

Congestion pricing

Theory and applications

Michel Bierlaire

Introduction to transportation systems

EPFL

Motivation

Objective

Solve a complex social problem: congestion

Philosophy

- ▶ Create incentives.
- ▶ Don't plan details.
- ▶ People will figure out what to do.

Source: [Eliasson, 2012]

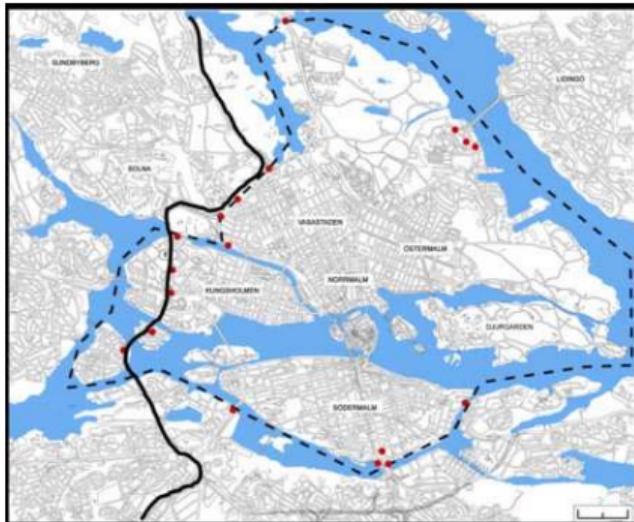
Congestion pricing

Definition

Pricing mechanisms to charge the users of public goods for the negative externalities generated by the peak demand in excess of available supply.

Source: Wikipedia (Photo: Kalleboo)

Congestion pricing


Implementations

- ▶ 1975: Singapore
- ▶ 2001: Rome
- ▶ 2003: London
- ▶ 2006: Stockholm
- ▶ 2008: Milan
- ▶ 2013: Gothenburg
- ▶ and others...

Photo: Wikipedia, CC BY-SA 3.0

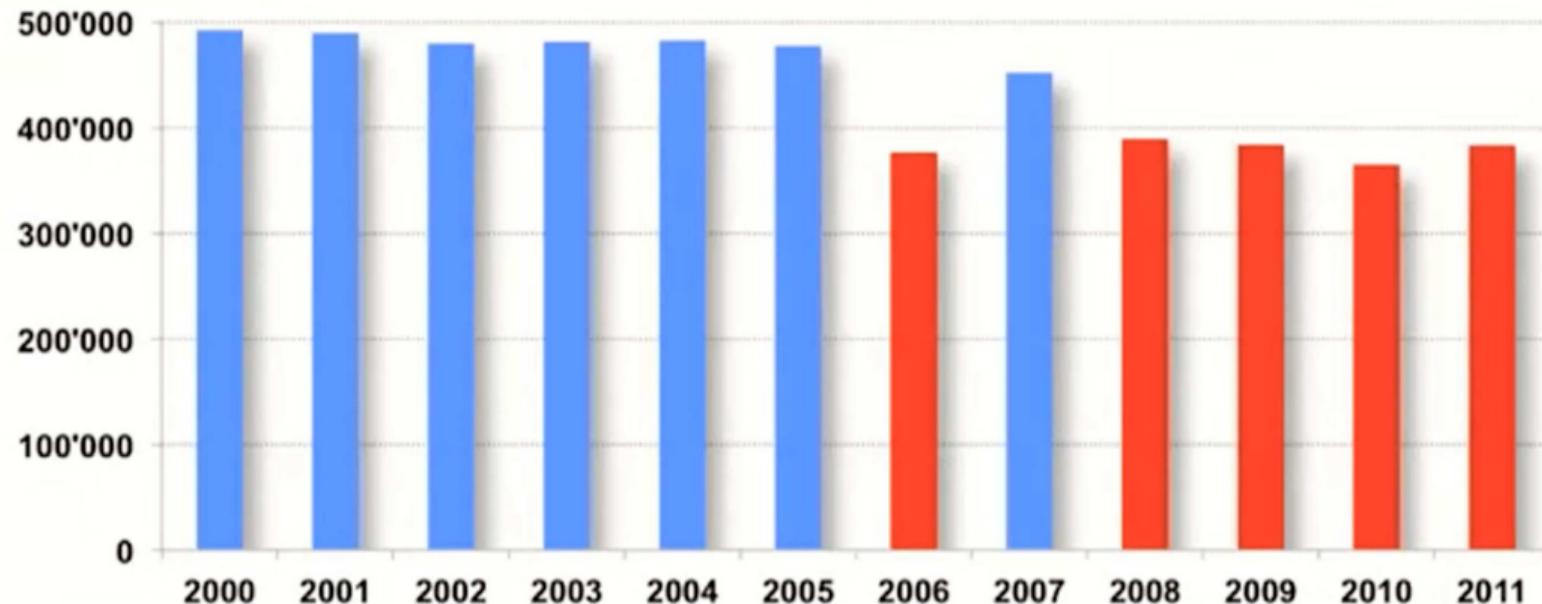
Stockholm example

History

- ▶ January 3–July 31, 2006: trial period.
- ▶ August 2006: referendum imposed by opponents.
- ▶ Results:
 - ▶ City of Stockholm: yes.
 - ▶ Outside Stockholm: no.
- ▶ August 2007: congestion charges reintroduced.

Source: [Börjesson et al., 2012]

Stockholm example

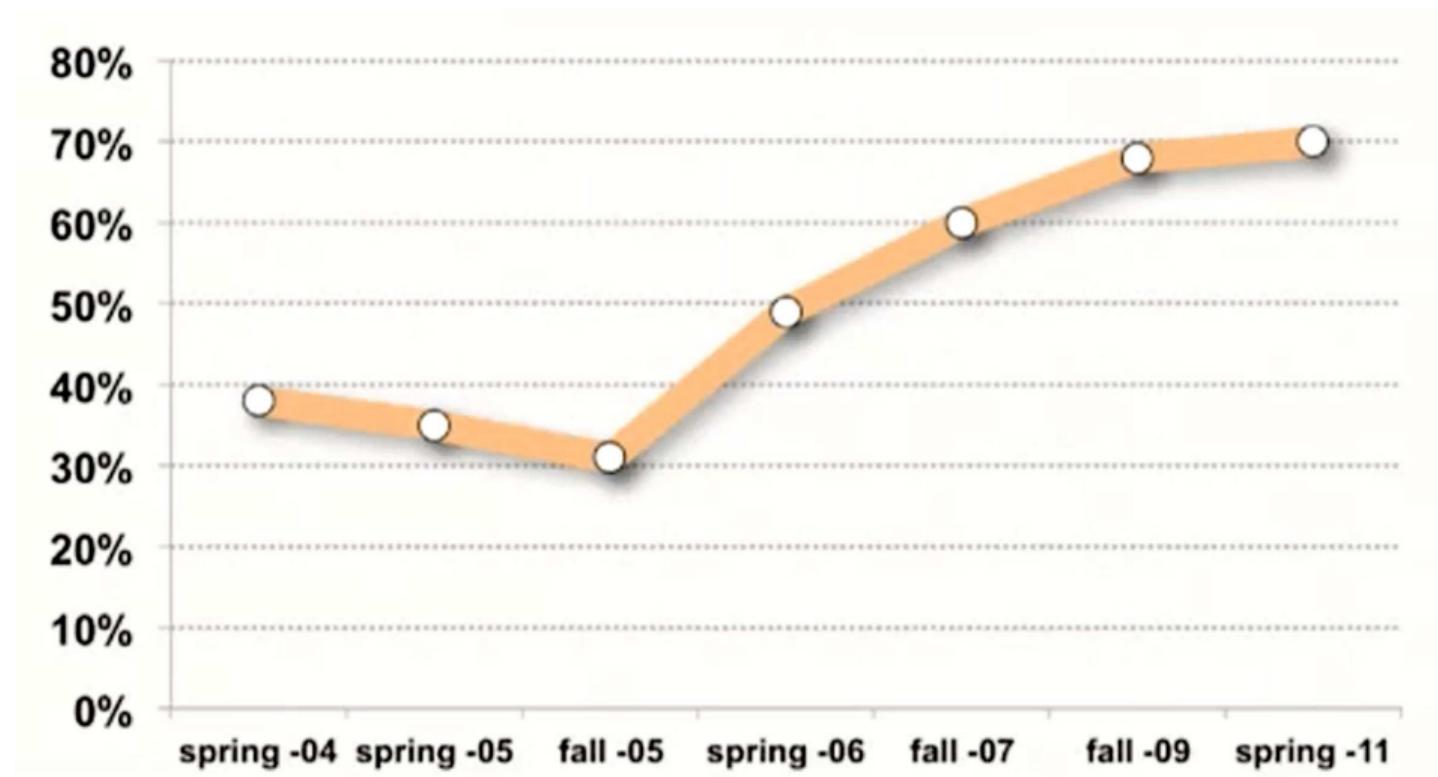


Format

- ▶ Toll cordon around the inner city.
- ▶ Peak hours (7:30–8:30, 16:00–17:30): 2 €
- ▶ 30 minutes before/after peak hours: 1.5 €
- ▶ Rest of the day: 1 €
- ▶ From 18:30 to 6:30: free.
- ▶ Maximum charge per day: 6 €.
- ▶ Until end of 2008, alternative fuel cars exempted.

Stockholm example

Immediate impact: 20% less cars [Eliasson, 2012]


Stockholm example

Where did the cars go?

- ▶ travelers cancel trips
- ▶ travelers change destination
- ▶ travelers change mode
- ▶ travelers change departure time

Stockholm example

Public support: from 30-70 to 70-30 [Eliasson, 2012]

Stockholm example

What are the arguments against?

- ▶ yet another tax.
- ▶ inequity: poors are excluded.
- ▶ doubts about the effectiveness.
- ▶ what will be done with the revenues?
- ▶ congestion is sent somewhere else.

Stockholm example

Long-term effects

- ▶ traffic reduction caused by the charges has increased slightly over time,
- ▶ increased sales of “clean” vehicles

TED Talk

Jonas Eliasson (2012) “How to solve traffic jams?”.

www.ted.com/talks/jonas_eliasson_how_to_solve_traffic_jams

Recorded at EPFL.

Congestion pricing

What can engineers and scientists do?

- ▶ Implementation: data collection, toll collection, enforcement, etc.
- ▶ Calculate the right price.

Calculating the right price

What is the “right” price?

- ▶ If Pat Trafficson travels, she “pays” a cost, which is a combination of the time she spends, and the money she pays.
- ▶ This is what she tries to minimize when she makes travel choices.
- ▶ But her choices have an effect on others.
- ▶ Her presence increases the level of congestion.
- ▶ She deteriorates the general level of service.
- ▶ She has to pay for that.
- ▶ But how much?
- ▶ The right price = the value of the deterioration that she generates.
- ▶ “Polluter pays” principle.

Traffic assignment

User equilibrium

$$y^* = \operatorname{argmin}_y \sum_{\ell} \int_0^{x_{\ell}} t_{\ell}(z) dz$$

subject to

$$\sum_p y_p^q = f_q, \quad \forall q,$$

$$y_p^q \geq 0, \quad \forall p, q.$$

System optimum

$$\tilde{y}^* = \operatorname{argmin}_y \sum_{\ell} x_{\ell} t_{\ell}(x_{\ell})$$

subject to

$$\sum_p y_p^q = f_q, \quad \forall q,$$

$$y_p^q \geq 0, \quad \forall p, q.$$

$$\sum_{\ell} x_{\ell}^* t_{\ell}(x_{\ell}^*) - \sum_{\ell} \tilde{x}_{\ell}^* t_{\ell}(\tilde{x}_{\ell}^*) \geq 0: \text{ price of anarchy}$$

Optimality conditions: derivative of the objective function

User equilibrium

System optimum

$$\frac{\partial}{\partial y_p^q} \left[\sum_{\ell'} \int_0^{x_{\ell'}} t_{\ell'}(z) dz \right] =$$

$$\sum_{\ell} \frac{\partial x_{\ell}}{\partial y_{pq}} \frac{\partial}{\partial x_{\ell}} \left[\sum_{\ell'} \int_0^{x_{\ell'}} t_{\ell'}(z) dz \right] =$$

$$\sum_{\ell} P_{\ell p} t_{\ell}(x_{\ell}) =$$

$$c_p^q.$$

see previous lecture

$$\frac{\partial}{\partial y_p^q} \left[\sum_{\ell'} x_{\ell'} t_{\ell'}(x_{\ell'}) \right] =$$

$$\sum_{\ell} \frac{\partial x_{\ell}}{\partial y_{pq}} \frac{\partial}{\partial x_{\ell}} \left[\sum_{\ell'} x_{\ell'} t_{\ell'}(x_{\ell'}) \right] =$$

$$\sum_{\ell} P_{\ell p} \left(t_{\ell}(x_{\ell}) + x_{\ell} \frac{\partial t_{\ell}(x_{\ell})}{\partial x_{\ell}} \right)$$

$$\tilde{t}_{\ell}(x_{\ell}) = t_{\ell}(x_{\ell}) + x_{\ell} \frac{\partial t_{\ell}(x_{\ell})}{\partial x_{\ell}}$$

Marginal costs

Observations

- ▶ If the users are experimenting the following cost function

$$\tilde{t}_\ell(x_\ell) = t_\ell(x_\ell) + x_\ell \frac{\partial t_\ell(x_\ell)}{\partial x_\ell}$$

the user equilibrium is equivalent to the system optimum.

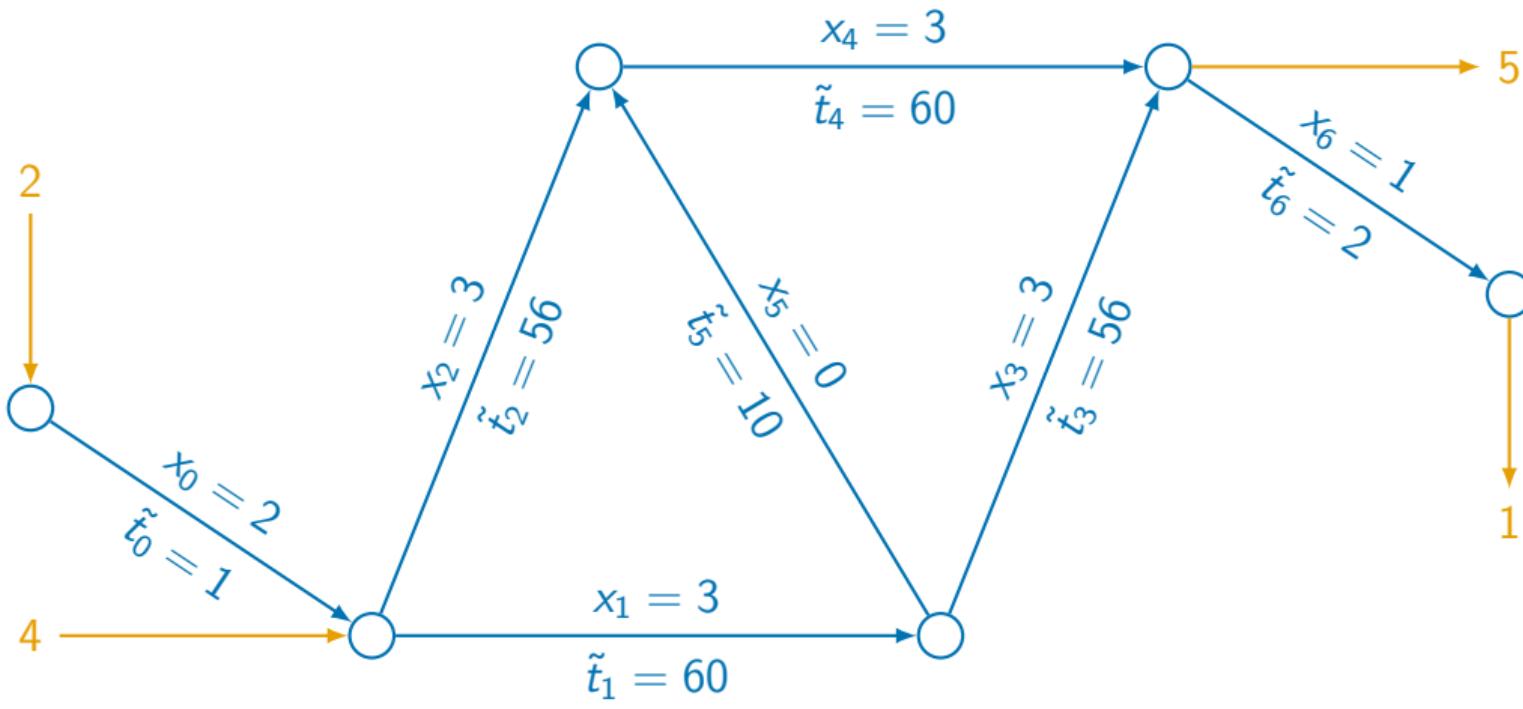
- ▶ Therefore, the extra cost that should be charged is

$$x_\ell \frac{\partial t_\ell(x_\ell)}{\partial x_\ell}$$

- ▶ This is the total cost paid by all other users of a marginal increase of the flow on a link.

Examples

$$t_1 = 10x_1 \quad \tilde{t}_1 = 10x_1 + 10x_1 = 20x_1$$


$$t_2 = 50 + x_2 \quad \tilde{t}_2 = 50 + x_2 + x_2 = 50 + 2x_2$$

$$t_3 = 50 + x_3 \quad \tilde{t}_3 = 50 + x_3 + x_3 = 50 + 2x_3$$

$$t_4 = 10x_4 \quad \tilde{t}_4 = 10x_4 + 10x_4 = 20x_4$$

$$t_5 = 10 + x_5 \quad \tilde{t}_5 = 10 + x_5 + x_5 = 10 + 2x_5$$

Equilibrium with updated performance functions

$$\tilde{c}_{11}^* = 116, \tilde{c}_{12}^* = 118, \tilde{c}_{21}^* = 117$$

Equilibrium with updated performance functions

p	flow	x_0	x_1	x_2	x_3	x_4	x_5	x_6	\tilde{t}_0	\tilde{t}_1	\tilde{t}_2	\tilde{t}_3	\tilde{t}_4	\tilde{t}_5	\tilde{t}_6	cost
$r_1, s_1: f_{rs} = 3$																
	1		3	3					60		56					116
	2			3	3					56		60				116
	0		3		3	0			60		60	10				130
$r_1, s_2: f_{rs} = 1$																
	1		3	3			1		60	56			2			118
	0			3	3	3	1			56	60		2			118
	0		3		3	0	1		60		60	10	2			132
$r_2, s_1: f_{rs} = 2$																
	1	2	3	3					1	60	56					117
	1	2		3	3				1	56		60				117
	0	2	3		3	0			1	60		60	10			131

Congestion pricing

Theory

- ▶ The extra perceived cost on each link should be
$$x_\ell \frac{\partial t_\ell(x_\ell)}{\partial x_\ell}$$
- ▶ It depends on traffic.
- ▶ The monetary equivalent should be charged.
- ▶ If unit is travel time, use value-of-time to transform into monetary units.

Picture: weris-inc.com

Congestion pricing

Practice

- ▶ Difficult to equip all links.
- ▶ Information about toll must be received before travelers make decisions. Difficult if toll changes in real-time.
- ▶ Value-of-time varies across individuals, trip purposes, trip length, etc. Difficult to charge a different toll to different travelers.

Summary

Theory

- ▶ Charge travelers for their contribution to congestion.
- ▶ System optimum equivalent to user equilibrium with updated costs.

Practice

- ▶ Example of Stockholm.
- ▶ Politically sensitive topics.
- ▶ Controversies.
- ▶ Difficulty of implementation.

Bibliography

- Börjesson, M., Eliasson, J., Hugosson, M. B., and Brundell-Freij, K. (2012). The stockholm congestion charges—5 years on. effects, acceptability and lessons learnt.
Transport Policy, pages 1–12.
- Eliasson, J. (2012).
How to solve traffic jams?
TED Talk.