of trip production and trip attrac-
tion describe the movement of individuals within a system. Trip production
refers to the number of trips that begin at a given location, while trip at-
traction corresponds to the number of trips that end at that location. Since
every trip has both a starting point and a destination, the total number of
trips produced must always be equal to the total number of trips attracted.

Table 5.2 presents synthetic data on trip production and attraction within
a building during the morning peak hour. The first three columns describe
the number of residents and workers per floor, while the last two columns
indicate how many trips are produced and attracted on each floor.

Floor Residents Workers Prod. Attr.
0 0 0 51 26
1 12 2 10 0
2 5 70 3 51
3 17 5 7 2
4 20 0 8 0

79 79

Table 5.2: Production and attraction for the elevator example

The total number of trips produced across all floors is 79, which matches
the total number of trips attracted. However, at first glance, some apparent
inconsistencies emerge. For instance, the total number of trips attracted to
the ground floor is 26, but the sum of trips produced by the other floors does
not exactly match this number (10 + 3 + 7 + 8 ̸= 26). This discrepancy
arises because some residents do not travel directly to the ground floor. For
instance, a person working in an office located on another floor may take
the elevator from their apartment to their workplace without ever reach-
ing the ground floor. These internal trips within the building create minor
imbalances when considering only floor-level statistics.

Estimating trip production and attraction requires data from multiple
sources. Census records and surveys provide information about where people
live and work, while direct observations, such as counts taken at the ground
floor, help validate estimated flows.

5.2 Origin-destination tables

An origin-destination (OD) table is a structured representation of trips that
captures both where they begin and where they end. Unlike simple trip
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production and attraction counts, which summarize how many trips start
or end at each location, an OD table distributes these trips across specific
destinations and origins, providing a detailed picture of travel patterns.

Table 5.3 presents the OD table for the elevator example, showing how
trips are distributed among floors during the morning peak hour. Each row
represents an origin floor, while each column corresponds to a destination
floor. The values in the table indicate how many trips are made from each
origin to each destination. The rightmost column sums the total trips pro-
duced at each floor, while the bottom row sums the total trips attracted
to each floor. Since every trip has both a starting point and an endpoint,
the total number of trips produced (79) equals the total number of trips
attracted.

0 1 2 3 4
0 0 50 1 0 51
1 10 0 0 0 10
2 3 0 0 0 3
3 6 0 1 0 7
4 7 0 0 1 8

26 0 51 2 0 79

Table 5.3: Origin-destination table for the elevator example

This table illustrates how the trips produced at a given floor are not
directed toward a single destination but are distributed across multiple floors.
For example, on floor 3, seven trips are produced: six people travel to the
ground floor, and one person travels to floor 2. Similarly, the trips attracted
to a particular floor come from different origins. Floor 2 attracts 51 trips,
primarily from the ground floor but also from floor 3. These distributions
are what distinguish an OD table from simple trip production and attraction
totals, as they reveal how movement is structured within the system.

Beyond the elevator example, OD tables are widely used in transportation
planning. They play an important role in modeling commuting patterns,
assessing transit demand, and designing infrastructure improvements.

It is important to realize that constructing an OD table from trip pro-
duction and attraction data does not necessarily lead to a unique solution.
Table 5.4a and Table 5.4b illustrate this concept. Both OD tables correspond
to the same production and attraction totals, shown in the last row and last
column of each table. Each row represents an origin floor, and each column
represents a destination floor. The values indicate how many trips travel
between each pair of floors.
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0 1 2 3 4
0 0 50 1 0 51
1 10 0 0 0 10
2 3 0 0 0 3
3 6 0 1 0 7
4 7 0 0 1 8

26 0 51 2 0 79

(a) Table 1

0 1 2 3 4
0 0 49 2 0 51
1 9 1 0 0 10
2 3 0 0 0 3
3 7 0 0 0 7
4 7 0 1 0 8

26 0 51 2 0 79

(b) Table 2

Table 5.4: Two OD tables with the same production and attraction

5.2.1 Under-determination

While the total number of trips originating from and arriving at each floor
remains the same in both tables, the way trips are allocated among desti-
nations differs. For example, in Table 5.4a, 50 trips travel from the ground
floor to floor 2, while in Table 5.4b, this number is reduced to 49, with an
additional trip instead going to floor 3. Similarly, the distribution of trips
originating from floors 1, 3, and 4 also varies slightly between the two tables.

These differences highlight the fact that production and attraction data
alone do not determine a unique OD table. This is due to a fundamental
mathematical issue: the problem is under-determined. The number of un-
knowns in an OD matrix grows quadratically with the number of locations,
while the number of available constraints from production and attraction
totals grows only linearly. Specifically, for a system with M locations, the
number of unknown OD flows is M2 −M (excluding trips from a location to
itself), while the number of equations provided by production and attraction
data is only 2M.

This discrepancy quickly becomes significant. For M = 5, there are 20
unknown OD flows but only 10 equations. When M = 40, the number of
unknowns explodes to 1560, while the number of constraints remains just
80. Since the number of unknowns grows much faster than the number of
available constraints, there are infinitely many OD tables that satisfy the
same production and attraction data.

To resolve this under-determination problem, additional information is
required. There are two main approaches to achieving this:

One approach is to introduce more theoretical assumptions about trip
distribution. For example, one may assume that trips are distributed in a
way that minimizes overall travel cost, or that people tend to travel more
frequently to nearby destinations than distant ones. Such assumptions allow
us to impose additional constraints on the problem, reducing the number of
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feasible solutions.
The second approach is to collect more data. Direct observations, such

as traffic counts at intermediate locations, surveys, or smart card data in
public transport systems, provide additional equations that can help uniquely
determine the OD table. The more data that is available, the more accurately
we can infer the actual distribution of trips.

In practice, a combination of both methods is often used. Theoretical
assumptions provide a framework for estimating missing values, while real-
world data helps refine and validate these estimates. This balance between
assumptions and observations is crucial for generating OD tables that ac-
curately reflect travel behavior and can be used for transportation planning
and policy decisions.

The elevator example demonstrates this challenge in a controlled environ-
ment, but the same issue arises in large-scale urban transportation models.
Understanding that multiple OD tables can satisfy the same production and
attraction constraints is essential for interpreting travel demand data cor-
rectly and making informed planning decisions.

5.2.2 Incompatibility

In constructing an origin-destination (OD) table, an important condition
must hold: the total number of trips produced must equal the total number
of trips attracted. If this balance is not satisfied, then no OD table can be
constructed that satisfies the given constraints, meaning that the problem
has no solution. This situation arises when production and attraction data
are inconsistent, which may occur due to data collection errors, survey biases,
or missing observations.

Table 5.5 illustrates an example of such an inconsistency. The last col-
umn represents the total number of trips produced at each origin, while the
last row represents the total number of trips attracted to each destination.
However, the sum of trips produced is 8 + 3 = 11, while the sum of trips
attracted is 1 + 9 = 10. Since these totals do not match, it is mathemati-
cally impossible to construct a valid OD table that satisfies both constraints
simultaneously.

t11 t12 8
t21 t22 3
1 9

Table 5.5: Example of incompatible production and attraction data
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Such inconsistencies pose a significant challenge in travel demand mod-
eling. If left uncorrected, they can lead to errors in transportation planning
and decision-making. To address this issue, one possible solution is to treat
the trip values as random variables rather than fixed numbers. Instead of
requiring exact equality between trip productions and attractions, a prob-
abilistic approach allows small discrepancies while maintaining an overall
balance through statistical adjustments.

In real-world applications, production and attraction data are often esti-
mated from different sources, such as household travel surveys, traffic counts,
and census data. Discrepancies may arise due to incomplete data collection
or errors in estimation.

5.3 Mode choice

Once the origin-destination (OD) table is established, it must be further
refined by distributing trips across different modes of transportation. Not
all individuals use the same travel mode to complete their trips. In the
elevator example, some people may choose to take the stairs instead of using
the elevator, depending on factors such as the number of floors they need to
travel or the level of congestion in the elevators.

Tables 5.6a and 5.6b illustrate this division by mode. The total num-
ber of trips remains the same, but they are now allocated to two different
transportation options: stairs and elevators.

0 1 2 3 4
0 0 0 20 0 0 20
1 7 0 0 0 0 7
2 1 0 0 0 0 1
3 0 0 0 0 0 0
4 0 0 0 0 0 0

8 0 20 0 0 28

(a) Trips taken using the stairs

0 1 2 3 4
0 0 0 30 1 0 31
1 3 0 0 0 0 3
2 2 0 0 0 0 2
3 6 0 1 0 0 7
4 7 0 0 1 0 8

18 0 31 2 0 51

(b) Trips taken using the elevator

Table 5.6: Splitting OD trips by transportation mode

The decision to take the stairs or the elevator depends on multiple fac-
tors. One key determinant is the number of floors a person needs to travel.
Shorter trips, particularly those spanning only one or two floors, are more
likely to be completed via stairs, while longer trips are more commonly taken
using the elevator. Another important factor is congestion: if the elevator is
overcrowded or slow, individuals may opt to take the stairs instead.
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Table 5.6a shows that most stair users are traveling to or from lower
floors, as shorter trips are more practical to complete on foot. For instance,
20 trips from the ground floor to floor 2 are taken using the stairs, while
no trips are recorded beyond floor 2. Meanwhile, Table 5.6b includes longer
trips that span multiple floors, such as those from the ground floor to floors
3 and 4.

5.3.1 Route choice

When multiple elevators are available, travelers face an additional level of
decision-making: which elevator to take. This route choice problem arises
because not all elevators provide the same experience. Some people may pre-
fer a specific elevator due to its location, expected waiting time, or perceived
speed, while others may simply take the first elevator that arrives. However,
elevators can also be full, forcing individuals to wait for the next available
option.

This choice process creates a feedback loop between individual decisions
and system-wide conditions. The number of people choosing a particular
elevator influences how crowded it becomes, while the level of crowdedness
in turn affects future choices. If an elevator is consistently overused and
reaches capacity quickly, travelers may start choosing alternative elevators,
shifting the demand distribution across the system.

The concept of equilibrium, as discussed in Section 2.1. As discussed
later, this type of equilibrium is analogous to route choice in transportation
networks. Just as commuters adjust their travel routes based on congestion
levels, elevator users adjust their choices based on real-time conditions. The
equilibrium that emerges depends on several factors, including the frequency
of elevator arrivals, the capacity of each elevator, and individual preferences
regarding waiting time versus comfort.

5.3.2 The four step approach

The concepts introduced in the elevator example — such as production, at-
traction, OD tables, and mode choice — are directly applicable to the analysis
of public transportation systems. In a city like Lausanne, the same funda-
mental principles can be used to understand how people travel across the
network and how transportation demand can be modeled and managed.

A clear analogy can be drawn between floors in a building and stops in
a public transportation network. Just as individuals travel between floors
using elevators or stairs, public transport users travel between bus stops and
metro stations using different modes of transportation. The ground floor in
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the elevator example serves as a central access point, much like train stations
function as key transfer hubs in Lausanne”s transportation system.

The concepts of trip production and trip attraction also remain relevant.
In the case of public transportation, production and attraction zones corre-
spond to different areas of the city where people live and work. Just as indi-
viduals leaving their apartments in the morning generate trips to the ground
floor, residents of suburban areas generate trips to transit stops as they be-
gin their daily commutes. Similarly, attraction zones represent workplaces,
schools, or commercial centers where people are traveling. Trip counts at bus
stops and metro stations serve as real-world equivalents to the production
and attraction data observed in the elevator example.

When constructing an origin-destination (OD) table for a public trans-
port network, we face the same challenges of under-determination and poten-
tial inconsistencies. Without additional data, multiple OD tables can satisfy
the same aggregate production and attraction totals, making it necessary to
use additional observations or behavioral assumptions to infer the most likely
travel patterns. Incompatibilities can also arise when data sources are incom-
plete or inconsistent, requiring adjustments to balance the total number of
trips.

Mode choice in a public transport system mirrors the decision of whether
to take the elevator or the stairs. Some travelers may choose public trans-
portation, while others opt for private cars, cycling, or walking, depending on
factors such as travel time, cost, and convenience. Understanding these mode
choices is essential for transportation planning, as it helps predict how policy
changes or infrastructure investments might influence traveler behavior.

Finally, just as travelers in a building must decide which elevator to
take, public transport users must choose an itinerary from multiple available
routes. This route choice process determines congestion levels on different
transit lines and helps planners anticipate demand for specific services. The
concept of equilibrium, which describes how individuals adjust their decisions
based on system-wide conditions, applies to both cases: when one route be-
comes too crowded, travelers naturally seek alternatives, balancing demand
across the network.

Motivated by this analogy, we now introduce the four-step approach, a
widely used framework for modeling transportation systems. This approach
generalizes the decisions illustrated in the elevator example — trip genera-
tion, trip distribution, mode choice, and route choice — to urban transport
networks.
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5.4 Introduction to the four step model

Before introducing the four-step model, it is important to define the funda-
mental assumptions regarding time and space, as these determine how trips
are categorized and analyzed. These assumptions help simplify the represen-
tation of travel behavior while maintaining a meaningful level of detail for
transportation planning.

Time assumptions specify the interval of interest over which trips are
considered. Rather than analyzing all trips throughout an entire day, the
focus is typically on a specific period that captures critical travel patterns.
A common example is the morning peak hour, during which travel demand is
highest due to commuting to work and school. The analysis includes all trips
that start and end within this time window, ensuring that the most relevant
travel activity is captured.

Space assumptions define the geographical scope of the study. The study
area is partitioned into zones that serve as units of analysis, simplifying travel
behavior representation. These zones are often based on statistical regions
or census units, reflecting meaningful divisions of urban space. Within each
zone, individual travel movements are not explicitly considered; instead, trips
are only modeled when they cross from one zone to another. This aggregation
reduces the complexity of the model while still preserving key travel dynamics
at a regional level.

These time and space definitions provide the foundation for the four-step
approach, ensuring that the model captures travel demand patterns in a way
that is both manageable and useful for transportation planning.

The four-step model breaks down travel behavior into four distinct stages,
each corresponding to a decision that travelers make when planning their
trips. These steps ensure a structured approach to analyzing and forecasting
mobility patterns.

The first step, trip generation, determines the number of trips that will
be made by individuals or households within a given time period. This
step is closely related to activity choices, as trips are made to participate
in activities such as work, school, shopping, or leisure. Additionally, trip
frequency depends on factors like household composition, employment status,
and personal preferences.

The second step, trip distribution, identifies where trips will be made by
assigning each generated trip to a destination. This reflects the traveler’s
choice of activity location. The likelihood of selecting a particular destina-
tion depends on factors such as distance, travel time, accessibility, and the
availability of desired activities at different locations.

The third step, modal split, determines which mode of transportation
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travelers will use for their trips. This step captures the decision-making
process between options such as private cars, public transportation, walking,
or cycling. The choice of transportation mode depends on variables such as
cost, travel time, convenience, and individual preferences.

The fourth and final step, assignment, allocates trips to specific routes
and transportation networks. This step corresponds to the traveler’s route
or itinerary choice, as individuals seek the most efficient or preferred path
to their destination. Route assignment considers factors such as congestion,
transit schedules, road conditions, and travel time reliability.

5.4.1 Trip generation

Figure 5.3 illustrates the concept of trip purposes by depicting a series of trips
undertaken by an individual over a given period (this is the same example as
in Figure 5.2). The horizontal axis represents space, while the vertical axis
represents time. Each segment in the diagram corresponds to a specific trip
between two locations, with labels indicating the purpose of the trip.

Space

Time

H 1
W

W
4

S
S

2
H
H

3
D

D
3

H

Figure 5.3: Trip purposes

The starting and ending points of the trips are marked with different lo-
cations: H (Home), W (Work), S (Shop), and D (Other Destination). The
numbered segments indicate different types of trip purposes. The first trip
(1) is from home to work, representing a home-based work trip. The second
trip (2) is from home to a shopping location, categorized as a home-based
shopping trip. The third trip (3) is from home to another type of destina-
tion, such as a recreational or social activity, labeled as a home-based other

127



trip. The fourth trip (4) is from one non-home location to another, such as
traveling from work to a store, which is classified as a non-home-based trip.

Trip purposes structure daily mobility patterns. Different types of trips
contribute to overall travel behavior. Therefore, different trip production
and trip attraction models are usually defined for each trip purpose.

Trip generation models aim to estimate the number of trips produced and
attracted by different zones in a study area. These models are typically based
on linear regression, where the number of trips is expressed as a function of
explanatory variables.

The trip production model predicts the number of trips originating from
a given zone r, denoted as Or. The dependent variable in this model is
the number of trips leaving the zone. The independent variables capture
characteristics that influence an individual’s need to travel. These include

• individual and household characteristics such as age, income, or family
size,

• mobility tools, such as car ownership or public transport subscriptions,

• characteristics of the home location, such as urban density or housing
type,

• accessibility, characterizing how easily people can reach opportunities
and services, affecting their likelihood of making trips.

The trip attraction model estimates the number of trips arriving at a
given zone r, represented by Dr. The dependent variable in this case is the
number of trips reaching the zone. The independent variables reflect the
factors that make a location attractive for different activities. They include

• land use characteristics, such as the presence of industrial, commercial,
or service areas,

• employment levels, as workplaces generate commuter traffic,

• accessibility, characterizing how easily people can reach the zone.

As an example, the Swiss model (Danalet et al., 2021) incorporates a com-
prehensive set of variables to predict trip production and attraction. The
model considers various aspects of individuals, households, mobility tools,
home location characteristics, and accessibility to provide accurate estima-
tions of travel behavior.

Individual characteristics include the level of education, sex, age, and
nationality, which can influence daily activity choices. Work-related factors

128



such as whether a person does some home office, their function in the com-
pany, work percentage, and business sector also affect travel demand. Ad-
ditionally, studying status and language spoken may impact trip frequency
and destinations.

Household characteristics are equally important, as family composition
shapes mobility behavior. The model considers household structure and the
number of children across different age groups (0-6, 6-15, and 15+). Specific
categories such as couples without children under the age of 30 or between 30
and 49 help refine the understanding of trip production patterns. Household
income is also a key factor, as financial resources influence travel options and
mode choices.

Mobility tools capture the modes available for travel: car availability,
number of cars in the household, ownership of public transport travel cards,
such as the GA card, are included in the model.

Home location characteristics influence trip production by defining the
context in which individuals live. The urban-rural typology categorizes lo-
cations as urban, intermediate, or rural, affecting accessibility and travel
choices. The region of the place of living also plays a role, as different areas
may have varying infrastructure, economic activities, and public transport
services.

Accessibility measures complete the model by assessing how easily indi-
viduals can reach opportunities and services. The quality of public transport
connections at the place of living impacts travel decisions, while the home-
work crow-fly distance provides an estimate of commuting needs.

Before moving to the next step of trip distribution, it is essential to in-
troduce the concept of transportation networks. Indeed, they define how
trips can be made and how travel costs, such as time and distance, vary
between different locations. The structure and performance of the network
directly affect the choices travelers make when selecting destinations, modes
of transport, and routes.
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Chapter 6

Transportation networks

Each mode of transportation operates within a specific network that defines
how trips can be made. These networks consist of interconnected links1 and
nodes that facilitate movement and determine the accessibility of different
locations.

The road network consists of streets, highways, and intersections that en-
able vehicle travel. It is characterized by road hierarchies, traffic regulations,
and congestion levels that influence travel times and route choices. Fig-
ure 6.1 represents the network representation of the city center of Lausanne
as provided by Google Maps.

Figure 6.1: Road network

Public transportation networks in urban areas include bus, tram, and
metro systems. These networks are structured around stops and lines, en-
suring connectivity between residential, commercial, and service areas. Fig-
ure 6.2 represents the public transportation network operated by the main
operator in Lausanne, TL (Transports publics de la région lausannoise).

1In transportation, the terms “link” and “arcs” are synonyms, and are used inter-
changeably throughout this document.
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Figure 6.2: Urban public transportation network

Railway networks support intercity and regional travel, offering high-
capacity, efficient, and sustainable mobility. Stations serve as key nodes,
and rail lines connect cities and economic hubs. Figure 6.3 represents the
network of Inter-City trains operated by the Swiss Railways.

Figure 6.3: Railway network

Waterborne public transportation networks enable travel movement over
water. They provide alternative mobility solutions, such as the ferry services
on the Lake of Geneva, as represented by Figure 6.4.

Airline transportation networks connect cities and countries through air-
ports, facilitating long-distance travel. These networks rely on hub-and-spoke
models, where major airports act as central hubs. Figure 6.5 represents a por-
tion of the network for the flights of Swiss International Air Lines (SWISS),
involving flights from Geneva and Zürich airports.

Maritime freight transportation networks handle the global movement of
goods using shipping routes and container terminals. These networks are
essential for international trade and logistics. Figure 6.6 represents a portion
of the network of maritime shipping routes operated by MSC Mediterranean
Shipping Company.

Pedestrian walkway networks provide infrastructure for walking, ensuring
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Figure 6.4: Maritime transportation network (public transportation on Lake Léman)

Figure 6.5: Airline transportation network

safe and accessible paths in urban and natural environments. They play a key
role in sustainable mobility and active transport. In the context of leisure
activites, Figure 6.7 represents the network of walkways for hiking in the
mountains around Zinal.

Ski slope networks enable winter sports by connecting ski areas with lifts
and designated trails. These networks ensure accessibility to different levels
of difficulty and facilitate movement across resorts. Figure 6.8 represents the
network of ski slopes in the “4 vallées” site.

A transportation network can be mathematically represented as a directed
graph consisting of a set of nodes N and a set of arcs A. Nodes represent
locations, such as intersections, stations, or zones, while arcs define the pos-
sible connections between these locations, representing roads, railway tracks,
or transit lines.

The network topology is characterized by an incidence function ϕ : A →
N×N, which maps an arc to an ordered pair of nodes, indicating its direction.
This function defines which nodes are connected and in which direction travel
is permitted.

Additionally, networks often include quantities defined on nodes and arcs.
Node-related quantities can represent aspects such as demand, capacity, or
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Figure 6.6: Maritime transportation network (routes for ships with container terminals)

Figure 6.7: Pedestrian walkway network

supply at a given location. Arc-related quantities may include travel costs,
distances, or flow values.

Figure 6.9 illustrates this abstract representation. The network consists
of four nodes, labeled o, a, b, and c, with associated values indicating sup-
ply/demand data associated with the nodes. The arcs between the nodes are
oriented, with numerical values representing attributes such as travel cost
or distance. The incidence function determines the connectivity structure,
specifying which nodes are linked and in which direction.

6.1 Road networks

In the specific case of road networks, nodes are usually geo-coded, mean-
ing they are assigned precise geographical coordinates that correspond to
real-world locations. Two main types of nodes exist in this representation.
Centroids, shown in blue in Figure 6.10, are associated with geographical
zones and serve as the interface between demand models and the network
representation. Intersection nodes, represented in orange, correspond to lo-
cations where roads meet, such as intersections, merging points, or areas
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Figure 6.8: Ski slopes network
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Figure 6.9: Mathematical representation of a network

where road capacity changes.
Links represent the connections between nodes and define how movement

occurs within the network. Two types of links exist in the road network
representation. Centroid connectors, shown in orange in Figure 6.1, link
centroids to the network and are used to model access points where trips enter
or exit the system. The other type consists of homogeneous road segments,
which represent sections of road with uniform characteristics such as speed
limits, number of lanes, or capacity.

Modeling intersections in road networks involves a trade-off between level
of detail and computational complexity. Figure 6.11 presents two different
approaches: a simplified model (left) and a detailed model (right).

In the simplified model (Figure 6.11a), the entire intersection is repre-
sented by a single node. This abstraction is computationally efficient and
easy to implement, making it particularly useful for large-scale simulations
where the primary focus is on network-wide traffic flow. However, this rep-
resentation does not distinguish between different movements within the in-
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Figure 6.10: Representation of a road network

(a) Simplified intersection model (b) Detailed intersection model

Figure 6.11: Comparison of simple and detailed intersection models

tersection. As a result, it cannot account for movement-specific restrictions,
such as special traffic light phases, dedicated lanes for turning, or prohib-
ited maneuvers. All vehicles passing through the intersection are treated
uniformly, limiting the model’s ability to reflect realistic traffic conditions.

In contrast, the detailed model (Figure 6.11b) provides a finer representa-
tion of intersection movements by associating each possible maneuver with a
dedicated link. This allows for a much more precise representation of traffic
control and infrastructure constraints. For instance, specific movements can
be blocked, reflecting turn restrictions or road closures. Traffic lights can be
assigned different signal cycles depending on the movement, improving the
accuracy of delay estimations. Moreover, dedicated lanes for certain direc-
tions can be modeled explicitly, allowing for a more realistic simulation of
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traffic behavior at the intersection.
While the detailed model provides a richer and more flexible representa-

tion, it comes at the cost of increased computational complexity. The number
of nodes and links in the network grows significantly, requiring more memory
and processing power. This makes it less suitable for large-scale applications
but ideal for studies focusing on localized traffic operations or traffic signal
optimization.

We illustrate another example in the context of modeling highways. One
key consideration is whether variations in road capacity should be explicitly
represented in the model. Figure 6.1 illustrates a highway section where the
number of lanes changes: it starts with three lanes, narrows to two lanes in
the middle, and then expands back to three lanes.

Table 6.1: Highway segment with capacity changes

If the entire stretch of highway is represented as a single link in the net-
work model, it would not be possible to differentiate between sections with
different capacities. This simplification may be sufficient for certain macro-
scopic analyses, but it can lead to inaccuracies when modeling congestion,
lane restrictions, or capacity reductions.

To account for these variations in capacity, it is necessary to insert nodes
at points where the number of lanes changes. In the example shown in
Figure 6.1, two additional nodes are introduced where the transition occurs.
As a result, the highway segment is now represented by three distinct links,
each associated with a specific capacity.

This approach increases the model’s accuracy but also introduces addi-
tional complexity. More nodes and links mean a larger network, which can
impact computation time and memory usage, especially in large-scale simula-
tions. The choice between a simplified and a detailed representation depends
here as well on the requirements of the analysis. If congestion effects or traffic
flow variations due to capacity changes are important, a more detailed rep-
resentation is necessary. On the other hand, if the study focuses on broader
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travel patterns where local bottlenecks are less relevant, a simpler approach
may be sufficient.

Road networks associate relevant data with both nodes and links. The
primary data associated with nodes include:

• In-flow : The number of vehicles entering the network at a given node
over a specific period.

• Out-flow : The number of vehicles leaving the network from a node.

These values help define travel demand and traffic generation patterns within
a network. They are typically derived from travel demand models, real-world
traffic counts, or simulations. The most important data associated with links
include:

• Flow and capacity (measured in vehicles per minute), which indicate
how much traffic the link currently carries compared to its maximum
potential.

• Travel time and free-flow travel time (measured in minutes), capturing
both the actual travel conditions and the ideal conditions when there
is no congestion.

• Travel cost and toll (in CHF or €), representing monetary costs asso-
ciated with using a specific road segment.

• Density and jam density (measured in vehicles per kilometer), which
quantify how closely vehicles are spaced on the link and the level of
congestion.

Another quantity associated with the link is a link performance function.
A link performance function maps the traffic flow to the corresponding travel
time. There are two main types. One without an upper limit, which is
defined for all values of the traffic flow. This is convenient in algorithmic
applications, where evaluations may occur at unknown levels of demand.
One with an upper limit, which is more realistic since roads have a physical
capacity. However, it is not defined for flows beyond this capacity.

A commonly used function without an upper limit is the Bureau of Public
Roads (BPR) (Bureau of Public Roads, 1964), given by:

t(x) = t0

(
1+ α

(x
ℓ

)β)
(6.1)

where t0 is the free-flow travel time, x is the traffic flow, ℓ is the reference
capacity, and α,β are calibration parameters. The advantage of this function
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is its smoothness and differentiability, which make it useful in equilibrium
traffic assignment problems.

In contrast, a function with an upper limit accounts for the physical con-
straints of the road. A simple example is Davidson’s function (Davidson,
1966, Akçelik, 1991):

t(x) = t0

(
1+ α

(
x

ℓ− x

))
(6.2)

where travel time approaches infinity as flow nears capacity (x → ℓ). This
formulation reflects congestion effects more realistically and is used in dy-
namic traffic models.

0 1,000 2,000 3,000 4,000
0

10

20

30

40

Traffic flow (veh/h)

T
ra
ve
l
ti
m
e
(m

in
u
te
s)

(a) Link performance function without an up-
per limit

0 1,000 2,000 3,000 4,000
0

10

20

30

40

Traffic flow (veh/h)

T
ra
ve
l
ti
m
e
(m

in
u
te
s)

(b) Link performance function with an upper
limit

Figure 6.12: Comparison of link performance functions

6.2 Public transportation networks

A public transportation network can also be represented as a network, where
nodes and links capture key elements of the system. Nodes in the network
are geo-coded and can be classified into two main types:

Centroids (in blue in Figure 6.13): These are associated with geographical
zones and serve as origins and destinations for demand.

Stations or stops (in orange in Figure 6.13): These are locations where
passengers board, alight, or transfer between services.

Links in the network represent movements between nodes and can take
different forms:
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Line segments These correspond to segments of a transit route where ve-
hicles travel between stops.

Walking links (W in Figure 6.13): These represent pedestrian movement
between locations.

Transfer links (T in Figure 6.13): These capture the movement required
to switch from one transit line to another.

a

1 2 3 4 5

6

7

8

9
W

W

T

Figure 6.13: Representation of a public transportation network

Each component of the network carries data for operations and planning:

Nodes The key attribute is demand, measured as in-flow (arrivals) and
out-flow (departures).

Links The following attributes are relevant:

Frequency (vehicles per hour) and headway (minutes between con-
secutive departures).

Travel time (minutes) between stops.

Walking time (minutes) for pedestrian links.

Waiting time (minutes) at stations.

Transfer time (minutes) when switching between lines.

Capacity representing the number of available seats per vehicle.

The above representation of a public transportation network captures the
spatial structure of the system but does not explicitly consider the schedule,
or timetable, of public transport services. In reality, public transportation
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operates according to a predefined schedule, meaning that transit services are
not only defined in terms of locations but also in terms of their departure and
arrival times. To account for this, a scheduled public transportation network
must be introduced.

In a scheduled representation, nodes and links are extended into the time
dimension. The network structure consists of:

Nodes These now represent both space and time, rather than just locations.
Each stop is replicated at different time instances to account for sched-
uled departures and arrivals. In addition to centroids and stations, the
nodes are linked to a timetable that determines when a vehicle departs
or arrives at a stop.

Links Similar to the previous representation, but now incorporating depar-
ture time choices. These links define not only movement between loca-
tions but also movement across time. A link connects a departure event
at a stop to the arrival event at the next stop at a specific scheduled
time.

This concept is illustrated in Figure 6.14, where:

The x-axis represents time. Each vertical dotted line corresponds to a spe-
cific time instant, such as 14:20, 14:30, etc.

The y-axis represents space. Each horizontal dotted line corresponds to a
specific location, such as different stations along a transit route.

In this diagram, the orange and green paths correspond to different sched-
uled transit services. Each dot represents a specific transit event (e.g., a bus
arriving or departing from a station at a given time). The arrows indicate the
movement of transit vehicles, following the scheduled departures and arrivals
at each stop.

The data structure of a scheduled public transportation network extends
the attributes of the basic representation:

Nodes Capture demand as in-flow and out-flow, but now at specific time
points.

Links Contain additional attributes that define transit operations:

Travel time (min) between stops at specific scheduled intervals.

Walking time (min) for pedestrian transfers between scheduled ser-
vices.
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Figure 6.14: Scheduled public transportation network: time on the x-axis, space on
the y-axis

Waiting time (min) at stations, determined by the schedule.

Transfer time (min) between scheduled services.

Capacity (number of seats) for each scheduled departure.

6.3 Pedestrian networks

Representing pedestrian traffic mathematically poses significant challenges
due to the unique characteristics of pedestrian movement. Unlike vehicular
traffic, where roads and lanes provide a well-defined network, pedestrian
mobility is more flexible and less constrained by infrastructure.

One key challenge is the level of granularity. Pedestrian trips often follow
a door-to-door pattern, meaning that every possible origin and destination
must be accounted for. Unlike transit or road networks with predefined stops
and links, pedestrian movements occur on a highly detailed and dynamic
scale, making it difficult to discretize the network efficiently.

Another difficulty arises from the absence of a physical network. While
vehicles follow lanes and predefined paths, pedestrians can move freely across
open spaces, sidewalks, plazas, and even cut through buildings or parks. Tra-
ditional graph-based models struggle to capture this flexibility, as the network
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structure is not explicitly defined in the same way as for other transportation
modes.

Additionally, pedestrian traffic is strongly influenced by interactions with
other modes. Walking is often a feeding mode, meaning that pedestrians
interact closely with public transportation, cycling, and even road traffic.
This intermodal dependency complicates mathematical modeling, as walking
trips are not always independent but are instead integrated into broader
multimodal travel patterns.

6.4 Multi-modal networks

Transportation networks can be integrated to form a multi-modal network,
where different modes of transportation are combined into a single system.
This integration allows travelers to move seamlessly between modes, enhanc-
ing connectivity and efficiency.

A major challenge in constructing a multi-modal network is the superposi-
tion of networks for each mode. Each transportation mode has its own struc-
ture: roads for cars, tracks for trains, air routes for planes, and pedestrian
pathways. These networks must be accurately represented while maintaining
a coherent structure that allows for efficient transfers between modes.

Another complexity is modeling all possible transfers. Travelers often
switch between modes at various locations such as park-and-ride facilities,
train stations, bus terminals, airports, and ferry docks. These transfer points
must be explicitly incorporated into the network, ensuring that passengers
can navigate from one mode to another with minimal friction. The timing of
transfers, waiting times, and synchronization of schedules further complicate
the representation.

To address these challenges, multi-modal transportation models use lay-
ered network structures, where each mode is represented as a separate layer,
and transfer links connect corresponding nodes across layers. This enables
efficient modeling of intermodal journeys, optimizing route selection while
accounting for transfer times, accessibility, and capacity constraints.

6.5 Paths

A path in a network is a sequence of links that connects an origin to a
destination, ensuring a continuous and valid movement through the network.
Paths represent possible routes that travelers or flows can take within the
network.
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Figure 6.15 illustrates an example of a transportation network, where
nodes represent locations, and directed links indicate possible movements
between them.

a

b

c

1 2 3

4

5

Figure 6.15: Example of a transportation network

The paths in this network, which represent possible routes between origins
and destinations, are listed in Table 6.2.

Path description
a → 1 → 2 → 3 → b

a → 1 → 2 → 5 → c

b → 3 → 2 → 5 → a

b → 3 → 2 → 1 → a

b → 4 → 2 → 5 → a

b → 4 → 2 → 1 → a

b → 3 → 2 → 5 → c

b → 4 → 2 → 5 → c

Table 6.2: List of paths in the network

To mathematically represent the relationship between paths and links, we
use a link-path incidence matrix, shown in Table 6.3. This matrix has rows
corresponding to network links and columns corresponding to paths. Each
entry is 1 if the link is used in the corresponding path and 0 otherwise.

The performance of a path in a transportation network can be expressed
in various units, depending on the criterion used to evaluate travel quality.
These units include travel time, distance, travel cost, and generalized costs,
each providing different insights into the efficiency of a given route.

A fundamental requirement for path performance measures is that they
must be link additive. This means that the total performance of a path
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1 2 3 4 5 6 7 8
(a, 1) 1 1 0 0 0 0 0 0
(b, 3) 0 0 1 1 0 0 1 0
(b, 4) 0 0 0 0 1 1 0 1
(1,a) 0 0 0 1 0 1 0 0
(1, 2) 1 1 0 0 0 0 0 0
(2, 1) 0 0 0 1 0 1 0 0
(2, 3) 1 0 0 0 0 0 0 0
(2, 5) 0 1 1 0 1 0 1 1
(3,b) 1 0 0 0 0 0 0 0
(3, 2) 0 0 1 1 0 0 1 0
(4, 2) 0 0 0 0 1 1 0 1
(5,a) 0 0 1 0 1 0 0 0
(5, c) 0 1 0 0 0 0 1 1

Table 6.3: Link-path incidence matrix

must be obtained by summing up the performance values of each link that
composes the path. Mathematically, if P is the link-path incidence matrix,
if tℓ is the performance of link ℓ, then the total performance of a path p is
given by:

cp =
∑
ℓ

Pℓptℓ. (6.3)

This property ensures that the overall path performance is well-defined
and can be consistently evaluated by decomposing the path into its con-
stituent links.

Several performance measures satisfy the link additivity property:

Travel time The total travel time of a path is simply the sum of the travel
times of each link along the path.

Distance The total distance traveled along a path is the sum of the distances
of the links.

Travel cost If each link has an associated monetary cost, the total cost of
the path is the sum of individual link costs.

Generalized costs This combines multiple factors such as travel time, dis-
tance, and monetary cost into a single performance metric, and remains
additive over links.

However, some measures are not link additive and cannot be used directly
to evaluate path performance:
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Speed Speed is not additive because the average speed of a path is not the
sum of the speeds of its links. Instead, it depends on the total travel
time and distance.

Flow Flow represents the number of users or vehicles on a link, but the flow
of a path is not simply the sum of link flows. Instead, it depends on
network-wide equilibrium and routing constraints.

6.6 Summary

Networks play a fundamental role in modeling and analyzing transportation
systems. They represent the transportation supply, providing the infrastruc-
ture through which travelers (and goods) move. A transportation network
also serves as the interface with the demand, connecting users with the avail-
able travel options and enabling the study of congestion, route choices, and
accessibility.

A transportation network is structured using network models, which con-
sist of nodes and links. Nodes represent specific locations such as intersec-
tions, stations, or bus stops, while links define the connections between these
locations, corresponding to roads, railway lines, or air routes. The model is
further enriched with data associated with these components, including travel
times, distances, capacities, and costs, allowing for a quantitative analysis of
network performance.

One of the key challenges in transportation network modeling is com-
plexity. The level of detail must be consistent with the needs of the analysis.
A model that is too simple may fail to capture essential dynamics and pro-
vide misleading results, making it useless for decision-making. Conversely, a
model that is too complex may include excessive details, leading to compu-
tational intractability and impractical solutions. Striking the right balance
between simplicity and accuracy is important to ensuring that the model
remains both useful and computationally feasible.

145



Chapter 7

Travel demand: the four step
model

In this chapter, we continue our investigation of the four-step model, a fun-
damental approach in trip-based transportation modeling. It consists of four
sequential stages: trip generation, trip distribution, modal split, and assign-
ment. The first step, trip generation, has already been detailed in Chapter
5. This stage estimates the number of trips produced and attracted by each
zone based on various explanatory variables, typically using linear regression
models. At this point, we have access to the key data necessary for further
steps.

Specifically, we have information on trip production and trip attraction.
The number of trips originating from each zone, denoted as Or, and the
number of trips destined for each zone, denoted as Dr, have been deter-
mined. These quantities are treated as random variables, as they result from
statistical models.

Additionally, we have access to transportation networks. As described in
Chapter 6, there is a separate network for each mode of transport, capturing
network performance and associated costs. The cost of traveling between an
origin r and a destination s by mode i is represented as cirs. These costs
are assumed to be deterministic. To facilitate comparisons across modes, we
define a generalized cost crs = mini c

i
rs, which represents the lowest travel

cost among all available modes for a given origin-destination pair.
With this information in hand — trip production, trip attraction, and

transportation networks — we are now ready to proceed to the next stages
of the four-step model: trip distribution, described in Section 7.1, and modal
split, described in Section 7.2. The last step is covered in Chapter 8.
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7.1 Trip distribution

The objective of the trip distribution step is to determine how many trips
occur between each origin-destination (OD) pair. This results in the con-
struction of an origin-destination table, which specifies the expected number
of trips, denoted as frs, between each origin r and destination s. Ideally, the
total number of trips produced in each zone should match the expected pro-
ductions, and the total number of trips attracted to each zone should match
the expected attractions.

There are two important challenges associated with trip distribution. The
first is the issue of incompatibility, which arises when the total number of ex-
pected trip productions does not equal the total number of expected trip
attractions. This inconsistency prevents the direct balancing of flows across
the network. To address this, one possible approach is to represent trip
productions and attractions using random variables, allowing for a proba-
bilistic formulation that accounts for uncertainty. Another strategy is to
relax the strict equality constraints and instead ensure that the expected
sum of distributed trips is approximately equal to the expected productions
and attractions.

A second major issue is under-determination, meaning that there are in-
finitely many possible solutions that satisfy the production and attraction
constraints. In other words, without additional information, multiple differ-
ent OD tables could be generated, making it difficult to determine a unique
and reasonable solution. To overcome this problem, two strategies can be
employed. The first is to incorporate more data, such as historical trip ob-
servations or survey data, to refine the estimates. The second is to introduce
additional assumptions which can help guide the model toward a more real-
istic solution.

We now explore various methods to address these challenges, ensuring
that the trip distribution model produces accurate and meaningful results.

7.1.1 Data collection: surveys

Several types of data sources can provide valuable insights into travel pat-
terns. Surveys are a direct method of collecting travel information from
individuals. Roadside interviews, for instance, involve stopping vehicles at
specific locations to ask drivers about their trips, including their origin, des-
tination, and purpose. Another approach is license plate mail-out surveys,
where license plate numbers are recorded at checkpoints, and drivers are later
contacted to provide details about their trips. More modern techniques in-
clude the use of GPS data, which can track vehicle movements and provide
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highly detailed origin-destination information over time.
Figure 7.1 illustrates a strategy for screening vehicles in order to collect

travel data. The map represents the Canton of Vaud, with an orange line
dividing the region into two parts: a northern and a southern section. Every
vehicle, or a sample of them, that crosses this line is subject to an interview
where drivers are asked to report the origin and destination of their trips.

This approach enables the systematic collection of information about
travel flows across the region. By focusing on a specific screening line, it
is possible to gather data on major travel patterns without requiring exhaus-
tive surveys throughout the entire network. The collected data can then be
used to infer origin-destination flows, helping to construct more accurate trip
distribution models.

North

South

Figure 7.1: Example of a screening strategy

Once data is collected through such a screening strategy, it provides valu-
able informarion into the movement of vehicles across different regions. The
type of data obtained from a screening survey is illustrated in Figure 7.2.

The collected data provides information on the number of vehicles travel-
ing from the north to the south and vice versa. The survey is most effective
for capturing trips that cross the screening line. However, it provides less
information about trips that begin and end within the same region (e.g., en-
tirely in the north or entirely in the south). Therefore, the screening strategy
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Data

Data Few data

Few data

Figure 7.2: Data collected from a screening survey

must be designed consistently with the data needs.
An alternative screening strategy is illustrated in Figure 7.3. In this

approach, specific cities — Lausanne, Yverdon-les-Bains, Vevey, and Nyon
— are encircled by a screen line to capture all trips that either originate from
or arrive at these strategic locations in the canton. In addition to the primary
screen line capturing north-south traffic, two additional lines are introduced:
one capturing traffic between the west and the center, and another capturing
traffic between the east and the center.

This multi-line screening strategy provides a more comprehensive dataset,
ensuring that not only inter-regional movements but also cross-directional
travel patterns are captured effectively.

Roadside interviews come with several challenges that must be carefully
considered. One major issue is the sampling rate. Conducting roadside in-
terviews is an expensive process, as it requires personnel, equipment, and
logistical coordination. Given a fixed budget, the number of interviews that
can be conducted is limited. For instance, if resources allow for 1000 in-
terviews, all of these could be collected at a single screen line, providing a
relatively dense dataset for that particular location. However, if the same
budget is distributed across seven different screen lines, the number of inter-
views per location drops significantly to just 143 per line. This reduction in
sample size per screen line can make it more difficult to obtain statistically
reliable data for each individual crossing point.

Another challenge concerns logistics. Roadside interviews often require
stopping vehicles, which can disrupt traffic flow and may necessitate police
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Figure 7.3: Alternative screening strategy focusing on key cities and additional traffic
corridors

intervention to ensure safety. This can make the data collection process
complex and time-consuming. In the case of public transportation, in-vehicle
interviews are sometimes conducted instead. While this approach avoids
interrupting traffic, it presents its own set of difficulties, such as coordinating
with transit operators and ensuring that interviewers can effectively engage
with passengers during their journeys.

Finally, roadside interviews introduce potential biases in the collected
data. In-vehicle interviews, for example, are more likely to capture travelers
making long-distance trips, since these individuals remain in the vehicle for
extended periods and are thus more likely to be available for questioning.
Additionally, some travelers may cross multiple screen lines, which can lead
to overrepresentation of certain trip patterns in the dataset. This can distort
the overall picture of mobility patterns and requires careful handling when
interpreting the results.

To illustrate the previous discussion, we consider a simple example of
a building with an elevator. The goal is to construct the OD table that
describes the movement of individuals between floors. For the sake of this
example, we assume that we have access to the true OD table, which provides
the exact number of trips occurring between each pair of floors on a given
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day. This table is presented in Table 7.1.

0 1 2 3 4
0 0.0 500.0 10.0 0.0 510.0
1 100.0 0.0 0.0 0.0 100.0
2 30.0 0.0 0.0 0.0 30.0
3 60.0 0.0 10.0 0.0 70.0
4 70.0 0.0 0.0 10.0 80.0

260.0 0.0 510.0 20.0 0.0

Table 7.1: True origin-destination table for the elevator example.

This table provides a complete description of the trips occurring in the
building. Each row represents an origin floor, and each column represents a
destination floor. The values in the table indicate the number of trips from
one floor to another. For example, the value 500 in row 0 and column 2 means
that 500 trips originate from floor 0 and have floor 2 as their destination.
The last column in the table represents the total number of trips originating
from each floor, while the last row shows the total number of trips arriving
at each floor.

In practice, however, we rarely have direct access to such a detailed OD
table. Instead, we often rely on aggregated data from the trip generation
step, which provides information on the number of trips produced by and
attracted to each floor. For each origin,

Floor Or Dr

0 515.5 248.8
1 98.9 0.0
2 16.4 506.4
3 51.3 9.6
4 96.2 0.0

Total 778.3 764.8

Table 7.2: Total trips originating from and arriving at each floor.

In Table 7.2, the column Or represents the total number of trips that
originate from each floor, while the column Dr represents the total number
of trips arriving at each floor. The last row provides the sum of all originating
and arriving trips.
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It is important to remember that the values in this table do not cor-
respond to direct measurements but rather to the output of a model. As
such, they contain errors that must be accounted for when using them to
estimate the full OD matrix. A key observation is that the total number
of trips generated (778.3) does not exactly match the total number of trips
attracted (764.8). This discrepancy highlights a common issue in real-world
data collection, where inconsistencies arise due to estimation errors, missing
data, or variations in model assumptions.

In order to illustrate the concept of road-side interviews, assume now that
we conduct interviews on the ground floor. Individuals entering the building
are asked about their destination, while those exiting are asked about their
origin.

0 1 2 3 4
0 0.0 501.9 9.6 0.0
1 100.7
2 29.7
3 59.5
4 70.9

Table 7.3: Data collected from interviews at the ground floor.

Table 7.3 captures partial origin-destination information based on those
direct surveys conducted at the entrance and exit of the building. The row
indices represent the origin floors of individuals exiting the building, while
the column indices correspond to the destination floors of those entering.

The empty cells correspond to the absence of data. Indeed, while this
dataset provides useful insights into elevator usage, it remains incomplete.
It does not account for trips occurring entirely between upper floors. More-
over, it may contain biases due to sampling limitations. It can be seen by
comparing the values with the “true” values in Table 7.1.

To estimate the entries of the OD table, the first idea that comes to
mind is to formulate the problem as a linear regression model. Since we
treat the number of trips generated Or, the number of trips attracted Dr,
and the partially observed flows f̂rs as random variables, we define a least-
squares estimation approach to determine the most likely values of frs. The
objective function to minimize is given by:

min
f

∑
r

(
Or −

∑
s

frs

)2

+
∑
s

(
Ds −

∑
r

frs

)2

+
∑
rs

(
f̂rs − frs

)2
.
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Each term in this equation plays a specific role in ensuring that the esti-
mated OD table remains consistent with the available data:

• The first term,
∑

r (Or −
∑

s frs)
2, ensures that the estimated number

of trips originating from each floor aligns as closely as possible with
the observed trip generation values Or. Since the estimated flows frs
must sum to the total number of trips generated from each floor r, any
deviation is penalized in the objective function.

• The second term,
∑

s (Ds −
∑

r frs)
2, enforces a similar constraint on

trip attractions. It ensures that the total number of trips arriving at
each floor s matches the observed trip attraction values Ds as closely as
possible. Again, discrepancies are penalized to encourage consistency.

• The third term,
∑

rs

(
f̂rs − frs

)2
, incorporates the partially observed

flows obtained from survey data. Since these measurements are subject
to errors and sampling limitations, the estimation process does not
enforce strict equality but instead minimizes the deviation between the
estimated values and the observed samples f̂rs.

When we solve the least-squares problem, we obtain the estimated origin-
destination table shown in Table 7.4. Ideally, this solution should provide a
reasonable approximation of the true OD flows based on the available data.
However, the results reveal several issues that must be addressed.

0 1 2 3 4
0 -18.0 483.9 -8.4 -18.0 439.4
1 55.8 -154.1 -76.2 197.0 22.5
2 -15.2 36.3 39.3 -120.4 -60.0
3 14.6 74.3 -141.5 27.5 -25.1
4 26.0 -16.1 -111.9 121.8 19.8

81.3 76.4 76.4 76.4 86.0 396.5

Table 7.4: Estimated OD table obtained from the least-squares solution.

One aspect of the solution that is not problematic is the fact that the
estimated values are not integers. While it might seem intuitive to expect
integer values since trips are made by individual people, an OD table does not
represent the count of individual travelers. Instead, it describes flows, which
correspond to the number of persons traveling per unit of time (e.g., per hour
or per day). These flow values are continuous and are typically represented
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by real numbers. As such, obtaining non-integer values is expected and does
not indicate an issue with the model itself.

However, the most problematic aspect of the solution is the presence
of negative entries. In an OD table, each entry represents a number of trips
between an origin and a destination, which must necessarily be non-negative.
However, the results show several negative values, such as -18.0 trips from
floor 0 to floor 1 and -154.1 trips from floor 1 to floor 2. These values are
clearly nonsensical in a real-world setting, as the number of trips cannot be
negative.

The issue of negative entries arises because the least-squares approach
does not inherently enforce non-negativity constraints. The model attempts
to minimize discrepancies between the estimated flows and the available data,
but in doing so, it allows for solutions that may not be meaningful in the
context of human mobility. This is a fundamental limitation of using an
unconstrained least-squares formulation for OD estimation.

This issue can be understood in the context of maximum likelihood es-
timation. Indeed, the least-squares estimator is the maximum likelihood
estimator (MLE) for a linear regression model under the assumption of nor-
mally distributed errors (see Section 4.3.2). This assumption plays a key role
in explaining why negative values can arise.

Indeed, a fundamental property of the normal distribution is that it has
infinite support, meaning that any value, including negative ones, has a
nonzero probability of occurring. When the true value of a parameter is
close to zero, the likelihood of obtaining a negative estimate becomes signif-
icant due to the spread of the normal distribution.

To illustrate this phenomenon, consider the probability density functions
in Figures 7.4 and 7.5, which show two different normal distributions centered
at different values.

In Figure 7.4, the normal distribution has a mean of 0.2 with a standard
deviation of 0.3. Because the mean is close to zero, a substantial portion of
the probability mass falls into the negative region, leading to a high proba-
bility of obtaining negative estimates.

In contrast, Figure 7.5 shows a normal distribution with a mean of 1 and
the same standard deviation of 0.3. In this case, most of the probability mass
remains in the positive domain, meaning that negative estimates are much
less likely to occur.

The same reasoning applies to the estimated OD flows. If the true value
of a flow is small, the normal variation around that value makes it likely that
some estimates will be negative. Since the least-squares approach does not
impose constraints on the sign of the estimates, the method freely assigns
negative values when the optimization process dictates it. This explains
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Figure 7.4: Probability density function of a normal distribution with mean close to
zero. A significant portion of the distribution lies in the negative region.

why some of the estimated OD flows in our table are negative, even though
negative trip counts are not meaningful in reality.

A natural way to address the issue of negative values in the estimated
OD table is to enforce a strict non-negativity constraint. One way to achieve
this is to reparameterize the OD flows using an exponential transformation.
Instead of estimating frs directly, we define:

frs = exp(τrs), τrs ∈ R.

This transformation ensures that the estimated flow values frs are always
positive, regardless of the values taken by the underlying parameters τrs.
Since the exponential function only produces positive outputs, this approach
inherently avoids the problem of negative estimates that arise in the standard
least-squares formulation.

In this new formulation, the regression is performed on the transformed
variable τrs instead of frs. Because least-squares estimation corresponds to
maximum likelihood estimation under the assumption of normally distributed
errors, the estimated values of τrs remain normally distributed:

τ̂rs ∼ N(µrs,σ
2
rs).

Since frs is defined as the exponential of τrs, the estimated values of frs
follow a log-normal distribution instead of a normal distribution. This is
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Figure 7.5: Probability density function of a normal distribution with mean far from
zero. The probability of negative values is much lower.

an important distinction because log-normal distributions are strictly posi-
tive, which aligns naturally with the requirement that OD flows cannot be
negative.

This approach offers a key advantage: it allows us to maintain the princi-
ples of maximum likelihood estimation while ensuring that all estimated flows
remain non-negative. However, the main drawback is that the introduction
of an exponential function makes the model nonlinear. As a result, solving
the estimation problem requires nonlinear optimization techniques, which are
computationally more complex than standard linear regression. Despite this
added complexity, the use of a log-normal model provides a more robust and
theoretically sound framework for estimating OD flows while addressing the
fundamental issue of negative values.

Using this reformulation, we define the nonlinear least-squares problem
as:

min
τ

∑
r

(
Or −

∑
s

eτrs

)2

+
∑
s

(
Ds −

∑
r

eτrs

)2

+
∑
rs

(
f̄rs − eτrs

)2
.

Similary to the previous specification, each term in this objective function
ensures consistency between the estimated flows and the available data:

• The first term,
∑

r (Or −
∑

s e
τrs)2, enforces that the total number of
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trips originating from each floor matches the observed trip generation
values Or as closely as possible.

• The second term,
∑

s (Ds −
∑

r e
τrs)2, ensures that the total number

of trips arriving at each floor remains consistent with the observed trip
attraction values Ds.

• The third term,
∑

rs

(
f̄rs − eτrs

)2
, incorporates prior information from

observed partial flows, minimizing the deviation between the estimated
and observed values.

By solving this nonlinear optimization problem, we obtain the estimated
OD table shown in Table 7.5.

0 1 2 3 4
0 57.2 252.1 65.0 65.0 439.2
1 44.1 0.0 0.0 0.0 44.1
2 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
4 26.2 6.4 0.0 0.0 32.6

70.2 63.6 252.1 65.0 65.0 515.9

Table 7.5: Estimated OD table using the nonlinear least-squares approach.

By construction, all values in Table 7.5 are non-negative, addressing the
primary issue encountered in the standard least-squares formulation.

When comparing Table 7.5 with the true OD table in Table 7.1, it be-
comes evident that the estimated values remain far from the actual ones.
This discrepancy is particularly noticeable for the entries corresponding to
the ground floor. This is surprising, given that we have invested additional
resources in collecting survey data specifically for this floor, as shown in
Table 7.3.

One key issue is that the current estimation method treats all data sources
equally. However, the production-attraction data (Or and Dr) are not di-
rectly observed values but rather outputs of a model from the first phase of
the estimation process. In contrast, the survey data f̄rs consists of direct ob-
servations, providing valuable disaggregate information about trips between
specific origins and destinations. This disaggregate nature is important, and
we do not want to distort it by treating these data points the same way as
the aggregated production-attraction data.

To address this issue, we introduce weighted least squares, in which dif-
ferent components of the objective function are assigned different weights
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according to their reliability and importance. The new optimization prob-
lem is formulated as:

min
τ

w2
o

∑
r

(
Or −

∑
s

eτrs

)2

+w2
d

∑
s

(
Ds −

∑
r

eτrs

)2

+w2
f

∑
rs

(
f̄rs − eτrs

)2
.

Here, wo, wd, and wf are weights that determine the relative impor-
tance of the trip generation, trip attraction, and survey data, respectively.
By setting wf to a larger value, we put greater emphasis on ensuring that
the estimated OD table remains close to the directly observed survey data,
reducing discrepancies for the ground floor.

The results obtained using wo = wd = 1 and wf = 100 are presented in
Table 7.6.

0 1 2 3 4
0 0.0 500.8 9.6 0.0 510.4
1 100.2 0.0 0.0 4.1 104.3
2 29.2 0.0 0.0 0.0 29.2
3 58.9 0.0 0.0 0.2 59.1
4 70.3 11.8 0.0 2.3 84.4

258.6 11.8 500.8 11.9 4.3 787.4

Table 7.6: Estimated OD table using weighted least squares with increased emphasis
on survey data.

By increasing the weight of the survey data, the estimated values now
align much more closely with the true OD table. The discrepancies for the
ground floor have been significantly reduced, ensuring that the additional
information obtained from interviews is effectively incorporated into the es-
timation process. This highlights the importance of assigning appropriate
weights to different data sources in order to maximize the accuracy and re-
liability of the OD estimation.

To formalize the modeling assumptions, we introduce the sets, data, and
regression equations that underpin the estimation process.

The model considers a set of centroids, indexed by r = 1, . . . ,N, which
represent distinct locations within the study area. Additionally, we define
survey zones, indexed by p = 1, . . . ,P, where direct survey data is available.
Each survey zone p consists of a subset of centroids, denoted as Sp.

The data used in the model consists of three key components:
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• Production data (Or), representing the total number of trips originating
from each centroid r.

• Attraction data (Ds), representing the total number of trips arriving
at each centroid s.

• Survey data (f̄rs), which provides direct observations of flows between
centroids belonging to a survey zone (r ∈ Sp) and centroids outside the
survey zone (s /∈ Sp).

To estimate the unknown OD flows, we define a system of regression
equations:

Or =

N∑
s=1

eτrs + σoε
o
r ,

Ds =

N∑
r=1

eτrs + σdε
d
s ,

ln f̄rs = τrs + σrsεrs.

These equations describe the relationship between observed data and the
underlying travel flows. The first equation ensures that the estimated flows
are consistent with the observed trip production values, while the second
equation enforces consistency with the trip attraction data. The third equa-
tion models the survey data in a way that preserves its disaggregate nature.

However, an important issue arises: the variance of the error terms σo,
σd, and σrs is not the same across all observations. This violates the fun-
damental assumption of ordinary least squares regression, which assumes
homoscedastic1 errors. As a result, we must account for differences in data
reliability by introducing weights into the estimation process.

Weighted least squares addresses this issue by assigning a weight to each
observation, ensuring that more reliable data has a stronger influence on
the final estimates. Specifically, we introduce different weights for each data
type:

• wo for trip production data.

• wd for trip attraction data.

• wf for survey data.

1It is a complicated way to say that they have the same variance.
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The weights must be defined beforehand and should reflect the precision
of the data. More precise observations receive larger weights, effectively
reducing their variance in the regression model. Typically, the survey data
is assigned a much higher weight than the production and attraction data
(wf ⩾ wo ≈ wd) since it represents direct observations rather than modeled
outputs.

The weighted least squares optimization problem is then formulated as:

min
τ

w2
o

∑
r

(
Or −

∑
s

eτrs

)2

+w2
d

∑
s

(
Ds −

∑
r

eτrs

)2

+w2
f

∑
rs

(
f̄rs − eτrs

)2
.

By incorporating these weights, we account for variations in data reliabil-
ity and improve the accuracy of the OD table estimation. The corresponding
regression equations are adjusted as follows:

Or =

N∑
s=1

eτrs +
σ

wo

εor ,

Ds =

N∑
r=1

eτrs +
σ

wd

εds ,

f̄rs = eτrs +
σ

wf

εrs.

Larger weights correspond to smaller variances, meaning that observa-
tions with higher reliability contribute more to the final solution. This
methodology ensures that the estimation process effectively balances the dif-
ferent sources of information while maintaining statistical rigor.

7.1.2 Data collection: traffic counts

Another important data source is traffic counts, which provide indirect in-
formation about travel flows. These can be obtained using loop detectors,
which are embedded in road surfaces to count passing vehicles. Similarly,
pneumatic road tubes are temporary installations that record vehicle counts
based on air pressure changes when vehicles pass over them. Magnetic sen-
sors are another option, detecting vehicles through changes in the magnetic
field.

The measured flow on a given link ℓ is denoted as x̄ℓ, and while this data
is available for some links, it does not provide a direct observation of the
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complete OD flows. Instead, it reflects aggregated traffic volumes resulting
from multiple OD pairs using the same link.

To integrate traffic count data into OD estimation, we rely on the assign-
ment matrix, a fundamental tool that describes how OD flows translate into
link flows. This matrix, denoted as Q, encodes the relationship between the
number of trips between each OD pair and the resulting traffic on network
links.

The assignment matrix has the following properties:

• It transforms OD flows into link flows, capturing the distribution of
traffic across the network.

• It consists of a number of rows equal to the number of links in the
network and a number of columns equal to the number of OD pairs.

• It is only available after the assignment phase, during which trips are
routed through the network according to a traffic assignment model
(see Chapter 8).

The mathematical relationship between OD flows and link flows is ex-
pressed as:

x = Qf, xℓ =
∑
q

Qℓqfq, where q = (r, s).

Here, x represents the vector of link flows, f represents the vector of
OD flows, and Q is the assignment matrix. The entry Qℓq indicates the
proportion of flow from OD pair q that traverses link ℓ. By summing over
all OD pairs, we obtain the total flow on each link.

To better understand the structure of the assignment matrix, we decom-
pose it into two separate matrices: one capturing the network topology and
the other describing route choice behavior.

The first component, the link-path incidence matrix P, introduced in Sec-
tion 6.5, encodes the physical structure of the network. This matrix has
dimensions equal to the number of links by the number of paths, where each
entry Pℓp takes the value 1 if link ℓ is part of path p, and 0 otherwise.
The link-path incidence matrix of the network represented in Figure 7.6 is
reported in Table 7.7.

The second component, the OD-path matrix R, captures travelers’ route
choices. This matrix has dimensions equal to the number of paths by the
number of OD pairs, and each entry Rpq represents the proportion of OD flow
q that uses path p. Table 7.8 provides an example of the OD-path matrix
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Figure 7.6: Example of network topology
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D

1 1 0 0 0 0 0
2 0 1 1 0 0 0
3 0 1 1 1 1 0
4 0 1 0 1 0 0
5 0 0 0 1 1 0
6 0 0 1 0 1 0
7 0 0 0 0 0 1

Table 7.7: Path-link matrix encoding network topology.

for the network represented in Figure 7.6, where there are multiple possible
paths for different OD pairs. For instance, to go from A to C, the path A−C

or the path A− E− F− C can be used, each of them with probability 0.5.
By multiplying these two matrices together, we obtain the assignment

matrix Q, which directly relates OD flows to link flows:

Q = PR.

Each entryQℓq in this matrix represents the proportion of OD flow q that
uses link ℓ. Table 7.9 shows an example of the assignment matrix derived
from the network topology and route choices.

To illustrate how OD flows are transformed into link flows using the
assignment matrix, we consider an example where OD demand is assigned
to the network from Figure 7.6. The assignment process is governed by the
relationship:

162



A-C A-D B-C B-D
A-C 0.5 0 0 0
A-E-F-C 0.5 0 0 0
A-E-F-D 0 1 0 0
B-E-F-C 0 0 1 0
B-E-F-D 0 0 0 0.5
B-D 0 0 0 0.5

Table 7.8: OD-path matrix capturing route choice proportions.

A-C A-D B-C B-D
1 0.5 0 0 0
2 0.5 1 0 0
3 0.5 1 1 0.5
4 0.5 0 1 0
5 0 0 1 0.5
6 0 1 0 0.5
7 0 0 0 0.5

Table 7.9: Assignment matrix Q derived from path-link and OD-path matrices.

x = Qf,

where x represents the vector of link flows, Q is the assignment matrix, and
f is the vector of OD flows.

The assignment matrix, OD flows, and resulting link flows are presented
in Table 7.10. Each row in the matrix corresponds to a network link, while
each column corresponds to an OD pair. The multiplication of the assignment
matrix with the OD flow vector yields the total flow on each link.

The network representation in Figure 7.7 provides a visual interpretation
of this transformation. Solid arrows indicate link flows, while dotted red
arrows represent the OD flows.

Thanks to the assignment matrix, we can now incorporate traffic count
data into the OD estimation process. This is achieved through the following
weighted least-squares formulation:

min
τ

w2
o

∑
r

(
Or −

∑
s

eτrs

)2

+w2
d

∑
s

(
Ds −

∑
r

eτrs

)2

+w2
ℓ

∑
ℓ

(
x̄ℓ −

∑
q

Qℓqe
τq

)2

.
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Assignment OD Link
matrix flows flows

0.5 0 0 0
0.5 1 0 0
0.5 1 1 0.5
0.5 0 1 0
0 0 1 0.5
0 1 0 0.5
0 0 0 0.5




100
200
300
400

 =



50
250
750
350
500
400
200


Table 7.10: Example of assignment matrix application: transformation of OD flows
into link flows.

Each term in this objective function corresponds to a different source of
data, ensuring that the estimated OD table remains consistent with available
information. As before, the first term,

∑
r (Or −

∑
s e

τrs)2, enforces consis-
tency between the estimated OD flows and the observed trip production
values. Similarly, the second term,

∑
s (Ds −

∑
r e

τrs)2, ensures alignment
with observed trip attractions.

The new term introduced in this formulation,
∑

ℓ

(
x̄ℓ −

∑
qQℓqe

τq
)2
,

integrates traffic count data into the estimation process. Here, x̄ℓ represents
the observed flow on link ℓ, while

∑
qQℓqe

τq corresponds to the estimated
flow on that link, obtained by summing the contributions from all OD pairs
weighted by the assignment matrix Q. This term ensures that the estimated
OD flows are compatible with the observed link flows, further refining the
accuracy of the OD table.

The role of the weights wo,wd,wℓ remains the same as discussed previ-
ously. Each weight reflects the reliability and importance of the correspond-
ing data source. A larger weight increases the influence of that term in the
objective function, giving higher priority to reducing discrepancies for that
particular type of data. Typically, traffic count data is assigned a weight wℓ

that reflects the precision of the measurements, ensuring that the estimation
method appropriately balances information from different sources.

7.1.3 More assumptions: the gravity model

Another way to resolve the under-determination issue is to introduce addi-
tional assumptions to guide the estimation process. One widely used ap-
proach is the gravity model, which provides a systematic way to estimate OD
flows based on intuitive behavioral principles.
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Figure 7.7: Network representation of OD and link flows. Solid arrows represent link
flows, while dotted red arrows indicate OD flows.

The gravity model is inspired by Newton’s law of universal gravitation,
which states that the force between two objects is proportional to their masses
and inversely proportional to the square of the distance between them. By
analogy, the gravity model assumes that the flow frs between an origin r and
a destination s is:

• Proportional to the trip production Or at the origin, meaning that
locations with higher trip generation will send more trips.

• Proportional to the trip attraction Ds at the destination, meaning that
locations with high demand will receive more trips.

• Decreasing as the generalized cost crs increases, reflecting the fact that
longer or more expensive trips are less likely to occur.

The simplest mathematical formulation of the gravity model, which di-
rectly follows the analogy with Newton’s law, is given by:

frs ≈
αrOrβsDs

c2rs
.

This equation states that the OD flow is inversely proportional to the square
of the generalized cost. However, while this formulation gives the model its
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name, it is not necessarily the most appropriate for travel demand modeling,
as trip-making behavior does not always follow an inverse-square law.

To provide more flexibility, alternative mathematical formulations are
commonly used in practice. One alternative expresses the deterrence effect
of travel cost using an exponential decay function:

frs ≈ αrOrβsDse
−γcrs .

Here, the decay is controlled by the parameter γ, which determines how
quickly trip probability decreases with increasing cost.

More generally, practitioners may use any function h(crs) that satisfies
h ′(crs) < 0, ensuring that the OD flow decreases with increasing cost while
allowing for different deterrence effects:

frs ≈ αrOrβsDsh(crs), h ′(crs) < 0.

The choice of h(crs) depends on empirical observations and model calibra-
tion, ensuring that the estimated OD flows align with real-world travel be-
havior.

The gravity model can be integrated into the weighted least-squares esti-
mation process by modifying the objective function to include an additional
term enforcing the gravity-based structure. The resulting optimization prob-
lem is formulated as:

min
τ,α,β,γ

w2
o

∑
r

(
Or −

∑
s

eτrs

)2

+w2
d

∑
s

(
Ds −

∑
r

eτrs

)2

+w2
g

∑
rs

(αrOrβsDse
−γcrs − eτrs)

2
.

The first two terms remain exactly as before:

• The first term,
∑

r (Or −
∑

s e
τrs)2, ensures that the estimated OD

table aligns with observed trip productions.

• The second term,
∑

s (Ds −
∑

r e
τrs)2, enforces consistency with trip

attractions.

The third term introduces the gravity model constraint. It ensures that
the estimated OD flows eτrs remain close to the form suggested by the gravity
model:

αrOrβsDse
−γcrs .
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Here, αr and βs are balancing factors that adjust productions and attrac-
tions, while γ determines the sensitivity of flows to generalized cost. By
minimizing the squared difference between this expression and the estimated
OD flows, the model enforces the gravity assumption while still allowing for
deviations where necessary.

Regarding the weights, we expect that wg ⩽ wo ≈ wd. This is be-
cause the gravity model assumption is a structural hypothesis rather than
direct empirical data. Unlike productions and attractions, which are directly
measured or estimated from other models, the gravity model is a theoretical
formulation that may not perfectly fit all scenarios. A lower weight wg allows
flexibility, ensuring that the model can deviate from the gravity assumption
when necessary to better match observed data.

It is important to note that the gravity model is not appropriate for
all OD estimation problems. In particular, it is not suitable for the elevator
example. The gravity model assumes that flows are influenced by production,
attraction, and travel cost in a way that mirrors long-distance trip behavior.
However, in the case of an elevator, trip-making decisions are not governed
by distance deterrence in the same manner. The cost of traveling between
floors is nearly identical, and people do not choose destinations based on
minimizing effort in the same way they would in a large-scale transportation
network. As a result, alternative methods — such as direct estimation from
survey data — are more appropriate for modeling OD flows in an elevator
system.

All sources of information can be integrated into a single model formula-
tion, ensuring that the estimated OD table is consistent with multiple con-
straints simultaneously. The optimization problem is formulated as follows:

min
τ,α,β,γ

w2
o

∑
r

(
Or −

∑
s

eτrs

)2

+w2
d

∑
s

(
Ds −

∑
r

eτrs

)2

+w2
g

∑
rs

(αrOrβsDse
−γcrs − eτrs)

2

+w2
f

∑
rs

(
f̄rs − eτrs

)2
+w2

ℓ

∑
ℓ

(
x̄ℓ −

∑
q

Qℓqe
τq

)2

.

This objective function combines multiple data sources, each contributing
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to refining the estimated OD flows. The different terms correspond to:

• Trip production: Ensures that the total number of trips originating
from each location matches observed productions.

• Trip attraction: Ensures that the total number of trips arriving at each
location matches observed attractions.

• Gravity model : Encourages OD flows to follow the gravity model, main-
taining consistency with travel behavior assumptions.

• Survey data: Ensures that estimated OD flows align with directly ob-
served OD pairs from surveys.

• Traffic count : Ensures that estimated OD flows, when assigned to the
network, match observed link flows.

Again, the weights wo,wd,wg,wf,wℓ determine the relative importance
of each constraint. Higher weights give greater priority to reducing discrep-
ancies for that particular data source. Typically, survey data and traffic
counts are given higher weights when available, as they represent direct ob-
servations, whereas the gravity model provides a theoretical structure. This
integrated approach ensures that the estimated OD table balances all avail-
able information in a statistically sound manner.

7.2 Modal split

Having completed the first two steps of the four-step model — trip genera-
tion and trip distribution — we now have a comprehensive origin-destination
(OD) table. This table, with entries frs, represents the number of trips be-
tween each pair of zones or centroids (r, s). At this stage, we have a detailed
understanding of how many trips are expected to occur between different
locations but without any information about the travel mode that will be
used. This brings us to the next step: modal split.

The modal split step aims to determine how these trips are distributed
across different transportation modes. To do so, we must consider the char-
acteristics of each mode, particularly their associated generalized costs. The
generalized cost, denoted as cirs, represents the perceived burden of traveling
from r to s using mode i. This cost accounts for various factors, such as
travel time, monetary expenses, comfort, and reliability.

At this point in the process, we recognize that:
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• The OD table provides a detailed representation of the travel demand,
but without mode-specific information.

• Each transportation mode i has its own network and associated gener-
alized cost cirs, which influences travelers’ mode choices.

The next step in our investigation involves understanding how travelers
select a mode based on these factors.

7.2.1 The logit model

To formally introduce the modal split problem, we define a choice model that
determines how trips between an origin r and a destination s are distributed
among the available transportation modes. For each OD pair (r, s), travelers
can select a mode from the set Crs, which contains all feasible transportation
options for that specific trip.

The most commonly used model for mode choice is the logit model, in-
troduced in Section 4.3.3, which assigns a probability πrs

i to each mode i in
Crs. The probability of selecting mode i is given by:

πrs
i =

e−θci
rs∑

j∈Crs
e−θc

j
rs

, θ ⩾ 0.

This model is based on the principle that travelers are more likely to choose
modes with lower generalized costs. The parameter θ controls the sensitivity
of travelers to differences in cost:

• When θ is close to zero, all modes are chosen with nearly equal proba-
bility, meaning that travelers are not very sensitive to cost differences.

• When θ is large, travelers overwhelmingly prefer the mode with the
lowest cost, making the choice process more deterministic.

The value of θ should be estimated using real observations.
We illustrate now the modal split in the context of the elevator example,

to determine the proportion of travelers who choose to take the stairs versus
the elevator. The set of available modes for each OD pair (r, s) consists of:
Crs = { elevator, stairs }.

As the floors are numbered in a consecutive way, the number of floors
between origin r and destination s is denoted as drs = |r − s|. The logit
model is used to estimate the probability of taking each mode. The utility
functions are specified as:

uelevator = 0,

ustairs = −θdrs, θ = 1.1.
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Note that, as discussed in Section 4.3.3, only differences in utility matter,
not their absolute levels. As a consequence, one of the utility functions is
normalized to zero without loss of generality. Here, the utility function of
the elevator has been selected arbitrarily.

From these utilities, the probability of taking the stairs is computed as:

πrs
stairs =

e−1.1drs

1+ e−1.1drs
.

The probability of choosing the stairs decreases as the number of floors
increases, reflecting the increasing effort required to walk up multiple floors.
The computed probabilities are presented in Table 7.11.

Number of Floors drs πrs
stairs

1 0.250
2 0.100
3 0.0356
4 0.0121

Table 7.11: Probability of taking the stairs as a function of the number of floors.

Using these probabilities, the original OD table is now split into two
separate tables: one for elevator users and one for stair users. The complete
OD table, including both modes, is shown in Table 7.6. Applying the modal
split, the OD flows are now divided into two separate tables. The OD table
for elevator users is shown in Table 7.12.

0 1 2 3 4
0 0.0 450.9 9.2 0.0 460.1
1 75.2 0.0 0.0 4.0 79.2
2 26.3 0.0 0.0 0.0 26.3
3 56.8 0.0 0.0 0.1 56.9
4 69.5 11.3 0.0 1.7 82.5

227.7 11.4 450.9 11.0 4.1 705.0

Table 7.12: OD table for elevator users.

Similarly, the OD table for stair users is presented in Table 7.13.
The parameter θ plays an important role in the choice model, as it de-

termines how sensitive travelers are to differences in generalized cost. To
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0 1 2 3 4
0 0.0 50.0 0.3 0.0 50.3
1 25.0 0.0 0.0 0.1 25.2
2 2.9 0.0 0.0 0.0 2.9
3 2.1 0.0 0.0 0.0 2.1
4 0.9 0.4 0.0 0.6 1.9

30.9 0.4 50.0 0.9 0.2 82.4

Table 7.13: OD table for stair users.
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Figure 7.8: Impact of the parameter θ on the probability of choosing the stairs for a
one-floor trip.

illustrate its effect, Figure 7.8 shows how the probability of choosing the
stairs for a one-floor trip changes as θ varies.

The horizontal axis represents the value of θ, while the vertical axis shows
the probability of choosing the stairs for a one-floor trip. When θ = 0,
both the elevator and stairs have equal probability, meaning travelers do
not differentiate between the two options. As θ increases, the probability of
taking the stairs decreases, reflecting a greater reluctance to walk up even a
single floor.

The value of θ is not chosen arbitrarily but must be estimated from
real-world data. As discussed in Section 4.3.3, this is typically done using
maximum likelihood estimation, which finds the value of θ that best explains
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observed mode choices. By fitting the model to empirical data, we ensure
that the predicted probabilities align with actual travel behavior.

7.2.2 Choice data

To estimate choice models, we rely on different types of choice data. Two
primary sources of choice data are revealed preferences (RP) and stated pref-
erences (SP), each offering unique insights and limitations.

Revealed preference (RP) data consists of observations of actual choices
made by travelers in real-world settings. These choices reflect genuine be-
havior, making RP data essential for reproducing observed modal shares. To
utilize RP data effectively, researchers must also collect data on explanatory
variables, including attributes associated with each mode such as travel time
and cost. However, RP data comes with several limitations. It is restricted
to existing transportation options, attributes, and attribute levels, making
it difficult to evaluate hypothetical or future scenarios. Some attributes ex-
hibit little variability, limiting the ability to estimate their effect accurately.
Additionally, high correlation among variables complicates the identification
of independent effects. Data collection is costly and often requires extensive
travel surveys or sensor-based monitoring. Another significant challenge is
that information on unchosen alternatives is often incomplete or missing, as
researchers may only observe the mode that was selected but not those that
were considered.

To overcome some of these limitations, researchers often rely on stated
preference (SP) data, which is collected through surveys and interviews.
In SP surveys, individuals are presented with hypothetical scenarios and
asked what they would choose under specified conditions. This approach al-
lows analysts to define the choice context, controlling for the attributes and
their variability. By systematically modifying the presented alternatives, re-
searchers can study factors that are difficult to isolate in RP data. SP data
enables the exploration of new transportation modes and scenarios that do
not yet exist. Researchers can control attribute variability, ensuring sufficient
variation for model estimation. All available alternatives can be explicitly
presented, overcoming the issue of missing data on unchosen options. Corre-
lation between variables can be managed, avoiding multicollinearity issues,
and a single respondent can answer multiple choice questions, increasing the
quantity of collected data.

Figure 7.9 presents an example of a stated preference scenario designed
to evaluate passengers’ choices when selecting among different flight alter-
natives. It originates from an Internet choice survey conducted by Boeing
Commercial Airplanes in 2004 and 2005. The survey is described by Gar-
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row et al. (2006). Boeing aimed to better understand the sensitivity of air
passengers to various airline itinerary attributes, including fare, travel time,
transfers, legroom, and aircraft type.

The survey was conducted by intercepting users of an Internet airline
booking service specializing in low-cost travel deals. While waiting for the
search engine to return the real itineraries matching their specific travel re-
quest, randomly selected customers were invited to complete a survey tai-
lored to their chosen origin and destination. This methodology ensured that
respondents were actively engaged in making travel decisions, thereby in-
creasing the relevance and reliability of the collected data.

The scenario in Figure 7.9 considers a journey from Chicago to San Diego,
offering three distinct flight options with varying characteristics.

Figure 7.9: Example of a stated preference scenario

The first alternative is a non-stop flight, providing the convenience of
direct travel without layovers. The second alternative involves one stop on
the same airline, requiring a connection but maintaining consistency in ser-
vice. The third alternative also involves one stop, but with multiple airlines,
which may introduce variations in service quality, scheduling, and ticketing
conditions.
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For each of these alternatives, several key attributes are presented to the
respondent, allowing for a detailed comparison. These attributes include
departure time, arrival time, total time in air, and total trip time, which
together provide insights into the overall travel duration. Comfort-related
aspects such as legroom, as well as operational details like airline and air-
craft type, are also specified. Finally, the fare is displayed, representing an
important factor in the decision-making process.

Participants in the survey are asked three questions. First, they must
identify the most attractive flight option, reflecting their preferred choice
based on the presented attributes. Next, they indicate the least attractive
option, highlighting the alternative they find least desirable. Finally, they
answer a broader question: If these were the only options available, would
you travel by air? This last question helps assess the extent to which the
given options meet the minimum acceptable requirements for air travel or if
respondents would consider alternative transportation modes.

Despite these benefits, SP data also presents notable challenges. Because
it is based on hypothetical scenarios, responses may not fully reflect actual
behavior. It cannot be used to directly infer market shares, as the values of
the explanatory variables presented in a survey do not necessarily translate to
real-world scenarios. Respondents may not fully consider the consequences
of their choices, as they do not bear real costs or constraints. The credi-
bility of the scenarios is important — respondents may react differently if
they perceive a scenario as unrealistic. Results are valid only within the
range of the experimental design, limiting their generalizability. Policy bias
can occur, where respondents state preferences that align with social expec-
tations rather than their actual behavior, for example, stating that others
should take the bus while continuing to drive themselves. Justification bias
or inertia may lead respondents to choose familiar options rather than con-
sidering new ones. The way questions are phrased, known as framing effects,
can influence responses. Respondents may anchor their decisions on a sin-
gle variable, distorting the results. Finally, repeated questioning can lead to
fatigue effects, where respondents provide less thoughtful answers over time.

Given these complementary strengths and weaknesses, both RP and SP
data play an important role in estimating choice models. RP data is es-
sential for capturing actual market behavior, while SP data is valuable for
investigating new policies, services, or infrastructure changes. The two data
sources are often combined to enhance model robustness. Estimation is typ-
ically conducted using maximum likelihood estimation, ensuring that model
parameters best fit the observed choices.
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7.2.3 Behavioral heterogeneity

In reality, individuals exhibit diverse behaviors and preferences when making
travel choices. No two travelers are identical, as their decisions are influenced
by various personal and contextual factors. Choice models aim to capture
this heterogeneity by considering differences across individuals. Instead of
treating the population as a uniform entity, these models are disaggregate,
meaning that they account for individual-level variations rather than relying
on aggregate trends.

To represent this heterogeneity, the population is divided into segments
based on socio-economic characteristics. These segments allow models to
reflect variations in travel behavior across different groups. A typical seg-
mentation includes factors such as trip purpose, which distinguishes between
work commutes, leisure trips, and shopping activities, as different trip types
may lead to different mode choices. Gender can influence preferences, with
research showing differences in risk perception, safety concerns, and travel
patterns between men and women. Income plays an important role, as in-
dividuals with higher financial resources may have greater access to private
vehicles and be less sensitive to fare changes in public transportation. Age is
another key factor, with younger individuals possibly favoring active modes
of transport, while older individuals may prioritize comfort and accessibil-
ity. Employment status affects travel behavior, as employed individuals often
have structured schedules and constraints that influence their mode selection.
The availability of mobility tools, such as driver’s licenses, public transport
passes, or access to bicycles, further differentiates individuals’ travel behav-
ior.

By incorporating these socio-economic characteristics into choice models,
we can better understand the diverse decision-making processes of travelers.

Although the four-step model primarily deals with aggregate flows, it
can still incorporate disaggregate choice models. This is possible because
the results of a disaggregate model can be aggregated in a straightforward
manner to align with the aggregate nature of the four-step model.

To show this, we assume that the population is divided intoN distinct seg-
ments based on socio-economic characteristics. For a given OD pair (r, s), the
proportion of individuals belonging to segment n is denoted as πrs

n . Within
each segment, individuals make mode choices according to their specific pref-
erences and constraints. The probability that an individual in segment n

chooses mode i for the OD pair (r, s) is denoted as πrs
in.

To obtain an aggregate mode choice probability, we compute the weighted
sum of the segment-specific probabilities, where each segment’s contribution
is weighted by its proportion in the population. This aggregation is expressed
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mathematically as:

πrs
i =

∑
n

πrs
inπ

rs
n .

This equation ensures that the overall mode choice probabilities reflect the
diversity of individual choices while remaining compatible with the aggregate
framework of the four-step model.

In the following example, the modal split for the elevator scenario is
further refined by incorporating population heterogeneity. Specifically, we
assume that individuals differ in their reluctance to take the stairs based on
their age. The population is divided into two segments: young and old, each
with different sensitivity to the number of floors they need to climb.

For a given OD pair (r, s), the probability of taking the stairs is modeled
separately for young and old individuals. The disaggregate choice model
assumes that young individuals have a lower sensitivity parameter, θyoung =
1.1, meaning they are more willing to take the stairs compared to older
individuals, whose sensitivity parameter is higher, θold = 2.1. The probability
of choosing the stairs decreases with the number of floors, but it decreases
at a much faster rate for older individuals.

The proportions of individuals choosing the stairs in each segment are
shown in Table 7.14.

Number of Floors drs πrs
stairs, young πrs

stairs, old

1 0.250 0.110
2 0.100 0.0148
3 0.0356 0.00183
4 0.0121 0.000225

Table 7.14: Probability of taking the stairs by age segment.

To obtain the aggregate modal split for the total population, we compute
a weighted sum of the segment-specific probabilities, where each segment’s
contribution is weighted by its proportion in the population. In this case, we
assume that the population consists of 25% young individuals and 75% old
individuals. The overall probability of taking the stairs for a given OD pair
is therefore computed as:

πrs
stairs = 0.25 · πrs

stairs, young + 0.75 · πrs
stairs, old.

Applying this formula, the aggregate probabilities are obtained as shown
in Table 7.15.
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Number of Floors drs πrs
stairs

1 0.144
2 0.0360
3 0.0103
4 0.003

Table 7.15: Aggregate probability of taking the stairs.

These probabilities are then applied to the original OD table to divide
the trips between those taking the elevator and those taking the stairs, as
explained above.

7.3 Summary

This chapter has explored two steps of the four-step model: trip distribution
and modal split. Through a detailed examination of OD table estimation and
mode choice modeling, we have developed a framework for understanding
how trips are distributed across a network and how individuals select their
preferred mode of transportation.

The estimation of OD tables relies on multiple sources of information,
including production and attraction data for different zones. To enhance
the accuracy of these estimates, additional data sources such as roadside
interviews and traffic counts can be incorporated. Since observed data is
often incomplete or inconsistent, further assumptions are necessary to struc-
ture the estimation process. One common assumption is the gravity model,
which expresses trip flows as a function of trip productions, attractions, and
generalized cost. The estimation problem is then formulated as a weighted
least squares problem, ensuring that different data sources are accounted for
with appropriate emphasis. Moreover, special attention must be given to
the issue of non-negativity, as OD flows must remain non-negative, requiring
adjustments to the standard least squares approach.

Once the OD table is established, the modal split step determines how
these trips are distributed among available transportation modes. This pro-
cess requires choice models that capture individual decision-making. The
data used for mode choice modeling comes from two primary sources: re-
vealed preferences (RP), which reflect actual observed choices, and stated
preferences (SP), which derive from surveys presenting hypothetical scenar-
ios. The mode choice model itself is typically based on a probabilistic frame-
work such as the logit model, where the probability of selecting a given mode
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depends on its perceived utility. Because choice models operate at the indi-
vidual level, an aggregation step is necessary to reconcile disaggregate choices
with the aggregate structure of the four-step model.

At this stage, three of the four steps in the model have been addressed:
trip generation, trip distribution, and modal split. The final step, traffic
assignment, remains to be explored. In the next chapter, we will examine
how trips are assigned to the transportation network, determining the routes
taken by travelers and the resulting network flows. This final step is impor-
tant for understanding congestion effects, travel times, and overall system
performance.
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Chapter 8

Traffic assignment

The four-step model consists of four sequential phases: trip generation, trip
distribution, modal split, and finally, traffic assignment. The first three steps,
which we have already covered, aim to estimate the number of trips originat-
ing from and destined for different zones, allocate these trips between zones,
and determine the mode of transportation chosen by travelers. The final
step, traffic assignment, builds upon these results to determine how trips are
distributed across the transportation network.

The objective of the traffic assignment phase is to determine link flows,
meaning the number of vehicles traveling on each road segment in the net-
work. This information is important for evaluating congestion, travel times,
and the overall performance of the transportation system. Traffic assignment
models rely on principles of route choice behavior, typically assuming that
travelers choose paths that minimize travel costs, such as time or distance.

The context of this analysis is limited to single-mode transportation,
specifically private car traffic. This assumption simplifies the assignment
problem by focusing solely on road networks without considering interactions
between different transport modes. While multimodal assignment methods
exist, the fundamental principles of traffic assignment are best understood
within the framework of a single-mode system.

At this stage of the modeling process, two key datasets are available.
First, the origin-destination (OD) table provides trip demand information
between different zones or centroids. This OD table specifies the number of
trips, denoted as frs, between each pair of zones (r, s).

The second dataset consists of the transportation network, which includes
information about road links and their characteristics. Each link has an
associated link performance function, tℓ = t(xℓ), which expresses travel time
as a function of traffic flow. These functions capture congestion effects by
reflecting how travel times increase with higher traffic volumes. Additionally,
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the network is represented using the link-path incidence matrix, denoted as
P, which encodes the relationship between links and paths. The elements of
this matrix, Pℓp, indicate whether a given link ℓ belongs to a particular path
p.

8.1 All-or-nothing assignment

A fundamental assumption in traffic assignment is that travelers choose
routes based on the principle of utility maximization. This means that each
individual seeks to minimize their perceived travel cost, often interpreted as
choosing the shortest or best path available. In the simplest case, this best
path is defined by travel time: travelers are assumed to select the route that
minimizes their time spent on the road.

Figure 8.1 illustrates this concept using a simple two-link network con-
necting an origin node, r, to a destination node, s. Travelers have two route
options, with associated travel times t1 and t2. If we assume that all travelers
strictly minimize their travel time and that t1 < t2, then all traffic will be
assigned to the first route.

r s

t1

t2

Figure 8.1: Illustration of route choice behavior in a simple two-link network.

An important consideration is that not all travelers behave identically.
Differences in preferences, risk tolerance, and perceived travel costs lead to
variations in route choice behavior. Some individuals may prioritize reliabil-
ity over speed, while others may consider factors such as road comfort or toll
costs. Addressing these aspects is out of the scope of this document.

Another important limitation of this naive route choice assumption is
that it does not account for congestion effects. In reality, as more travelers
choose the shortest route, traffic density increases, leading to a rise in travel
time. If congestion is severe enough, the second route may become a more
attractive option, as its initially higher travel time remains stable while the
first route deteriorates.

The concept of all-or-nothing assignment assumes that all travelers se-
lect the single fastest route available, without considering congestion effects.
Under this assumption, every unit of flow is assigned to the path with the
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lowest travel time in free-flow conditions. However, this approach oversim-
plifies real-world traffic behavior and leads to unrealistic outcomes.

Figure 8.2 illustrates an example where three units of flow travel from an
origin node r to a destination node s. Two possible routes exist: the first
route has an initial travel time of 2, while the second has an initial travel
time of 4. Since the first route is the fastest in free-flow conditions, all three
units of flow are assigned to it, as dictated by the all-or-nothing principle.

3 3r s

t1 = 2

x1 =?

t2 = 4

x2 =?

Figure 8.2: Illustration of all-or-nothing assignment in a simple two-link network.

However, this naive approach neglects the fact that travel time is not
static but depends on the volume of traffic on each link. To better represent
congestion effects, we introduce link performance functions, which describe
how travel time changes with increasing flow. For this example, the travel
time functions are given by:

t1(x) = 2+ x21,

t2(x) = 4+ 2x22.

These equations indicate that travel time increases as flow increases, re-
flecting the fundamental relationship between congestion and travel condi-
tions.

At the start, under free-flow conditions, we have

t1(0) = 2,

t2(0) = 4.

The first route being the fastest, all travelers select it: x1 = 3, x2 = 0.
However, as congestion builds, the travel time on link 1 increases, eventually
reaching a point where the second route, despite its higher initial travel time,
becomes the faster option.

t1(3) = 11,

t2(0) = 4.

At this stage, all traffic shifts to link 2, and x1 = 0 and x2 = 3. But the
same congestion effect occurs: the increasing flow raises travel time, making
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the first route more attractive again.

t1(0) = 2,

t2(3) = 22.

This back-and-forth redistribution of flow highlights the fundamental flaw of
all-or-nothing assignment — it does not lead to a stable state.

A more sophisticated assignment model is needed, one that acknowledges
that travelers respond to congestion in a way that balances the system. In-
stead of assuming that all traffic blindly follows a single path, we must de-
velop models that distribute flow in a way that accounts for travel time
dynamics and traveler behavior.

8.2 User equilibrium

A more refined approach to traffic assignment involves loading the flow onto
the network incrementally, updating travel times at each step. This method
provides insight into how congestion builds up and how travelers dynamically
adjust their route choices in response to increasing travel times.

Figure 8.3 presents the process of loading flow one unit at a time, recal-
culating travel times after each step. Initially, when the network is empty,
both links have their free-flow travel times: link 1 has a travel time of 2,
while link 2 has a travel time of 4. Since link 1 is the faster option, the first
unit of flow is assigned to it.

x1 t1 x2 t2 Choice
Empty network 0 2 0 4 ℓ = 1

First unit 1 3 0 4 ℓ = 1

Second unit 2 6 0 4 ℓ = 2

Third unit 2 6 1 6 Equilibrium

Figure 8.3: Incremental loading of flow and resulting travel times.

Once the first unit of flow is loaded onto link 1, congestion increases, and
the travel time on this link rises from 2 to 3. The second unit of flow is then
added, further increasing the travel time on link 1 to 6, while link 2 remains
at 4. At this point, link 2 becomes the preferable route, and the third unit
of flow chooses this alternative instead. After assigning one unit to link 2,
its travel time also increases, reaching 6. Now, both links have equal travel
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times, meaning no traveler has an incentive to switch routes. This condition
represents equilibrium, where travel demand is balanced, and no individual
traveler can improve their travel time by unilaterally changing routes.

The concept of equilibrium in traffic assignment has strong theoretical
foundations in game theory. The idea that no traveler can improve their
travel time by unilaterally changing routes was formalized by the mathemati-
cian John Forbes Nash Jr., whose contributions to the field of game theory
earned him the Nobel Prize in Economics in 1994 . His groundbreaking work
(Nash, 1950a) laid the foundation for the study of strategic interactions, not
only in economics but also in transportation and many other disciplines.

Nash was born in 1928 and made significant contributions to mathematics
early in his career. His doctoral thesis (Nash, 1950b), completed in 1950 at
Princeton University, introduced the concept of Nash equilibrium, a funda-
mental principle in game theory. Remarkably, his thesis on non-cooperative
games was only 28 pages long, yet it revolutionized the understanding of
competitive behavior in strategic environments.

Figure 8.4 presents images of John Nash, including one taken by the au-
thor at a conference in Lisbon in 2010. His work provided a rigorous frame-
work for analyzing situations in which multiple decision-makers interact, each
seeking to optimize their own outcome given the choices of others. In the
context of traffic assignment, Nash equilibrium describes a state where no
individual traveler can reduce their travel time by switching routes, assuming
that all other travelers maintain their current choices.

nobelprize.org Lisbon, 2010

Figure 8.4: John Forbes Nash Jr., Nobel Laureate in 1994.

The Nash equilibrium concept is particularly relevant in transportation
modeling because it accounts for the fact that travelers make independent
route choices while responding to congestion effects. Unlike the all-or-nothing
approach, which unrealistically assumes that all travelers choose the same
route, the equilibrium concept allows for a more stable and self-regulating
distribution of traffic.

At equilibrium, no traveler can improve their travel time by switching
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routes, provided all others maintain their choices. This condition leads to
what is commonly referred to as user equilibrium, where all used routes have
the same generalized cost, and any unused route has a higher cost.

Figure 8.5 illustrates how equilibrium is reached for different levels of total
demand frs. The travel time functions governing the two available links are
given by:

t1(x) = 2+ x2,

t2(x) = 4+ 2x2.

As demand increases, congestion builds up, leading to different equilibrium
conditions.
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√
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Figure 8.5: Nash equilibrium for different levels of demand.

For frs = 3, as shown in Figure 8.5a, congestion causes link 1’s travel
time to rise above the free-flow travel time of link 2. As a result, travelers
begin using both links, distributing the flow so that travel time equalizes on
both routes.
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For frs = 6, as shown in Figure 8.5b, a higher level of demand results
in even greater congestion, further balancing the flow between the two links.
The equilibrium principle ensures that both links maintain the same gener-
alized cost.

For frs = 1, as shown in Figure 8.5c, the total flow is low enough that
link 1 remains the fastest option. Since its travel time does not exceed the
free-flow travel time of link 2, all travelers continue to choose link 1.

For frs =
√
2, as shown in Figure 8.5d, this is the highest demand level

at which all travelers still select link 1. Beyond this threshold, congestion
increases enough that link 2 starts attracting some of the flow.

To illustrate the concept of traffic assignment in a more realistic setting,
we now consider a small network example, as shown in Figure 8.6. This
network consists of six nodes, including two centroids that represent origins
and destinations, and two regular nodes that serve as intersections where
traffic flow can be redistributed.

The network contains seven directed arcs, each associated with a link
performance function that describes how travel time depends on congestion.
These functions range from constant travel times, which are insensitive to
congestion, to those that increase significantly as flow grows, reflecting dif-
ferent road characteristics.

r1

r2

s1

s2

t1(x1) = 10x1

t 2
(x

2
)
=
50

+
x 2

t 3
(x

3
)
=
50

+
x 3

t4(x4) = 10x4

t
5 (x

5 )
=
10

+
x
5

t
0 (x

0 ) =
1

t
6 (x

6 ) =
2

Figure 8.6: A small network example with congestion-sensitive and insensitive arcs.

Traffic enters the network from the left, where two units of flow originate
from node r2 and one unit from node r1, resulting in a total of three entering
units. The flow exits on the right, with two units reaching node s1 and one
unit reaching node s2. This demand pattern is summarized in Table 8.1.

The network consists of different types of arcs with varying sensitivity
to congestion. Arcs 0 and 6 have a constant travel time, meaning they are
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s1 s2
r1 3 1
r2 2 0

Table 8.1: Origin-destination demand table.

not affected by congestion. Arcs 2 and 3 have a relatively long free-flow
travel time, but their sensitivity to congestion is low, resembling highways
with multiple lanes that bypass the city center. Arc 5 has an intermediate
free-flow travel time and a low sensitivity to congestion, similar to a tunnel
under the city with as many lanes as the highways. Finally, arcs 1 and 4
have negligible free-flow travel times (actually, zero, in this simple example)
but are highly sensitive to congestion, representing shortcuts through narrow
streets that quickly become congested.

Each origin-destination pair has three available paths, depicted schemat-
ically in Figure 8.7. The first path follows the northern detour, which corre-
sponds to the long highways bypassing congestion. The second path follows
the southern detour, taking an alternative long route. The third path goes
through the tunnel under the city, which offers a shorter distance.

(o, d) Path 1 Path 2 Path 3

(r1, s1)

(r1, s2)

(r2, s1)

Figure 8.7: List of paths in the simple network

Table 8.2 summarizes the characteristics of the different paths available
for each origin-destination (OD) pair in the network when it is empty, mean-
ing that no vehicles are initially using it. The first column of the table lists
the different paths, while the second column indicates the path flow. Since
the network is empty, all path flows are equal to zero.

The next group of columns represents the link flows xi, where each column
corresponds to a specific arc in the network. These values indicate the number
of vehicles traveling on each link when the given path is used. Since the path
flows are zero, the link flows are also zero.

Following the link flows, the table presents the link travel times ti, which
are computed using the link performance functions. As the network is empty,
the travel times correspond to the free-flow travel times, meaning the mini-
mum time required to traverse each link when there is no congestion.
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p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

0 0 0 0 50 50

0 0 0 50 0 50

0 0 0 0 0 0 10 10
r1, s2: frs = 1

0 0 0 0 0 50 2 52

0 0 0 0 50 0 2 52

0 0 0 0 0 0 0 10 2 12
r2, s1: frs = 2

0 0 0 0 1 0 50 51

0 0 0 0 1 50 0 51

0 0 0 0 0 1 0 0 10 11

Table 8.2: Path flows, link flows, link travel times, and path costs for each OD and
each path in an empty network.

Finally, the last column provides the total path cost for each path, which
is obtained by summing the travel times of all links composing the path.
The values in this column indicate the total time required to travel from the
origin to the destination via each path under free-flow conditions.

From the results, it is evident that for each OD pair, the fastest available

path is always the third option (paths , , and ), which
takes advantage of the tunnel under the city. This path consistently offers
the shortest travel time compared to the alternative routes.

Table 8.3 summarizes the network conditions when all travelers select
their routes based on the fastest option available in free-flow conditions. The
structure of the table remains the same as in the previous case.

One important observation is that the link flows are computed as the
cumulative effect of all origin-destination (OD) pairs. Notably, for each link,
the values are identical across all rows where the link is used. This repetition
in the table simplifies the computation of link and path travel times by
making it clear which links contribute to each path’s total cost.

A consequence of this behavior is the significant congestion that emerges
in the streets leading to the tunnel. Although the tunnel itself remains the
fastest option in free-flow conditions, its accessibility becomes a bottleneck
when demand increases. As a result, the total travel time along the paths

that use the tunnel ( , , and ) is now considerably higher
than in the previous scenario. The congestion on the feeder roads slows
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p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

0 6 0 60 50 110

0 0 6 50 60 110

3 6 6 6 60 60 16 136
r1, s2: frs = 1

0 6 0 1 60 50 2 112

0 0 6 1 50 60 2 112

1 6 6 6 1 60 60 16 2 138
r2, s1: frs = 2

0 2 6 0 1 60 50 111

0 2 0 6 1 50 60 111

2 2 6 6 6 1 60 60 16 137

Table 8.3: Path flows, link flows, link travel times, and path costs for each OD and
each path when all travelers follow the fastest route based on free-flow travel time.

down travelers before they even reach the tunnel, effectively diminishing its
advantage. This highlights a fundamental concept in transportation: the
shortest route in free-flow conditions is not necessarily the most efficient
once congestion is considered.

At equilibrium, as presented in Table 8.8, the system reaches a state
where no traveler can unilaterally reduce their travel time by switching to
another route. All used paths connecting an origin-destination pair must
have equal and minimal travel costs. If any path had a strictly lower cost,
travelers would shift toward it until the costs equilibrate.

Table 8.9 presents a second equilibrium state, highlighting an essential
property of network equilibria: while the distribution of travelers among
paths can vary, the resulting link flows remain unchanged. This observation
demonstrates that the equilibrium conditions do not uniquely determine the
path flows but (under some conditions) may uniquely determine the link
flows and travel times.

8.3 Modeling

To develop a rigorous mathematical model for traffic assignment, we first
establish a set of notations that will be used throughout the formulation.

The network consists of a set of links, each representing a segment of
infrastructure such as a road or a highway section. The total number of links
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p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

1 4 2 40 52 92

1 2 4 52 40 92

1 4 4 2 40 40 12 92
r1, s2: frs = 1

1 4 2 1 40 52 2 94

0 2 4 1 52 40 2 94

0 4 4 2 1 40 40 12 2 94
r2, s1: frs = 2

0 2 4 2 1 40 52 93

1 2 2 4 1 52 40 93

1 2 4 4 2 1 40 40 12 93

Figure 8.8: Path flows, link flows, link travel times, and path costs at equilibrium.

in the network is denoted by Kℓ. Travelers move between different origin-
destination (OD) pairs using predefined paths, where the total number of
paths is given by Kp. Since multiple OD pairs exist in a transportation
network, we also introduce Krs to denote the number of OD pairs considered
in the model. For a specific OD pair q, the set of available paths is represented
by Pq.

Each link in the network carries a certain traffic volume, which we define
as the link flow and denote by x. This represents the number of vehicles or
travelers using a specific link over a given period. Similarly, each path carries
a flow of travelers, referred to as the path flow and denoted by y.

In addition to flows, each link has an associated link cost, denoted by t.
This cost generally represents the travel time experienced by users on that
particular link, which may depend on the level of congestion. Likewise, each
path has an associated path cost, denoted by c, which corresponds to the
sum of the link costs along the path.

A key component of the traffic assignment model is the link-path inci-
dence matrix, denoted by P, which establishes the relationship between the
network’s links and the available paths (see Section 6.5). This matrix, of
dimension Kℓ ×Kp, is defined as a binary matrix where each entry Plp takes
the value 1 if link l is part of path p, and 0 otherwise.

Another essential element in the formulation is the route choice matrix,
denoted by R, which captures the distribution of travelers across available
paths for each origin-destination (OD) pair. The matrix R has dimensions
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p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

1 4 2 40 52 92

0 2 4 52 40 92

2 4 4 2 40 40 12 92
r1, s2: frs = 1

1 4 2 1 40 52 2 94

0 2 4 1 52 40 2 94

0 4 4 2 1 40 40 12 2 94
r2, s1: frs = 2

0 2 4 2 1 40 52 93

2 2 2 4 1 52 40 93

0 2 4 4 2 1 40 40 12 93

Figure 8.9: Alternative equilibrium illustrating different path flows but identical link
flows.

Kp×Krs, where each entry Rpq represents the proportion of travelers associ-
ated with OD pair q who choose path p. The sum of all elements in a given
column of R must equal 1, ensuring that all travelers for a given OD pair are
assigned to one of the available paths.

The route choice matrix plays an important role in translating demand
into network flows. Since each path is uniquely associated with a single OD
pair, the presence of a zero in Rpq signifies that path p is not an option for
OD pair q. For certain assignment models, such as all-or-nothing assignment,
the entries of R are restricted to binary values, meaning that all travelers
from an OD pair use the same path. In more general cases, R contains
continuous values representing the proportion of travelers choosing each path,
as is the case in stochastic user equilibrium models where travelers distribute
themselves probabilistically based on perceived costs.

An origin-destination (OD) demand table can be transformed into path
flows, which are then used to determine network congestion and travel times.
This transformation is achieved using the route choice matrix R, which spec-
ifies the proportion of travelers for each OD pair who choose a given path.
Given the demand vector f, where each entry fq represents the number of
travelers for OD pair q, the path flow vector y is computed as y = Rf.

The example provided illustrates this transformation by applying the
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route choice matrix R to the OD demand vector f:

y = Rf :



1
1
1
1
0
0
0
1
1


=



1/3 0 0
1/3 0 0
1/3 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1/2
0 0 1/2



 3
1
2



yp =
∑
q

Rpqfq,∀p.

The resulting path flow vector y captures the number of travelers assigned
to each path. Each entry in y is obtained by summing the contributions
from all OD pairs using that path, weighted by the corresponding entry in
R. Mathematically, this relationship is expressed as

yp =
∑
q

Rpqfq,∀p,

ensuring that the flow along each path correctly reflects the demand distri-
bution.

Having determined the path flows, the next step is to compute the link
flows. This transformation is achieved using the link-path incidence matrix
P. Given the path flow vector y, the link flow vector x is computed as x = Py,
where each entry xℓ represents the total number of travelers using link ℓ.

The example provided illustrates this transformation by applying the link-
path incidence matrix P to the path flow vector y:

x = Py :



2
4
2
2
4
2
1


=



0 0 0 0 0 0 1 1 1
1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0





1
1
1
1
0
0
0
1
1


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Each entry in x is obtained by summing the contributions from all paths
that use link ℓ, as determined by the corresponding row in P:

xℓ =
∑
p

Pℓpyp,∀ℓ.

A key simplification in traffic assignment modeling is the use of the as-
signment matrix, which is obtained as the product of the link-path incidence
matrix P and the route choice matrix R. This transformation allows for a di-
rect computation of link flows from OD demand without explicitly handling
the intermediate path flows. Given the OD demand vector f, the link flow
vector x is computed as x = PRf, or, equivalently,

xℓ =
∑
p

∑
q

PℓpRpqfq,∀ℓ.

The example provided illustrates this transformation by applying the as-
signment matrix Q = PR to the OD demand vector f:

x = PRf :



2
4
2
2
4
2
1


=



0 0 1
2/3 1 1/2
1/3 0 1/2
1/3 1 0
2/3 0 1
1/3 0 1/2
0 1 0


 3

1
2



An important advantage of the assignment matrix Q is that, unlike P

and R, it does not involve the number of paths Kp as one of its dimensions.
Instead, it directly maps OD demand to link flows, reducing computational
complexity. In real networks, the number of possible paths between each
OD pair is extremely large, making it impractical to enumerate or store all
paths explicitly. As a result, matrices P and R are typically not manipulated
directly; instead, computations rely on the assignment matrix Q, which pro-
vides a more scalable representation of the system.

The link-path indicence matrix is useds also to transform link costs into
the corresponding path costs. As discussed in Section 6.5, the total cost of a
path is simply the sum of the costs of the links it traverses. This transforma-
tion is efficiently expressed using the transposed link-path incidence matrix,
denoted as PT . Given the vector of link costs t, the path cost vector c is
computed as c = PT t.

192



The example below illustrates this transformation by applying the trans-
posed link-path incidence matrix to the link cost vector t:

c = PT t :



92
92
92
94
94
94
93
93
93


=



0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 1 1 0
0 1 0 1 0 0 1
0 0 1 0 1 0 1
0 1 0 0 1 1 1
1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 1 1 0





1
40
52
52
40
12
2



Each entry in the path cost vector c is obtained by summing the costs of
all links that belong to the corresponding path:

cp =
∑
ℓ

Pℓptℓ.

As discussed above, the number of available paths can be huge, making
direct manipulation of full matrices computationally inefficient. Therefore, it
is often useful to extract portions of the link-path incidence and route choice
matrices that correspond to a specific origin-destination (OD) pair. This
allows for focused computations and facilitates a more structured analysis of
how demand is distributed within individual OD pairs.

To achieve this, we introduce OD-specific submatrices. The OD-specific
link-path incidence matrix, denoted by Pq, consists of the columns of the full
link-path incidence matrix P that correspond to the paths available for OD
pair q. This extraction isolates the relevant connections between links and
paths for that particular OD pair. For example, in the case of OD pair 1 and
OD pair 3, we have:

P1 =



0 0 0
1 0 1
0 1 0
1 0 0
0 1 1
0 0 1
0 0 0


, P3 =



1 1 1
1 0 1
0 1 0
1 0 0
0 1 1
0 0 1
0 0 0


.

Similarly, we define the OD-specific route choice vector, denoted as Rq.
This vector consists of the subset of rows and the single column of the full
route choice matrix R that corresponds to OD pair q. This provides a direct
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representation of how travelers for a given OD pair distribute their demand
across available paths. For OD pairs 1 and 3, we have:

R1 =

1/3
1/3
1/3

 , R3 =

 0
1/2
1/2

 .

Once the OD-specific link-path incidence and route choice matrices have
been defined, they can be used to compute both the path flows and the path
costs for a given OD pair. These computations allow us to analyze how
demand is distributed among available routes and to determine the travel
costs associated with each route.

Path flows for a given OD pair q are computed using the OD-specific
route choice vector Rq. Given the OD demand fq, the path flow vector yq

is obtained as yq = Rqfq. This operation distributes the total OD demand
among the available paths based on the route choice proportions. For exam-
ple, the path flows for OD pairs 1 and 3 are computed as follows:

y1 =

 1
1
1

 =

1/3
1/3
1/3

 3, y3 =

 0
1
1

 =

 0
1/2
1/2

 2.

This formulation ensures that the sum of the path flows matches the total
OD demand while adhering to the route choice probabilities.

Similarly, path costs for OD pair q are computed using the transposed
OD-specific link-path incidence matrix (Pq)T . Given the link cost vector t,
the path cost vector cq is obtained as cq = (Pq)T t. This operation aggregates
the link costs along each path, providing the total cost incurred by travelers
using that path. For OD pair 1, this computation is illustrated as follows:

c1 =

 92
92
92

 =

0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 1 1 0




1
40
52
52
40
12
2


.

A fundamental behavioral assumption in traffic assignment is that each
traveler seeks to minimize their travel cost. This assumption implies that,
when faced with multiple available paths between an origin-destination (OD)
pair, travelers will choose the one with the lowest perceived cost.
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To formalize this idea, we define the minimum cost for OD pair q as:

c∗q = min
p

cqp, ∀q.

To provide a structured summary of the key notations introduced so far,
we present them in Table 8.4. This table organizes the different quantities
related to flow and cost across three levels of the transportation network:
individual links, complete paths, and origin-destination (OD) pairs.

Links Paths OD pair
Flow xℓ yp fq
Cost tℓ cp c∗q

Table 8.4: Summary of flow and cost notations at different levels of the network.

Individual links are characterized by their flow xℓ, representing the total
number of travelers using link ℓ, and their cost tℓ, which typically corresponds
to the travel time on the link. At the path level, we define the path flow yp,
which represents the number of travelers using path p, and the corresponding
path cost cp, computed as the sum of the costs of the links composing the
path. Finally, at the OD level, we introduce the OD demand fq, which
indicates the total number of travelers wishing to move between origin rq
and destination sq, as well as the minimum OD cost c∗q, representing the
lowest path cost available for OD pair q.

The concept of traffic equilibrium is formalized through a set of math-
ematical conditions that govern how travelers distribute themselves across
available paths in a network. These conditions ensure that no individual trav-
eler can reduce their travel cost by unilaterally changing their route choice,
leading to a stable and self-consistent assignment of traffic flows.

The first equilibrium condition states that for each OD pair q, the cost
of traveling on any path p must be at least as high as the minimum cost c∗q
associated with that OD pair:

cqp ⩾ c∗q, ∀q.

The second condition enforces the idea that travelers only use paths that
have the minimum cost. If a path p is used by travelers in OD pair q (i.e.,
yq
p > 0), then its cost must be equal to c∗q. If the path has a strictly higher

cost, then it must carry no flow. This condition is expressed mathematically
as:

yq
p(c

q
p − c∗q) = 0, ∀p,q.
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This condition guarantees that used paths have the lowest possible cost and
that no traveler would benefit from switching to another route.

The third condition ensures that the total demand for each OD pair is
fully assigned to the available paths:∑

p

yq
p = fq, ∀q.

This ensures that all travelers are accounted for and that there is no unallo-
cated demand in the system.

Finally, we impose the natural requirement that path flows cannot be
negative:

yq
p ⩾ 0, ∀p,q.

Since flow represents the number of travelers on a path, it must always be a
non-negative quantity.

Together, these four conditions define a traffic equilibrium state in which
travelers distribute themselves optimally according to the lowest available
travel cost.

8.4 Beckmann’s model

An alternative way to define traffic equilibrium is through an optimization
framework known as Beckmann’s model. This model formulates the equilib-
rium conditions as the solution to a convex optimization problem.

The objective function of Beckmann’s model is given by:

min
y

∑
ℓ

∫xℓ

0

tℓ(z)dz,

where the function tℓ(xℓ) is the link performance function, that provides the
travel cost on link ℓ as a function of its flow xℓ.

The optimization problem is subject to the following constraints:∑
p

yq
p = fq, ∀q, (demand conservation)

which ensures that all OD demand is assigned to available paths, and:

yq
p ⩾ 0, ∀p,q, (non-negativity of flows)

which guarantees that flows remain physically meaningful.
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Additionally, the link flows xℓ are defined in terms of the path flows
through the link-path incidence matrix P:

xℓ =
∑
p

Pℓpy
q
p, ∀ℓ,q.

For this optimization model to be valid, it must satisfy two key assump-
tions:

∂tℓ(xℓ)

∂xℓ
> 0, ∀ℓ, (increasing cost function)

which ensures that travel costs increase as congestion rises, and:

∂tℓ(xℓ)

∂xℓ ′
= 0, ∀ℓ ̸= ℓ ′.

This second assumption states that the cost on one link depends only on
its own flow and not on the flow of other links, meaning that links operate
independently in terms of congestion effects.

If these assumptions hold, then the optimal solution to the Beckmann
optimization problem corresponds to a user equilibrium. This result is sig-
nificant because it provides a mathematical foundation for traffic equilibrium
analysis, demonstrating that the equilibrium conditions can be derived from
a well-defined optimization problem. The convexity of the problem ensures
that an optimal solution exists and can be efficiently computed using nu-
merical methods, making it a powerful tool for transportation planning and
network analysis.

8.4.1 Example

To illustrate Beckmann’s model in a simple yet insightful way, we consider a
network with two parallel links connecting the same origin and destination.
The objective is to determine the equilibrium distribution of flow between
these two links, given their respective travel time functions.

The link performance functions for links 1 and 2 are given by:

t1(x) = 2+ x21, t2(x) = 4+ 2x22.

These functions indicate that the cost of travel increases as more users choose
a particular link, reflecting congestion effects.

Using Beckmann’s formulation, we define the objective function by inte-
grating the travel time functions:∫x1

0

t1(z)dz = 2x1 +
1

3
x31,
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∫x2

0

t2(z)dz = 4x2 +
2

3
x32.

The optimization problem is then formulated as:

min
x1,x2

2x1 +
1

3
x31 + 4x2 +

2

3
x32,

subject to the constraints:

x1 + x2 = 3, x1, x2 ⩾ 0.

To solve this problem, we express x2 in terms of x1 as x2 = 3−x1, substituting
it into the objective function:

f(x1) = 2x1 +
1

3
x31 + 4(3− x1) +

2

3
(3− x1)

3.

The first derivative is computed to find critical points:

f ′(x1) = 2+ x21 − 4− 2(3− x1)
2 = −x21 + 12x1 − 20.

Setting f ′(x1) = 0 leads to solving the quadratic equation:

−x21 + 12x1 − 20 = 0.

Solving for x1 gives two potential solutions, x1 = 2 and x1 = 10. Since
x1 = 10 is infeasible given the constraint x1+x2 = 3, the optimal solution is:

x1 = 2, x2 = 3− x1 = 1.

To determine that it corresponds to a minimum, we compute the second
derivative:

f ′′(x1) = −2x1 + 12.

Evaluating this at x1 = 2,
f ′′(2) = 8 > 0.

Since f ′′(2) > 0, x1 = 2 is a local minimum.
This result shows that, at equilibrium, 2 travelers choose link 1 while 1

traveler chooses link 2.
To further illustrate the optimization problem, Figure 8.10 presents a plot

of the objective function as a function of x1.
The x-axis represents the flow on link 1, denoted as x1, while the y-axis

represents the value of the objective function. The function is plotted over a
broader range of values for x1, but only the interval 0 ⩽ x1 ⩽ 3 is feasible, as
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Figure 8.10: Plot of the objective function as a function of x1. The feasible region is
restricted to 0 ⩽ x1 ⩽ 3, where the function is convex. The optimal solution is found
at x1 = 2.

dictated by the constraint x1 + x2 = 3 with non-negative flows. This feasible
region is indicated on the plot.

The function exhibits convexity over the feasible range, meaning that it
has a single minimum. This property ensures that the optimization problem
has a unique optimal solution, which corresponds to the equilibrium condi-
tion. The vertical dotted line marks the optimal value x1 = 2, confirming
that this is the point where the objective function is minimized.

8.4.2 Equivalence with equilibrium

To establish the equivalence between Beckmann’s optimization model and
the user equilibrium conditions, we begin by formulating the Lagrangian
function associated with the optimization problem. It is given by:

L(y; λ,µ) =
∑
ℓ

∫xℓ

0

tℓ(z)dz+
∑
q ′

λq ′(fq ′ −
∑
p ′

yq ′

p ′) −
∑
p ′

∑
q ′

µp ′q ′yq ′

p ′ .

Here, λq ′ are the Lagrange multipliers associated with the demand conser-
vation constraints, while µp ′q ′ are the multipliers associated with the non-
negativity constraints on path flows.

The necessary optimality conditions require that:

• Stationarity condition: The gradient of the Lagrangian with respect
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to each path flow variable yq
p must be zero:

∂L

∂yq
p

= 0, ∀p,q.

• Inequality constraints: The Lagrange multipliers associated with
non-negativity must satisfy:

µpq ⩾ 0, ∀p,q.

• Complementarity slackness: If a path is used, its associated La-
grange multiplier must be zero:

µpqy
q
p = 0, ∀p,q.

Next, we compute the derivatives of the objective function. The total
cost function is given by:

f(y) =
∑
ℓ

∫xℓ

0

tℓ(z)dz,

where the link flow xℓ is expressed in terms of the path flows:

xℓ =
∑
p

Pℓpy
q
p, ∀ℓ,q.

Taking the derivative of the objective function with respect to a path flow
yq
p gives:

∂f

∂yq
p

=
∑
ℓ

∂f

∂xℓ

∂xℓ

∂ypq

.

Since ∂f
∂xℓ

= tℓ(xℓ) and
∂xℓ

∂ypq
= Pℓp, we obtain:

∂f

∂yq
p

=
∑
ℓ

Pℓptℓ(xℓ).

By definition, the path cost cqp is the sum of the link costs weighted by the
incidence matrix:

cqp =
∑
ℓ

Pℓptℓ(xℓ).

Thus, the derivative of the objective function with respect to each path flow
corresponds exactly to the path cost cqp. This result plays a central role
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in proving the equivalence between the optimality conditions of Beckmann’s
model and the user equilibrium conditions.

Next, we compute the derivatives of the Lagrangian function with respect
to the path flows yq

p. The Lagrangian function is given by:

L(y; λ,µ) =
∑
ℓ

∫xℓ

0

tℓ(z)dz+
∑
q ′

λq ′(fq ′ −
∑
p ′

yq ′

p ′) −
∑
p ′

∑
q ′

µp ′q ′yq ′

p ′ .

Taking the derivative with respect to yq
p, we obtain:

∂L

∂yq
p

= cqp − λq − µpq.

The necessary optimality conditions require that the Lagrange multipliers
satisfy the non-negativity constraint:

µpq = cqp − λq ⩾ 0, ∀p,q.

This implies that the cost of using a path must be at least as large as the
equilibrium cost λq.

Finally, the complementarity slackness condition ensures that any path
carrying flow must have the minimum cost:

yq
p(c

q
p − λq) = 0, ∀p,q.

This means that if a path p carries positive flow, then its cost must be exactly
equal to λq. Conversely, if a path is not used (yq

p = 0), then it must have a
strictly higher cost than λq.

To establish the equivalence between the optimality conditions derived
from Beckmann’s model and the user equilibrium conditions, we simply need
to interpret the Lagrange multipliers in the optimization problem. Specifi-
cally, the Lagrange multiplier λq associated with the demand conservation
constraint for each OD pair q represents the minimum path cost at equilib-
rium. This interpretation allows us to directly relate the optimality condi-
tions of the optimization problem to the conditions required for user equilib-
rium.

The first condition states that the cost of using any path p within an OD
pair q cannot be lower than the minimum cost c∗q across all paths for that
OD pair. Mathematically, this is expressed as:

cqp ⩾ c∗q, ∀q.

This ensures that no path has a cost lower than the equilibrium cost and
follows naturally from the necessary optimality conditions of the optimization
problem.
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The second condition reinforces that only the paths with the minimum
cost can carry flow. If a path is used, meaning yq

p > 0, then its cost must be
exactly equal to c∗q. Conversely, if a path is not used, its cost must be strictly
greater than the minimum cost. This is captured by the complementarity
slackness condition:

yq
p(c

q
p − c∗q) = 0, ∀p,q.

The third condition ensures that the total demand for each OD pair is
fully assigned among the available paths:∑

p

yq
p = fq, ∀q.

This follows directly from the demand conservation constraint in the opti-
mization problem and guarantees that all travelers in the system are ac-
counted for.

Finally, the non-negativity condition states that all path flows must be
non-negative:

yq
p ⩾ 0, ∀p,q.

This ensures that the solution remains physically meaningful, as negative
flows do not make sense in a traffic assignment context.

These conditions are precisely the equilibrium conditions introduced ear-
lier, demonstrating that the optimal solution to Beckmann’s optimization
model corresponds exactly to a user equilibrium. This theoretical result pro-
vides a powerful justification for using optimization-based approaches to solve
equilibrium traffic assignment problems, as finding an optimal solution to the
mathematical program automatically yields a valid equilibrium distribution
of traffic flows.

A fundamental property of Beckmann’s optimization model is the unique-
ness of its solution in terms of link flows. This result follows from the strict
convexity of the objective function with respect to link flows. The function
to be minimized consists of integrals of the link cost functions, which, under
the standard assumption that link costs increase monotonically with flow,
ensures strict convexity. This property guarantees that the optimization
problem has a unique global minimum.

As a consequence, the equilibrium solution in terms of link flows is unique.
This means that, regardless of the specific path flows used to assign travelers
to the network, the total number of vehicles using each link will always be
the same at equilibrium.

However, the same uniqueness property does not extend to path flows.
Because multiple sets of path flows can result in the same link flow distri-
bution, there may be multiple valid equilibrium solutions in terms of route
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choice. That is, different groups of travelers may distribute themselves among
alternative routes in different ways while still satisfying the equilibrium con-
ditions.

8.5 Algorithm

One of the key challenges in solving the traffic assignment problem is the
complexity associated with the path-based formulation. In theory, one could
define the problem in terms of path flows, where each traveler is explicitly
assigned to a specific route. However, this approach becomes computation-
ally infeasible for real-world networks due to the sheer number of possible
paths. The number of paths between an origin and a destination grows ex-
ponentially with the number of nodes in the network, making it impossible
to enumerate and store all potential routes explicitly.

This issue is reminiscent of the computational challenges encountered in
shortest path problems. In large transportation networks, listing all possible
routes between nodes is impractical, which is why efficient algorithms such
as Dijkstra’s algorithm are used to determine the shortest path dynamically
rather than relying on precomputed route lists. The same principle applies
to the traffic assignment problem: instead of working with an exhaustive
enumeration of paths, we employ algorithms that dynamically compute paths
as needed, ensuring computational feasibility.

In practice, solution methods for the traffic assignment problem rely on
iterative procedures that update path flows based on travel times, progres-
sively adjusting the assignment until an equilibrium is reached. These algo-
rithms typically incorporate shortest path computations to identify the most
efficient routes at each iteration.

The algorithm for solving the traffic assignment problem is structured as
follows:

Initialization Start with an empty network.

• Set initial link costs to their free-flow values: tℓ(0).

• Compute initial link flows using an all-or-nothing assignment: x0.

• Set iteration counter k = 0.

Step 1 Update link costs based on current flows:

tkℓ = tℓ(x
k), ∀ℓ.
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Step 2 Compute new link flows using an all-or-nothing assignment:

x̃k = All-or-Nothing(tk).

Step 3 Perform a line search to determine the step size:

xk+1 = xk + α(x̃k − xk), 0 ⩽ α ⩽ 1,

where α is obtained by solving:

min
α

∑
ℓ

∫xk+1
ℓ

0

tℓ(z)dz.

Step 4 Check convergence. If not converged, return to Step 1.

The algorithm starts with an initialization step, where all link flows are
initially set to zero, and the travel costs are assigned their free-flow values.
At this stage, an all-or-nothing assignment is performed, meaning that all
travelers select the shortest path based on the free-flow link costs, without
considering congestion. This produces an initial set of link flows, denoted as
x0, and the iteration counter is set to k = 0.

In Step 1, the algorithm updates the travel costs based on the current
traffic conditions. Since travel times typically increase with congestion, this
step ensures that the costs used in subsequent iterations reflect the congestion
levels at iteration k. The updated costs are computed as tkℓ = tℓ(x

k) for each
link ℓ.

Step 2 involves reassigning traffic using an all-or-nothing assignment
based on the updated link costs. Each traveler selects the shortest avail-
able route under the current cost conditions, generating a new set of link
flows, denoted as x̃k. This step models how travelers respond to changing
traffic conditions by choosing the best available paths.

Step 3 introduces a line search to ensure smooth convergence. Instead
of fully adopting the newly computed flow vector x̃k, the algorithm updates
the flows as a weighted combination of the previous and new flow estimates.
The parameter α, which determines how much of the new assignment is
incorporated, is chosen to minimize the total system travel cost, ensuring
numerical stability and efficient convergence.

Finally, in Step 4, the algorithm checks whether the solution has stabi-
lized. Convergence is typically assessed by measuring the difference between
successive iterations of link flows. If the changes are small enough, the pro-
cess terminates, indicating that an equilibrium assignment has been reached.
If convergence is not achieved, the algorithm returns to Step 1 and continues
iterating until equilibrium conditions are met.
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8.5.1 Example

To illustrate the first iteration of the algorithm, we consider an example of an
all-or-nothing assignment on an empty network. The initial flow assignment
is determined based on the shortest paths when no congestion is present.
Figure 8.11 provides a visual representation of this process.
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Figure 8.11: All-or-nothing assignment on an empty network.

In this representation, the orange arrows indicate where the demand en-
ters and exits the network. These correspond to the origins and destinations
of the OD pairs. Each link in the network is associated with a flow value xℓ
and a corresponding travel cost tℓ, which initially reflects free-flow conditions.

The all-or-nothing assignment results in flows only on the shortest paths,
shown as thick green arcs in the figure. Since no congestion effects are con-
sidered in this initial step, all travelers choose the shortest available routes
based solely on the free-flow travel times. Dotted arcs represent alternative
links that are not used in this assignment, as they correspond to longer paths
under the current travel cost conditions.

From the flow assignment in Figure 8.11, we can derive the path costs for
each OD pair, which correspond to the travel time on the used paths:

c∗11 = 10, c∗12 = 12, c∗21 = 11.

These values indicate the minimum travel times experienced by travelers in
each OD pair before any congestion effects are introduced.

After performing the initial all-or-nothing assignment, the next step in the
iterative algorithm updates the link costs based on the newly assigned flows.
As congestion begins to develop, these updated costs reflect the increased
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travel times on links that experience higher traffic volumes. Figure 8.12
illustrates the network with these revised link costs.
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Figure 8.12: Updated link costs after the first iteration.

In this updated network representation, the structure remains the same,
but the travel times on certain links have changed due to increased conges-
tion. The link costs are now computed based on the assigned flow values.
For instance, the cost on link x1 has increased significantly, reaching t1 = 60.
These updated costs will influence the next iteration of the assignment pro-
cess, as travelers will now reassess their route choices based on these revised
values.

A new all-or-nothing assignment is performed based on the shortest paths
with the revised travel times. Figure 8.13 illustrates the new flow assignment.

In this new assignment, the updated shortest paths are determined by
the revised travel costs. The most significant change is the avoidance of link
x1, which now has a high cost of t1 = 60. Instead, travelers who previously
used this link have rerouted through alternative paths.

The new flow assignment results in a redistribution of traffic across the
network. The shortest path calculations now lead to the selection of paths
through the north, with flows reallocated accordingly. The dotted links in
the figure represent those that are no longer used. The resulting path costs
for each OD pair are:

c∗11 = 110, c∗12 = 112, c∗21 = 111.

To illustrate the line search step in the iterative optimization process,
Table 8.5 presents the flow evolution for each arc.
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Figure 8.13: All-or-nothing assignment with updated costs.

Arc First flow Second flow Convex combination
0 2 2 2 + α (2-2) = 2
1 6 0 6 + α (0-6) = 6 - 6α
2 0 6 0 + α(6-0) = 6α
3 0 0 0 + α(0-0) = 0
4 6 6 6 + α(6-6) = 6
5 6 0 6 + α (0-6) = 6 - 6α
6 1 1 1 + α (1-1) = 1

Table 8.5: Convex combination of two successive all-or-nothing assignments.

The first column represents the arc number, which identifies each link in
the network. The second column shows the flow assigned to each arc after
the first all-or-nothing assignment, which follows the initial shortest path
selection. The third column indicates the flow assigned to each arc after
the second all-or-nothing assignment, reflecting the updated shortest paths
based on the revised link costs.

The last column expresses the convex combination of the two flow assign-
ments as a function of the step-size parameter α. This parameter determines
the weight given to each of the two flow configurations. For arcs where the
two assignments are identical (such as arcs 0, 3, 4, and 6), the convex com-
bination remains constant. However, for arcs where the flow has changed
between the two iterations (such as arcs 1, 2, and 5), the convex combina-
tion interpolates between the two values, adjusting the flow assignment in a
controlled manner.

To further analyze the impact of the step-size parameter α on the opti-
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mization process, we illustrate the value of the objective function as a func-
tion of α in Figure 8.14. The x-axis represents α, which determines the
weight given to the new flow assignment in the convex combination. The y-
axis represents the value of the objective function, measuring the total travel
cost in the network.
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Figure 8.14: Value of the objective function as a function of α.

As α varies, the objective function exhibits a convex behavior, indicating
that there exists a unique optimal value that minimizes the total cost. Since
α represents a convex combination of the previous and updated flow assign-
ments, its feasible range is restricted between 0 and 1. A value of α = 0
corresponds to retaining the previous assignment, while α = 1 fully adopts
the new assignment computed from the all-or-nothing step.

The optimal step size, denoted as α∗, is determined by identifying the
value that minimizes the objective function. In this case, the optimal value
is found to be α∗ = 0.361.

The updated link flows, computed using the optimal step size α∗ = 0.361,
are illustrated in Figure 8.15. This figure represents the network after ap-
plying the convex combination step, incorporating a weighted adjustment of
the previous and newly computed flows.

The updated flows are computed using the convex combination formula:

xk+1
ℓ = xkℓ + α(x̃kℓ − xkℓ ),

where xkℓ represents the link flows from the previous iteration, and x̃kℓ rep-
resents the new all-or-nothing assignment. For example, considering link 5,
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Figure 8.15: Updated link flows after applying the convex combination step.

the initial flow from the first all-or-nothing assignment was 6, while the sec-
ond assignment yielded a flow of 0. Applying the convex combination with
α∗ = 0.361 results in the updated flow:

x5 = 6+ 0.361(0− 6) = 6− 2.166 = 3.83.

To illustrate the convergence of the algorithm, we report in Table 8.6 the
values of the step size α at each iteration, along with the corresponding value
of the objective function.

Iteration α Objective function
0 442.00
1 0.361 413.83
2 0.309 391.72
3 0.0885 390.67
4 0.0538 390.31
5 0.0358 390.15
6 0.0249 390.08
7 0.0179 390.04
8 0.0131 390.02
9 0.00967 390.01
10 0.00722 390.01
11 0.00544 390.00

Table 8.6: Values of α and the objective function at each iteration.

As observed in the table, the initial step size is relatively large, allowing for
a significant reduction in the objective function. However, as the iterations
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progress, the step size decreases, reflecting the refinement of the solution as
the algorithm converges toward the optimal flow pattern. By iteration 11,
the objective function has stabilized at 390.00. The iterative process has
reached equilibrium.
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Figure 8.16: Link flows at equilibrium and corresponding travel times.

Figure 8.16 illustrates the flow on each link along with the corresponding
travel times at equilibrium.

The level of service is commonly assessed through the average travel time
experienced by all travelers in the system. It represents the expected time a
traveler would spend on the network, taking into account both the individual
path costs and the number of travelers using each path.

The average travel time is computed as a weighted mean of the path
costs, where the weights correspond to the demand assigned to each origin-
destination pair. It is given by:

c̄ =
1∑
q fq

∑
q

fqc
∗
q

where fq represents the total demand between origin-destination pair q, and
c∗q is the minimum travel cost experienced by travelers for that OD pair.
Using the values from the figure, we compute:

c̄ =
1

6
(92 · 3+ 94 · 1+ 93 · 2) = 92.7.

This value reflects the overall efficiency of the network and the congestion
effects induced by the distribution of flows. A lower average travel time typ-
ically indicates a better-performing network, whereas higher values suggest
congestion and inefficiencies.
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8.6 Braess paradox

We now investigate a scenario where the tunnel under the city, represented
by link 5, is removed. The expectation is that this would reduce network
capacity and thus degrade the level of service, leading to an increase in av-
erage travel times. However, the computed equilibrium results reveal an
unexpected outcome: the average travel time has actually decreased.
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Figure 8.17: Equilibrium flows and travel times after removing link 5.

Before the removal of link 5, the average travel time was 92.7 minutes.
After its removal, the recalculated mean travel time is:

c̄ =
1

6
(83 · 3+ 85 · 1+ 84 · 2) = 83.7.

This paradoxical result suggests that the presence of the removed link may
have induced suboptimal route choices, leading to congestion and inefficien-
cies. By eliminating link 5, travelers are forced to redistribute across the
remaining network, and the new flow patterns result in a more balanced
utilization of available routes.

This phenomenon is an illustration of Braess’s paradox, a counterintuitive
phenomenon in transportation networks where adding extra capacity to a
network, such as building a new road, can lead to increased overall travel
times rather than reducing congestion. Conversely, removing a road from
the network can sometimes improve overall travel times for all users, like in
our example.

At first glance, this seems paradoxical. One would naturally expect that
increasing the number of available routes would provide more choices for
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travelers, thereby reducing congestion and improving efficiency. However,
under certain conditions, individual users acting in their own self-interest
— each choosing the shortest perceived travel time — can lead to a new
equilibrium where everyone is worse off.

From a practical standpoint, Braess’s paradox is not merely a theoretical
curiosity. It has been observed in real-world transportation networks, where
new road constructions or capacity expansions have, in some cases, resulted
in increased congestion. Similarly, traffic restrictions, such as pedestrian-
izing certain streets or implementing road closures, have sometimes led to
improved traffic conditions, as drivers are forced to redistribute their routes
more efficiently.

One real-world occurrences of Braess’s paradox took place in Stuttgart in
1968 (Knödel, 1969). The event unfolded in the central area of Schlossplatz,
where a new road network was introduced with the intention of improving
traffic flow and reducing congestion. However, instead of alleviating the
situation, the network expansion led to severe disruptions and unexpected
traffic chaos.

The increased road capacity initially seemed like a logical improvement,
as it provided additional routing options for drivers. However, as travelers
adjusted their routes based on their individual preferences — each seeking to
minimize personal travel time — the overall equilibrium of the system shifted
in an unintended way. The redistribution of traffic flow actually increased
congestion, resulting in longer travel times for most users.

In response to this unexpected deterioration in traffic conditions, the
city of Stuttgart took an unconventional yet effective measure: it decided
to close Königstrasse, a key road in the network. Counterintuitively, rather
than making congestion worse, this intervention improved traffic conditions.
The closure effectively removed an inefficient routing option, forcing vehicles
to redistribute more optimally across the remaining network. As a result,
travel times decreased, and the overall performance of the system improved.

Another interesting real-world occurrence of Braess’s paradox took place
in New York City in 1990 (Kolata, 1990). The event was triggered by the
celebration of Earth Day on April 22, during which authorities decided to
close 42nd Street, a major thoroughfare in Manhattan. Given the high traffic
volume typically observed in this area, many expected the closure to cause
severe congestion throughout the surrounding network. Some even referred
to the day as doomsday for New York’s traffic.

At first glance, the logic seemed straightforward: removing such an im-
portant road from the network would force more vehicles onto the remaining
streets, leading to bottlenecks and longer travel times. Concerns were so high
that transportation experts publicly speculated about potential gridlock. A
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widely cited comment at the time emphasized this expectation: “You didn’t
need to be a rocket scientist or have a sophisticated computer queuing model
to see that this could have been a major problem.”

However, contrary to all predictions, the traffic situation actually im-
proved following the closure. Observers noted that travel times on alternative
routes were lower than expected, and congestion did not worsen significantly.
In fact, many commuters experienced smoother flows than on a typical day.
The paradoxical effect can be explained by the fact that closing 42nd Street
altered the way drivers made route choices, eliminating inefficient paths and
leading to a more balanced and effective use of the overall network.

The Cheonggyecheon restoration project in Seoul, initiated in 2003, pro-
vides a third real-world example of the Braess Paradox (Baker, 2009). The
project involved dismantling an elevated six-lane highway that had been con-
structed over the Cheonggyecheon stream in the 1970s. This highway was
originally built to accommodate increasing car traffic in the rapidly growing
city. However, over time, congestion worsened, and concerns about environ-
mental degradation and urban livability became more pressing.

The decision to remove the highway and restore the stream was met with
considerable skepticism. Many transportation experts and local residents
feared that eliminating such a critical infrastructure element would result
in severe congestion and disrupt mobility in central Seoul. The prevailing
assumption was that reducing road capacity would inevitably increase travel
times, leading to gridlock.

Contrary to these expectations, the removal of the highway did not cre-
ate traffic chaos. Instead, the overall traffic conditions in the city improved.
Several factors contributed to this surprising outcome. First, the city gov-
ernment implemented complementary policies, including improvements to
public transportation and traffic management strategies, which encouraged
commuters to shift from private cars to buses and subways. Second, the re-
distribution of traffic across the network led to a more efficient use of existing
roads, as drivers adapted their routes in response to the changes. Finally, the
reduction in road capacity altered travel behavior, discouraging unnecessary
car trips and promoting alternative modes of transport.

8.7 The prisonner dilemma

A key insight from the Braess Paradox is that traffic inefficiencies arise be-
cause travelers make decisions based on their own individual travel times
rather than considering the impact of their choices on the entire network.
In a non-cooperative setting, each traveler selects what appears to be the
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shortest route for themselves, often leading to suboptimal outcomes for the
system as a whole. If travelers could be convinced to make route choices that
benefit the entire network, rather than just minimizing their personal travel
time, the overall performance of the network could improve.

Figure 8.18 illustrates a hypothetical scenario where travelers are encour-
aged to avoid using the tunnel, which was previously a major contributor to
network congestion. In this scenario, no vehicles use the tunnel, and instead,
traffic is redistributed among the remaining routes. The network’s overall
level of service improves. The total travel time experienced by travelers is
reduced, even though a major road remains available but unused.
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Figure 8.18: Hypothetical scenario where travelers are convinced to avoid the tunnel,
leading to an overall improvement in network performance.

In this scenario, if travelers could collectively agree to avoid the tunnel,
the overall travel time in the network would decrease, benefiting everyone.
However, despite the clear advantage of cooperation, individuals tend not to
coordinate spontaneously. This phenomenon can be explained through the
well-known Prisoner’s Dilemma, a fundamental concept in game theory.

The Prisoner’s Dilemma describes a situation in which two individuals,
Joe and Averell, have been arrested. They are suspected of committing a
major robbery, but the authorities lack sufficient evidence to convict them.
However, they do have evidence of a minor robbery, for which both would
receive a light sentence of one year in prison. The two prisoners are separated
and cannot communicate with each other. Each is presented with the same
choice: they can either remain silent or betray the other by confessing to the
major robbery.

The consequences of their decisions are as follows:
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• If both remain silent, they will each serve only 1 year in prison, as the
authorities can convict them only for the minor crime.

• If both betray each other, they each receive a sentence of 2 years, as
their confessions provide sufficient evidence for the major crime.

• If one prisoner betrays the other while the other remains silent, the
betrayer is set free, while the betrayed prisoner receives the maximum
sentence of 3 years.

The optimal strategy for the prisoners can be understood by analyzing all
possible outcomes of their decisions. Table 8.7 presents the different scenarios
that can arise based on whether Joe and Averell choose to remain silent or
betray the other.

Table 8.7: Possible outcomes in the Prisoner’s Dilemma

Decision Penalty
Joe Averell Joe Averell Total penalty
Silent Silent 1 1 2
Silent Betray 3 0 3
Betray Silent 0 3 3
Betray Betray 2 2 4

The table lists all four possible combinations of decisions and the corre-
sponding penalties for each prisoner. The key observation is that when both
prisoners remain silent, they each receive only one year in prison, resulting
in a total penalty of 2 years. This is the lowest possible total penalty across
all scenarios, making it the globally optimal outcome.

However, from an individual perspective, betraying the other always
seems like the best option. To fully understand why, we must examine the
problem from the perspective of each individual. Each prisoner must make
their decision in isolation, without knowing what the other will choose. Their
reasoning follows a logical analysis of the possible outcomes.

Consider first Joe’s perspective. He knows that Averell can either stay
silent or betray him. If Averell stays silent, Joe has two choices: he can also
stay silent, in which case he will receive a 1-year prison sentence, or he can
betray Averell and go free. Clearly, betraying is the better option in this
scenario. Now, suppose instead that Averell betrays Joe. In this case, if
Joe stays silent, he will receive the maximum penalty of 3 years in prison.
However, if he also betrays Averell, his sentence is reduced to 2 years. Once
again, betraying is the better choice. The important observation is that,
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regardless of what Averell chooses to do, Joe’s best strategy is always to
betray.

Now, let us examine the problem from Averell’s perspective. His rea-
soning follows exactly the same logic. If Joe stays silent, Averell can either
remain silent and serve 1 year in prison or betray Joe and go free. The best
choice, from his perspective, is to betray. If Joe betrays him, Averell faces
a choice between remaining silent, which results in a 3-year sentence, or be-
traying Joe and serving only 2 years. Again, betrayal is the better option.
Just like Joe, Averell is always better off betraying, regardless of what Joe
does.

This is the essence of the Prisoner’s Dilemma: when each individual acts
in their own self-interest, they both end up in a situation that is worse than
if they had cooperated. Even though both prisoners would have been better
off by remaining silent, rational decision-making from an individual stand-
point leads them to betray. This non-cooperative behavior is what ultimately
results in the worst collective outcome.

The same logic applies to travelers choosing their routes in the network.
Each traveler aims to minimize their own travel time without considering
the impact on others. If avoiding the tunnel would improve travel times for
everyone, the optimal outcome would be for all travelers to avoid using it.
However, each traveler sees an individual advantage in taking the tunnel,
hoping that others will choose an alternative route. If all travelers think this
way, congestion increases, and the network performs worse than if coopera-
tion had taken place.

This analogy illustrates why spontaneous cooperation rarely occurs in
transportation systems: individuals act in their self-interest, leading to sub-
optimal outcomes for the group. This provides an important justification for
policy interventions, such as tolls, access restrictions, or incentives for alter-
native transportation modes, to guide users toward more efficient network
usage.

8.8 System optimum

In the context of traffic assignment, the distinction between user equilib-
rium and system optimum is fundamental in understanding how individual
decision-making differs from centrally coordinated traffic management. Both
concepts arise from the same network structure and demand conditions but
lead to different flow distributions and overall system performance.

The user equilibrium corresponds to the situation in which every trav-
eler selects their route independently, seeking to minimize their own travel
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time. As we have seen in Section 8.4, this is captured mathematically by the
following optimization problem:

y∗ = argminy

∑
ℓ

∫xℓ

0

tℓ(z)dz

subject to the constraints: ∑
p

yq
p = fq, ∀q,

yq
p ⩾ 0, ∀p,q.

This formulation ensures that all users make their choices based on personal
optimization, leading to a Nash equilibrium, where no traveler can unilater-
ally switch to a different path and achieve a lower travel time. If x∗ denotes
the vector of link flows corresponding to the user equilibrium path flow y∗,
the total cost for all users is

c∗ =
∑
ℓ

x∗ℓtℓ(x
∗
ℓ)

In contrast, the system optimum represents the best possible traffic as-
signment from the perspective of minimizing total system-wide travel time.
Instead of individual travel time minimization, the goal is to minimize the
overall cost of congestion by optimizing flows across all links. The corre-
sponding mathematical formulation is:

ỹ∗ = argminy

∑
ℓ

xℓtℓ(xℓ)

subject to the same constraints:∑
p

yq
p = fq, ∀q,

yq
p ⩾ 0, ∀p,q.

Here, rather than integrating the travel time function, the objective function
directly sums the total cost experienced on each link, weighted by its flow.
This results in a flow pattern that minimizes total system congestion, rather
than ensuring that each individual has no incentive to change their route.
If x̃∗ denotes the vector of link flows corresponding to the system optimum
path flow ỹ∗, the total cost for all users is

c̃∗ =
∑
ℓ

x̃∗ℓtℓ(x̃
∗
ℓ).
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The ratio between the total costs associated with these two solutions,
represented by c∗/c̃∗, is known in game theory as the price of anarchy
(Papadimitriou, 2001). From an engineering point of view, the difference
between the two, c∗ − c̃∗ quantifies the inefficiency introduced by decentral-
ized, selfish decision-making in contrast to an optimally coordinated traffic
assignment. Indeed, user equilibrium leads to higher total travel costs than
the system optimum, because travelers do not take into account the exter-
nalities their choices impose on others. This gap highlights the potential
benefits of traffic management policies, such as congestion pricing or routing
incentives, which aim to reduce the inefficiencies inherent in self-interested
decision-making.

From an engineering perspective, traffic management is not only about
observing travel patterns but actively shaping the transportation system to
achieve better efficiency and reliability. Engineers’s role is the design, mainte-
nance, and operation of networks to ensure their functionality under increas-
ing demand. Their primary objective is to minimize the price of anarchy,
reducing the inefficiencies that arise when individual decisions do !not align
with system-wide optimal performance. The benchmark for assessing these
efforts is the system optimum, which represents the best overall state of traffic
flow in terms of minimizing total travel costs.

To move towards the system optimum, engineers rely on two main types
of interventions: supply-based and demand-based approaches. Supply-based
measures include direct control strategies such as traffic lights, speed limits,
and other regulations enforced by law. These measures are designed to shape
traffic flow and prevent congestion in an orderly manner. Advanced control
strategies, such as those studied in traffic flow theory, can further optimize
network performance by dynamically adjusting traffic signals or implement-
ing adaptive speed regulations.

On the other hand, demand-based approaches aim to influence traveler
behavior through information, incentives, and pricing mechanisms. Unlike
supply-based measures, compliance with these strategies is not always guar-
anteed, as travelers may choose not to follow recommendations or may react
unpredictably to incentives. Congestion pricing is a well-known example of a
demand-based intervention, where travelers are charged based on road usage
to encourage a more efficient distribution of trips across time and space.

While system optimum represents a desirable state for the average trav-
eler, its implementation must also consider broader societal factors. In some
cases, achieving the system optimum may mean that a subset of travelers
experiences a worse outcome, even if the majority benefits. As a result, poli-
cymakers and engineers must also consider concepts like equity and minimum
level of service, ensuring that solutions do not disproportionately disadvan-
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tage certain groups.
Thus, the engineering approach to traffic management requires balancing

efficiency with fairness. While the goal is to align individual decision-making
with system-wide benefits, the challenge lies in implementing strategies that
optimize network performance while maintaining an acceptable level of ser-
vice for all users.

8.9 Summary

The study of traffic assignment provides fundamental insights into how trav-
elers distribute themselves across a transportation network and the conse-
quences of their individual decisions. One of the central concepts in this
analysis is user equilibrium, a condition where no traveler can unilaterally im-
prove their travel time by choosing an alternative route. At equilibrium, all
used paths between a given origin-destination pair have the same travel cost,
ensuring that no individual traveler has an incentive to switch routes. Con-
versely, paths that are not used have higher costs, making them unattractive
to travelers. This condition can be formulated as an optimization problem,
which allows for systematic analysis and computation of equilibrium states.

A particularly surprising result in traffic assignment is known as Braess
paradox, which demonstrates that increasing the capacity of a network does
not always lead to better overall performance. In some cases, adding a new
road link can induce travelers to behave in a way that increases conges-
tion, ultimately deteriorating the level of service for all users. Conversely,
removing a link from the network may lead to an improved distribution of
traffic, reducing total travel time. This paradox highlights the complex and
often counterintuitive nature of network dynamics, emphasizing that more
infrastructure does not necessarily translate into better traffic conditions.

Beyond individual decision-making, another critical concept in traffic
management is the system optimum, which represents the most efficient use
of the network from a societal perspective. Achieving this state requires
cooperation among travelers, as opposed to each traveler acting purely in
their self-interest. However, such cooperation does not arise naturally in de-
centralized systems. This challenge can be understood through the lens of
the prisoner’s dilemma, where individuals acting in their own best interest
produce an outcome that is suboptimal for everyone. In the context of traf-
fic, reaching the system optimum often requires external intervention, such
as congestion pricing, incentives, or regulatory measures, to align individual
decisions with the collective good.

From an engineering perspective, achieving system-optimal conditions is a
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primary objective. Engineers and policymakers must carefully design strate-
gies that mitigate the inefficiencies of user equilibrium while ensuring fair
and effective traffic management. By understanding the interplay between
individual choices and network-wide performance, traffic assignment models
provide a foundation for developing solutions that enhance mobility, reduce
congestion, and improve overall transportation efficiency.

8.10 The four step model: a summary
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Figure 8.19: The four-step model structure: data, models, and behavioral choices.

The four-step model is a traditional framework used for predicting travel
demand and analyzing transportation systems. It is structured around a
sequence of interdependent steps, each representing a different decision that
travelers make. The process is data-driven, relies on mathematical models,
and aims to capture behavioral choices at various levels.

Figure 8.19 illustrates the structure of the four-step model. The figure
is divided into three main sections. On the left, it displays the data used
as inputs for each step. In the middle, it presents the models that describe
traveler behavior. On the right, it outlines the choices travelers make at each
step.

The first step, trip generation, estimates the number of trips produced
and attracted by different zones based on socio-economic characteristics, and

220



land use. This step relies on data such as demographic distributions and land
use statistics.

The second step, trip distribution, determines the destinations of trips.
Given the number of trips generated in each zone, it predicts where these
trips will be directed, forming an origin-destination (OD) table. This step
incorporates observed travel patterns from surveys and roadside interviews
and traffic counts to ensure consistency with real-world behavior.

The third step, mode choice, assigns each trip to a specific transportation
mode, such as car, public transit, walking, or cycling. This stage is influenced
by factors such as cost, travel time, convenience, and personal preferences.
Choice models, often estimated from revealed and stated preference surveys,
are used to capture the decision-making process.

The fourth step, traffic assignment, determines the specific routes taken
by travelers based on the network conditions and level of service. It simu-
lates how trips distribute across the network and computes travel times on
individual links, considering congestion effects.

A fundamental feature of the four-step model is its iterative nature. The
final outcome, the level of service experienced on the network, influences
each step in the process. If congestion increases, it alters trip distribution,
mode choice, and even trip generation, requiring recalibration of earlier steps.
This feedback loop ensures that the model remains consistent with real-
world travel behavior and allows for the evaluation of different transportation
policies and infrastructure scenarios.
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Chapter 9

Congestion pricing

Congestion is a complex social problem that affects the quality of life in
urban areas around the world. It leads to longer travel times, increased
fuel consumption, elevated pollution levels, and overall inefficiency in the
transportation system. Traditional planning approaches, such as building
more roads or expanding infrastructure, have often proven insufficient or
even counterproductive due to induced demand.

An alternative approach, rooted in economic principles, is to create incen-
tives that influence individual behavior without prescribing specific actions.
The idea is not to dictate how people should travel, but rather to modify the
context in which they make travel decisions, allowing them to adapt in ways
that work best for them individually. This approach forms the philosophical
foundation of congestion pricing.

Congestion pricing refers to a set of pricing mechanisms designed to
charge users of public infrastructure — particularly roads — for the neg-
ative externalities they generate during peak periods, when demand exceeds
supply. In simple terms, it aims to internalize the social cost of congestion
by making travelers face a monetary cost that reflects the impact of their
travel decisions on others. By doing so, it discourages unnecessary trips, en-
courages the use of alternative modes or off-peak travel, and ultimately leads
to a more efficient use of the transport system.

This concept has been implemented in several cities worldwide, beginning
with Singapore in 1975. London introduced a congestion charge in 2003,
followed by Stockholm in 2006 and Milan in 2008, among others.

The city of Stockholm provides an instructive and well-documented ex-
ample of congestion pricing in practice. It demonstrates not only the effec-
tiveness of such a policy in reducing traffic congestion, but also the political,
technical, and social challenges involved in its implementation.

The congestion pricing scheme in Stockholm was first introduced on a trial
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Figure 9.1: Cordon around Stockholm

basis between January 3 and July 31, 2006. This pilot phase was designed to
test the practical aspects of the system and to evaluate its effects on traffic
patterns, public transport usage, environmental impact, and public opinion.
The trial was monitored closely and accompanied by extensive data collection
and analysis.

Following the trial period, political opponents of the congestion charges
insisted on a referendum to determine whether the scheme should become
permanent. The vote was held in August 2006. The results highlighted a
clear geographical divide in public opinion: within the city of Stockholm
itself, a majority of voters supported the charges, whereas voters in the sur-
rounding municipalities were predominantly opposed. Despite the mixed
results, the decision was ultimately made to reinstate the charges on a per-
manent basis. This reintroduction took place in August 2007, marking the
beginning of Stockholm’s full-scale, long-term congestion pricing policy (see
Börjesson et al., 2012).

The structure of the Stockholm system is relatively straightforward. A
toll cordon surrounds the inner city (see Figure 9.1), and vehicles are charged
each time they cross this boundary. The pricing is time-dependent, reflecting
the intensity of congestion throughout the day. The system sas installed with
the following configuration. During peak hours—defined as 7:30 to 8:30 in
the morning and 16:00 to 17:30 in the afternoon—the charge is set at 2 euros.
In the periods just before and after the peaks, the fee is slightly reduced to
1.5 euros. During the rest of the day, the charge drops to 1 euro, while no
toll is applied at all between 18:30 in the evening and 6:30 in the morning.

To ensure fairness and avoid excessive charges for frequent travelers, the
system includes a cap on daily payments. Regardless of the number of entries
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Figure 9.2: Average Daily Traffic volumes

and exits across the cordon, no driver is required to pay more than 6 euros per
day. This helps mitigate concerns about the financial burden on commuters
while preserving the incentive structure of the policy.

The introduction of congestion pricing in Stockholm had an immediate
and measurable impact on traffic patterns within the city. Shortly after
implementation, the number of vehicles entering the inner city dropped by
approximately 20% (see Figure 9.2, extracted from Eliasson, 2012). This
substantial reduction in car traffic occurred almost overnight, demonstrating
the effectiveness of price signals in influencing travel behavior. The decrease
was not the result of any major infrastructural changes or coercive restric-
tions, but simply of introducing a cost to what had previously been a free
resource: access to the congested city center during peak hours.

This raises the natural question: where did all those cars go? Some
travelers chose to cancel non-essential trips altogether, while others modified
their travel behavior in different ways. A portion of drivers changed their
destination, opting for locations outside the toll cordon. Others shifted to al-
ternative modes of transport, such as public transit, cycling, or walking. Still
others adjusted their departure times to avoid the most expensive time slots.
Each of these behavioral adaptations contributed to the overall reduction
in congestion, and importantly, they emerged organically in response to the
pricing structure, without requiring direct intervention or micromanagement
from authorities.

Public perception of the congestion pricing scheme also evolved signif-
icantly over time. At the outset of the trial, support for the policy was
relatively low. Approximately 30% of the population viewed it favorably,
while the majority remained skeptical or outright opposed. However, as the
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Figure 9.3: Evolution of public support

benefits became more apparent — less traffic, shorter travel times, and im-
proved air quality — public opinion shifted dramatically. By the time the
system was reintroduced permanently in 2007, support had effectively re-
versed, with around 70% of residents in favor of the charges (see Figure 9.3).
This reversal is a compelling illustration of how experiential evidence can
transform attitudes toward controversial policies.

Despite its success, the congestion pricing policy in Stockholm was not
without its critics. Opponents expressed concern that the scheme amounted
to yet another tax imposed on citizens. Others raised issues of social equity,
arguing that the charges could disproportionately affect low-income individ-
uals who might not be able to afford the tolls. There were also doubts about
the long-term effectiveness of the policy, as well as questions regarding the
use of the revenue generated. Some feared that the policy would merely
displace congestion to surrounding areas rather than eliminate it.

Over time, however, the evidence has pointed toward sustained positive
effects. The initial reduction in traffic not only persisted but even increased
slightly in the years following implementation. This suggests that the changes
in behavior were not merely temporary reactions but more lasting adjust-
ments. Additionally, the congestion pricing policy stimulated a notable in-
crease in the adoption of environmentally friendly vehicles. Until the end
of 2008, cars powered by alternative fuels were exempted from the charge,
which provided a clear incentive for cleaner vehicle choices and contributed
to broader environmental objectives.
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In summary, the Stockholm example offers a powerful case study of how
a carefully designed congestion pricing policy can reduce traffic congestion,
shift travel behavior, and even reshape public opinion. It also highlights
the importance of monitoring, transparency, and adaptability in the face of
legitimate concerns about equity and effectiveness.

9.1 System optimum

Behind the practice of congestion pricing lies an economic theory grounded
in the concept of externalities. Engineers and scientists play a vital role
in translating this theory into actionable policies. While much attention is
understandably given to the practical aspects of implementation — such as
data collection, tolling technology, and enforcement infrastructure — one of
the most intellectually demanding tasks is determining the appropriate price
to charge. This is not merely a technical detail; it is the very heart of the
congestion pricing strategy.

To understand how to calculate the “right” price, we must first consider
the decision-making process of an individual traveler. Take, for instance, Pat
Trafficson, who is deciding whether to drive into the city during peak hours.
From her perspective, the cost of the trip consists of two components: the
time she expects to spend in traffic and the monetary costs associated with
the journey, such as fuel, parking, and any tolls. Naturally, she chooses the
option that minimizes her personal cost, balancing time and money in a way
that reflects her own preferences.

However, Pat’s travel decision does not occur in isolation. Her presence on
the road has an impact on other travelers. By joining the stream of traffic,
she contributes to congestion, thereby increasing travel times for everyone
else. This effect is not accounted for in her personal cost calculation, yet it
imposes a real cost on society. As introduced in Section 1.1, economists refer
to this as a negative externality — a situation in which the actions of one
individual impose unpriced costs on others.

Congestion pricing is designed to internalize this externality. In other
words, Pat should face not only the direct costs of her trip, but also the
additional costs that her trip imposes on others. This aligns her private
incentives with the broader public good. The theoretical foundation for this
idea is often referred to as the polluter pays principle, which holds that those
who generate external costs should bear the responsibility for them.

But how much should Pat be charged? The answer lies in estimating
the value of the deterioration in service quality that she causes by entering
the congested network. More formally, the “right” price is equal to the
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marginal external cost — the additional delay or inconvenience inflicted on
all other users, expressed in monetary terms. Calculating this requires data
and models capable of capturing the relationship between traffic volume and
travel time, as well as information about how travelers value their time.

As we have seen in Chapter 8, the user equilibrium reflects a decentralized
decision-making framework. In this setting, each traveler chooses the route
that minimizes their own travel time or cost, without considering the broader
impact of their choice on others. This situation is often described as a self-
ish routing scenario. As explained in Section 8.4, the user equilibrium can
be mathematically formulated as the solution to the following optimization
problem:

y∗ = argminy

∑
ℓ

∫xℓ

0

tℓ(z)dz

subject to the constraints:∑
p

yq
p = fq ∀q, yq

p ⩾ 0 ∀p,q.

Here, the variable yq
p represents the flow of travelers with origin-destination

pair q using path p, and fq is the total demand between those points. The
total flow on link ℓ is denoted xℓ, and tℓ(xℓ) is the travel time on that link
as a function of the flow.

In contrast, the system optimum represents a centralized approach where
the objective is to minimize the total travel time experienced by all users in
the system, treating them as a coordinated whole. Instead of acting selfishly,
travelers are assumed to select routes in a way that optimizes the collective
outcome. The corresponding optimization problem is:

ỹ∗ = argminy

∑
ℓ

xℓ tℓ(xℓ)

subject to the same demand conservation and non-negativity constraints:∑
p

yq
p = fq ∀q, yq

p ⩾ 0 ∀p,q.

In this formulation, the objective function directly computes the total
travel time over all links, since xℓtℓ(xℓ) represents the travel time incurred
by all users traversing link ℓ. The solution to this problem leads to a flow
pattern where the overall efficiency of the network is maximized, potentially
at the expense of some individual users experiencing longer routes than they
would under a purely selfish strategy.
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The difference between these two outcomes is not merely theoretical. The
user equilibrium, while stable under individual decision-making, is generally
inefficient from a global perspective. This inefficiency is captured by the
concept known as the price of anarchy, defined as the ratio in total cost
between the user equilibrium and the system optimum:∑

ℓ

x∗ℓtℓ(x
∗
ℓ)/

∑
ℓ

x̃∗ℓtℓ(x̃
∗
ℓ) ⩾ 1.

For engineering applications, it is useful to look at the difference instead of
the ratio, ∑

ℓ

x∗ℓtℓ(x
∗
ℓ) −

∑
ℓ

x̃∗ℓtℓ(x̃
∗
ℓ) ⩾ 0,

where x∗ (resp. x̃∗) denotes the vector of link flows corresponding to the user
equilibrium path flow y∗ (resp. ỹ∗x).

This difference quantifies the loss in system performance due to the lack
of coordination among users. It provides a rigorous way to evaluate how
much worse a decentralized, self-optimizing system performs compared to a
centrally coordinated one.

To gain a deeper understanding of the behavioral assumptions behind
the user equilibrium and system optimum formulations, it is instructive to
examine the marginal costs associated with each approach. These marginal
costs can be obtained by computing the derivative of the objective function
with respect to the path flows yq

p, which represent the number of travelers
between an origin-destination (OD) pair q using path p.

Let us first consider the case of the user equilibrium. The objective func-
tion in this formulation is given by the sum of integrals:∑

ℓ

∫xℓ

0

tℓ(z)dz,

where xℓ is the total flow on link ℓ, and tℓ(xℓ) is the travel time on that link.
The integral reflects the cumulative cost experienced by all users on link ℓ,
accounting for the fact that congestion increases travel time. Since the total
flow on each link xℓ depends on the OD path flows yq

p, we apply the chain
rule to compute the derivative:

∂

∂yq
p

[∑
ℓ ′

∫xℓ ′

0

tℓ ′(z)dz

]
=

∑
ℓ

∂xℓ

∂yq
p

· tℓ(xℓ).

The term ∂xℓ

∂y
q
p
is equal to 1 if path p uses link ℓ, and 0 otherwise. This is

captured using the entry Pℓp of the link-path incidence matrix, which equals
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1 when link ℓ belongs to path p. The resulting marginal cost of assigning an
additional unit of flow to path p is:∑

ℓ

Pℓp tℓ(xℓ) = cqp,

which corresponds to the actual travel cost experienced by a user on path p.
This confirms that, under user equilibrium, travelers choose routes based on
their own perceived travel time, aiming to minimize their individual cost.

In contrast, the system optimum seeks to minimize the total travel cost
for all users in the network. The corresponding objective function is:∑

ℓ

xℓ tℓ(xℓ),

which directly represents the aggregate travel time on each link. Applying
the chain rule again, we obtain:

∂

∂yq
p

[∑
ℓ ′

xℓ ′tℓ ′(xℓ ′)

]
=

∑
ℓ

∂xℓ

∂yq
p

·
(
tℓ(xℓ) + xℓ

∂tℓ(xℓ)

∂xℓ

)
.

Here again, the derivative ∂xℓ

∂y
q
p

is represented by Pℓp, and the resulting

marginal cost becomes:∑
ℓ

Pℓp

(
tℓ(xℓ) + xℓ

∂tℓ(xℓ)

∂xℓ

)
.

This expression highlights an important distinction. In addition to the direct
travel time tℓ(xℓ), the system-optimal cost includes a second term xℓ

∂tℓ(xℓ)
∂xℓ

,
which represents the marginal delay imposed on other users by increasing the
flow on link ℓ. This term captures the externality associated with congestion:
when a new traveler enters the network, they not only experience congestion,
but also make the situation worse for everyone else.

To simplify notation, we can define the marginal social cost function:

t̃ℓ(xℓ) = tℓ(xℓ) + xℓ
∂tℓ(xℓ)

∂xℓ
.

This allows us to express the system-optimal marginal cost on a path as a
weighted sum of the marginal social costs on the links used by that path.
The key insight is that, under system optimality, users should be routed not
according to the cost they themselves experience, but according to the total
cost they impose on the system. This discrepancy between individual and
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social costs lies at the heart of the inefficiency observed in user equilibrium
and is precisely what congestion pricing seeks to correct.

A powerful insight emerges when we reinterpret the user equilibrium
through the lens of the system optimum. Suppose that instead of experi-
encing only the direct travel time tℓ(xℓ), each user is faced with a modified
cost function that includes the marginal impact of their decision on the rest
of the system. This adjusted cost function is defined as

t̃ℓ(xℓ) = tℓ(xℓ) + xℓ
∂tℓ(xℓ)

∂xℓ
.

This quantity represents the marginal social cost on link ℓ: it includes
not only the travel time experienced by the user, but also the additional
delay their presence causes to all other users on the link. Remarkably, if
each traveler were to minimize this marginal social cost instead of their own
private cost, the resulting traffic pattern would coincide with the system
optimum. In other words, the user equilibrium under the marginal social
cost function is equivalent to the system optimum under the standard cost
function.

This observation forms the theoretical foundation of congestion pricing.
To align individual behavior with the social optimum, it is sufficient to modify
the cost structure faced by travelers so that it reflects the full consequences
of their decisions. The required adjustment is straightforward: each user
should be charged an additional cost equal to

xℓ
∂tℓ(xℓ)

∂xℓ
,

which represents the delay they impose on all other users by contributing to
the flow on link ℓ. This term captures the external cost of congestion, and
charging it to the user ensures that their routing decisions reflect not only
personal preferences but also societal impacts.

This pricing principle is analogous to the well-known “polluter pays” con-
cept in environmental economics: those who impose costs on others should
be held financially responsible. By applying this idea to traffic networks, con-
gestion pricing becomes a mechanism for converting inefficient, self-interested
behavior into socially optimal outcomes—without requiring central planning
or coercive regulation.

Let us now return to the example introduced in Section 8.5.1. The cost
functions for each link ℓ are denoted tℓ(xℓ), where xℓ is the flow on that link.
For this example, the cost functions are given as follows:
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t1(x1) = 10x1, t̃1(x1) = 10x1 + x1 · 10 = 20x1,

t2(x2) = 50+ x2, t̃2(x2) = 50+ x2 + x2 = 50+ 2x2,

t3(x3) = 50+ x3, t̃3(x3) = 50+ x3 + x3 = 50+ 2x3,

t4(x4) = 10x4, t̃4(x4) = 10x4 + x4 · 10 = 20x4,

t5(x5) = 10+ x5, t̃5(x5) = 10+ x5 + x5 = 10+ 2x5.

The first column in each pair defines the private cost function, which
represents the travel time experienced by an individual user on that link.
These are the functions used by travelers when making route choices under
the user equilibrium assumption.

The second column gives the corresponding marginal social cost function
t̃ℓ(xℓ). As discussed earlier, this function accounts not only for the travel
time experienced by the user, but also for the additional delay imposed on
other users due to increased congestion. It is computed by adding to the
private cost the product of the flow xℓ and the derivative of the private cost
function with respect to flow:

t̃ℓ(xℓ) = tℓ(xℓ) + xℓ ·
dtℓ

dxℓ
(xℓ).

For example, on link 1, the travel time increases linearly with flow,
t1(x1) = 10x1, and its derivative is constant: dt1

dx1
= 10. Thus, the marginal

social cost is t̃1(x1) = 10x1+ 10x1 = 20x1. On links 2 and 3, which represent
facilities with a base travel time and a linear congestion term, the derivative
is 1, leading to marginal costs that are simply the original function plus an
additional xℓ.

To illustrate the effect of using marginal social cost functions in a traffic
assignment problem, consider the flow pattern depicted in Figure 9.4. This
flow configuration corresponds to a user equilibrium computed with respect to
the marginal costs t̃ℓ(xℓ), rather than the private costs tℓ(xℓ). As established
earlier, when users respond to marginal costs, the resulting equilibrium flow
pattern coincides with the system optimum.

In this example, there are two origin nodes, labeled with orange values
on the left: origin 1 with a demand of 4 units, and origin 2 with a demand
of 2 units. The destinations are shown on the right, with demand values
5 and 1, respectively. Each directed link is annotated with its flow xℓ and
corresponding marginal cost t̃ℓ(xℓ), both of which have been determined by
solving the user equilibrium using the marginal cost functions.

The resulting flow pattern satisfies all demand constraints and route
choices are consistent with the assumption that each traveler selects a path
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minimizing their perceived marginal cost. Notably, link 5 remains unused,
reflecting the fact that although a link may be physically available, it may
not be efficient from the system’s point of view when users are charged the
full cost of their decisions.

The total marginal costs experienced by travelers for each OD pair are
indicated at the bottom of the figure. Specifically, the system-optimal path
cost from origin 1 to destination 1 is c̃∗11 = 116, from origin 1 to destination
2 is c̃∗12 = 118, and from origin 2 to destination 1 is c̃∗21 = 117. These
values represent the total costs of the chosen routes under the system-optimal
assignment, and can be used to evaluate or compare the efficiency of different
flow patterns.
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Figure 9.4: System-optimal user equilibrium with marginal cost functions. The flows
and marginal costs on each link reflect the outcome when users respond to full social
costs rather than private costs. The total perceived costs for each OD pair are c̃∗11 =
116, c̃∗12 = 118, and c̃∗21 = 117.

The equilibrium flow pattern obtained using the updated performance
(cost) functions is reported in Table 9.1. The structure of the table is the
same as Table 8.2 and the others presented in Section 8.2.

9.2 From theory to practice

While the theory behind congestion pricing is conceptually sound and mathe-
matically elegant, translating it into practice presents a number of significant
challenges. The theoretical framework relies on the idea that each traveler
should be charged a toll equal to the external cost they impose on others.
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p flow x0 x1 x2 x3 x4 x5 x6 t̃0 t̃1 t̃2 t̃3 t̃4 t̃5 t̃6 cost
r1, s1: frs = 3

1 3 3 60 56 116

2 3 3 56 60 116

0 3 3 0 60 60 10 130
r1, s2: frs = 1

1 3 3 1 60 56 2 118

0 3 3 1 56 60 2 118

0 3 3 0 1 60 60 10 2 132
r2, s1: frs = 2

1 2 3 3 1 60 56 117

1 2 3 3 1 56 60 117

0 2 3 3 0 1 60 60 10 131

Table 9.1: User equilibrium computed with marginal cost functions. Same structure
as Table 8.2 and others in Section 8.2.

This cost is derived from the marginal impact of their presence on the link
and is expressed as

xℓ
∂tℓ(xℓ)

∂xℓ
,

where xℓ is the flow on link ℓ, and tℓ(xℓ) is the corresponding travel time. This
term represents the additional delay inflicted on other users by increasing the
traffic volume on that link.

In theory, this value should be charged to each user in monetary form. If
the cost is expressed in units of time, it must first be converted into a mone-
tary value using a value-of-time conversion factor (see Chapter 3). The idea
is to reflect the fact that time has economic value, and that different trav-
elers may perceive this value differently depending on income, trip purpose,
or urgency.

However, the practical implementation of this principle is far from straight-
forward. One major obstacle is the technical and financial difficulty of equip-
ping all links in a transportation network with tolling infrastructure. While it
is feasible to install gantries or sensors on key arterial roads or bridges, doing
so across an entire network is often prohibitively expensive and logistically
complex.

A second issue relates to the timing of information. For congestion pric-
ing to be effective, travelers must know the tolls before making their route
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choices. This is particularly challenging in systems that rely on dynamic
pricing, where tolls vary in real-time according to traffic conditions. If toll
information is updated too frequently or is communicated too late, travelers
may be unable to incorporate it into their decisions, defeating the purpose
of the pricing mechanism.

Finally, while the value-of-time is a central concept in the theoretical
framework, it varies significantly across individuals and situations. A busi-
ness traveler may place a high value on saving time, while a tourist may be
more willing to accept delays. Similarly, the length and purpose of a trip
can influence how much a traveler is willing to pay to avoid congestion. In
practice, it is neither desirable nor politically feasible to charge different tolls
to different individuals based on personal characteristics. As a result, most
systems apply uniform tolls that approximate average external costs, even
though this introduces inefficiencies compared to the ideal pricing scheme.

These practical limitations mean that real-world implementations of con-
gestion pricing often involve compromises. Instead of perfectly reflecting
marginal social costs, tolls are typically set using simplified models and ap-
plied only on selected links or during peak periods. Despite these imper-
fections, congestion pricing remains a powerful tool for managing demand
and improving the efficiency of transportation systems. The challenge lies
in designing systems that are both theoretically grounded and practically
implementable.

9.3 Summary

This chapter has explored the concept of congestion pricing from both the-
oretical and practical perspectives. At its core, the theoretical framework is
based on a simple yet powerful idea: travelers should be charged for the con-
gestion they cause. Each additional vehicle on a road contributes to longer
travel times for others, and this external cost is not accounted for in individ-
ual route choices under normal conditions. By charging a toll equal to the
marginal congestion cost, it is possible to internalize this externality, thereby
aligning private incentives with the social optimum.

Mathematically, we have seen that the system-optimal traffic assignment,
which minimizes the total travel time across the network, can be reproduced
through a user equilibrium if travelers respond not to their private travel
times, but to adjusted cost functions that include the marginal social cost.
This result provides a theoretical justification for congestion pricing: if users
experience these corrected costs – either through information or monetary
charges — their selfish behavior leads to a collectively optimal outcome.
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In practice, however, the implementation of congestion pricing faces a
number of challenges. The chapter examined the case of Stockholm, where
a congestion pricing scheme was successfully introduced after a trial period
and a public referendum. This example illustrated that, while technically
feasible, such policies are politically sensitive and can provoke significant
public debate. Issues such as fairness, transparency, and the use of revenues
must be carefully managed to build and maintain public support.

Moreover, the practical realization of the theoretical ideal is constrained
by technological and behavioral complexities. It is difficult to equip every
link in a road network with tolling infrastructure, and even more difficult to
communicate dynamically changing tolls to travelers in a timely and com-
prehensible way. Additionally, the value of time varies across individuals and
contexts, but charging personalized tolls is both controversial and ethically
problematic.

Despite these difficulties, congestion pricing remains one of the most effec-
tive tools for managing demand in urban transportation systems. It offers a
mechanism to reduce congestion, encourage modal shifts, and improve overall
system efficiency. The key lies in finding a balance between economic theory
and political and operational feasibility, designing systems that are grounded
in rigorous analysis but flexible enough to work in the real world.
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Chapter 10

Freight transportation: a short
introduction

Freight transportation plays a critical role in the functioning of modern
economies. It ensures that raw materials reach factories, that finished goods
are delivered to stores, and that essential supplies are distributed across
regions and countries. Freight transport and passenger transport differ in
fundamental ways that justify distinct approaches to their study and man-
agement.

One of the most striking differences between transporting people and
goods lies in the nature of the transported entities themselves. While indi-
viduals make travel decisions based on personal preferences, constraints, and
behavioral tendencies, goods have no behavior of their own. A container of
electronics or a pallet of food does not choose how, when, or by whom it is
transported. Instead, all relevant decisions are made by shippers, carriers,
logistics providers, and supply chain managers.

This leads to another key distinction: decision-making in freight trans-
portation is typically centralized or at least highly coordinated. Unlike per-
sonal travel, where decisions are distributed across millions of individuals,
freight movements are often the result of deliberate, optimized planning. A
single logistics manager may determine the routing of thousands of tons of
goods, leveraging information systems, contractual relationships, and opera-
tional constraints to do so efficiently.

Furthermore, the metrics that govern freight transportation are different
from those that apply to passenger transport. While travelers value time,
convenience, comfort, and even aesthetics, the movement of goods is primar-
ily driven by economic considerations. Cost is often the dominant criterion in
choosing between modes, routes, or carriers. Other factors such as reliability,
speed, and risk may play a role, but they are usually evaluated through their
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impact on cost or service level commitments.
Comfort, convenience, and user experience — central to the design and

analysis of passenger transportation systems— are largely irrelevant in freight.
What matters instead is how to move goods from origin to destination in a
way that meets business objectives, complies with regulations, and minimizes
disruption. This focus on efficiency and coordination fundamentally shapes
the tools, models, and policies used in freight transport planning.

Firms involved in freight transportation make a wide range of decisions at
different temporal and organizational scales. These decisions are illustrated
in Figure 10.1, which extends the decision-making framework introduced
in Figure 5.1 typically used for passenger transport to include the freight
domain.

At the long-term level, firms engage in strategic planning activities that
shape the entire structure of their logistics and supply chain operations. One
of the most critical decisions at this level concerns the design of the supply
chain, including the number, type, and location of facilities such as ware-
houses, distribution centers, and production sites. These choices determine
the spatial distribution of logistics infrastructure and heavily influence oper-
ational costs and service levels for years to come.

In the midterm, firms must translate their strategic infrastructure into
operational capabilities. This includes decisions about fleet size — how many
vehicles to operate and of what types — as well as the transport modes to be
used, such as road, rail, air, or maritime freight. These choices are shaped
by expected demand, regulatory constraints, contractual agreements, and
cost considerations. Unlike long-term decisions, which are relatively fixed,
midterm decisions can be revised periodically to adapt to evolving conditions.

Finally, in the short term, firms handle the day-to-day execution of freight
movements. This involves solving vehicle routing problems, scheduling pick-
ups and deliveries, and responding to operational disruptions. Efficient rout-
ing and scheduling are essential to minimize costs, meet delivery time win-
dows, and ensure customer satisfaction. These decisions are increasingly sup-
ported by real-time information systems that allow for dynamic adjustments
in response to traffic, weather, or unexpected events.

Overall, the freight sector operates through a hierarchy of interdepen-
dent decisions that must be carefully coordinated. Each level builds on the
previous one, and improvements at one level can unlock efficiencies at others.

The concepts of logistics and supply chain management are central to the
organization and efficiency of freight transportation systems. Although often
used interchangeably in casual conversation, these terms refer to distinct but
related aspects of the movement and coordination of goods.

Logistics refers to the management of the flow of goods, information, and
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Figure 10.1: Choices and decisions made by public authorities, households, and firms.
This figure extends the decision framework introduced earlier to include freight-related
decisions made by firms at different time scales.

resources between the point of origin and the point of consumption. Its focus
is on planning, implementing, and controlling these flows efficiently and effec-
tively to meet customer requirements. This includes tasks such as inventory
management, warehousing, order fulfillment, transportation, and distribu-
tion. In essence, logistics is concerned with ensuring that the right products
are delivered in the right quantity, to the right place, at the right time. The
underlying philosophy emphasizes precision, reliability, and responsiveness
to demand.

From an organizational perspective, logistics typically operates within
a single entity. For example, a retailer may manage its own inventory and
coordinate the delivery of goods from its warehouses to its stores or directly to
customers. In this context, logistics is a function internal to the firm, focused
on optimizing operations within a well-defined organizational boundary.

In contrast, the term supply chain encompasses a broader and more com-
plex network of interactions among multiple actors. A supply chain includes
not just the internal logistics of a single firm, but also the coordination be-
tween suppliers, manufacturers, distributors, retailers, and customers. It
involves the movement of goods, the exchange of information, and the man-
agement of financial flows across organizational boundaries. Effective sup-
ply chain management requires collaboration and synchronization among all
stakeholders to ensure that the final product reaches the end user in a timely
and cost-effective manner.
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Figure 10.2: Supply chain

While logistics is a critical component of the supply chain, the supply
chain itself extends beyond logistics to include strategic activities such as
sourcing, procurement, production planning, and customer relationship man-
agement. The distinction can be summarized by noting that logistics is often
the responsibility of one actor, whereas the supply chain represents a system
of interdependent organizations working together to create and deliver value.

I this course, we provide an introduction to the fundamental decision
problems encountered in the field of freight transportation and logistics. To
offer a structured perspective, we examine these problems across three key
time horizons: long-term, medium-term, and short-term. Each of these time
scales corresponds to distinct types of decisions, methods of analysis, and
operational objectives.

At the long-term level, we focus on the facility location problem. This
is a strategic decision that involves determining where to place warehouses,
distribution centers, or other logistical facilities. These choices are typically
infrequent but highly consequential, as they have long-lasting effects on the
structure and performance of supply chains.

In the medium-term, we turn to inventory management. This area deals
with determining how much stock to hold, when to reorder, and how to
balance the trade-off between holding costs and service levels. Inventory
decisions must account for variability in demand, lead times, and storage
capacity.

At the short-term level, we address the vehicle routing problem (VRP), a
classic and widely studied problem in operations research. The VRP concerns
the optimal assignment and sequencing of deliveries or pick-ups using a fleet
of vehicles. It is central to day-to-day logistics operations such as parcel
delivery, food distribution, or waste collection.
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By analyzing these three problems — facility location, inventory manage-
ment, and vehicle routing — we cover a representative set of decisions that
define the performance and efficiency of freight systems across time scales.

10.1 Facility location

One of the most fundamental strategic problems in logistics is the facility
location problem. This problem arises whenever an organization must decide
where to locate its distribution centers, warehouses, or service depots in
order to efficiently serve a set of customers. These long-term decisions have
significant implications for cost, service quality, and operational flexibility,
and they are difficult to reverse once implemented.

To formulate the problem, we begin with a set of customers, denoted by C.
Each customer j ∈ C is associated with a demand quantity dj, representing
how much they require over a certain planning horizon. The goal is to serve
these demands from a set of potential depot locations, represented by D.
These are candidate sites where facilities could be opened, but not all of
them will necessarily be used.

Each potential depot i ∈ D is associated with a setup cost ci, which is
the fixed cost incurred if the facility is opened. In addition, each depot has
a maximum capacity ℓi, indicating the total demand it can serve. Finally,
for each pair (i, j) ∈ D × C, there is a trip duration or transportation cost
tij that quantifies the effort required to serve customer j from depot i. This
could represent distance, time, or monetary cost.

The facility location problem involves two interconnected decisions. First,
we must determine which subset of the potential depots should be opened.
This decision balances the fixed setup costs against the benefits of having
facilities close to customers. Second, for each customer, we must decide from
which depot they will be served. This assignment must respect capacity
limits and aims to minimize transportation costs or durations.

The result is a combinatorial optimization problem in which the goal is
typically to minimize the total cost, combining setup costs and service costs,
while satisfying customer demands and facility constraints. The problem can
be formulated mathematically and solved using exact algorithms for small
instances or heuristics and approximation methods for larger, real-world ap-
plications.

To better understand the facility location problem, let us consider a con-
crete example inspired by a real-world urban context. Suppose a logistics
company is responsible for delivering goods to a set of 20 retail shops located
throughout the city of Lausanne. These shops represent the customers to
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Figure 10.3: Clients: 20 shops in Lausanne

be served, and their geographic distribution is shown in Figure 10.3. Each
shop requires regular deliveries, and the company must determine how best
to structure its distribution network to meet this demand efficiently.

Rather than operating from a single central warehouse, the company has
identified five possible sites within or near the city where depots could be
established. These potential depot locations are illustrated in Figure 10.4.
Each site offers a different trade-off in terms of cost, accessibility, and ca-
pacity, and the company must choose which of these to activate in its final
network design.

Figure 10.5 shows an example of a feasible and reasonably efficient so-
lution to this problem. In this particular configuration, the company has
chosen to open 4 out of the 6 available depot sites. Each open depot is
assigned exactly 5 clients to serve.

This example highlights the two central decisions in the facility location
problem: selecting which facilities to open and determining how to assign
customers to those facilities.

We now present a formal mathematical model for the facility location
problem introduced earlier. This model captures the essential trade-offs be-
tween fixed infrastructure costs and operational delivery costs, while respect-
ing service and capacity constraints. It allows us to determine both which
depots to open and how to assign customer demand to the selected facilities
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Figure 10.4: Depots: 6 potential locations

Figure 10.5: Example of solution: 4 depots are open, each serving 5 clients
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in a cost-effective manner.
Let C denote the set of customers to be served, and D the set of potential

depot locations. Each customer j ∈ C has a known demand dj, and each
depot i ∈ D is associated with a fixed setup cost ci and a capacity limit
ℓi. The travel time or transportation cost between depot i and customer j

is denoted by tij, and γ represents the cost per unit of demand per unit of
travel time.

The model uses two sets of decision variables. The binary variable xi ∈
{0, 1} indicates whether depot i is opened (xi = 1) or not (xi = 0). The
continuous variable yij ∈ R+ denotes the proportion of customer j’s demand
that is served by depot i. The quantity djyij thus represents the actual
volume of goods transported from depot i to customer j.

The objective of the model is to minimize the total cost, which is com-
posed of two parts: the fixed costs of opening depots, and the variable costs
of transporting goods from depots to customers. This leads to the following
objective function:

min
x,y

∑
i∈D

cixi + γ
∑
i∈D

∑
j∈C

tijdjyij.

The first term represents the total fixed cost incurred for opening depots.
The second term accounts for the transportation cost, where each unit of
demand incurs a cost proportional to the travel time between the assigned
depot and the customer.

The model is subject to several constraints. First, each customer’s de-
mand must be fully satisfied, which means the total proportion of their de-
mand served across all depots must equal one:∑

i∈D

yij = 1, ∀j ∈ C.

Second, no depot may exceed its capacity. The total demand served by depot
i cannot surpass ℓi, and this constraint only applies if the depot is open:∑

j∈C

djyij ⩽ ℓixi, ∀i ∈ D.

Finally, we enforce the binary nature of the facility-opening decision and the
non-negativity of the assignment variables:

xi ∈ {0, 1}, ∀i ∈ D,

yij ⩾ 0, ∀i ∈ D,∀j ∈ C.

This formulation is a classic example of a mixed-integer linear problem
(MILP), combining binary decisions with continuous variables.

243



10.1.1 Numerical example

To illustrate the facility location model with a concrete numerical example,
we consider the scenario involving 20 shops located throughout the city of
Lausanne. These shops must be supplied from a set of candidate depot
locations. Table 10.1 reports the travel times, in seconds, between each
shop and each of the six potential depot sites: Bessières, Borde, Hôpitaux,
Malley, Pontaise, and the train station. These values were obtained from
OpenStreetMap and reflect realistic travel durations under typical traffic
conditions.

This data serves as input for the transportation component of the facil-
ity location model. Specifically, the travel times tij between depot i and
customer j determine the variable component of the cost function.

Bessières Borde Hôpitaux Malley Pontaise Train station
Shop 1 141.7 125.8 262.3 177.6 121.4 220.1
Shop 2 92.5 197.2 115.2 319.9 320.4 248.7
Shop 3 139.2 177.7 257.9 207.8 300.9 192.4
Shop 4 247.9 227.8 385.2 149.9 181.8 192.4
Shop 5 237.4 342.1 88.0 464.8 366.3 393.6
Shop 6 257.6 321.2 394.9 146.0 275.2 157.1
Shop 7 98.3 242.5 249.8 285.7 350.2 147.3
Shop 8 151.8 289.5 297.0 198.0 273.8 17.3
Shop 9 113.3 243.1 250.6 153.8 229.6 116.7
Shop 10 357.7 361.2 495.0 170.9 239.4 321.7
Shop 11 326.1 184.7 416.1 366.7 215.3 409.2
Shop 12 265.3 370.0 277.8 492.7 493.2 421.5
Shop 13 234.2 369.4 379.4 247.6 323.4 102.6
Shop 14 280.7 216.3 401.3 172.3 79.1 282.2
Shop 15 214.9 186.6 335.5 250.8 134.2 293.3
Shop 16 280.4 139.0 370.4 321.0 203.6 363.5
Shop 17 224.9 362.6 370.1 302.4 378.2 138.5
Shop 18 462.1 320.7 438.2 502.7 333.4 545.2
Shop 19 383.7 412.4 521.0 140.2 325.9 324.4
Shop 20 452.2 556.9 302.8 662.2 477.3 608.4

Table 10.1: Travel time in seconds between 20 shops in Lausanne and 6 potential
depot locations.

Source: OpenStreetMap.org

244



Scenario 1

To explore the behavior of the facility location model in a simplified setting,
we begin with a first scenario where all depot locations are made equally and
fully available. In this configuration, all setup costs are set to zero, which
means the model is free to open any number of depots without incurring a
fixed penalty. This allows us to isolate and study the impact of transportation
costs alone on the optimal facility and assignment decisions.

The setup costs and capacities for each of the six candidate depot loca-
tions are summarized in Table 10.2. All depots are given identical capacities
of 50 units, which is more than sufficient to serve the total demand of 20
units. As a result, capacity constraints are not binding in this scenario.

Depot Setup cost Capacity
Train station 0 50
Pontaise 0 50
Hôpitaux 0 50
Malley 0 50
Bessières 0 50
Borde 0 50

Table 10.2: Scenario 1: Setup costs and capacities for candidate depots.

On the demand side, we assume that each of the 20 shops requires exactly
1 unit of goods. This uniform demand simplifies the allocation logic and
ensures that no particular customer has disproportionate influence on the
solution. The demand values are reported in Table 10.3.

Shop 1: 1 Shop 2: 1 Shop 3: 1 Shop 4: 1
Shop 5: 1 Shop 6: 1 Shop 7: 1 Shop 8: 1
Shop 9: 1 Shop 10: 1 Shop 11: 1 Shop 12: 1
Shop 13: 1 Shop 14: 1 Shop 15: 1 Shop 16: 1
Shop 17: 1 Shop 18: 1 Shop 19: 1 Shop 20: 1

Table 10.3: Scenario 1: Demand values for the 20 shops in Lausanne.

Lastly, the conversion parameter γ is set to 0.01, which translates travel
time in seconds into a monetary or cost-equivalent unit for use in the objective
function.

The optimal solution obtained for Scenario 1 is illustrated in Figure 10.6.
In this scenario, there are no setup costs associated with opening depots, and
each depot has sufficient capacity to serve all or part of the total demand.
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As a result, the optimization model minimizes only the transportation cost,
which is proportional to the distance (or travel time) between depots and
customers.

Because there is no penalty for opening facilities, the optimal solution
involves activating all six available depot locations. This allows the model
to assign each customer to the closest depot, thereby minimizing delivery
distances and overall transportation cost. Each customer is assigned to ex-
actly one depot, and depot assignments reflect spatial proximity in a nearly
intuitive and geographically balanced way.

The total cost for this solution is 29.44 cost units, which represents the
sum of the travel cost contributions across all customer-depot pairs. This
scenario serves as a benchmark for comparison with later cases where addi-
tional constraints — such as setup costs or limited capacities — will make
the optimization more complex and less spatially symmetric.

Figure 10.6: Optimal facility and customer assignment for Scenario 1. All depots are
open, and each customer is served by the closest depot.

Scenario 2

In the second scenario, we introduce fixed costs for opening depots in order to
more realistically reflect infrastructure or operational investments associated
with establishing a logistics site. Unlike in Scenario 1, where all depots
could be opened freely, we now assume that opening any of the candidate
depot locations incurs a cost. This modification adds a new layer of trade-
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offs to the problem, forcing the model to balance fixed facility costs against
transportation costs when choosing the optimal configuration.

The setup costs and capacities for each depot are summarized in Ta-
ble 10.4. All depots have the same capacity of 50 units, sufficient to serve
the overall demand, and a uniform setup cost of 5 units. These fixed costs en-
courage the model to minimize the number of open depots, possibly leading
to longer delivery distances but lower overall infrastructure costs.

Depot Setup cost Capacity
Train station 5 50
Pontaise 5 50
Hôpitaux 5 50
Malley 5 50
Bessières 5 50
Borde 5 50

Table 10.4: Scenario 2: Setup costs and capacities for candidate depots.

As in Scenario 1, the demand for each of the 20 shops is set to 1 unit.
This uniform demand ensures comparability between scenarios and main-
tains a consistent workload across customers. The demand data is displayed
compactly in Table 10.5.

Shop 1: 1 Shop 2: 1 Shop 3: 1 Shop 4: 1
Shop 5: 1 Shop 6: 1 Shop 7: 1 Shop 8: 1
Shop 9: 1 Shop 10: 1 Shop 11: 1 Shop 12: 1
Shop 13: 1 Shop 14: 1 Shop 15: 1 Shop 16: 1
Shop 17: 1 Shop 18: 1 Shop 19: 1 Shop 20: 1

Table 10.5: Scenario 2: Demand values for the 20 shops in Lausanne.

The conversion parameter remains γ = 0.01, meaning that travel times
are weighted by this factor to obtain the total transportation cost component
of the objective function.

In Scenario 2, the model is no longer free to open all depots; it must
carefully weigh the trade-off between minimizing transportation costs and
reducing the fixed costs associated with operating multiple sites.

Figure 10.7 illustrates the optimal solution for this scenario. The total
cost of this solution is 49.88 units, which includes both the transportation
and setup costs. Compared to Scenario 1, the optimizer chooses to open only
three depots: the Train Station, Pontaise, and Hôpitaux. As a result, these
depots are assigned to a larger number of shops each, including some that
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are not geographically closest. This consolidation strategy allows the model
to limit fixed costs at the expense of slightly higher transport distances for
certain customers.

The effect of introducing setup costs is clearly visible: some previously
open depots (e.g., Malley, Bessières, and Borde) remain closed in this so-
lution, while the remaining ones serve more dispersed areas. This outcome
highlights the essential role of setup costs in encouraging economies of scale
in logistics planning and illustrates how such costs influence not just which
depots to open, but also how the delivery workload is distributed across the
network.

Figure 10.7: Optimal facility and customer assignment for Scenario 2. Three depots
are open, balancing setup and transportation costs.

Scenario 3

In the third scenario, we build upon the previous configuration by introducing
not only fixed setup costs but also strict capacity limitations at each depot.
This scenario models a situation where depot sites are relatively small or
constrained in their ability to process and dispatch goods, requiring a more
distributed network to satisfy demand. The trade-off between opening costs
and limited service capacity makes this scenario particularly illustrative of
real-world logistical challenges.

Table 10.6 summarizes the setup costs and capacities of each candidate
depot. As in Scenario 2, all depots have a fixed opening cost of 5 units.
However, unlike before, each depot is now limited to a maximum capacity of
only 5 units. Given that the total demand remains 20 units, this implies that
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at least four depots must be opened to serve all shops, even in the best-case
spatial configuration.

Depot Setup cost Capacity
Train station 5 5
Pontaise 5 5
Hôpitaux 5 5
Malley 5 5
Bessières 5 5
Borde 5 5

Table 10.6: Scenario 3: Setup costs and limited capacities for candidate depots.

The demand side of the problem remains unchanged from the earlier
scenarios. Each of the 20 shops in Lausanne requests 1 unit of goods, for
a total demand of 20 units. The demand distribution is shown in compact
form in Table 10.7.

Shop 1: 1 Shop 2: 1 Shop 3: 1 Shop 4: 1
Shop 5: 1 Shop 6: 1 Shop 7: 1 Shop 8: 1
Shop 9: 1 Shop 10: 1 Shop 11: 1 Shop 12: 1
Shop 13: 1 Shop 14: 1 Shop 15: 1 Shop 16: 1
Shop 17: 1 Shop 18: 1 Shop 19: 1 Shop 20: 1

Table 10.7: Scenario 3: Demand values for the 20 shops in Lausanne.

The conversion parameter remains set to γ = 0.01, translating travel
times into cost units. In this scenario, the model must now balance the
cost of opening more depots against the necessity to do so due to capacity
constraints.

The optimal solution, presented in Figure 10.8, demonstrates how the
model responds to this new challenge. The total cost of the solution is 53
units. To satisfy the demand of 20 shops with depots each limited to five
customers, the model must open at least four depots. In this instance, it
activates four depots: the Train Station, Hôpitaux, Malley, and Borde. Each
of them is assigned exactly five customers, making full use of their allowed
capacity.

This scenario highlights how the inclusion of capacity constraints can
drive the solution away from the purely cost-optimal configuration found
in earlier scenarios. Some customers are no longer assigned to their closest
depot if it is already at capacity, which may increase their transportation
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cost. Nevertheless, the solution remains feasible and efficient, demonstrating
the robustness of the optimization model.

Figure 10.8: Optimal facility and customer assignment for Scenario 3. Capacity con-
straints require the use of four depots, each serving five customers.

Scenario 4

In the fourth scenario, we consider a situation in which one customer has a
demand that exceeds the capacity of any individual depot. This introduces a
new modeling challenge and showcases the flexibility of the facility location
model to allow fractional assignments, where a customer is served by multiple
depots.

As in previous scenarios, we assume non-zero setup costs and limited
capacities for all depot locations. Table 10.8 presents the setup cost and
capacity values for each candidate depot. Each depot has a capacity of 5
units and a fixed setup cost of 5 units. The overall system demand, however,
now exceeds 20 units.

The demand values for the 20 shops in Lausanne are listed in Table 10.9.
In contrast to the previous scenarios, Shop 1 has a demand of 6 units, while
all other shops maintain a demand of 1 unit each. The total system demand
is therefore 25 units, requiring at least five depots to be opened. Since the
capacity of each depot is only 5 units, no single facility can fully serve Shop
1, making it necessary for this shop to be served by multiple depots.

The conversion parameter used in the objective function remains γ =
0.01, converting travel times into cost units. This scenario demonstrates
how the model accommodates heterogeneous demand levels and capacity
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Depot Setup cost Capacity
Train station 5 5
Pontaise 5 5
Hôpitaux 5 5
Malley 5 5
Bessières 5 5
Borde 5 5

Table 10.8: Scenario 4: Setup costs and capacities for candidate depots.

Shop 1: 6 Shop 2: 1 Shop 3: 1 Shop 4: 1
Shop 5: 1 Shop 6: 1 Shop 7: 1 Shop 8: 1
Shop 9: 1 Shop 10: 1 Shop 11: 1 Shop 12: 1
Shop 13: 1 Shop 14: 1 Shop 15: 1 Shop 16: 1
Shop 17: 1 Shop 18: 1 Shop 19: 1 Shop 20: 1

Table 10.9: Scenario 4: Demand values for the 20 shops in Lausanne.

constraints, making use of fractional assignments when required to ensure
feasibility and cost efficiency.

Figure 10.9 presents the optimal solution to this scenario, with a total
cost of 63.22 units. The solution shows that Shop 1 is served by three de-
pots: Pontaise (with 1/2 of its demand), Malley (1/6), and Borde (1/3), as
indicated by the annotated arrows in the diagram. All six depots are active
in the solution, reflecting the high service requirements and limited capacity
of each facility.

This outcome highlights the model’s flexibility to allocate fractional flows
when total demand exceeds individual depot capacity, ensuring that every
shop is fully served while keeping the overall cost as low as possible.

10.1.2 Summary

The facility location problem is a foundational topic in logistics and trans-
portation systems. It addresses the challenge of determining which depots
should be opened and how customers should be assigned to them. This
decision has significant implications for both operational efficiency and cost-
effectiveness, as it directly impacts transportation costs, service quality, and
the utilization of resources such as staff and infrastructure.

At the heart of the problem lies an optimization model that balances
two types of costs: fixed setup costs associated with opening depots, and
variable transportation costs incurred when serving customers from those
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Figure 10.9: Optimal assignment in Scenario 4. Shop 1’s demand is distributed across
three depots due to capacity limitations.

depots. The decision-making process must also respect constraints such as
depot capacity and the requirement that each customer be fully served.

Despite its relatively simple formulation, the facility location problem is
inherently complex. It belongs to the class of combinatorial optimization
problems, meaning that the time required to solve it grows rapidly with
the size of the input data. As a result, practical applications often rely
on advanced optimization solvers or heuristic methods to find high-quality
solutions within a reasonable amount of time.

The basic version of the problem can be extended in numerous ways to
better reflect real-world challenges. For example, demand may be uncertain
or vary over time, which introduces stochastic elements into the model. De-
pots might have different levels of reliability, opening hours, or environmental
impacts. Customers may need to be served within specific time windows or
by vehicles with limited capacities. These variations give rise to a rich family
of models, each tailored to specific applications in retail, healthcare, disaster
relief, and beyond.

10.2 Inventory management

Inventory management is a crucial component of logistics and supply chain
operations. It addresses a central issue: goods are not always consumed
immediately upon production, nor are they delivered exactly when needed.
Instead, items are typically stored — either temporarily or for extended
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periods — on both the production and consumption sides of the supply
chain. This necessary buffering introduces various types of costs that must
be carefully managed.

There are two primary categories of inventory-related costs. The first
involves storage costs, which include expenses associated with warehousing,
such as physical space, equipment, staffing, and insurance. The second con-
cerns waiting costs, which account for the opportunity cost of capital tied up
in inventory, the risk of product obsolescence, and potential degradation or
spoilage of goods over time. These costs can be significant, and minimizing
them without jeopardizing service quality is a fundamental goal of inventory
management.

10.2.1 Fixed consumption

To explore how inventory should be managed, we begin with a simplified con-
text. Suppose that items are produced at a single origin point and consumed
at a different destination. The demand at the consumption site is assumed
to be constant, denoted by the rate f, over a fixed planning horizon of length
tH. The question arises: how frequently should shipments be made? Should
goods be shipped individually, in small batches, or in larger quantities at less
frequent intervals?

Let s represent the quantity of items shipped in each batch. The headway,
or the time between two consecutive shipments, is then given by h = s

f
, as the

consumption rate remains constant. This relationship highlights the trade-
off between shipment size and shipment frequency: smaller, more frequent
shipments reduce inventory levels but increase transportation costs, while
larger, less frequent shipments reduce transportation frequency but increase
storage requirements.

Figure 10.10 provides a visual representation of the dynamics of inventory
management and shipment scheduling over time. It shows how items are
produced, shipped, and consumed in a stylized context with constant demand
and regular shipments.

The horizontal axis represents time, while the vertical axis indicates the
cumulative number of items involved in the process. Two main diagonal lines
dominate the figure: one for production and one for consumption.

The production line, shown in red and starting at the origin, has a slope
corresponding to the constant production rate. This line represents the cu-
mulative number of items produced at the origin over time. Similarly, a
second red line, shifted horizontally, represents the cumulative number of
items consumed at the destination, also with a constant slope matching the
consumption rate.

253



The items are not shipped individually as they are produced, but rather
in batches. These shipments are illustrated by a stepwise curve in purple.
When items are produced, they are first stored temporarily. This is shown
by the horizontal segments of the step curve, during which the number of
shipped items remains constant while time progresses—indicating inventory
buildup. Then, all stored items are shipped at once, represented by the
vertical jumps in the step function. These vertical lines correspond to in-
stantaneous transfers of items from inventory to the shipping process.

At the destination, a similar step function describes the reception of items.
After a time delay equal to the travel time t, the items arrive at their des-
tination, again in batches. Here too, the horizontal portions of the curve
indicate waiting inventory at the receiving end before the items are gradu-
ally consumed.
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Figure 10.10: Production, shipment, and consumption over time in an inventory man-
agement system

In inventory management, the decision variable is the shipment size, de-
noted s, which corresponds to the number of items shipped at once. Given
a constant demand rate f, and a headway h (i.e., the time between two
consecutive shipments), the shipment size satisfies the relationship s = hf.
This expresses that within each interval h, the number of items consumed is
precisely the amount shipped.

From this, we can derive the number of shipments required to cover a
planning horizon of duration tH. This number is given by tH/h, or equiv-
alently ftH/s, since both expressions represent the total number of demand
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units divided by the quantity per shipment.
Each shipment incurs certain costs. Let cf be the fixed cost of trans-

portation (regardless of the number of items), and cv be the variable cost
per item transported. Then the cost of one shipment is cf + cvs. Over the
entire planning horizon, the total shipment costs become:

tH

h
cf +

tH

h
cvs =

tHcf

h
+ tHcvf.

Note that only the fixed component depends on the headway h; the total
variable component remains constant, as it depends on the total number of
items ftH, regardless of how frequently they are shipped.

Next, consider storage costs. When items are produced but not yet
shipped, they are temporarily held in inventory. Since each shipment involves
a quantity s = hf, and items are stored on average for a time proportional
to h, the storage cost at the origin is crs = crhf, where cr is the storage cost
per item.

Additionally, each item experiences a delay between production and con-
sumption, consisting of the inventory time h and the travel time t. The
associated waiting costs are given by cwf(h+ t), where cw denotes the cost
per item per time unit of waiting. This includes the opportunity cost of
capital, depreciation, or loss in value due to obsolescence.

Combining all these elements, the total cost over the planning horizon is
expressed as:

crhf+ cwf(h+ t) +
tHcf

h
+ tHcvf.

This total includes storage costs, waiting costs, fixed transportation costs,
and variable transportation costs.

To find the optimal headway that minimizes total costs, we differentiate
the total cost function with respect to h. The derivative is:

d

dh
Total Cost = crf+ cwf−

tHcf

h2
.

Setting the derivative equal to zero and solving for h yields the optimal
headway:

h∗ =

√
cftH

f(cr + cw)
.

This expression reveals the underlying economics of the inventory deci-
sion. When the fixed cost cf is high, as is the case with large container
ships or bulk transport, the optimal strategy is to ship in large batches in-
frequently — leading to a larger headway. Conversely, when holding costs
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cr + cw are dominant, as in the case of expensive or perishable goods, the
optimal solution involves more frequent shipments with smaller quantities,
thereby reducing headway.

This trade-off lies at the heart of many real-world logistics decisions,
from maritime shipping to just-in-time production systems, and illustrates
the importance of quantitative models in guiding operational strategy.

10.2.2 Variable consumption

The simple inventory model described earlier assumes that production and
consumption occur at identical rates over time, resulting in perfect synchro-
nization. However, this assumption is often unrealistic. In real-world sys-
tems, even if the average production rate equals the average consumption
rate, fluctuations inevitably occur. Sometimes, consumption temporarily
outpaces production, and sometimes the reverse happens. These mismatches
generate new challenges that must be accounted for in effective inventory
planning.

Figure 10.11 illustrates this situation. The horizontal axis represents time,
and the vertical axis represents the cumulative number of items produced
or consumed. The solid red line on the left shows cumulative production,
which increases steadily over time, reflecting a constant production rate. In
contrast, the solid red line represents the cumulative demand, which follows a
piecewise linear trajectory with variable slope. These variations capture the
fact that consumers do not always consume at a uniform rate. The dotted
red line shows the consumption at constant rate assumed in the previous
model. Note that the two line meet at the end, illustrating that the total
consumption is the same as before.

The purple staircase line again represents the shipment process, with
inventory accumulating over time at the production location, and being dis-
patched in batches. The corresponding staircase curve at the receiving end
shows when items arrive and are available for consumption.

However, unlike the earlier scenario where production and consumption
matched exactly at all times, the discrepancy here introduces periods during
which demand exceeds available inventory. These periods are visually marked
in Figure 10.11 by shaded grey triangles. These areas represent the cumula-
tive volume of unsatisfied demand — that is, items that were requested but
not available at the time of need.

This situation highlights a critical operational issue: stockouts. In prac-
tice, such stockouts might result in lost sales, production delays, unmet ser-
vice level agreements, or customer dissatisfaction. The model must therefore
be extended to incorporate mechanisms for handling variability in demand,
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such as safety stocks, responsive shipment scheduling, or dynamic inventory
buffers.
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Figure 10.11: Mismatch between production and consumption: grey areas indicate
unsatisfied demand

Decisions must adapt to changing demand in order to avoid costly dis-
ruptions such as stockouts. To address this, we introduce a more flexible and
realistic modeling framework: the multi-period inventory model.

The key idea of the multi-period model is to divide the overall time hori-
zon, denoted [0, tH], into K consecutive periods, indexed by t = 1, 2, . . . ,K.
Within each period, we assume that the relevant quantities — demand, costs,
and decisions — remain constant. However, they may change from one period
to the next, thereby capturing temporal variations in the system.

Each period t has a known duration δt, and is characterized by a known
demand rate ft, expressed in items per unit of time. This setup allows
for modeling seasonal trends, promotional surges, or simply unpredictable
fluctuations in consumption.

The system also tracks the inventory level over time. We denote by it
the inventory at the end of period t, and assume that the initial inventory i0
is known. The main decision variable is the quantity st to order (or ship) at
the beginning of period t. The inventory evolution is then described by the
balance equation:

it = it−1 − ftδt + st.

This equation expresses that the inventory at the end of the current period
is equal to the inventory carried from the previous period, minus the amount
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consumed during the period (which is ftδt), plus the quantity newly received
or produced.

The cost structure is also extended to reflect the period-specific nature
of operations. Each period may incur a fixed ordering cost ctf whenever an
order is placed, a variable ordering cost ctv proportional to the number of
items ordered, and a waiting or holding cost ctw that accounts for the cost of
storing or financing inventory.

This framework allows for modeling real-world scenarios where the tim-
ing and magnitude of orders are critical decisions. It can be further re-
fined to include constraints on order capacity, delivery delays, perishability,
or stochastic variations in demand. The goal, however, remains consistent:
to determine the optimal sequence of shipment decisions s1, s2, . . . , sK that
minimizes the total cost over the planning horizon, while avoiding periods of
unsatisfied demand.

Time

Inventory

δt

it−1

it−1 − ftδt

ftδtit
st

Figure 10.12: Inventory evolution in a multi-period model with ordering decision

Figure 10.12 illustrates how inventory evolves in a single period within a
multi-period inventory management model. The horizontal axis represents
time, and the vertical axis indicates the level of inventory.

At the beginning of period t, the system holds an inventory level of it−1

(orange horizontal line). Over the duration of the period, represented by δt,
consumption occurs at a constant rate ft, which results in a downward slope
of the inventory trajectory. The inventory at the end of the period, before
any restocking, would be it−1 − ftδt.

To avoid running out of stock, an order is placed during the period. The
incoming shipment has a size st and is added to the remaining inventory,
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bringing the final level up to it. The diagram clearly separates the con-
sumption over time and the replenishment point. The thick segments of the
inventory curve emphasize the period of interest.

During the period, the inventory is gradually decreasing due to consump-
tion. The average inventory level can be approximated by the area under the
inventory curve divided by the period duration δt. This average is:

1

δt

(
it−1δt −

1

2
ftδ

2
t

)
= it−1 −

1

2
ftδt.

This reflects the typical number of items that must be stored during the
period.

The waiting costs are the costs associated with keeping items in storage
before they are consumed. They are proportional to the average number of
stored items and are computed as:

ctw

(
it−1 −

1

2
ftδt

)
,

where ctw is the per-unit holding cost for period t.
The transportation costs consist of two components: a fixed cost ctf in-

curred for placing an order, regardless of its size, and a variable cost ctv that
scales with the number of items shipped. The total transportation cost in
period t is thus:

ctf + ctvst.

We now combine all the relevant quantities and constraints into a single
optimization framework. The objective is to determine the optimal shipment
sizes st for each period t = 1, . . . ,K so as to minimize total costs while
ensuring that demand is met and inventory remains non-negative throughout
the planning horizon.

The objective function of the multi-period inventory management prob-
lem contains four distinct terms, each representing a component of the total
cost incurred during the planning horizon.

min
s,i

K∑
t=1

(
ctwit−1 −

1

2
ctwftδt + ctf + ctvst

)
The first term, ctwit−1, corresponds to the waiting cost for the items

stored during period t. It is proportional to the inventory level it−1 at the
beginning of the period and reflects costs such as capital immobilization, de-
preciation, and insurance. Since inventory generates costs even when unused,
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this term penalizes large inventories and encourages efficient, just-in-time or-
dering strategies.

The second term, 1
2
ctwftδt, accounts for the waiting cost of the items

consumed during period t, assuming a linear depletion of stock. On average,
these items wait for half of the period before being used. While this cost is
real, it depends only on the demand ft and the duration δt, both of which
are fixed parameters. As such, it does not depend on the decision variables
st or it, and its inclusion does not influence the optimal solution. Therefore,
we can safely omit this term from the objective function.

The third term, ctf, represents the fixed cost of placing an order in period
t. However, in the current model, we assume that shipments are made in
every period, regardless of size. Since the number of orders is fixed, the total
fixed cost is constant and independent of the decision variables. Like the
previous term, it can be excluded from the optimization without affecting
the outcome.

The fourth and final term, ctvst, is the variable transportation cost, pro-
portional to the quantity shipped during period t. It captures the cost per
unit of items transported and contributes directly to the optimization. This
term, along with the waiting cost on inventory ctwit−1, plays a central role in
determining the trade-off between frequent small shipments and infrequent
large ones.

After removing the two constant terms, the simplified and relevant ob-
jective function becomes:

min
s,i

K∑
t=1

(
ctwit−1 + ctvst

)
where it−1 is the inventory level at the beginning of period t, and st is the
shipment size.

This objective function is subject to two types of constraints. The first is
the inventory dynamics constraint, which tracks how the inventory evolves
from one period to the next. For each period t = 1, . . . ,K, we require:

it = it−1 − ftδt + st.

This equation ensures that the inventory at the end of the period equals the
starting inventory minus the demand over the period, plus any new ship-
ments.

The second type of constraint ensures that demand is satisfied without
delay. We require that the available inventory before consumption in each
period is sufficient:

it−1 − ftδt ⩾ 0, for all t = 1, . . . ,K.
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This condition prevents stockouts by enforcing that enough inventory is
present to cover the full demand in the period.

Putting all these components together, we obtain a linear optimization
problem in the decision variables st and it, for t = 1, . . . ,K. This formulation
is computationally tractable and can be solved efficiently using standard
linear optimization techniques such as the simplex algorithm.

Scenario 1

We now illustrate the multi-period inventory management model using a
simple numerical example.

The scenario is defined over K = 5 consecutive time periods, each of du-
ration 1 unit. The initial inventory at the beginning of the first period is
set to 14 units. The demand across the five periods is given by the vector
[10, 5, 20, 1, 30], while both the unit waiting costs and the variable transporta-
tion costs are uniform, set to 1 for all periods. The objective is to determine
the optimal shipping and inventory policy that minimizes the total cost over
the planning horizon.

Figure 10.13 shows the optimal solution. Each line segment illustrates
the inventory level at the start and end of each period. The orange numbers
indicate the quantities shipped at the beginning of the respective periods.
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Figure 10.13: Optimal inventory and shipment plan for Scenario 1

This solution reflects a just-in-time inventory management strategy. The
transportation costs are sufficiently low that the model prefers to match
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inventory to demand as closely as possible in each period. This minimizes
the amount of inventory held and therefore reduces waiting costs.

We observe that, at the beginning of each period, the inventory level
exactly equals the demand for that period. This is made possible by perfect
anticipation of future demand and the absence of any constraint preventing
small, frequent shipments. For instance, at the beginning of period 3, a
shipment of 20 units is made to precisely cover the high demand of that
period.

This behavior illustrates the model’s preference to avoid unnecessary stor-
age by relying on flexible and timely shipments. In practical terms, this pol-
icy is viable when transportation is inexpensive and logistics operations can
accommodate frequent deliveries.

Scenario 2

We now consider a variation of the previous scenario to highlight how the
inventory management model adapts when transportation costs vary across
time. The setup remains the same: the planning horizon is divided into
K = 5 equal periods of unit duration, with an initial inventory of 14 units and
demand given by the vector [10, 5, 20, 1, 30]. Waiting costs remain constant
across all periods, set to 1. However, the transportation costs vary: while
they are equal to 1 in all periods except the fourth, the cost in the fourth
period is significantly higher, set to 100. This models a situation where, for
instance, deliveries are much more expensive during a holiday, a weekend, or
a special event.

Figure 10.14 shows the optimal solution. As before, the segments repre-
sent the evolution of inventory across time, and the orange labels indicate
the shipment quantities received at the start of each period.

The solution demonstrates a strategic response to the spike in trans-
portation costs in the fourth period. To avoid placing an order during that
expensive window, the model anticipates future demand by increasing the
shipment quantity in period 3. Specifically, the 31 units shipped at the start
of period 3 are enough to cover the demand for both period 4 (1 unit) and
period 5 (30 units).

This anticipatory behavior leads to increased inventory holding, but the
trade-off is favorable because holding costs are much lower than the high
transportation cost of period 4. As a result, the solution minimizes the total
cost by shifting shipments away from the costly period.

This example highlights the value of perfect anticipation and the abil-
ity of the model to balance between inventory and transportation costs. It
also underscores the importance of temporal variability in logistics planning,
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Figure 10.14: Optimal inventory and shipment plan for Scenario 2

where cost-efficient solutions often require adapting order schedules to exter-
nal fluctuations.

Scenario 3

We now examine a third scenario that demonstrates how the inventory man-
agement model adapts when transportation costs are low in one period and
remain high for all subsequent periods. This type of situation might arise
due to seasonal pricing, limited access to transportation infrastructure, or
scheduled disruptions that increase delivery costs over several intervals.

In this scenario, the planning horizon again consists of K = 5 periods of
unit duration, with an initial inventory of 14 units. Demand over the five
periods is given by the vector [10, 5, 20, 1, 30], and both the waiting costs and
demand pattern remain unchanged from the previous examples. However,
the transportation costs are now highly asymmetric: they are low (equal to
1) only during the first period, and then increase drastically to 100 for all
remaining periods.

Figure 10.15 presents the optimal solution under these conditions. Each
segment traces the evolution of the inventory level across time, and the orange
annotation marks the quantity received at the start of the first period.

In this configuration, the entire demand over the five periods (totaling 66
units) must be met using only one economical shipment. The model exploits
the low cost in period 1 to receive a large shipment of 52 units, on top of the
14 units initially in inventory.
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Figure 10.15: Optimal inventory and shipment plan for Scenario 3

From that point on, no further shipments are made, because transporta-
tion becomes prohibitively expensive. The entire consumption sequence is
covered by drawing down the inventory accumulated at the beginning. This
comes at the expense of increased holding costs — inventory is kept for longer,
especially for the later demand. However, this trade-off is cost-effective be-
cause holding costs remain relatively low compared to the steep transporta-
tion costs.

This scenario highlights a key insight: when future delivery costs are
predictable and prohibitively high, it is optimal to concentrate shipments in
a cheaper period, even if it implies higher storage and waiting costs. The
result is an extreme version of a just-in-advance strategy, made possible by
the model’s assumption of perfect anticipation.

Scenario 4

In this final scenario, we examine how the inventory management model re-
acts to a case in which both transportation and waiting costs vary across
time. Specifically, transportation is inexpensive in the first period but be-
comes expensive for the remainder of the planning horizon, while waiting
costs remain low except during the fourth period, when they spike signifi-
cantly.

The problem consists of K = 5 time intervals of duration 1, with ini-
tial inventory set to 14 units. The demand sequence is again given by
[10, 5, 20, 1, 30]. Transportation costs are low only in the first period, tak-
ing the value 1, and then jump to 100 in the following periods. Meanwhile,
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waiting costs are constant at 1 in every period, except for the fourth pe-
riod where they sharply increase to 100. These parameters aim to simulate
a situation where not only transportation becomes constrained after a cer-
tain time, but storing inventory becomes particularly undesirable during one
specific interval.

The optimal solution is depicted in Figure 10.16. Inventory evolution and
shipment quantities are marked, with the orange labels indicating the size of
the orders.
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Figure 10.16: Optimal inventory and shipment plan for Scenario 4

The solution demonstrates several key behaviors of the model. In the first
period, a shipment of 22 units is received, covering the demand for periods
2, 3, and partially for 1. This anticipatory behavior avoids incurring trans-
portation costs later, when they become prohibitively high. Importantly, the
model ensures that inventory is fully depleted by the end of period 3 to avoid
the expensive waiting costs in period 4.

Then, rather than maintaining any stock into period 4, a large shipment
of 30 units is ordered at the start of period 5 to meet the final demand.
This is done despite the high transportation cost in period 5, because the
alternative—storing inventory during the expensive period 4—would have
resulted in even greater waiting costs. By keeping inventory low when storage
is costly, the model minimizes total cost.

This scenario illustrates the powerful role of anticipation in inventory
management. The optimizer balances competing cost components over time,
and the resulting policy avoids both high transportation and high storage
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expenses. It is another example of how the model takes advantage of foresight
to make globally optimal decisions.

10.2.3 Summary

The inventory management section has shown that the movement of goods
from producers to consumers involves two critical operations: transportation
and storage. These operations are not merely logistical necessities but key
cost drivers within a supply chain. Whenever items are not instantly con-
sumed after being produced, they must be held in inventory. Similarly, they
must be physically transported to their destination. Both of these actions
incur costs — storage costs on one side, and transportation costs on the
other.

Storage costs include the expenses associated with physical space, han-
dling, insurance, depreciation of goods, and the opportunity cost of capital.
As such, reducing the amount of time items remain in storage tends to re-
duce overall storage costs. One natural implication of this is the preference
for shorter headways — that is, more frequent shipments of smaller quanti-
ties. This minimizes the amount of inventory held at any given time.

In contrast, transportation costs often favor the opposite strategy. Ship-
ping in larger quantities over longer intervals can reduce costs per item,
especially when fixed costs are involved in every shipment, such as preparing
a truck, booking freight space, or administrative overhead. Thus, minimiz-
ing transportation costs pushes toward longer headways and larger shipment
sizes.

This sets up a fundamental trade-off: minimizing storage costs suggests
more frequent deliveries, while minimizing transportation costs encourages
more infrequent shipments. The balance between these two opposing forces
is captured through a formal optimization problem, where decision variables
such as headway and shipment size are chosen to minimize the total cost over
a given planning horizon.

In our first model, we assumed that demand was constant and perfectly
known, which allowed us to derive closed-form expressions for the optimal
shipment strategy. However, in practice, demand is rarely constant. Even
if the average demand is stable, short-term variations and seasonality cre-
ate discrepancies between production and consumption rates at any given
moment. This necessitates more flexible models.

To address this, we introduced a multi-period inventory management
model. This model divides the planning horizon into discrete periods and
allows production, consumption, and cost parameters to vary from one pe-
riod to the next. Importantly, this formulation remains a linear optimization
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problem and can be solved efficiently using standard mathematical optimiza-
tion tools. It also introduces time-varying decision variables and can incor-
porate changes in transportation and storage costs.

Nonetheless, another significant issue in inventory management is uncer-
tainty — particularly uncertainty in demand forecasts. Real-world demand
is not only variable but often difficult ot predict. To manage inventory effec-
tively under such uncertainty, it becomes necessary to move beyond deter-
ministic models and adopt stochastic versions. These incorporate probability
distributions for demand and may involve concepts like safety stock, service
levels, and risk management.

In conclusion, inventory management is a delicate balancing act between
opposing cost structures, shaped by temporal dynamics and uncertainty.
Mathematical models provide valuable tools to support decision-making, of-
fering structured ways to navigate this trade-off under different assumptions
about demand, cost, and system flexibility.

10.3 Vehicle routing problem

The vehicle routing problem arises in the final stage of the distribution pro-
cess, where goods must be delivered to a set of customers using a fleet of
vehicles. The central question is how to organize these deliveries in an ef-
ficient way. More precisely, we must determine which vehicle serves which
customer, and in what order the customers should be visited. This problem
is critical in logistics and transportation systems and has a direct impact on
operational costs, service levels, and environmental outcomes.

The setting is as follows. We consider a set of customers, denoted by C,
who each require a certain quantity of goods. The vehicles that perform the
deliveries are based at a central depot. To include both the customers and
the depot in a unified way, we define the set of locations as C+ = C∪ {depot},
and we assign the depot the index 0. Each customer j ∈ C has a known
demand dj. A total of q vehicles are available, each with the same capacity
ℓ.

The travel time between any two distinct locations i and j is denoted by
tij. We assume the travel times are symmetric, meaning that tij = tji for all
i, j ∈ C+. This assumption simplifies the modeling and corresponds to many
realistic scenarios where the distance or time between two locations is the
same in both directions.

To formulate this as a mathematical optimization problem, we define the
decision variables xij for all i, j ∈ C+. The variable xij takes value 1 if
location j is visited immediately after location i by one of the vehicles, and 0
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otherwise. These binary variables encode both the assignment of customers
to routes and the sequencing of visits within each route.

The objective is to minimize the total duration of all trips, which is
expressed as the sum of travel times over all arcs used in the solution. This
yields the objective function

min
∑

i,j∈C+

tijxij.

Several constraints are required to ensure that the solution is feasible.
First, each customer must be visited exactly once. This is enforced by two
types of constraints: one that ensures each customer has exactly one successor
in a route, ∑

j∈C+

xij = 1, ∀i ∈ C,

and one that ensures each customer has exactly one predecessor,∑
i∈C+

xij = 1, ∀j ∈ C.

Additionally, we need to specify how many vehicles are used. Since each
vehicle starts its route at the depot, the number of arcs leaving the depot
must equal the number of vehicles. This leads to the constraint∑

j∈C

x0j = q.

These constraints define the basic structure of the vehicle routing prob-
lem. However, they are not sufficient. First, the capacity of the vehicles are
ignored.

To better understand theotheer missing constraints, we consider a numer-
ical example based on realistic geographic and demand data. The depot is
located at the train station, and there are 20 customers to serve, each with
an identical demand of 1 unit. A fleet of three vehicles is available to per-
form the deliveries, each with a capacity of 20 units. This means that each
vehicle, in theory, could serve all customers on its own, but we distribute
the deliveries across multiple vehicles to minimize travel time. The travel
durations between all locations — customers and depot — are derived from
OpenStreetMap, reflecting actual distances in a city context.

The spatial distribution of the depot and the customers is shown in Fig-
ure 10.17. The depot, drawn as an orange circle, is centrally positioned, while
the customers are represented by small blue squares. The layout illustrates a
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Train station

Figure 10.17: Depot and customer locations in the routing problem

diverse spatial spread of customers, requiring a thoughtful routing strategy
to ensure efficiency.

Figure 10.18 illustrates the optimal solution of the above model, where the
arrows indicate the direction in which customers are visited. This solution is
actually invalid. Indeed, it contains subtours, which are closed loops among
a subset of customers that are disconnected from the depot. These subtours
imply that certain groups of customers are visited in a cycle without any
connection to the depot, violating the requirement that every delivery tour
starts and ends at the depot.

To ensure the correctness and feasibility of vehicle routing solutions, it is
necessary to introduce additional constraints into the model. In particular,
we must address two crucial issues: enforcing vehicle capacity limits and
eliminating subtours. These enhancements are inspired by methods used for
the well-known traveling salesman problem (TSP), which can be viewed as a
special case of the vehicle routing problem (VRP) with only one vehicle. In
both problems, the potential for invalid cycles that do not involve the depot
must be eliminated, and this is typically done through the introduction of
auxiliary variables and additional constraints.

To achieve this, we define new decision variables ui for each customer
i ∈ C. The variable ui represents the load of the vehicle upon arrival at
customer i — that is, the cumulative quantity of items already on board
when the vehicle visits this location. These variables allow us to keep track
of the vehicle’s content and ensure that it respects both the capacity of the
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Train station

Figure 10.18: Illustration of an invalid solution with subtours and no capacity enforce-
ment

vehicle and the demand of each customer.
The first constraint ensures that the vehicle does not exceed its capacity

when reaching any customer. This is expressed as

uj ⩽ ℓ, ∀j ∈ C.

This upper bound guarantees that no customer is visited with a load that
would violate the vehicle’s capacity limit.

Next, we require that when a vehicle reaches a customer, it has at least
as much load as is needed to satisfy the customer’s demand:

uj ⩾ dj, ∀j ∈ C.

This constraint ensures that the vehicle always arrives prepared to fulfill the
customer’s request.

To properly define the role of the variables ui in the context of the route,
we introduce a constraint that links the load at customer i to the load at
customer j, if the vehicle travels from i to j:

ui − uj + ℓxij ⩽ ℓ− dj, ∀i, j ∈ C.

This constraint serves a dual purpose. If xij = 1, meaning that the vehicle
goes directly from i to j, then the constraint becomes

ui − uj + ℓ ⩽ ℓ− dj,
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which simplifies to
uj ⩾ ui + dj.

This implies that the load upon arrival at customer jmust be at least the load
at i plus the demand of j, effectively enforcing a strictly increasing load along
the route. Such a property prevents the creation of subtours—cycles among
customers that are disconnected from the depot — because in a subtour, the
vehicle would return to the same location without having visited the depot,
which would contradict the strictly increasing nature of uj.

If, on the other hand, xij = 0, then the constraint becomes

ui − uj ⩽ ℓ− dj,

which holds trivially due to the previously stated capacity and demand con-
straints. Specifically, since uj ⩾ dj and ui ⩽ ℓ, we have

dj − uj ⩽ ℓ− ui,

which confirms that this inequality does not restrict the solution when the
arc from i to j is not used.

The final form of the model includes all these constraints, along with the
original routing constraints, to yield a valid and complete formulation of the
vehicle routing problem:

min
x,u

∑
i,j∈C+

tijxij,

subject to ∑
j∈C+

xij = 1, ∀i ∈ C,∑
i∈C+

xij = 1, ∀j ∈ C,∑
j∈C

x0j = q,

uj ⩽ ℓ, ∀j ∈ C,

uj ⩾ dj, ∀j ∈ C,

ui − uj + ℓxij ⩽ ℓ− dj, ∀i, j ∈ C,

xij ∈ {0, 1}, ∀i, j ∈ C+.

This formulation effectively addresses the practical aspects of vehicle routing,
such as load management and route connectivity, enabling the computation
of feasible and efficient delivery plans.
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10.3.1 Scenario 1

The result of the vehicle routing problem applied to our numerical example
is shown in Figure 10.19. The instance includes a depot located at the train
station and 20 customers dispersed in a city. Each customer has a unit
demand, and the depot has access to a fleet of three vehicles, each with a
capacity of 20 items. Distances between locations are derived from real travel
times using OpenStreetMap data.

Train station

Figure 10.19: Solution of the vehicle routing problem in Scenario 1.

From the figure, we observe that all customers are served, and all routes
start and end at the depot. However, the solution is not balanced across the
three available vehicles. One vehicle serves 17 customers, which is close to
the capacity limit. Another vehicle is assigned only two customers, and the
third one is responsible for a single delivery.

10.3.2 Scenario 2

In this scenario, we revisit the same vehicle routing problem as before but
introduce a more restrictive fleet capacity. Specifically, each of the three avail-
able vehicles can now serve at most nine customers, instead of the previous
capacity of twenty. The depot remains located at the train station, and the
demand at each customer location is still equal to one unit. Figure 10.20 dis-
plays the resulting delivery plan obtained by solving the optimization model
with this tighter constraint.
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Train station

Figure 10.20: Vehicle routing solution for Scenario 2 with capacity limited to nine
customers per vehicle.

The solution reflects a better distribution of the workload across the fleet
compared to Scenario 1. Two of the vehicles are each assigned to serve
exactly nine customers, fully utilizing their capacity. The third vehicle serves
the remaining two customers, ensuring all twenty demands are met.

10.3.3 Scenario 3

In this scenario, we consider a more constrained variant of the vehicle routing
problem. The number of vehicles available is increased to four, but each
vehicle has a more limited capacity: it can now serve only eight customers.
The total number of customers remains twenty, and as before, each customer
requires the delivery of one unit. The depot is still located at the train
station, and all deliveries must start and end there. The objective is again
to assign customers to vehicles and sequence their visits so as to minimize
the overall travel time, subject to capacity constraints.

The solution to this scenario is depicted in Figure 10.21. Each route,
represented by a path of directed arrows, corresponds to the trip made by one
vehicle. The figure shows how the twenty customers are partitioned across
the four available vehicles in a way that satisfies all problem constraints.

As expected from the tighter capacity limit, the solution splits the de-
liveries more evenly among the fleet. The first two vehicles each serve eight
customers, which is the maximum their capacity allows. The third vehicle
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Train station

Figure 10.21: Vehicle routing solution for Scenario 3 with four vehicles, each having a
capacity of eight customers.

serves three customers, while the fourth handles only one. This distribution
ensures feasibility but also reflects the trade-off involved: increasing the num-
ber of vehicles can help accommodate tighter constraints, but it may lead to
some underutilization, as seen in the case of the last vehicle.

This example illustrates how the model dynamically adapts to both ca-
pacity and fleet size. By adjusting the number of vehicles and their load
capacities, the optimization algorithm constructs routes that are feasible,
efficient, and responsive to logistical constraints. It also shows that, in prac-
tical applications, a balance must often be struck between minimizing travel
time and using resources efficiently, especially when some vehicles are not
filled to capacity.

10.3.4 Scenario 4

In this fourth scenario, we explore a variant of the vehicle routing problem
where the number of vehicles is fixed to four, and the capacity of each vehicle
is limited to ten units. While the overall number of customers remains twenty,
we introduce a new difficulty: one of the customers — specifically customer
18 — requires a significantly larger delivery, with a demand of eight units.
All other customers continue to require one unit each. This asymmetry in
demand introduces a substantial increase in complexity.

Figure 10.22 displays the resulting optimal solution. As in previous cases,
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all delivery tours start and end at the depot located at the train station. The
figure highlights the paths followed by each vehicle to visit its assigned cus-
tomers while respecting both the demand constraints and the vehicle capacity
constraints. Notably, customer 18 is distinguished in the figure: their node
is represented in orange, reflecting their high demand relative to the others.

Figure 10.22: Vehicle routing solution for Scenario 4 with four vehicles of capacity ten
and a high-demand customer.

The solution reflects the impact of the large demand associated with cus-
tomer 18. Because a single delivery of eight units nearly fills an entire vehicle,
this customer must be carefully assigned to avoid violating the capacity con-
straint. In this instance, customer 18 is served by vehicle 3, which handles
only three customers in total.

Meanwhile, the other three vehicles are more densely utilized: vehicle
1 serves nine customers, nearly reaching its full capacity, while vehicle 2
and vehicle 4 serve seven and one customer respectively. This asymmetric
distribution of workload results from the need to maintain feasibility under
both capacity and demand constraints.

A striking feature of this scenario is the computational complexity re-
quired to identify the optimal solution. Solving this instance took more than
ten hours on EPFL’s Scitas High Performance Computing infrastructure.
This emphasizes the combinatorial nature of the problem. It also underlines
the value of exact optimization approaches in logistics planning — especially
in contexts where respecting delivery constraints is critical.

10.3.5 Summary

The vehicle routing problem is a central question in transportation and logis-
tics. It arises when a set of items must be delivered from a central location —
referred to as the depot — to a group of geographically dispersed customers.
To perform these deliveries, a fleet of vehicles is available at the depot. The
key challenge is to determine both the assignment of customers to vehicles
and the sequence in which each vehicle should visit its assigned customers.
The goal is typically to minimize the total cost or total distance traveled
while respecting various operational constraints.

The core of the problem consists in ensuring that each customer is visited
exactly once, that the total demand assigned to each vehicle does not exceed
its capacity, and that all routes start and end at the depot. The resulting
optimization problem is highly combinatorial: the number of possible assign-
ments and routes grows extremely rapidly with the number of customers.
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In practice, the basic vehicle routing problem admits many variants that
reflect the diversity of real-world logistics operations. For instance, the fleet
may be heterogeneous, with vehicles differing in capacity, cost, or speed.
Some applications involve not just deliveries, but also pick-ups, leading to
pick-up and delivery problems. Other settings impose time windows: cus-
tomers must be visited within specific time intervals. In some cases, deliveries
can be split across multiple vehicles if necessary. More complex networks may
also involve multiple depots. These and many other variants make the vehi-
cle routing problem a highly flexible modeling tool for real-life transportation
systems.

The mathematical structure of the vehicle routing problem presents sig-
nificant challenges. The model includes constraints that prevent subtours —
closed loops that do not include the depot — and that enforce vehicle capac-
ity limits. Although the model presented here is one possible formulation,
other formulations — such as flow-based or path-based models — may be
more efficient for solving large-scale instances.

Due to this complexity, exact methods can become computationally in-
feasible for large problems or in settings where solutions must be computed
frequently in response to new data. In such cases, heuristic methods — such
as local search, metaheuristics, or machine learning-based approaches — are
often employed. These methods do not guarantee optimality but can provide
high-quality solutions within acceptable time limits. The frequent need to
recompute solutions in operational contexts further motivates the use of fast,
approximate solution techniques.

10.4 Summary

Freight transportation differs markedly from passenger transportation in that
it involves significantly less behavioral modeling and relies much more heav-
ily on optimization techniques. In the movement of goods, decisions are
typically driven by cost efficiency, logistical constraints, and operational fea-
sibility, rather than by individual preferences or choices. As a result, freight
transportation problems are often framed as well-defined optimization prob-
lems with clear objectives and constraints.

Throughout this chapter, we have explored three illustrative examples
that reflect the different time horizons involved in freight logistics. At the
strategic, long-term level, the facility location problem focuses on deciding
where to place depots or distribution centers in order to minimize delivery
costs while satisfying customer demand. This decision has long-lasting impli-
cations and requires careful planning based on current and projected demand

276



patterns.
At the medium-term level, inventory management addresses the trade-off

between storage and transportation costs. It aims to determine how much to
order and when, so as to meet demand efficiently while minimizing holding
costs and avoiding stockouts. We have seen both simplified models with
constant demand and more realistic multi-period models that accommodate
demand variability over time.

Finally, at the operational, short-term level, the vehicle routing problem
deals with how to deliver goods to customers using a fleet of vehicles. This
problem entails assigning customers to routes and determining the order of
visits, all while respecting vehicle capacities and minimizing total travel time
or cost.

These three problems—facility location, inventory management, and ve-
hicle routing—provide a structured view of the various planning layers in
freight transportation. Together, they highlight how mathematical model-
ing and optimization can be leveraged to design efficient, reliable, and cost-
effective logistics systems.
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Chapter 11

Cost benefit analysis

Cost-benefit analysis (CBA) is a fundamental tool used in the evaluation of
transportation systems and projects. It provides a structured approach to
compare the total expected costs of a project with its anticipated benefits,
expressed in monetary terms. The goal is to determine whether the benefits
outweigh the costs, and by how much, thereby supporting informed decision-
making regarding the allocation of resources.

11.1 A simple example

Let us begin with a simplified example to illustrate the basic principles of
cost-benefit analysis in the context of a transportation project. Suppose an
airline company is considering the launch of a new route between Geneva
(GVA) and London Heathrow (LHR). To do so, it would need to acquire
and operate an additional aircraft. The central question is whether this
investment is economically justified: in other words, do the expected benefits
from operating the new line outweigh the associated costs?

The project involves the purchase of a Boeing 737-300 aircraft, a com-
monly used model for short-haul flights. The financial evaluation distin-
guishes between two main types of costs: fixed costs and variable costs.
Fixed costs refer to expenditures that are independent of the actual usage of
the aircraft, such as the loan repayment for acquiring the plane. In this exam-
ple, the fixed costs are estimated at $403,765 per year, based on a financing
period of 120 months.

Variable costs, on the other hand, depend on the operation of the aircraft.
These include maintenance expenses, fuel consumption, and other costs that
scale with flight activity. For the proposed route, the annual variable costs
are projected to reach $2,875,072. Adding the fixed and variable components,
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the total cost of operating the aircraft for one year amounts to $3,278,837.
To complete our analysis, we must now examine the operational details

of the proposed airline service, the associated crew costs, and the expected
revenues. The planned service consists of two daily round-trip flights be-
tween Geneva (GVA) and London Heathrow (LHR), each with a duration
of approximately 1 hour and 35 minutes. Flights are scheduled five days a
week, leading to a total of 520 flights per year. This represents 823.3 flight
hours annually.

A major component of operating costs in aviation is crew remuneration.
For this example, we assume an average cost of $2,000 per flight hour, cov-
ering both cockpit and cabin crew. Based on the annual number of flight
hours, the total crew costs amount to $1,646,666 per year. These costs are
variable in nature and scale directly with the number of flights operated.

We then turn to the revenue side of the analysis. With an average of 120
passengers per flight and a mean ticket price of $100, each flight is expected
to generate $12,000 in revenue. Multiplying by the annual number of flights
(520), the total annual revenue reaches $6,240,000. This simple revenue
model assumes consistent load factors and pricing throughout the year.

Bringing all these components together, we can calculate the annual costs
and benefits. The total cost of operating the aircraft, including both fixed
and variable costs, is $3,278,837. Adding the crew costs yields total an-
nual expenditures of $4,925,503. With revenues of $6,240,000, the operation
produces an annual surplus, or benefit, of $1,314,497.

Beyond simply calculating the annual surplus, cost-benefit analysis can
also yield valuable operational insights through the computation of break-
even indicators. These indicators help decision-makers understand the con-
ditions under which the project neither generates a profit nor incurs a loss.
In other words, the break-even point corresponds to the level of revenue that
exactly offsets total costs.

In our airline example, the total annual cost of operating the new service
is $4,926,000. To determine the break-even revenue per flight, we divide this
amount by the total number of annual flights, which is 520. This results in
a break-even revenue of approximately $9,473 per flight. If each flight can
generate this amount in ticket sales, the airline covers all operational costs
but does not earn a profit.

From this, we can derive alternative scenarios that achieve this break-
even point. For example, if every flight carries 120 passengers — the as-
sumed aircraft capacity – the required average ticket price to break even is
approximately $79. Alternatively, if the average ticket price remains at $100,
the break-even load factor drops to 94 passengers per flight. These indicators
provide concrete targets for pricing and occupancy that can guide managerial
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decisions.
Such break-even analysis is particularly useful in the early stages of

project planning. It supports the evaluation of pricing strategies, demand
forecasts, and operational viability. Moreover, it enables the identification of
risk thresholds: if actual performance falls below the break-even levels, the
project may need to be restructured or reconsidered. In this sense, break-
even indicators complement surplus calculations by offering a more nuanced
understanding of what is required for a transportation service to be finan-
cially sustainable.

This example illustrates how cost-benefit analysis can be used to evaluate
a transportation project in financial terms. While simplified, the calculation
reflects key principles: the separation of fixed and variable costs, the role
of operational scheduling, and the estimation of revenues based on demand
assumptions. The result — a net positive annual benefit — suggests that,
under these assumptions, the proposed route is economically viable. Further
analysis might refine these estimates, incorporate risk and uncertainty, or
include external benefits such as improved connectivity or reduced environ-
mental impacts. Nonetheless, this scenario provides a concrete foundation
for understanding the rationale behind investment decisions in the transport
sector.

Cost-benefit analysis is a central component of business decision-making,
particularly in capital-intensive industries like aviation. Whether assessing
the launch of a new service or the acquisition of a major asset, businesses rely
on structured financial evaluations to gauge the viability of their options. In
practice, this type of analysis is often implemented using simple spreadsheet
tools, where assumptions, parameters, and equations can be clearly laid out
and easily adjusted. Such tools facilitate transparency and reproducibility,
while enabling sensitivity testing to explore how results vary under different
conditions.

Despite its apparent simplicity, this approach is not without challenges.
One of the main difficulties lies in defining credible scenarios. For example,
future demand, ticket pricing, or operating conditions may be subject to
considerable uncertainty. Another difficulty concerns the accurate estimation
of costs, especially for new or infrequent operations where historical data
may be scarce or not directly transferable. Finally, it is often hard to ensure
that all relevant factors have been taken into account. Costs and benefits
may span multiple dimensions—financial, operational, environmental, and
social—and capturing them comprehensively requires careful judgment and
interdisciplinary input.
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11.2 A more complex example

To illustrate the broader scope of cost-benefit analysis in public infrastruc-
ture, we turn to a more complex and large-scale example: the Gotthard Base
Tunnel in Switzerland. This railway tunnel, which officially opened in 2016,
is one of the most ambitious transportation projects in recent European his-
tory. Extending over 57 kilometers between the cantons of Uri and Ticino,
the tunnel forms a vital part of the north-south trans-Alpine rail corridor,
significantly improving connectivity between Zurich and Milan. With two
separate tubes to accommodate bidirectional traffic, it represents a major
technological and engineering achievement.

One of the tunnel’s most tangible impacts is the reduction in travel time.
The new infrastructure shortens the journey between Zurich and Milan by
approximately 30 minutes, a change that affects not only passenger trains
but also freight services. In doing so, it enhances the overall efficiency and
attractiveness of rail transport along this corridor, potentially shifting traffic
away from road to rail. The total investment required to construct the tunnel
amounted to approximately 12.2 billion Swiss francs, funded largely by public
sources.

One might be tempted to evaluate the financial viability of the Gotthard
Base Tunnel using a similar approach as for a commercial airline route, by
calculating the potential revenues from a hypothetical toll system. For ex-
ample, if each train — whether freight or passenger — were charged a fee
of 1,000 Swiss francs for using the tunnel, and if 25,000 freight trains and
20,000 passenger trains used the tunnel annually, the resulting revenue would
amount to 45 million francs per year. Based on the tunnel’s construction cost
of 12.2 billion francs, it would take approximately 271 years to recover the
investment through such toll revenues alone.

However, this approach is clearly inadequate for assessing the viability of
a public infrastructure project of this magnitude. First, the revenue estimate
assumes that demand remains unchanged, even after the introduction of a
toll. In reality, economic theory and empirical evidence suggest that intro-
ducing a user charge would reduce the number of trains using the tunnel, as
some services may be rerouted or canceled in response to higher costs. As a
result, the projected revenue is likely to be overstated, and the actual break-
even period would be even longer than the simple calculation suggests. But
more importantly, this kind of narrow financial evaluation fails to capture
the broader economic and societal rationale for building the tunnel.

The limitations of this revenue-based assessment were already acknowl-
edged in 1974 by the Swiss Federal Railways (SBB). At the time, analysts
pointed out that while it is possible to define a utilization threshold — a
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point at which operational revenues equal or exceed additional costs — such a
threshold says little about the project’s true economic value (Diemant, 1974).

As the SBB report noted, it is fundamentally impossible to demonstrate
the economic profitability of the tunnel in the traditional, commercial sense.
Instead, evaluating the Gotthard Base Tunnel requires an overall societal
perspective, which considers a wide range of benefits beyond direct revenues.
These may include improved connectivity across regions and countries, re-
duced environmental impacts due to shifts from road to rail, increased safety,
and the long-term resilience of freight and passenger transport networks.
Such benefits, while harder to quantify, are essential for understanding why
societies undertake large infrastructure investments that may not be justifi-
able on financial grounds alone.

This example underscores the distinction between financial and economic
appraisal. While cost-benefit analysis remains a central tool, its application
in the context of public infrastructure must extend beyond balance-sheet
considerations. Public investment decisions are not solely about maximizing
profit; rather, they must reflect broader societal goals such as equity, envi-
ronmental sustainability, and national or regional cohesion. Unlike private
businesses, which focus on financial returns to shareholders, governments are
responsible for serving the collective interest of their citizens.

Evaluating large-scale infrastructure projects therefore requires a careful
balance between rigorous technical analysis and political judgment. Cost-
benefit analysis provides a structured framework for identifying and quan-
tifying the expected impacts of a project, but it does not dictate the final
decision. Political prerogatives — such as promoting regional development,
reducing emissions, or enhancing national resilience — may justify projects
that would not be considered profitable in a narrow financial sense.

The primary objective of such evaluation is not to produce a definitive yes-
or-no answer, but to inform the decision-making process. A well-conducted
analysis helps policymakers understand the trade-offs involved and the dis-
tribution of costs and benefits across different segments of society. In doing
so, it supports the design of decisions that aim to achieve the greatest public
good, in line with societal values and long-term strategic priorities. Ulti-
mately, cost-benefit analysis is a tool for transparency and accountability in
public investment, not a substitute for democratic governance.

11.3 Methodology

Cost-benefit analysis is a structured methodological framework used to guide
decision-making in the planning and evaluation of transportation projects.
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Its primary purpose is to provide a rational basis for determining whether
a project should proceed, and if so, which among several alternatives offers
the greatest overall value. The analysis aims to assess all relevant costs and
benefits associated with each option, translating them into a common metric
to support transparent and informed choices.

Two key objectives typically motivate a cost-benefit analysis. First, it
can be used to support a go/no-go decision — that is, to evaluate whether
a proposed project is worthwhile from an economic standpoint. Second, it
provides a basis for comparing different variants of a project. For example,
planners might assess alternative routes, technologies, or service levels, with
the goal of selecting the option that maximizes societal benefit relative to
cost.

A critical first step in any cost-benefit analysis is the collection of appro-
priate data. This begins with the identification of stakeholders — those who
will be affected by the project, either directly or indirectly. Understanding
who the relevant actors are helps ensure that the analysis captures a com-
prehensive range of perspectives. Next, it is important to determine what
aspects of the project matter most. This includes impacts such as travel
time savings, safety improvements, environmental effects, and broader eco-
nomic or social consequences. Once these aspects are identified, they must
be translated into measurable indicators. The choice of indicators depends
on the nature of the project and the objectives of the analysis, and may
include metrics such as vehicle operating costs, accident rates, emissions, or
property values.

Once data have been collected and relevant indicators identified, the anal-
ysis proceeds by combining the indicators into aggregate measures of cost
and benefit. This involves forecasting future trends, applying appropriate
discount rates to account for the time value of money, and estimating the
net present value of each alternative. The resulting figures allow for a system-
atic comparison of options, highlighting the trade-offs involved and helping
decision-makers identify the most advantageous course of action.

Throughout the process, transparency and consistency are essential. As-
sumptions must be clearly stated, methods rigorously applied, and uncer-
tainties openly acknowledged. By doing so, cost-benefit analysis can serve
not only as a technical tool, but also as a means to foster accountability and
trust in public investment decisions.

11.3.1 Stakeholders

A central aspect of cost-benefit analysis is the recognition that transportation
projects affect a wide range of stakeholders. Identifying and understanding
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these stakeholders is important for conducting a comprehensive and balanced
evaluation. The impacts of a project are rarely confined to a single group,
and the perceived costs and benefits can vary significantly depending on one’s
role, perspective, and interests.

One key stakeholder group consists of travelers — individuals who use the
transport system for commuting, leisure, business, or other purposes. For
them, the primary benefits of a project may include reduced travel times,
improved comfort, enhanced reliability, or increased safety. At the same
time, changes to routes, services, or pricing structures may impose new costs
or inconveniences.

Transport operators, both public and private, form another important
group. These stakeholders are directly affected by changes in demand, oper-
ating costs, infrastructure access, and regulatory conditions. A new rail line
or tunnel, for instance, might offer opportunities for increased revenue and ef-
ficiency, but could also entail adjustments to service patterns or investments
in new rolling stock.

Public authorities — such as transport ministries, regional governments,
or municipal planning agencies — are responsible for planning, funding, and
regulating transportation infrastructure. Their perspective extends beyond
the immediate users to include broader social, economic, and environmental
objectives. For these actors, cost-benefit analysis is a tool to guide resource
allocation and ensure accountability in public spending.

Finally, the effects of transportation projects often extend to society at
large. Environmental impacts, land use changes, noise pollution, and green-
house gas emissions may affect communities that are not directly involved
in the transport system. These indirect effects must also be considered in
the analysis, as they represent real costs and benefits distributed across the
population.

It is important to acknowledge that a cost to one stakeholder may repre-
sent a benefit to another. For example, a toll on a new roadway may be a
burden to individual drivers but a source of funding for the public author-
ity. Similarly, a shift from road to rail freight might reduce emissions and
improve safety for the general public, even if it results in higher logistics
costs for some firms. Recognizing these trade-offs is essential to avoid biased
or incomplete assessments. A robust cost-benefit analysis seeks to account
for all stakeholder perspectives, thereby supporting decisions that reflect the
collective interest.
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11.3.2 Indicators

The foundation of any cost-benefit analysis lies in the identification and quan-
tification of relevant indicators. These indicators serve as measurable repre-
sentations of the various costs and benefits associated with a transportation
project.

Cost indicators can be divided into two main categories: long-term and
short-term. Long-term costs typically involve investments with a duration of
one year or more. These include expenditures related to the design and engi-
neering of infrastructure, the construction of physical assets such as tunnels,
bridges, or stations, and the acquisition of vehicles or rolling stock. Because
these investments are incurred over extended periods and are often subject
to changes in price levels, it is important to adjust long-term cost estimates
for inflation, using appropriate financial and economic discounting methods.

Short- and medium-term costs, on the other hand, are typically recurring
and operational in nature. These include the day-to-day costs of operating
services, maintaining infrastructure and vehicles, and managing personnel
and logistics. Although they are smaller in scale compared to capital ex-
penditures, operational costs accumulate over the project’s lifetime and can
significantly affect its overall economic viability.

In addition to classifying costs by time horizon, indicators can also be
categorized as monetary or non-monetary. Monetary indicators are relatively
straightforward to quantify and include fares paid by users, tolls collected on
infrastructure, and taxes levied to support the operation or construction of
transport services. These indicators reflect direct financial flows and are often
easily derived from market data or existing budgetary frameworks.

Non-monetary indicators, however, capture impacts that are not directly
priced in markets but are nonetheless critical to evaluating the societal value
of a project. These include travel time savings for passengers, which reflect
the efficiency of the system; reductions in traffic accidents, which contribute
to public safety; and environmental impacts such as noise, air pollution, and
CO2 emissions. Other indicators may reflect changes in land use, urban
development patterns, or spatial equity — for instance, how a new project
improves access to jobs or services in underserved areas.

Because non-monetary impacts are not inherently expressed in monetary
terms, cost-benefit analysis often requires converting them using standard-
ized methods or willingness-to-pay estimates. While this introduces uncer-
tainty and complexity, it allows for a more holistic comparison of project
alternatives. Ultimately, a well-designed set of indicators — covering both
costs and benefits, monetary and non-monetary, short- and long-term —
ensures that the analysis reflects the multifaceted nature of transportation
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investments and their implications for society.

11.3.3 Illustration

Let us consider a hypothetical transportation project of high technolog-
ical ambition: the construction of a Hyperloop system between Geneva
and Zürich. The concept of the Hyperloop involves a vacuum-sealed tube
through which pressurized pods travel at extremely high speeds using mag-
netic propulsion. In this scenario, the proposed system would cover the 280
kilometers between the two cities in just 30 minutes, dramatically reducing
current travel times and redefining intercity mobility.

Such an ambitious infrastructure project would involve a wide array of
stakeholders, each of whom would be affected in different ways. Travelers
stand to benefit from a substantial reduction in travel time, potentially im-
proving productivity, convenience, and access to employment opportunities.
However, these benefits may be offset by higher fares if the service is priced
as a premium product. For transport operators, the project represents both
a major capital investment and a potential source of future revenue through
fare collection and network expansion. Public authorities may contribute to
the financing of the infrastructure and play a role in regulatory oversight,
while also benefiting from tax revenues or strategic gains linked to regional
development.

Beyond the directly involved parties, the project would have significant
implications for society at large. These include environmental impacts, such
as potential reductions in air pollution and CO2 emissions if the Hyperloop
replaces car or air travel. On the other hand, construction and land acquisi-
tion could cause ecological disruptions or raise questions of land use fairness.
Spatial impacts also merit attention, as the improved connectivity between
the cities may influence housing markets, labor mobility, and regional equity.

Table 11.1 summarizes the key indicators associated with the Geneva–Zürich
Hyperloop project and how they map across different stakeholder groups.
The entries represent either costs or benefits that each group may incur or
enjoy. Note that some effects are ambiguous or may involve trade-offs, such
as the societal consequences of faster travel and infrastructure expansion.
While simplified, the table provides a useful starting point for organizing the
evaluation process.

11.3.4 Issues

While cost-benefit analysis offers a powerful framework for evaluating trans-
portation projects, its effective application raises several important issues.
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Travelers Operators Authorities Society

Capital in-
vestment

Cost Cost

Operations
and mainte-
nance

Cost

Fare or toll Cost Benefit
Taxes Cost Benefit
Travel time
savings

Benefit Cost/Benefit

Pollution Cost/Benefit
Land use Cost
Spatial im-
pacts

Cost/Benefit

Table 11.1: Stakeholders and indicators for a Hyperloop project between Geneva and
Zürich

These challenges must be understood and addressed to ensure that the anal-
ysis provides meaningful guidance for decision-making.

A first point of concern relates to the distinction between private and
public projects. In the case of a commercial enterprise, such as the airline
example described in Section 11.1, the analysis is typically conducted from
the perspective of the operator. The primary focus is on the financial viabil-
ity of the investment: whether revenues will exceed costs, and what return on
investment can be expected. However, public infrastructure projects serve a
broader purpose. Their evaluation must consider a wider range of stakehold-
ers, including users, operators, public authorities, and society at large. This
means that all dimensions of impact — not just financial flows to the operator
— must be taken into account. Public investment decisions must be guided
not only by profitability, but also by considerations of equity, environmental
sustainability, and strategic importance.

Another recurrent issue in cost-benefit analysis is the accurate estima-
tion of monetary costs, particularly for large infrastructure projects. There
is extensive empirical evidence showing that such projects often suffer from
significant cost overruns. Initial estimates tend to be overly optimistic, ei-
ther because of insufficient data, methodological weaknesses, or strategic
underestimation. Underestimating costs can lead to poor investment deci-
sions, misallocation of public resources, and erosion of public trust. For this
reason, analysts must apply rigorous and conservative approaches to cost
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forecasting, incorporating risk margins and learning from comparable past
projects.

In addition to monetary costs, transportation projects generate a wide
range of non-monetary costs and benefits. These include improvements in
travel time, safety, air quality, and land use, among others. Unlike monetary
indicators, these effects are not naturally expressed in a common unit, making
them difficult to compare or aggregate. A key challenge is to find appropriate
ways to quantify and, when necessary, monetize these impacts. This often
involves the use of shadow prices, willingness-to-pay estimates, or scoring
systems. Even when monetary conversion is not possible or appropriate,
analysts must find transparent methods to account for these effects in the
final decision.

The combination of monetary and non-monetary indicators also raises
normative questions. Should all effects be reduced to a single monetary
value? Or should some impacts — such as environmental preservation or
social equity — be treated as constraints or objectives in their own right?
These questions do not have simple answers and often require the integra-
tion of cost-benefit analysis with broader decision-making frameworks. Ul-
timately, the purpose of evaluation is not to produce a definitive verdict,
but to provide decision-makers with the best available information to make
choices that align with the public interest.

The rest of the chapter is dedicated to the discussion of those issues.

11.4 Estimation of monetary costs

One of the most persistent and well-documented issues in the evaluation of
large infrastructure projects is the systematic underestimation of monetary
costs. This phenomenon has been observed across a wide range of sectors
and countries, and it undermines the credibility of cost-benefit analyses when
used as a decision-support tool. While uncertainties are inevitable in fore-
casting long-term investments, the scale and consistency of cost overruns
suggest deeper structural problems in how project costs are estimated and
communicated.

A striking illustration of this issue can be found in the organization of
the Olympic Games (Andreff, 2012), which often involve substantial public
investment in transportation, sports venues, accommodation, and security
infrastructure. Table 11.2 presents a comparison between the announced
budgets and actual costs for several recent Olympic Games. In London 2012,
for example, the initial budget was 3.4 billion pounds, but the final cost
reached 11.6 billion pounds — an increase by a factor of 3.4. The discrepancy
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was even more dramatic for Beijing 2008, where the estimated cost was just
under 2 billion dollars, while the real cost exceeded 43 billion, resulting in an
overrun of more than twentyfold. Although not all cases are as extreme, even
the relatively moderate overrun in Athens 2004 (30 percent) and Sydney 2000
(90 percent) illustrates how frequent and significant these deviations can be.

Olympic Games Budget Real Costs Cost Multiplier
London 2012 3.4 billion £ 11.6 billion £ ×3.4
Beijing 2008 1.9 billion $ 43–45 billion $ ×23.7
Athens 2004 4.6 billion e 6 billion e ×1.3
Sydney 2000 3.4 billion $ 6.6 billion $ ×1.9

Table 11.2: Budgeted vs. actual costs of recent Olympic Games

This pattern is not confined to sports events. In transportation and in-
frastructure more broadly, empirical research (e. g. Flyvbjerg et al., 2003)
shows that 90 percent of very large infrastructure projects experience cost
overruns. Rail projects tend to exceed their budgets by an average of 45
percent, tunnels and bridges by 34 percent, and road projects by 20 percent.
Across the transportation sector, the average overrun is approximately 28
percent. Alarmingly, this tendency has not shown any significant improve-
ment over time. Despite decades of experience and advances in planning
methodologies, no systematic learning seems to be taking place.

The consequences of poor cost estimation are far-reaching. Underesti-
mated costs can lead to flawed investment decisions, budgetary shortfalls,
and reduced public trust. When costs balloon, projects may need to be
scaled back, delayed, or require additional funding, sometimes at the expense
of other public priorities. This undermines the reliability of cost-benefit anal-
ysis, especially when its results are used to justify large public expenditures.

To mitigate these risks, analysts and decision-makers must approach cost
estimation with a critical mindset. Conservative assumptions, benchmarking
against comparable projects, and formal risk assessment procedures should
become standard practice. Furthermore, transparency in how cost figures
are derived—and accountability for their accuracy—are essential to fostering
responsible project planning and evaluation.
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11.5 Estimation of non-monetary costs: trans-

forming everything into monetary units

When evaluating the benefits and costs of transportation projects, one often
faces the challenge that many crucial impacts are measured in different units.
For example, improvements in travel time, safety, and environmental quality
cannot be directly added together because they do not share a common
metric. There are two principal approaches to overcome this difficulty. The
first approach is to transform all indicators into a single common metric,
usually monetary units. This monetization process involves estimating the
economic value of non-monetary effects — such as assigning a value to each
minute of travel time saved or each kilogram of CO2 reduced — so that these
effects can be aggregated with conventional financial costs and benefits. This
method allows decision-makers to compare diverse impacts on a unified scale
and is particularly useful when making cost-benefit comparisons between
different projects. However, it also relies on assumptions about the value of
non-market effects, which may introduce uncertainty.

The second approach is multi-criteria analysis, where each indicator is
retained in its original unit. While this section focuses on the monetization
strategy, it is important to recognize that multi-criteria analysis offers an
alternative that might be more appropriate when monetizing certain non-
monetary outcomes is problematic or controversial. We discuss this multi-
criteria method in greater detail in Section 11.6.

There are several approaches available to transform non-monetary indica-
tors into monetary units, each grounded in a different conceptual foundation.
The choice of method depends on the nature of the impact being considered,
the availability of data, and the objectives of the analysis (see, for instance,
Duong, 2009). The four principal methods are the behavioral approach, the
cost for society, the use of a shadow price, and the reference to an existing
market price. These approaches offer distinct perspectives on valuation and
are often applied in complementary ways within the framework of cost-benefit
analysis.

In the following sections, we explore each of these methods in more detail.

11.5.1 Behavioral approach

The behavioral approach to monetizing non-monetary indicators relies on
observing or inferring individuals’ preferences and behaviors in order to es-
timate the value they assign to specific changes in their environment. The
fundamental idea is that people’s willingness to pay for certain improvements
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— or to avoid certain harms — can reveal the implicit monetary value they
place on non-monetary aspects such as time, safety, or environmental quality.
Within this approach, three main techniques are commonly used: consumer
surplus analysis, contingent valuation, and risk mitigation valuation.

The first technique is based on the concept of consumer surplus (see
Section 2.3), which represents the difference between what an individual is
willing to pay for a good or service and what they actually pay. In the context
of transportation, this can be used to estimate the benefits of a new project by
comparing the generalized cost of travel (including time and money) before
and after the project. One widely used method for estimating consumer
surplus is the rule of half, which assumes that for users switching from one
mode or route to another due to a policy change, the average benefit is half
the difference in generalized costs, if the supply and demand curves are linear
(see Figure 2.12). This approach is particularly useful for approximating
travel time savings and pricing effects in large-scale transportation models.

The second technique is known as contingent valuation. This method
uses surveys to directly ask individuals about their willingness to pay for a
hypothetical improvement or to accept compensation for a hypothetical loss.
For example, the value of time (see Section 3.2) measures how much individ-
uals would be willing to pay to reduce their daily commute by ten minutes.
Similarly, a “value of reliability” is the willingness to pay to improve the
reliability of a public transport service. Contingent valuation is particularly
useful for valuing attributes that are not traded in any market and where no
observable behavior exists. However, it is subject to several limitations, in-
cluding hypothetical bias and the potential discrepancy between willingness
to pay and willingness to accept, the latter often being significantly higher
due to loss aversion or emotional attachment.

The third technique within the behavioral approach involves valuing risk
mitigation. This refers to the estimation of how much individuals are willing
to pay to reduce risks to their health or safety. For example, the value of
statistical life is a key parameter in transportation safety analysis and is typi-
cally derived from studies of labor markets, where wage differentials are used
to estimate how much extra income workers demand to accept higher job-
related risks. Similarly, the value of reducing the probability of injuries can be
inferred from consumer behavior, such as the purchase of safety equipment
or insurance. These values are then used to assign a monetary equivalent
to reductions in accident rates or improvements in safety resulting from a
project.

Let’s illustrate the valuation of life and health improvements, in the con-
text of risk mitigation. This involves estimating how much individuals are
willing to pay to reduce the probability of death or injury. The resulting
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measure, often referred to as the Value of a Statistical Life (VSL), plays a
critical role in evaluating policies or projects that affect safety, such as in-
vestments in road infrastructure, public transport safety enhancements, or
environmental regulation.

In Switzerland, the official VSL is derived from studies conducted by the
OECD using stated preference methods (OECD - Organisation for Economic
Co-operation and Development, 2012, ARE - Office fédéral du développement
territorial, 2022). These methods involve survey-based techniques in which
individuals are asked how much they would be willing to pay for small re-
ductions in their mortality risk. The aggregated results are then scaled up to
reflect the value of avoiding one statistical death in a population. According
to official estimates, the VSL in Switzerland was 6.4 million Swiss francs in
2010 and increased to 6.9 million by 2021. These values are used in official
economic appraisals to quantify the benefits of interventions that improve
public safety.

In the United States, historical estimates of the value of life also reflect
a behavioral approach, but often rely on revealed preferences — particularly
wage-risk tradeoffs in the labor market. In this context, economists examine
how much extra income workers demand to accept more dangerous jobs,
thereby inferring how much people value marginal changes in mortality risk.
Table 11.3 shows estimates of the VSL in the U.S. from 1940 to 1980, in
thousands of 1990 U.S. dollars. These figures, ranging from approximately
$700,000 in 1940 to over $5 million in 1980, reflect both increased income
levels and a growing societal concern for safety over time.

Table 11.3: Estimates of the Value of a Statistical Life in the United States

Year Lower bound ($K) Upper bound ($K)
1940 713 996
1950 1,122 1,755
1960 1,085 2,132
1970 2,792 4,937
1980 4,144 5,347

In thousands of 1990 U.S. dollars. Source: Costa and Kahn, 2004

While the VSL captures the value of avoiding a statistical death, it is
also useful to consider the value of extending life through medical or policy
interventions. For example, a study reported by Kingsbury (2008) found
that if Medicare in the United States spent an additional $129,000 to treat
a specific group of patients, it would result, on average, in one additional
quality-adjusted life year (QALY) per person. In this case, the QALY serves
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as a unit that adjusts life expectancy gains by the quality of health experi-
enced during those years, making it a valuable tool in health economics.

These examples underscore how the concept of willingness to pay can
be applied not only to convenience and comfort, but also to life-and-death
considerations. By grounding valuations in actual or stated behavior, the be-
havioral approach provides a framework for incorporating safety and health
improvements into economic evaluations in a systematic, albeit ethically sen-
sitive, manner.

Together, these techniques provide a rigorous framework for assigning
monetary values to otherwise intangible benefits. While each has its own
methodological challenges, the behavioral approach remains one of the most
widely accepted and empirically grounded methods for integrating non-monetary
impacts into cost-benefit analysis.

11.5.2 Shadow price

An alternative to the behavioral approach for monetizing non-monetary indi-
cators is the use of shadow prices. A shadow price is an artificial or imputed
value assigned to a good or externality that does not have a clearly observ-
able market price. It is typically established through expert judgment, policy
negotiation, or regulatory consensus, with the aim of internalizing costs or
benefits that are otherwise external to market transactions.

One widely used example of a shadow price is the valuation of carbon
dioxide (CO2) emissions. Because CO2 contributes to climate change but
is not traded like a conventional commodity in most markets, governments
often assign a notional1 cost per ton of CO2 to reflect its environmental
impact. These values vary by country and over time, depending on policy
priorities, climate targets, and methodological choices. In Switzerland, for
instance, the official shadow price for CO2 rose from CHF 96 per ton in 2021
to CHF 120 in 2022, reflecting a growing commitment to climate policy. In
contrast, the European Union used a lower value of CHF 46 per ton in 2021.
Finland was the first country to adopt a carbon pricing mechanism in 1990,
pioneering the use of shadow prices in climate-related cost assessments.

While shadow prices can be a valuable tool for bringing non-market effects
into the scope of economic evaluation, their use is not without limitations. A
fundamental concern is the degree of subjectivity involved in determining the
appropriate value. Unlike market prices, which emerge from the interaction
of supply and demand, shadow prices are often derived through negotiation
or expert modeling. This makes them highly sensitive to the assumptions,

1estimated or policy-based.
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values, and institutional contexts that underpin their construction.
Moreover, shadow prices can be vulnerable to conflicts of interest and

political influence. Stakeholders with divergent agendas — such as industry
groups, environmental organizations, and government ministries — may ad-
vocate for different valuations based on how they expect the resulting policy
implications to affect them. In some cases, powerful lobbies may exert pres-
sure to keep prices artificially low in order to minimize compliance costs or
to protect vested interests. Conversely, advocacy groups may push for higher
valuations to highlight long-term environmental risks or social costs.

As a result, the legitimacy and credibility of shadow prices depend criti-
cally on the transparency and rigor of the processes through which they are
defined. Ideally, shadow prices should be grounded in robust scientific evi-
dence and updated regularly to reflect changing knowledge and conditions.
At the same time, they must strike a balance between economic theory and
political feasibility, acknowledging that some level of compromise is often
unavoidable in public policy.

In summary, shadow prices are a practical way to integrate otherwise in-
visible costs into cost-benefit analysis. However, their effectiveness depends
on how well they are designed and governed. When used thoughtfully and
transparently, they can support more comprehensive and equitable decision-
making. But when used without scrutiny, they risk introducing bias or mask-
ing underlying trade-offs.

11.5.3 Market price

Another approach to monetizing non-monetary indicators relies on the use
of market prices. When a direct market does not exist for a particular exter-
nality — such as pollution or noise — governments can intervene by creating
an artificial market. The objective is to assign a monetary value to external
costs by making them tradable commodities. This mechanism transforms
previously unpriced negative externalities into goods that are subject to sup-
ply and demand, thereby revealing their economic value through the price of
tradeable permits.

The creation of such markets typically follows a regulatory framework
established by public authorities. First, the government identifies a harmful
activity that produces a negative externality, such as air pollution or carbon
emissions. It then sets a cap on the total allowable level of that externality
and issues a limited number of permits that grant the right to produce a
specified amount of it. These permits can be allocated for free or auctioned
and are tradable in the open market. This system is commonly referred
to as cap-and-trade (Flachsland et al., 2011). By introducing scarcity, the
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market assigns a price to the externality, and economic agents are incentivized
to reduce their emissions if the cost of doing so is lower than purchasing
additional permits.

A number of real-world applications illustrate the effectiveness of this ap-
proach. One of the earliest examples is the lead phase-down program in the
United States (1979–1996), which targeted the removal of lead from gasoline
(Newell and Rogers, 2003). Refineries were issued tradeable permits limit-
ing lead content, allowing flexibility in compliance while gradually reducing
overall emissions. This market-based approach significantly accelerated the
reduction of lead in gasoline, achieving in 1981 what would have otherwise
taken until 1987 without such measures.

Another notable case is the Ecopoint system in Austria (1995–2006),
aimed at limiting noise and air pollution from heavy goods vehicles crossing
the country. Trucking companies were allocated a fixed number of Eco-
points, which they could trade among each other depending on their routes
and vehicle types. The system effectively encouraged cleaner and quieter
transportation technologies (Caveri, 2003).

A more recent and ongoing example is California’s Low Emission Vehicle
(LEV) and Zero Emission Vehicle (ZEV) programs, initiated in the 1990s.
These programs require automobile manufacturers to sell a certain propor-
tion of low or zero-emission vehicles, such as electric cars. Manufacturers
who exceed the requirement can sell their excess credits to others who fall
short, creating a dynamic market that assigns a price to clean vehicle tech-
nology and accelerates innovation and adoption by rewarding early movers
(California Air Resources Board, 2024, McConnell and Leard, 2021).

11.5.4 Summary

Transforming non-monetary indicators into monetary values is a common
and useful strategy in cost-benefit analysis, but it is not without limitations.
As discussed, there is no single or universally accepted way to carry out
this transformation. The value assigned to time, health, or environmental
quality may vary depending on the context, methodology, cultural prefer-
ences, and institutional frameworks. Whether through behavioral inference,
shadow pricing, or market-based instruments, each approach involves certain
assumptions and degrees of simplification.

One major source of complexity is the unavoidable role of subjectivity.
Estimating how much people value safety, clean air, or reduced noise often
requires interpreting preferences through models, surveys, or policy negotia-
tions. Even when supported by empirical data, the outcome is still sensitive
to methodological choices. Different analysts or institutions may arrive at
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different valuations for the same indicator, which can significantly affect the
final evaluation of a project.

For these reasons, analysts and decision-makers sometimes seek alterna-
tive approaches that preserve the integrity of non-monetary indicators with-
out converting them into a common monetary unit. One such alternative is
the multi-criteria approach, which allows for the evaluation of multiple, di-
verse impacts side by side. Rather than aggregating everything into a single
cost-benefit figure, this method recognizes that different objectives — such
as environmental protection, social equity, or economic efficiency — may be
best addressed using separate criteria.

In the following section, we introduce the principles and tools of multi-
criteria analysis, explore its potential advantages in dealing with complex
transport projects, and discuss how it can complement or enhance traditional
cost-benefit methods.

11.6 Estimation of non-monetary costs: mul-

ticriteria analysis

Multi-criteria analysis (MCA) offers an alternative to monetary valuation
when dealing with complex decisions that involve multiple, diverse impacts.
Instead of converting all effects into a single monetary unit, MCA evaluates
projects across several distinct indicators, each representing a specific ob-
jective or concern. This approach acknowledges that in many cases, costs,
environmental impacts, and social benefits are inherently incommensurable
and should not be forced into a common scale.

In MCA, a project i is evaluated using a set of indicators qi
1,q

i
2, . . . ,q

i
K,

where each qi
k measures performance with respect to criterion k. These in-

dicators may include financial costs, travel time, environmental effects (such
as CO2 emissions), user benefits (like consumer surplus), or other relevant
impacts. The guiding principle is that lower values indicate better perfor-
mance — hence, we seek to minimize each indicator. If an indicator reflects a
quantity that is better when higher (such as consumer surplus), it can simply
be multiplied by −1 so that the objective of minimization is preserved across
all indicators.

Importantly, in this framework, the indicators are treated as incompara-
ble: no attempt is made to combine them into a single score. Instead, each
criterion retains its original unit and meaning, preserving the richness of the
decision-making context. This allows analysts and stakeholders to consider
trade-offs transparently. For example, suppose project i has lower costs and
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lower CO2 emissions than project j, but offers slightly longer travel times.
Whether project i is preferable to project j depends not on a pre-defined for-
mula, but on how decision-makers value the trade-off between environmental
benefit and user convenience.

To make this concrete, consider the following example: qi
1 and qj

1 repre-
sent the financial cost of two projects; qi

2 and qj
2 reflect the average travel

time for users; qi
3 and qj

3 quantify the expected CO2 emissions; and −qi
4 and

−qj
4 correspond to the consumer surplus, which is better when higher. In

this setting, a project may dominate another if it performs better on all in-
dicators, but more often, trade-offs must be made—such as accepting higher
costs in exchange for lower emissions.

A central concept in multi-criteria analysis is that of dominance, which
provides a formal basis for comparing alternatives when multiple indicators
are involved.

Formally, consider two projects i and j, each evaluated according to a set
of K indicators. We say that project i dominates project j, denoted i ≺ j, if
two conditions are satisfied. First, project i must be no worse than project
j in all indicators:

∀k ∈ {1, . . . ,K}, qi
k ⩽ qj

k.

Second, project i must be strictly better than project j in at least one indi-
cator:

∃k ∈ {1, . . . ,K}, qi
k < qj

k.

This means that project i either matches or outperforms project j on ev-
ery front, and strictly improves upon it in at least one dimension. In such
cases, project j can be discarded from further consideration, since there exists
another option that is objectively better.

The dominance relation has several useful properties that shape how we
interpret it in analysis. First, it is not reflexive: a project does not dominate
itself, i.e., i ⊀ i. Second, it is not symmetric: if i ≺ j, it does not follow
that j ≺ i; in fact, the opposite must be true — if i ≺ j, then j ⊀ i. This
expresses the asymmetry inherent in a “better than” relationship.

Dominance is also transitive: if project i dominates project j, and project
j dominates project ℓ, then it must be the case that project i dominates
project ℓ; formally, i ≺ j and j ≺ ℓ ⇒ i ≺ ℓ. This transitivity allows for
consistent pruning of inferior alternatives from the set of feasible projects.

However, the dominance relation is not complete. There may exist projects
i and j such that neither dominates the other — that is, i ⊀ j and j ⊀ i.
This situation arises frequently in real-world decision-making, where trade-
offs exist between indicators. For example, one project may be cheaper but
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more polluting, while another is cleaner but more expensive. In such cases,
further analysis is needed to guide the selection process.

The concept of dominance can be illustrated with a simple example in-
volving four projects, each evaluated using two indicators: cost and travel
time. These indicators are both to be minimized, meaning that a project
is preferred if it offers lower cost and/or shorter travel time. The positions
of the projects in the cost-time plane are shown in Figure 11.1, where each
dot corresponds to a project alternative, and their relative coordinates reflect
their performance in terms of the two criteria.

We begin by examining project i3, located at the bottom-left corner of
the shaded grid. This project has both lower cost and lower travel time
compared to project i2, which lies at the top-right. Since i3 is no worse
in either criterion and strictly better in both, we say that i3 dominates i2,
written i3 ≺ i2. Similarly, i3 also dominates i1, as it achieves the same travel
time with a lower cost.

However, when comparing project i1 and project i4, we find that neither
dominates the other. Project i1 has a lower cost but a longer travel time
than i4, while i4 offers a time advantage at a higher cost. In this case, the
dominance condition is not satisfied in either direction: i1 ⊀ i4 and i4 ⊀ i1.
This situation exemplifies the presence of a trade-off between criteria — no
project is strictly better across the board, and further analysis or stakeholder
preferences are needed to decide between them.

C
os
t

Time

•
i3

•
i1

•
i4

•
i2

Figure 11.1: Example of dominance relationships between four projects evaluated by
cost and travel time.

The concept of dominance leads to the concept of Pareto optimality, which
serves as a criterion for identifying efficient solutions when multiple, conflict-
ing objectives must be considered. Unlike in single-objective optimization —
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where the goal is to find a unique best solution — multi-criteria problems
typically give rise to a set of alternatives that are all, in a certain sense,
optimal. Pareto optimality provides the formal foundation for this idea.

Let C denote the set of all feasible projects. A project i∗ ∈ C is said
to be Pareto optimal if it is not dominated by any other project in the set.
Formally, this means:

∄j ∈ C such that j ≺ i∗.

In other words, there is no project j in the set that is at least as good as i∗

in all indicators and strictly better in at least one.
The intuition behind Pareto optimality is straightforward yet powerful:

a project is Pareto optimal if no improvement can be made in any one crite-
rion without incurring a degradation in at least one other. For instance, if a
project offers the lowest cost but a longer travel time, it might still be con-
sidered optimal if reducing the travel time would necessarily raise the cost.
Such solutions reflect the inherent trade-offs in real-world decisions.

The set of all Pareto optimal solutions forms what is known as the Pareto
frontier or efficient frontier. This frontier delineates the boundary of achiev-
able performance: any movement beyond it in one dimension must come at
the expense of performance in another.

In practice, the application of Pareto optimality does not end with the
identification of efficient solutions. Instead, it marks the beginning of a more
nuanced decision-making process. The first step is to compute the Pareto
optimal set :

P∗ = {i∗ ∈ C | ∄j ∈ C such that j ≺ i∗},

that is, the set of all projects that are not dominated by any other in the
feasible set C. These projects form the Pareto frontier and represent the best
trade-offs available given the considered indicators.

Once the Pareto optimal set is identified, the next step involves selecting
a final project from among these efficient alternatives. This selection process
is inherently subjective, as it requires decision-makers to articulate and apply
preferences among competing objectives. Political priorities, considerations
of social equity, environmental values, and stakeholder input all play critical
roles at this stage. Since no project in the Pareto set is objectively superior to
the others across all criteria, the final choice reflects a deliberate prioritization
of certain impacts over others.

The procedure typically involves focusing attention exclusively on the
Pareto optimal set, thereby reducing the complexity of the decision space
while retaining all meaningful alternatives. Within this reduced set, decision-
makers can engage in transparent deliberation about the relative importance
of each indicator. If needed, additional indicators can be introduced to better
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capture specific concerns or to refine the evaluation. When such new criteria
are added, the Pareto set must be updated accordingly, as the introduction
of new dimensions may alter the dominance relationships among projects.

Pareto optimality thus reframes decision-making by shifting the empha-
sis away from identifying a single “best” project and toward managing the
trade-offs among equally efficient options. This approach promotes trans-
parency, as it makes explicit which compromises are necessary and which
preferences guide the final decision. It also supports accountability, by clearly
distinguishing the technical analysis that defines the Pareto frontier from the
political and social judgments that inform the final selection.

11.6.1 Example

To illustrate the practical use of multi-criteria analysis, consider the case of
railway timetable rescheduling following a major disruption in operations.
Such disruptions — caused by events like technical failures, accidents, or
severe weather — require the rapid implementation of a temporary or dispo-
sition timetable. The goal is to restore operations in a way that minimizes
negative impacts while respecting operational constraints.

In this context, the disposition timetable may involve various corrective
actions: trains may be fully canceled, partially canceled (i.e., ending service
before their final destination), delayed, or rerouted. In certain cases, emer-
gency replacement trains might be dispatched to maintain service continuity.
Each of these actions carries different implications for passengers, operators,
and the broader transportation system.

The rescheduling problem is inherently multi-objective. First, there is
the need to minimize passenger inconvenience, typically measured in terms
of lost time, missed connections, or increased uncertainty. Second, there is
a desire to minimize costs, which may include additional crew hours, energy
consumption, or penalties for late arrivals. Third, operators aim to minimize
deviations from the original timetable, preserving the planned structure of
operations to the greatest extent possible. Maintaining this structure facil-
itates both passenger expectations and operational feasibility in subsequent
hours or days.

These objectives are not necessarily aligned. For example, minimizing
cost might lead to the cancellation of less critical trains, which may in turn
increase inconvenience for affected passengers. Conversely, minimizing in-
convenience could require extensive rerouting or the addition of emergency
services, thereby raising operational costs. Similarly, any intervention that
improves passenger experience or cost efficiency might require significant de-
partures from the original timetable, complicating downstream operations.
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We refer the interested reader to Binder et al. (2017) for a detailed analysis
of this complex optimization problem in the context of disrupted railway
operations. The approach adopted in that study illustrates how multi-criteria
decision-making techniques can be applied to manage conflicting goals under
operational stress.

Figure 11.2 provides two examples of Pareto frontiers generated for two
different disruption scenarios. Each frontier represents the set of disposition
timetables that are Pareto optimal — meaning that no other feasible solution
improves one objective without worsening at least one of the others. In these
examples, three distinct objectives are considered: minimizing operational
cost, minimizing passenger inconvenience (often measured in total delay or
lost time), and minimizing deviations from the original planned timetable.

To effectively visualize this three-dimensional trade-off, the figure uses a
two-dimensional coordinate system for two of the objectives — cost and in-
convenience — while the third objective, deviation from the original timetable,
is represented using different curves on the same plot. Each curve corresponds
to a fixed level of deviation, allowing one to explore the trade-off space within
that constraint.

This representation helps reveal the structure of the decision space. For a
given tolerance in timetable deviation, one can identify the disposition plans
that offer the best compromise between cost and inconvenience. As the
permitted deviation increases (i.e., moving from one curve to another), the
potential for reducing cost or improving passenger outcomes also increases.
However, this often comes at the price of greater disruption to the overall
timetable structure, which may introduce downstream operational complica-
tions or reduced predictability for travelers.

Such visualizations are powerful tools for both analysts and decision-
makers. They not only expose the efficient frontier of available solutions but
also make the consequences of preference shifts or policy constraints imme-
diately visible. This aids in making informed, transparent, and accountable
decisions under complex trade-off conditions.

11.7 Conclusion

Cost-benefit analysis is a fundamental tool for evaluating public and private
investment projects, particularly in the field of transportation and infrastruc-
ture. Its primary objective is to support key decisions — such as whether
to proceed with a proposed project or to select among multiple competing
alternatives — by systematically comparing anticipated benefits and costs.

The starting point of any cost-benefit analysis is the identification of rele-
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Figure 11.2: Examples of Pareto frontiers for two disruption scenarios. Cost and
inconvenience are shown on the axes, while deviation from the original timetable is
represented by different curves.

vant stakeholders, including travelers, transport operators, public authorities,
and society at large. Each of these groups may experience different types of
impacts, and the analysis must be structured to reflect this diversity. Once
stakeholders are defined, appropriate indicators must be selected to capture
the effects of the project on each group. These may include direct monetary
impacts (such as fares, taxes, or operating costs) as well as non-monetary
effects (such as time savings, emissions, noise, or land use changes).

The analytical phase of cost-benefit analysis involves the systematic eval-
uation of these indicators. In some cases, all effects can be converted into a
common unit — typically monetary — using methods such as willingness-to-
pay, shadow pricing, or market-based instruments. This enables the aggrega-
tion of costs and benefits into a single net value, which simplifies comparisons
across projects. However, this transformation is not always straightforward
and may involve subjective assumptions or politically negotiated values.

When the conversion of indicators into monetary terms is either infeasible
or undesirable, a multi-criteria analysis may be used instead. This approach
preserves the distinct nature of each indicator and evaluates projects based
on their performance across multiple dimensions. The analysis then identifies
Pareto optimal solutions — those that cannot be improved in any criterion
without sacrificing another — and supports selection among them based on
explicit trade-offs and preferences.

Despite its structured methodology, cost-benefit analysis is not without
challenges. A common issue is the systematic underestimation of costs, par-
ticularly in large infrastructure projects. This may result from optimism bias,
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incomplete data, or strategic misrepresentation. Furthermore, even the most
rigorous analyses must contend with the role of subjectivity in interpreting
data, valuing impacts, and setting priorities. Recognizing these limitations is
essential to ensure that the conclusions of cost-benefit analysis are interpreted
appropriately and used to inform decisions in a transparent and accountable
way.
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Chapter 12

Conclusion

Transportation systems are inherently complex. They consist of interdepen-
dent components operating across multiple modes, time scales, and spatial
layers. This complexity is amplified by the dynamic interactions between
infrastructure, vehicles, and users, as well as by the influence of external
factors such as geography, policy, and technology.

Beyond their physical and technical structure, transportation systems in-
volve human and economic dimensions. Travel behavior, preferences, and
choices play a central role in determining demand and shaping system per-
formance. Economic principles such as elasticity, surplus, and equilibrium
help explain how individuals and systems respond to changes in cost, service
levels, or infrastructure.

Designing, maintaining, and operating transportation systems requires
the capacity to evaluate trade-offs between often conflicting objectives. Effi-
ciency, equity, reliability, environmental impact, and cost-effectiveness must
be balanced using a variety of indicators. Quantitative models, data analysis,
and scenario evaluation are essential tools in this process.

The role of the engineer in this context is to provide objective, evidence-
based analysis to inform and support decision-making. While the ultimate
choices are made in a policy context, engineering input ensures that these
decisions are grounded in a rigorous understanding of system behavior, con-
straints, and possibilities.

This course has provided a brief introduction to some of the modeling
tools used to address the complexity of transportation systems. The analysis
of such systems is a broad field, rich with challenges that draw on diverse
areas of knowledge, including engineering, optimization, data science, eco-
nomics, and computer science. It is inherently polytechnical, requiring an
integrated perspective to understand and shape mobility in a rapidly evolv-
ing world.
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