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Trip-based model: the 4-step approach

4-step approach

✓ Trip generation

✓ Trip distribution

✓ Modal split

◮ Assignment

Objective
Find the link flows

Context
Single mode

Origin-destination table

◮ frs for each pair of zones/centroids (r , s).

Transportation network

◮ Link performance functions: tℓ = t(xℓ).

◮ Link-path incidence matrix P .
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Assignment

Behavior
Route choice Assumption: utility maximizers, best path, “shortest” path

r s

t1

t2

Example: t1 = 2, t2 = 4 Warning: all travelers have the same behavior The
whole flow will take link 1: unrealistic But, we need to account for congestion
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Assignment

All-or-nothing assignment

3 3r s

t1 = 2

x1 =?

t2 = 4

x2 =?
x1 = 3, x2 = 0
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Congestion

Link performance functions

t1(x) = 2 + x21

t2(x) = 4 + 2x22

Free flow All on link 1 All on link 2
ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2

Flow 0 0 3 0 0 3

Cost 2 4 11 4 2 22

All-or-nothing does not make sense
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Congestion

Link performance functions

t1(x) = 2 + x21

t2(x) = 4 + 2x22

x1 t1 x2 t2 Choice
Empty network 0 2 0 4 ℓ = 1

First unit 1 3 0 4 ℓ = 1

Second unit 2 6 0 4 ℓ = 2

Third unit 2 6 1 6 Equilibrium
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Equilibrium

nobelprize.org

Lisbon, 2010

Nash equilibrium
Situation where no traveler can improve her
travel time by unilaterally changing routes.

John Forbes Nash Jr.
◮ 1928–2015

◮ Nobel laureate 1994

◮ PhD thesis on non cooperative games:
1950 (28 pages)
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Equilibrium
frs = 3
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Equilibrium
frs = 6
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Equilibrium
frs = 1
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Equilibrium
frs =

√
2

1.41

4

Flow
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Nash equilibrium

Observations
◮ If t1(frs) ≤ t2(0), everybody uses link 1.

◮ If t1(frs) ≥ t2(0),
◮ both links are used,
◮ they have equal costs:

t1(x1) = t2(x2) and x1 + x2 = frs

Nash equilibrium = user equilibrium
For each O-D pair, at user equilibrium,

◮ the generalized cost on all used paths is equal, and

◮ the generalized cost on all used paths is less or equal to the generalized cost
on any unused path.
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Network example

r = 1

r = 2

s = 1

s = 2

t1(x1) = 10x1

t 2
(x

2
)
=
50

+
x 2

t 3
(x

3
)
=
50

+
x 3

t4(x4) = 10x4

t
5 (x

5 )
=
10

+
x
5

t0 (x
0 ) =

1

t6 (x
6 ) =

2
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Network example

r1

r2

s1

s2

OD table: 3 entries

s1 s2
r1 3 1
r2 2 0

Paths
◮ (r1, s1) : , ,

◮ (r1, s2) : , ,

◮ (r2, s1) : , ,
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Empty network

p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

0 0 0 0 50 50

0 0 0 50 0 50

0 0 0 0 0 0 10 10
r1, s2: frs = 1

0 0 0 0 0 50 2 52

0 0 0 0 50 0 2 52

0 0 0 0 0 0 0 10 2 12
r2, s1: frs = 2

0 0 0 0 1 0 50 51

0 0 0 0 1 50 0 51

0 0 0 0 0 1 0 0 10 11 15 / 70



Best free flow paths

p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

0 6 0 60 50 110

0 0 6 50 60 110

3 6 6 6 60 60 16 136
r1, s2: frs = 1

0 6 0 1 60 50 2 112

0 0 6 1 50 60 2 112

1 6 6 6 1 60 60 16 2 138
r2, s1: frs = 2

0 2 6 0 1 60 50 111

0 2 0 6 1 50 60 111

2 2 6 6 6 1 60 60 16 13716 / 70



Equilibrium

p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

1 4 2 40 52 92

1 2 4 52 40 92

1 4 4 2 40 40 12 92
r1, s2: frs = 1

1 4 2 1 40 52 2 94

0 2 4 1 52 40 2 94

0 4 4 2 1 40 40 12 2 94
r2, s1: frs = 2

0 2 4 2 1 40 52 93

1 2 2 4 1 52 40 93

1 2 4 4 2 1 40 40 12 9317 / 70



Another equilibrium

p flow x0 x1 x2 x3 x4 x5 x6 t0 t1 t2 t3 t4 t5 t6 cost
r1, s1: frs = 3

1 4 2 40 52 92

0 2 4 52 40 92

2 4 4 2 40 40 12 92
r1, s2: frs = 1

1 4 2 1 40 52 2 94

0 2 4 1 52 40 2 94

0 4 4 2 1 40 40 12 2 94
r2, s1: frs = 2

0 2 4 2 1 40 52 93

2 2 2 4 1 52 40 93

0 2 4 4 2 1 40 40 12 9318 / 70



Modeling

Notations
◮ Number of links: K ℓ

◮ Number of paths: K p

◮ Number of ODs: K rs

◮ Paths for OD q: Pq

◮ Link flow: x

◮ Path flow: y

◮ Link cost: t

◮ Path cost: c
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Modeling

Link-path incidence matrix

P ∈ {0, 1}K ℓ
×Kp

P =





















0 0 0 0 0 0 1 1 1
1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0





















Route choice matrix

R ∈ R
Kp

×K rs

+

R =





























1/3 0 0
1/3 0 0
1/3 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1/2
0 0 1/2




























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Route choice matrix

Definition

R ∈ R
Kp

×K rs

+

Rpq is the proportion of travelers on OD pair q who choose route p.

Notes
◮

∑

p Rpq = 1, for each q.

◮ Each path is associated with exactly one OD pair.

◮ Rpq = 0 if p 6∈ Pq.

◮ For all-or-nothing assignment, Rpq ∈ {0, 1}, ∀p, q.
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Modeling

From OD table to path flows

y = Rf :





























1
1
1
1
0
0
0
1
1





























=





























1/3 0 0
1/3 0 0
1/3 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1/2
0 0 1/2

































3
1
2





yp =
∑

q

Rpqfq, ∀p.
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Modeling

From path flows to link flows

x = Py :





















2
4
2
2
4
2
1





















=





















0 0 0 0 0 0 1 1 1
1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0

















































1
1
1
1
0
0
0
1
1





























xℓ =
∑

p

Pℓpyp, ∀ℓ.
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Modeling

From OD table to link flows

x = PRf :





















2
4
2
2
4
2
1





















=





















0 0 1
2/3 1 1/2
1/3 0 1/2
1/3 1 0
2/3 0 1
1/3 0 1/2
0 1 0

























3
1
2





xℓ =
∑

p

∑

q

PℓpRpqfq, ∀ℓ.

Assignment matrix: Q = PR , Q ∈ R
K ℓ

×K rs

+ .
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Modeling

From link costs to path costs

c = PT t :





























92
92
92
94
94
94
93
93
93





























=





























0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 1 1 0
0 1 0 1 0 0 1
0 0 1 0 1 0 1
0 1 0 0 1 1 1
1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 1 1 0

















































1
40
52
52
40
12
2





















cp =
∑

ℓ

Pℓptℓ.
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Modeling

OD specific link-path incidence
matrix
◮ Pq

◮ Columns of P corresponding to Pq.

P1 =





















0 0 0
1 0 1
0 1 0
1 0 0
0 1 1
0 0 1
0 0 0





















P3 =





















1 1 1
1 0 1
0 1 0
1 0 0
0 1 1
0 0 1
0 0 0





















OD specific route choice vector

◮ Rq

◮ Rows and column of R
corresponding to q.

R1 =





1/3
1/3
1/3





R3 =





0
1/2
1/2




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Modeling

Path flows for OD q

yq = Rqfq : y1 =





1
1
1



 =





1/3
1/3
1/3



 3, y3 =





0
1
1



 =





0
1/2
1/2



 2.

Path costs for OD q

cq = (Pq)T t : c1 =





92
92
92



 =





0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 1 1 0

























1
40
52
52
40
12
2




















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Modeling

Lowest cost assumption

◮ Define the minimum cost for OD q:

c∗q = min
p

cqp , ∀q.

Summary

Links Paths OD pair
Flow xℓ yp fq
Cost tℓ cp c∗q
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Equilibrium conditions
◮ Minimum cost for each OD pair q:

cqp ≥ c∗q , ∀q.

◮ For each OD pair q, the cost on all used paths is minimum:

yq
p (c

q
p − c∗q ) = 0, ∀p, q.

◮ For each OD pair q, the whole demand is assigned:
∑

p

yq
p = fq, ∀q.

◮ Non negativity of path flows:

yq
p ≥ 0, ∀p, q.
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Beckmann’s model

Optimization problem

min
y

∑

ℓ

∫ xℓ

0

tℓ(z)dz

subject to

∑

p

yq
p = fq, ∀q,

yq
p ≥ 0, ∀p, q,

where

xℓ =
∑

p

Pℓpy
q
p , ∀ℓ, q.

Assumptions

∂tℓ(xℓ)

∂xℓ
> 0, ∀ℓ,

∂tℓ(xℓ)

∂xℓ′
= 0, ∀ℓ 6= ℓ′.
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Two link example

Link performance functions

t1(x) = 2 + x21

t2(x) = 4 + 2x22

Objective function

∫ x1

0

t1(z)dz = 2z +
1

3
z3
]x1

0

= 2x1 +
1

3
x31 .

∫ x2

0

t2(z)dz = 4z +
2

3
z3
]x2

0

= 4x2 +
2

3
x32 .
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Two link example

Optimization problem

min
x1,x2

2x1 +
1

3
x31 + 4x2 +

2

3
x32

subject to

x1 + x2 = 3

x1, x2 ≥ 0.

x2 = 3− x1
f (x1) = 2x1+

1
3
x31 +4(3−x1)+

2
3
(3−x1)

3

f ′(x1) = 2 + x21 − 4− 2(3− x1)
2

= −x21 + 12x1 − 20

f ′′(x1) = −2x1 + 12

f ′(x1) = 0 if x1 = 2 or x1 = 10
f ′′(2) = 8 > 0, f ′′(10) = −8 < 0
Optimal solution: x1 = 2,
x2 = 3− x2 = 1.
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Two link example

0 2 4 6 8 10

20

40

60

80

100

x1
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b
je
ct
iv
e
fu
n
ct
io
n
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Beckmann’s model

Optimization problem

min
y

∑

ℓ

∫ xℓ

0

tℓ(z)dz

subject to

∑

p′

y
q′

p′ = fq′ , ∀q′, [λq′]

y
q′

p′ ≥ 0, ∀p′, q′, [µp′q′]

Lagrangian

L(y ;λ, µ) =

∑

ℓ

∫ xℓ

0

tℓ(z)dz

+
∑

q′

λq′(fq′ −
∑

p′

y
q′

p′ )

−
∑

p′

∑

q′

µp′q′y
q′

p′

34 / 70



Beckmann’s model

Lagrangian

L(y ;λ, µ) =

∑

ℓ

∫ xℓ

0

tℓ(z)dz

+
∑

q′

λq′(fq′ −
∑

p′

y
q′

p′ )

−
∑

p′

∑

q′

µp′q′y
q′

p′

Necessary optimality conditions

∂L

∂yq
p

= 0, ∀p, q.

Inequality constraints

µpq ≥ 0, ∀p, q.

Complementarity slackness

µpqy
q
p = 0, ∀p, q.
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Beckmann’s model

Objective function

f (y) =
∑

ℓ

∫ xℓ

0

tℓ(z)dz

where
xℓ =

∑

p

Pℓpy
q
p , ∀ℓ, q.

∂f

∂yq
p

=
∑

ℓ

∂f

∂xℓ

∂xℓ
∂ypq

=
∑

ℓ

Pℓptℓ(xℓ)

= cqp .
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Beckmann’s model

Lagrangian

L(y ;λ, µ) =

f (y)

+
∑

q′

λq′(fq′ −
∑

p′

y
q′

p′ )

−
∑

p′

∑

q′

µp′q′y
q′

p′

Derivatives

∂L

∂yq
p

= cqp − λq − µpq.

Necessary optimality conditions

µpq = cqp − λq ≥ 0, ∀p, q.

Complementarity slackness

yq
p (c

q
p − λq) = 0.
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Optimality conditions = equilibrium conditions
◮ Denote λq = c∗q . It is the minimum cost:

cqp ≥ c∗q , ∀q.[Optimality conditions]

◮ For each OD pair q, the cost on all used paths is minimum:

yq
p (c

q
p − c∗q) = 0, ∀p, q.[Compl. slackness]

◮ For each OD pair q, the whole demand is assigned:
∑

p

yq
p = fq, ∀q.[Primal constraints]

◮ Non negativity of path flows:

yq
p ≥ 0, ∀p, q.[Primal constraints]
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Beckmann’s model

Equivalence
Solution of the optimization problem = equilibrium path flows

Uniqueness

◮ Optimization problem is strictly convex in the link flows.

◮ Link flow solution is unique.

◮ Path flow solution is not necessarily unique.
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Complexity

◮ Path-based formulation is untractable for
real networks.

◮ The number of paths grows exponentially
with the number of centroids.

◮ We had a similar issue with the shortest
path problem.

◮ For the shortest path problem: Dijkstra.

◮ We will also rely on Dijkstra here.
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Solution algorithm
Initialization Empty network.

◮ Link costs: tℓ(0).
◮ Link flows from all-or-nothing assignment: x0.
◮ k = 0.

Step 1 Calculate link costs: tkℓ = tℓ(x
k).

Step 2 Link flows from all-or-nothing assignment: x̃k .

Step 3 Line search.

xk+1 = xk + α(x̃k − xk), 0 ≤ α ≤ 1,

where α solves

min
α

∑

ℓ

∫ xk+1
ℓ

0

tℓ(z)dz

Step 4 Check convergence. If not, go to step 1.
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All-or-nothing on empty network

r1

r2

s1

s2

x
0 =

2t0 =
1

x1 = 6

t1 = 0

x 2
=
0

t 2
=
50

x 3
=
0

t 3
=
50

x4 = 6

t4 = 0

x
5
=
6

t
5
=
10

x
6 =

1t6 =
2

4

2

5
1

c∗11 = 10, c∗12 = 12, c∗21 = 11
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Updated costs

r1

r2

s1

s2

x
0 =

2t0 =
1

x1 = 6

t1 = 60

x 2
=
0

t 2
=
50

x 3
=
0

t 3
=
50

x4 = 6

t4 = 60

x
5
=
6

t
5
=
16

x
6 =

1t6 =
2

4

2

5

1
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All-or-nothing with updated costs

r1

r2

s1

s2

x
0 =

2t0 =
1

x1 = 0

t1 = 60

x 2
=
6

t 2
=
50

x 3
=
0

t 3
=
50

x4 = 6

t4 = 60

x
5
=
0

t
5
=
16

x
6 =

1t6 =
2

4

2

5
1

c∗11 = 110, c∗12 = 112, c∗21 = 111
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Convex combination

Arc First flow Second flow Convex combination
0 2 2 2 + α (2-2) = 2
1 6 0 6 + α (0-6) = 6 - 6 α
2 0 6 0 + α(6-0) = 6 α
3 0 0 0 + α(0-0) = 0
4 6 6 6 + α(6-6) = 6
5 6 0 6 + α (0-6) = 6 - 6 α
6 1 1 1 + α (1-1) = 1
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Line search

0.0 0.2 0.4 0.6 0.8 1.0
alpha

420

440

460

480

500

Ob
je

ct
iv

e 
fu

nc
tio

n

α∗ = 0.361
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Updated flows

r1

r2

s1

s2

x
0 =

2

x1 = 3.83

x 2
=
2.
17

x 3
=
0

x4 = 6

x
5
=
3.83

x
6 =

1

4

2

5

1
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Iterations

Iter α Objective function
0 442.00
1 0.361 413.83
2 0.309 391.72
3 0.0885 390.67
4 0.0538 390.31
5 0.0358 390.15
6 0.0249 390.08
7 0.0179 390.04
8 0.0131 390.02
9 0.00967 390.01
10 0.00722 390.01
11 0.00544 390.00
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Comments

Complexity

◮ All-or-nothing: Dijkstra.

◮ Line search: link-based objective function

◮ No path enumeration is needed.

◮ Convergence may be slow.

◮ Convergence slower for highly congested networks.
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Equilibrium: level of service
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Level of service when a link is removed
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Level of service when a link is removed
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Braess paradox

Observation
◮ The capacity of the network is reduced.

◮ The performance of the network is improved.

Equivalently...

◮ The capacity of the network is increased.

◮ The performance of the network is deteriorated.

Is it a mathematical artifact? Or does it happen in reality?
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Stuttgart, 1968

Events
◮ Schlossplatz

◮ Opening of a new traffic network.

◮ Consequences: big chaos.

◮ Solution: close Königstrasse

Source: [Knödel, 1969]
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New-York, 1990

Events
◮ Earth Day (April 22)

◮ Closing of 42th street.

◮ Expectations: “earth day = doomsday”

◮ “You didn’t need to be a rocket scientist

or have a sophisticated computer queuing

model to see that this could have been a

major problem.”

◮ Actually, the situation was better than
expected.

Source: [Kolata, 1990]
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Seoul, 2003

Before

After

Events
◮ Cheonggyecheon, Seoul

◮ Removal of a 6-lane highway.

◮ Expectations: catastrophe.

◮ In reality: “Many transportation

professionals were surprised to learn that

the city’s traffic flow had actually

improved, instead of worsening”

Source: [Baker, 2009]
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Braess paradox

Why does it happen?

◮ People do not cooperate

◮ The new highway brings traffic in small roads.
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What if we convince travelers to do the following?
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Prisoner’s dilemma

Context
◮ Joe and Averell have been arrested.

◮ They are separated and isolated.

◮ They are accused of a small robbery, with evidence.

◮ They are suspected of a major robbery, without
evidence.
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Prisoner’s dilemma

Bargain

◮ To Joe: you can stay silent, or betray Averell.

◮ To Averell: you can stay silent, or betray Joe.

◮ If both stay silent: 1 year in prison.

◮ If both betray each other: 2 years in prison.

◮ If Joe betrays Averell, and Averell stays silent, Joe
is free and 3 years of prison for Averell.

◮ If Averell betrays Joe, and Joe stays silent, Averell
is free and 3 years of prison for Joe.
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Prisoner’s dilemma: global point of view

Strategies

Decision Penalty
Joe Averell Joe Averell Total penalty
Silent Silent 1 1 2
Silent Betray 3 0 3
Betray Silent 0 3 3
Betray Betray 2 2 4

Best strategy

◮ Both stay silent.

◮ Optimal globally and individually.
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Prisoner’s dilemma: individual points of view

Joe’s point of view

Assume that Averell stays silent

◮ If I stay silent: 1 year in prison.

◮ If I betray Averell: I am free.

Assume that Averell betrays me

◮ If I stay silent: 3 years in prison.

◮ If I betray Averell: 2 years in prison.

Whatever Averell does, I am better off
betraying him.

Averell’s point of view

Assume that Joe stays silent

◮ If I stay silent: 1 year in prison.

◮ If I betray Joe: I am free.

Assume that Joe betrays me

◮ If I stay silent: 3 years in prison.

◮ If I betray Joe: 2 years in prison.

Whatever Joe does, I am better off
betraying him.
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Prisoner’s dilemma

Nash equilibrium

◮ Equilibrium: betray the other.

◮ No player can improve the situation with a unilateral decision.

Cooperation

◮ Best joined decision: stay both silent.

◮ It requires cooperation and trust.
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Can we convince travelers to do the following?
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Traffic assignment

User equilibrium

y ∗ = argminy
∑

ℓ

∫ xℓ

0

tℓ(z)dz

subject to

∑

p

yq
p = fq, ∀q,

yq
p ≥ 0, ∀p, q.

System optimum

ỹ ∗ = argminy
∑

ℓ

xℓtℓ(xℓ)

subject to

∑

p

yq
p = fq, ∀q,

yq
p ≥ 0, ∀p, q.

∑

ℓ x
∗

ℓ tℓ(x
∗

ℓ )−
∑

ℓ x̃
∗

ℓ tℓ(x̃
∗

ℓ ) ≥ 0: price of anarchy
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Engineering point of view

Role
◮ Design

◮ Maintain

◮ Operate

Objective

◮ Minimize the price of anarchy.

◮ Benchmark: system optimum.

Actions
◮ Infrastructure.

◮ Influence the travelers.
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Towards system optimum

Supply-based

◮ Traffic lights, speed limit, etc.

◮ Control strategies.

◮ Compliance guaranteed by law.

◮ See the course of Prof. Geroliminis.

Demand-based
◮ Information and incentives.

◮ Compliance not guaranteed.

◮ Pricing.
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System optimum

Engineering and policy makers

◮ System optimum is about the average
traveler.

◮ In the example, all travelers were better off
when the link was removed.

◮ In practice, some travelers may pay a high
price for the greater good.

◮ Concepts like equity, minimum level of
service, etc. are important as well.
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Summary

User equilibrium

◮ No traveler can improve her travel
time by unilaterally changing
routes.

◮ Minimum cost of all used paths.

◮ No flow on paths with higher costs.

◮ Equivalent optimization problem.

Braess paradox

◮ Decreasing capacity may improve
the level of service.

◮ Increasing capacity may deteriorate
the level of service.

System optimum

◮ Requires cooperation among
travelers.

◮ Prisoner’s dilemma.

◮ Main objective for the engineer.
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