

Travel demand Assignment

Michel Bierlaire

Introduction to transportation systems

EPFL

Trip-based model: the 4-step approach

4-step approach

- ✓ Trip generation
- ✓ Trip distribution
- ✓ Modal split
- ▶ Assignment

Objective

Find the link flows

Context

Single mode

Origin-destination table

- ▶ f_{rs} for each pair of zones/centroids (r, s) .

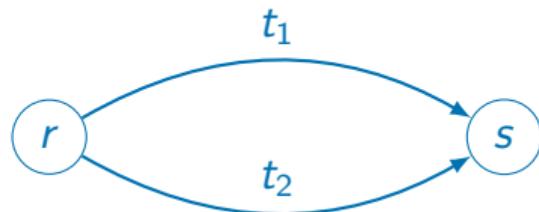
Transportation network

- ▶ Link performance functions: $t_\ell = t(x_\ell)$.
- ▶ Link-path incidence matrix P .

Assignment

Behavior

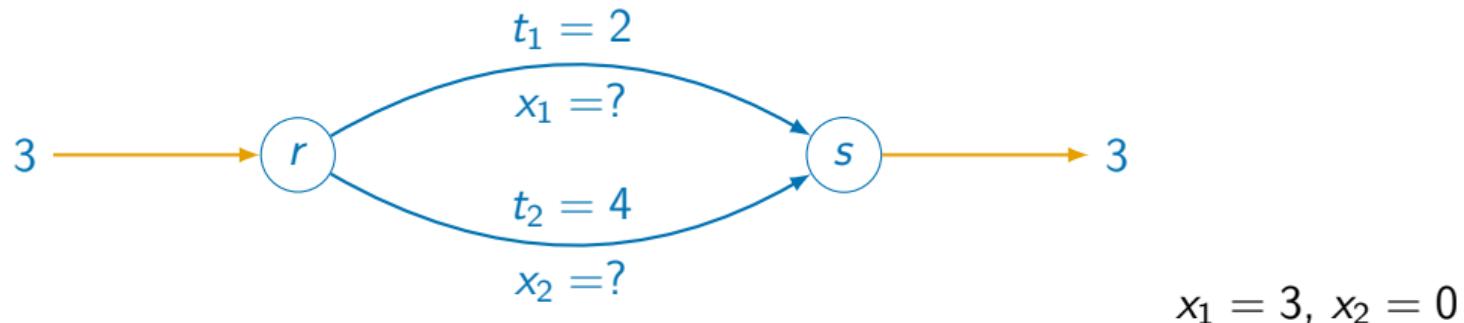
Route choice Assumption: utility maximizers, best path, “shortest” path



Example: $t_1 = 2$, $t_2 = 4$ Warning: all travelers have the same behavior The whole flow will take link 1: unrealistic But, we need to account for congestion

Assignment

All-or-nothing assignment



Congestion

Link performance functions

$$t_1(x) = 2 + x_1^2$$

$$t_2(x) = 4 + 2x_2^2$$

	Free flow		All on link 1		All on link 2	
	$\ell = 1$	$\ell = 2$	$\ell = 1$	$\ell = 2$	$\ell = 1$	$\ell = 2$
Flow	0	0	3	0	0	3
Cost	2	4	11	4	2	22

All-or-nothing does not make sense

Congestion

Link performance functions

$$t_1(x) = 2 + x_1^2$$

$$t_2(x) = 4 + 2x_2^2$$

	x_1	t_1	x_2	t_2	Choice
Empty network	0	2	0	4	$\ell = 1$
First unit	1	3	0	4	$\ell = 1$
Second unit	2	6	0	4	$\ell = 2$
Third unit	2	6	1	6	Equilibrium

Equilibrium

nobelprize.org

Nash equilibrium

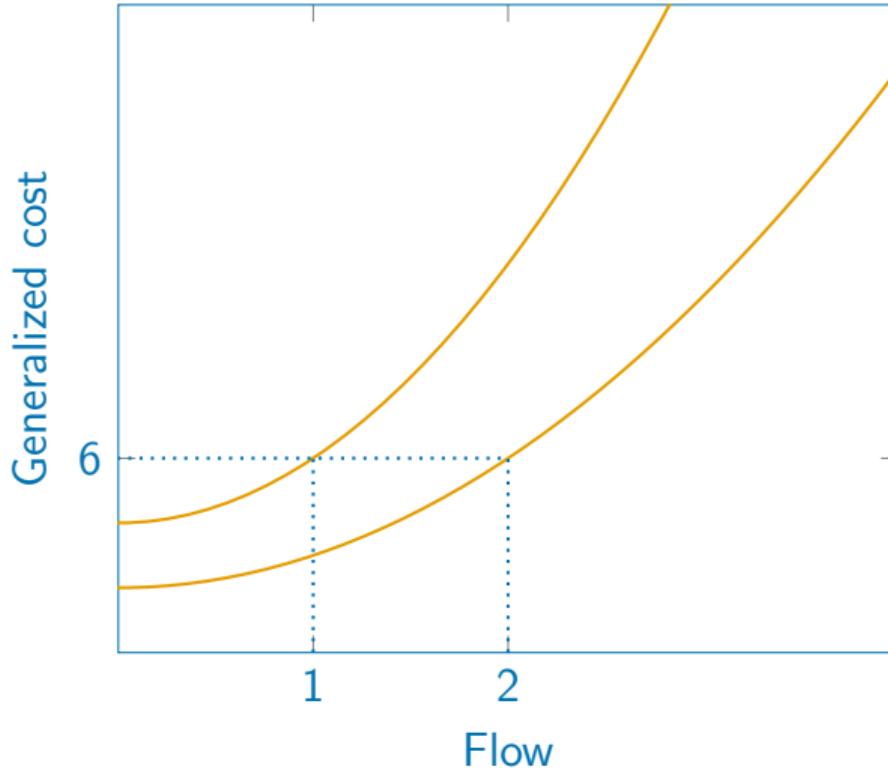
Situation where no traveler can improve her travel time by unilaterally changing routes.

John Forbes Nash Jr.

- ▶ 1928–2015
- ▶ Nobel laureate 1994
- ▶ PhD thesis on non cooperative games:
1950 (28 pages)

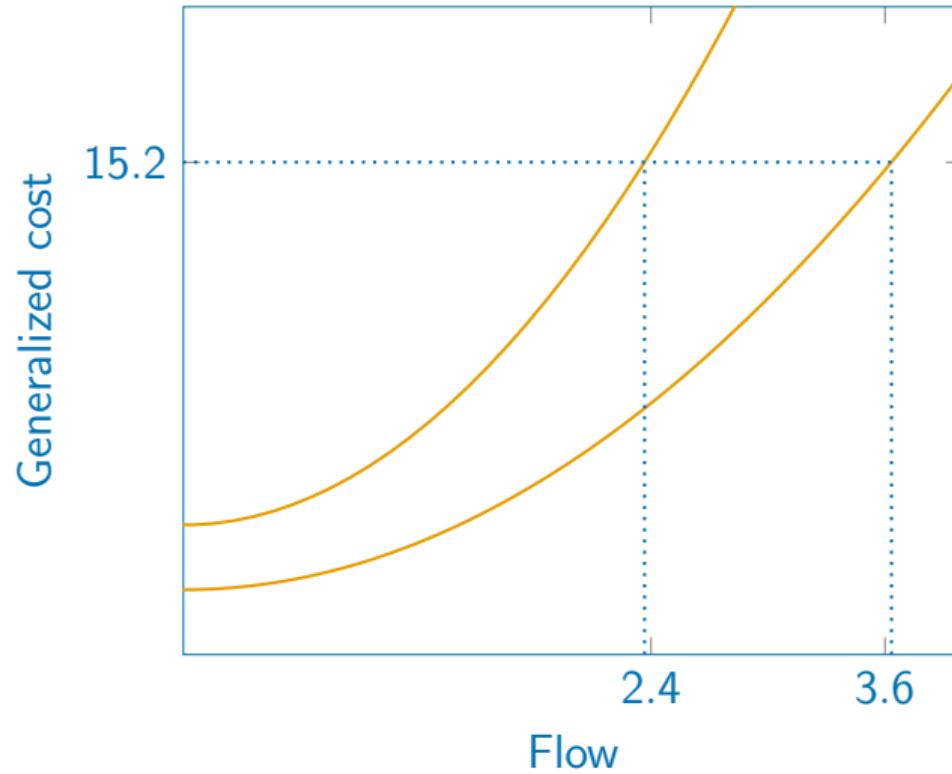
Equilibrium

$$f_{rs} = 3$$



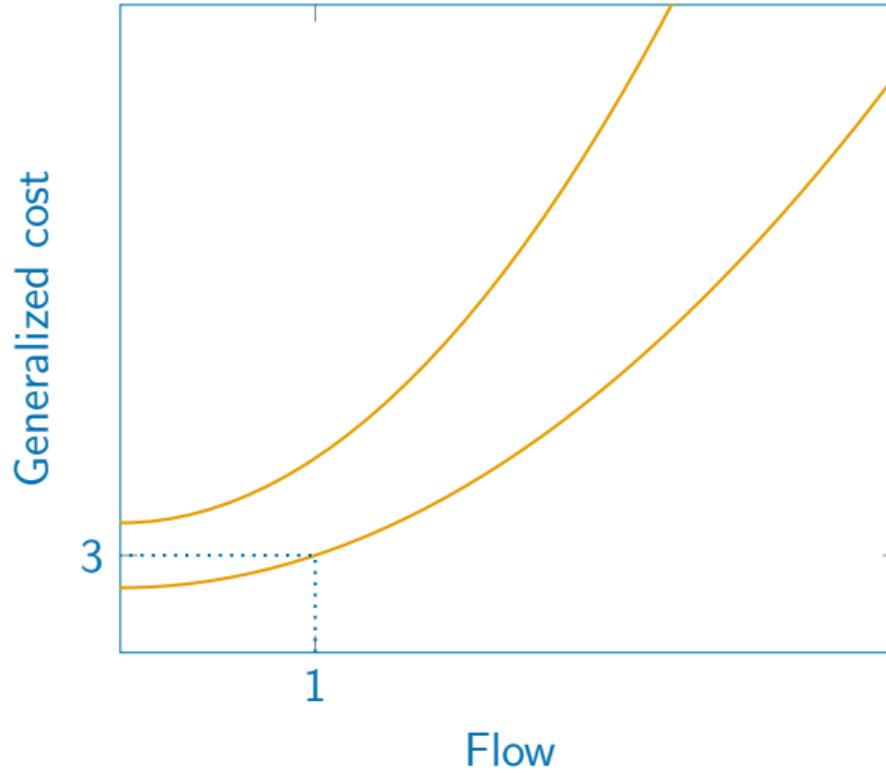
Equilibrium

$$f_{rs} = 6$$



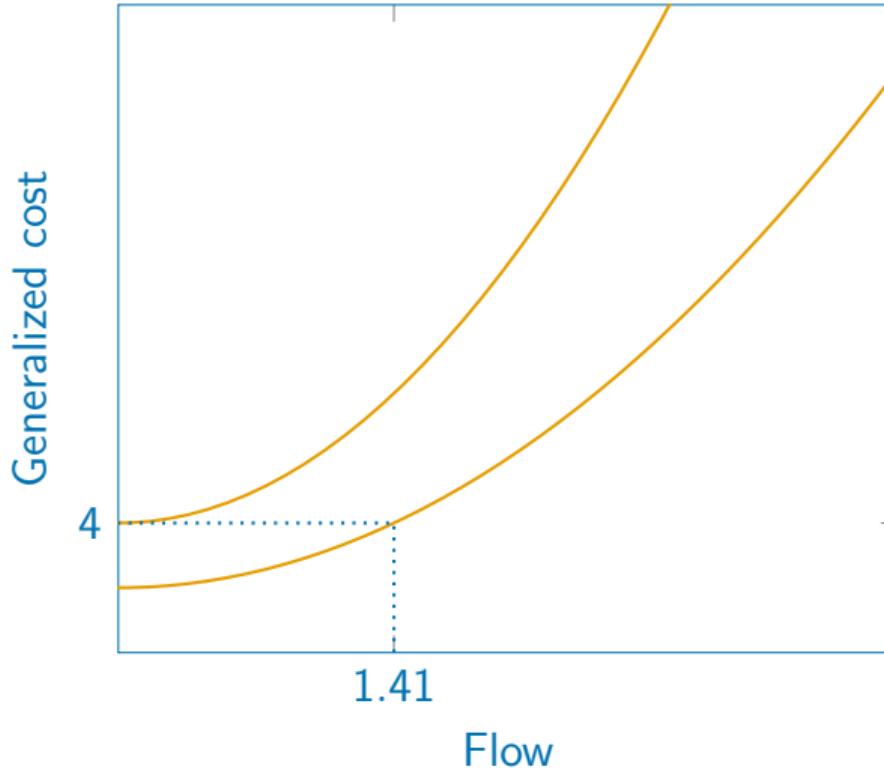
Equilibrium

$$f_{rs} = 1$$



Equilibrium

$$f_{rs} = \sqrt{2}$$



Nash equilibrium

Observations

- ▶ If $t_1(f_{rs}) \leq t_2(0)$, everybody uses link 1.
- ▶ If $t_1(f_{rs}) \geq t_2(0)$,
 - ▶ both links are used,
 - ▶ they have equal costs:

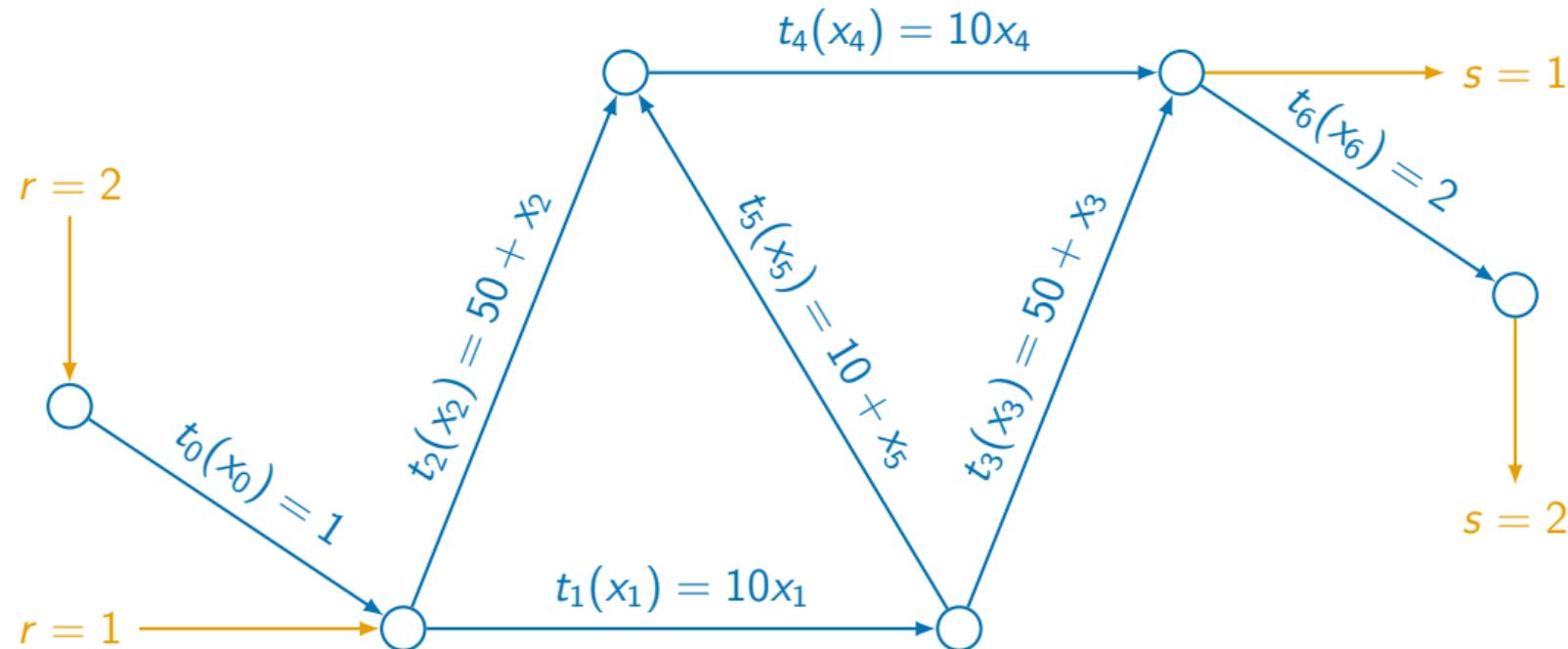
$$t_1(x_1) = t_2(x_2) \text{ and } x_1 + x_2 = f_{rs}$$

Nash equilibrium = user equilibrium

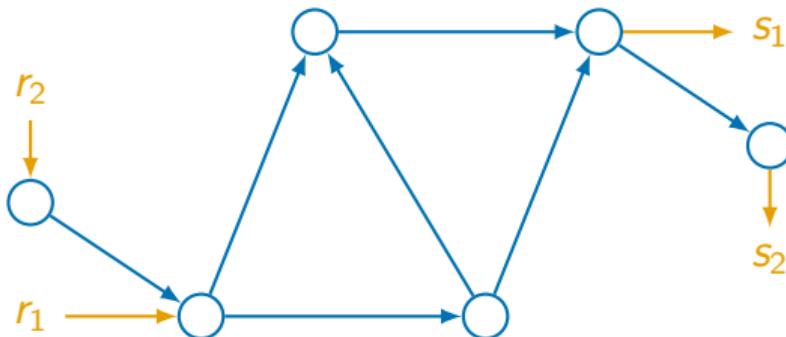
For each O-D pair, at user equilibrium,

- ▶ the generalized cost on all used paths is equal, and
- ▶ the generalized cost on all used paths is less or equal to the generalized cost on any unused path.

Network example



Network example



OD table: 3 entries

	s_1	s_2
r_1	3	1
r_2	2	0

Paths

- ▶ (r_1, s_1) : , ,
- ▶ (r_1, s_2) : , ,
- ▶ (r_2, s_1) : , ,

Empty network

p	flow	x_0	x_1	x_2	x_3	x_4	x_5	x_6	t_0	t_1	t_2	t_3	t_4	t_5	t_6	cost
$r_1, s_1: f_{rs} = 3$																
	0		0	0					0		50					50
	0			0	0					50		0				50
	0		0		0	0			0			0	10			10
$r_1, s_2: f_{rs} = 1$																
	0		0	0	0	0			0		50		2			52
	0			0	0	0	0			50		0	2			52
	0		0		0	0	0		0			0	10	2		12
$r_2, s_1: f_{rs} = 2$																
	0	0	0	0	0				1	0	50					51
	0	0	0	0	0				1		50	0				51
	0	0	0	0	0				1	0		0	10			11

Best free flow paths

p	flow	x_0	x_1	x_2	x_3	x_4	x_5	x_6	t_0	t_1	t_2	t_3	t_4	t_5	t_6	cost
$r_1, s_1: f_{rs} = 3$																
	0		6	0					60	50						110
	0			0	6					50	60					110
	3		6		6	6			60		60	16				136
$r_1, s_2: f_{rs} = 1$																
	0		6	0			1		60	50			2			112
	0			0	6	1				50	60	2				112
	1		6		6	6	1		60		60	16	2			138
$r_2, s_1: f_{rs} = 2$																
	0	2	6	0	0				1	60	50					111
	0	2		0	6				1	50	60					111
	2	2	6		6	6			1	60		60	16			137 _{16/70}

Equilibrium

p	flow	x_0	x_1	x_2	x_3	x_4	x_5	x_6	t_0	t_1	t_2	t_3	t_4	t_5	t_6	cost
r_1, s_1 : $f_{rs} = 3$																
	1		4		2				40		52					92
	1			2		4				52		40				92
	1		4			4	2		40		40	12				92
r_1, s_2 : $f_{rs} = 1$																
	1		4	2			1		40	52			2			94
	0			2	4	1				52	40		2			94
	0		4		4	2	1		40		40	12	2			94
r_2, s_1 : $f_{rs} = 2$																
	0	2	4	2					1	40	52					93
	1	2		2	4				1	52	40					93
	1	2	4		4	2			1	40	40	12				93 _{17/70}

Another equilibrium

p	flow	x_0	x_1	x_2	x_3	x_4	x_5	x_6	t_0	t_1	t_2	t_3	t_4	t_5	t_6	cost
$r_1, s_1: f_{rs} = 3$																
	1		4	2					40		52					92
	0			2	4					52		40				92
	2		4		4	2			40		40	12				92
$r_1, s_2: f_{rs} = 1$																
	1		4	2		1			40	52			2			94
	0			2	4	1				52	40	2				94
	0		4		4	2	1		40		40	12	2			94
$r_2, s_1: f_{rs} = 2$																
	0	2	4	2					1	40	52					93
	2	2		2	4				1	52	40					93
	0	2	4		4	2			1	40	40	12				93 _{18/70}

Modeling

Notations

- ▶ Number of links: K^l
- ▶ Number of paths: K^p
- ▶ Number of ODs: K^{rs}
- ▶ Paths for OD q : \mathcal{P}_q
- ▶ Link flow: x
- ▶ Path flow: y
- ▶ Link cost: t
- ▶ Path cost: c

Modeling

Link-path incidence matrix

$$P \in \{0, 1\}^{K^\ell \times K^p}$$
$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Route choice matrix

$$R \in \mathbb{R}_+^{K^p \times K^{rs}}$$
$$R = \begin{pmatrix} 1/3 & 0 & 0 \\ 1/3 & 0 & 0 \\ 1/3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}$$

Route choice matrix

Definition

$$R \in \mathbb{R}_+^{K^p \times K^{rs}}$$

R_{pq} is the proportion of travelers on OD pair q who choose route p .

Notes

- ▶ $\sum_p R_{pq} = 1$, for each q .
- ▶ Each path is associated with exactly one OD pair.
- ▶ $R_{pq} = 0$ if $p \notin \mathcal{P}_q$.
- ▶ For all-or-nothing assignment, $R_{pq} \in \{0, 1\}$, $\forall p, q$.

Modeling

From OD table to path flows

$$y = Rf : \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 & 0 & 0 \\ 1/3 & 0 & 0 \\ 1/3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

$$y_p = \sum_q R_{pq} f_q, \forall p.$$

Modeling

From path flows to link flows

$$x = Py : \begin{pmatrix} 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$x_\ell = \sum_p P_{\ell p} y_p, \forall \ell.$$

Modeling

From OD table to link flows

$$x = PRf : \begin{pmatrix} 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 2/3 & 1 & 1/2 \\ 1/3 & 0 & 1/2 \\ 1/3 & 1 & 0 \\ 2/3 & 0 & 1 \\ 1/3 & 0 & 1/2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

$$x_\ell = \sum_p \sum_q P_{\ell p} R_{pq} f_q, \forall \ell.$$

Assignment matrix: $Q = PR$, $Q \in \mathbb{R}_+^{K^\ell \times K^{rs}}$.

Modeling

From link costs to path costs

$$c = P^T t : \begin{pmatrix} 92 \\ 92 \\ 92 \\ 94 \\ 94 \\ 94 \\ 93 \\ 93 \\ 93 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 40 \\ 52 \\ 52 \\ 52 \\ 40 \\ 12 \\ 2 \end{pmatrix}$$

$$c_p = \sum_{\ell} P_{\ell p} t_{\ell}.$$

Modeling

OD specific link-path incidence matrix

- ▶ P^q
- ▶ Columns of P corresponding to \mathcal{P}_q .

$$P_1 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad P_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

OD specific route choice vector

- ▶ R^q
- ▶ Rows and column of R corresponding to q .

$$R_1 = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$$

$$R_3 = \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}$$

Modeling

Path flows for OD q

$$y^q = R^q f_q : y_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} 3, \quad y_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix} 2.$$

Path costs for OD q

$$c^q = (P^q)^T t : c_1 = \begin{pmatrix} 92 \\ 92 \\ 92 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 40 \\ 52 \\ 52 \\ 40 \\ 12 \\ 2 \end{pmatrix}$$

Modeling

Lowest cost assumption

- ▶ Define the minimum cost for OD q :

$$c_q^* = \min_p c_p^q, \forall q.$$

Summary

	Links	Paths	OD pair
Flow	x_ℓ	y_p	f_q
Cost	t_ℓ	c_p	c_q^*

Equilibrium conditions

- ▶ Minimum cost for each OD pair q :

$$c_p^q \geq c_q^*, \quad \forall q.$$

- ▶ For each OD pair q , the cost on all used paths is minimum:

$$y_p^q(c_p^q - c_q^*) = 0, \quad \forall p, q.$$

- ▶ For each OD pair q , the whole demand is assigned:

$$\sum_p y_p^q = f_q, \quad \forall q.$$

- ▶ Non negativity of path flows:

$$y_p^q \geq 0, \quad \forall p, q.$$

Beckmann's model

Optimization problem

$$\min_y \sum_{\ell} \int_0^{x_{\ell}} t_{\ell}(z) dz$$

subject to

$$\sum_p y_p^q = f_q, \quad \forall q,$$

$$y_p^q \geq 0, \quad \forall p, q,$$

where

$$x_{\ell} = \sum_p P_{\ell p} y_p^q, \forall \ell, q.$$

Assumptions

$$\begin{aligned} \frac{\partial t_{\ell}(x_{\ell})}{\partial x_{\ell}} &> 0, & \forall \ell, \\ \frac{\partial t_{\ell}(x_{\ell})}{\partial x_{\ell'}} &= 0, & \forall \ell \neq \ell'. \end{aligned}$$

Two link example

Link performance functions

$$t_1(x) = 2 + x_1^2$$

$$t_2(x) = 4 + 2x_2^2$$

Objective function

$$\int_0^{x_1} t_1(z) dz = 2z + \frac{1}{3}z^3 \Big|_0^{x_1} = 2x_1 + \frac{1}{3}x_1^3.$$

$$\int_0^{x_2} t_2(z) dz = 4z + \frac{2}{3}z^3 \Big|_0^{x_2} = 4x_2 + \frac{2}{3}x_2^3.$$

Two link example

Optimization problem

$$\min_{x_1, x_2} 2x_1 + \frac{1}{3}x_1^3 + 4x_2 + \frac{2}{3}x_2^3$$

subject to

$$x_1 + x_2 = 3$$

$$x_1, x_2 \geq 0.$$

$$x_2 = 3 - x_1$$

$$f(x_1) = 2x_1 + \frac{1}{3}x_1^3 + 4(3 - x_1) + \frac{2}{3}(3 - x_1)^3$$

$$\begin{aligned}f'(x_1) &= 2 + x_1^2 - 4 - 2(3 - x_1)^2 \\&= -x_1^2 + 12x_1 - 20\end{aligned}$$

$$f''(x_1) = -2x_1 + 12$$

$$f'(x_1) = 0 \text{ if } x_1 = 2 \text{ or } x_1 = 10$$

$$f''(2) = 8 > 0, f''(10) = -8 < 0$$

Optimal solution: $x_1 = 2$,

$$x_2 = 3 - x_1 = 1.$$

Two link example



Beckmann's model

Optimization problem

$$\min_y \sum_{\ell} \int_0^{x_{\ell}} t_{\ell}(z) dz$$

subject to

$$\sum_{p'} y_{p'}^{q'} = f_{q'}, \quad \forall q', [\lambda_{q'}]$$

$$y_{p'}^{q'} \geq 0, \quad \forall p', q', [\mu_{p'q'}]$$

Lagrangian

$$L(y; \lambda, \mu) =$$

$$\begin{aligned} & \sum_{\ell} \int_0^{x_{\ell}} t_{\ell}(z) dz \\ & + \sum_{q'} \lambda_{q'} (f_{q'} - \sum_{p'} y_{p'}^{q'}) \\ & - \sum_{p'} \sum_{q'} \mu_{p'q'} y_{p'}^{q'} \end{aligned}$$

Beckmann's model

Lagrangian

$$\begin{aligned} L(y; \lambda, \mu) = & \sum_{\ell} \int_0^{x_{\ell}} t_{\ell}(z) dz \\ & + \sum_{q'} \lambda_{q'} (f_{q'} - \sum_{p'} y_{p'}^{q'}) \\ & - \sum_{p'} \sum_{q'} \mu_{p'q'} y_{p'}^{q'} \end{aligned}$$

Necessary optimality conditions

$$\frac{\partial L}{\partial y_p^q} = 0, \forall p, q.$$

Inequality constraints

$$\mu_{pq} \geq 0, \forall p, q.$$

Complementarity slackness

$$\mu_{pq} y_p^q = 0, \forall p, q.$$

Beckmann's model

Objective function

$$f(y) = \sum_{\ell} \int_0^{x_{\ell}} t_{\ell}(z) dz$$

where

$$x_{\ell} = \sum_p P_{\ell p} y_p^q, \forall \ell, q.$$

$$\begin{aligned} \frac{\partial f}{\partial y_p^q} &= \sum_{\ell} \frac{\partial f}{\partial x_{\ell}} \frac{\partial x_{\ell}}{\partial y_{pq}} \\ &= \sum_{\ell} P_{\ell p} t_{\ell}(x_{\ell}) \\ &= c_p^q. \end{aligned}$$

Beckmann's model

Lagrangian

$$\begin{aligned} L(y; \lambda, \mu) = & f(y) \\ & + \sum_{q'} \lambda_{q'} (f_{q'} - \sum_{p'} y_{p'}^{q'}) \\ & - \sum_{p'} \sum_{q'} \mu_{p'q'} y_{p'}^{q'} \end{aligned}$$

Derivatives

$$\frac{\partial L}{\partial y_p^q} = c_p^q - \lambda_q - \mu_{pq}.$$

Necessary optimality conditions

$$\mu_{pq} = c_p^q - \lambda_q \geq 0, \forall p, q.$$

Complementarity slackness

$$y_p^q (c_p^q - \lambda_q) = 0.$$

Optimality conditions = equilibrium conditions

- ▶ Denote $\lambda_q = c_q^*$. It is the minimum cost:

$$c_p^q \geq c_q^*, \quad \forall q. \text{[Optimality conditions]}$$

- ▶ For each OD pair q , the cost on all used paths is minimum:

$$y_p^q(c_p^q - c_q^*) = 0, \quad \forall p, q. \text{[Compl. slackness]}$$

- ▶ For each OD pair q , the whole demand is assigned:

$$\sum_p y_p^q = f_q, \quad \forall q. \text{[Primal constraints]}$$

- ▶ Non negativity of path flows:

$$y_p^q \geq 0, \quad \forall p, q. \text{[Primal constraints]}$$

Beckmann's model

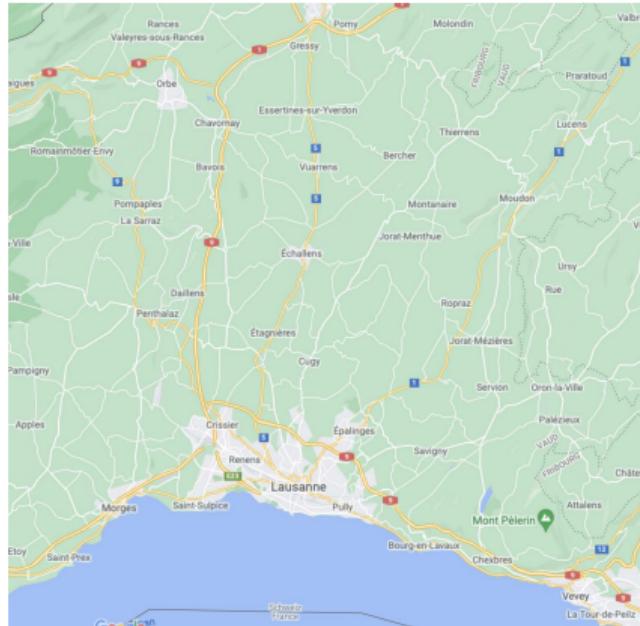
Equivalence

Solution of the optimization problem = equilibrium path flows

Uniqueness

- ▶ Optimization problem is strictly convex in the link flows.
- ▶ Link flow solution is unique.
- ▶ Path flow solution is not necessarily unique.

Complexity



- ▶ Path-based formulation is untractable for real networks.
- ▶ The number of paths grows exponentially with the number of centroids.
- ▶ We had a similar issue with the shortest path problem.
- ▶ For the shortest path problem: Dijkstra.
- ▶ We will also rely on Dijkstra here.

Solution algorithm

Initialization Empty network.

- ▶ Link costs: $t_\ell(0)$.
- ▶ Link flows from all-or-nothing assignment: x^0 .
- ▶ $k = 0$.

Step 1 Calculate link costs: $t_\ell^k = t_\ell(x^k)$.

Step 2 Link flows from all-or-nothing assignment: \tilde{x}^k .

Step 3 Line search.

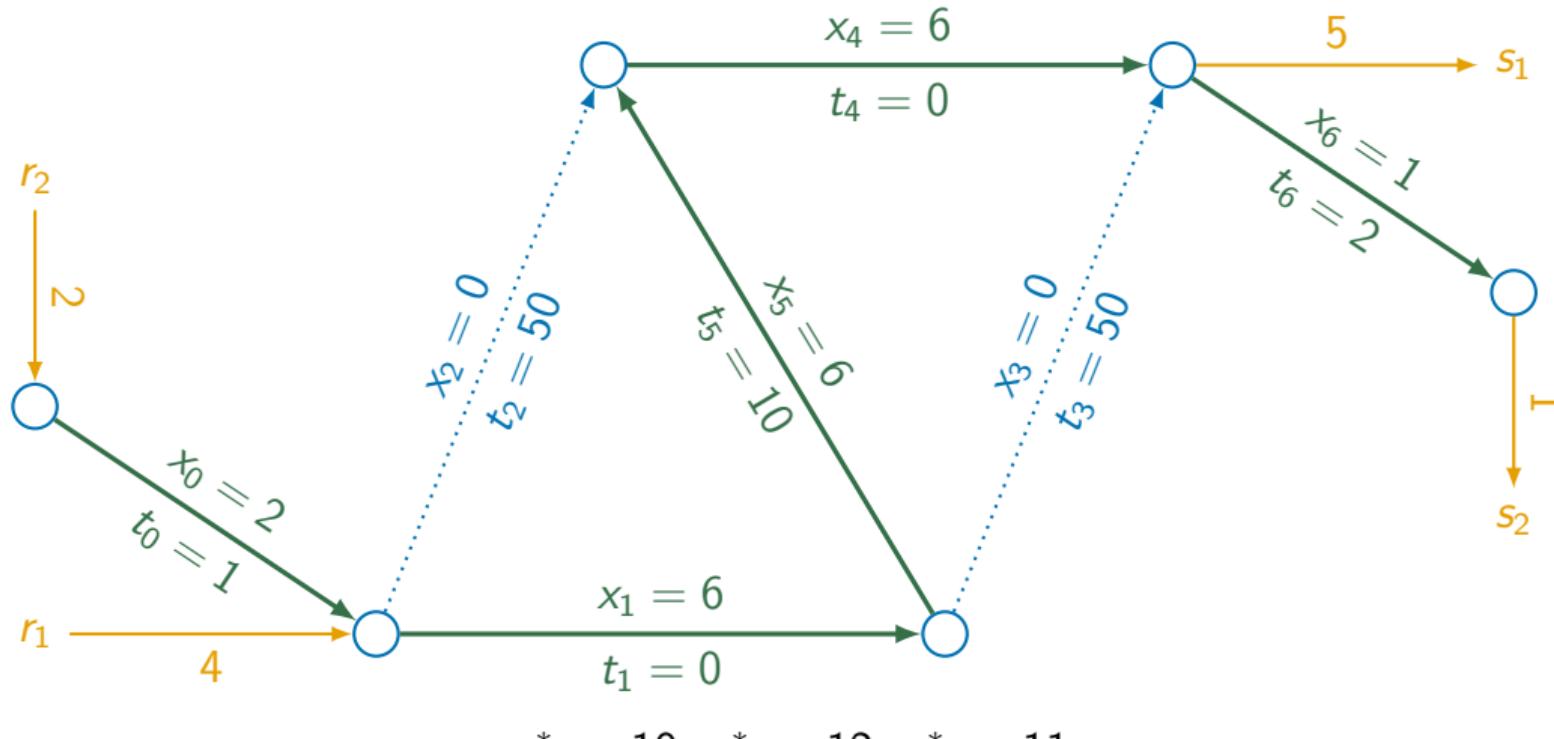
$$x^{k+1} = x^k + \alpha(\tilde{x}^k - x^k), \quad 0 \leq \alpha \leq 1,$$

where α solves

$$\min_{\alpha} \sum_{\ell} \int_0^{x_{\ell}^{k+1}} t_{\ell}(z) dz$$

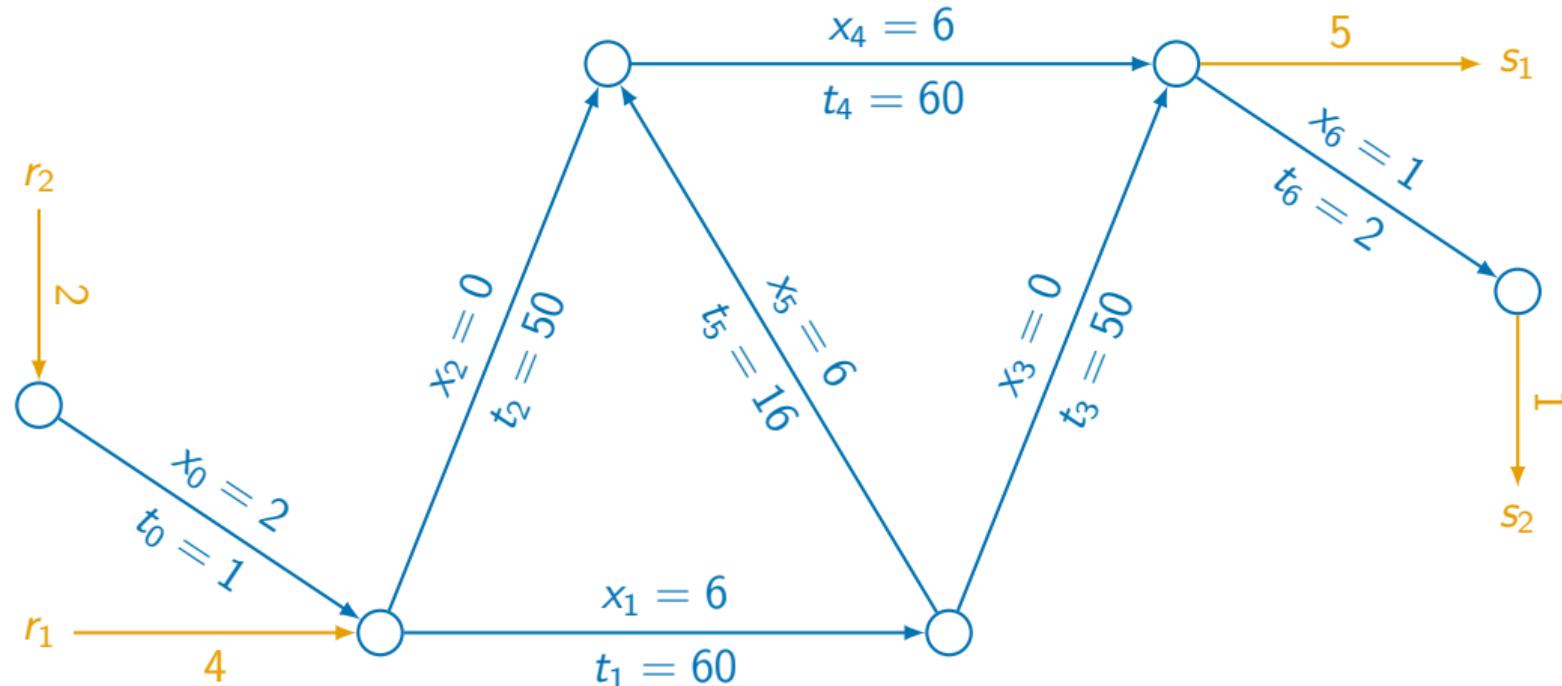
Step 4 Check convergence. If not, go to step 1.

All-or-nothing on empty network

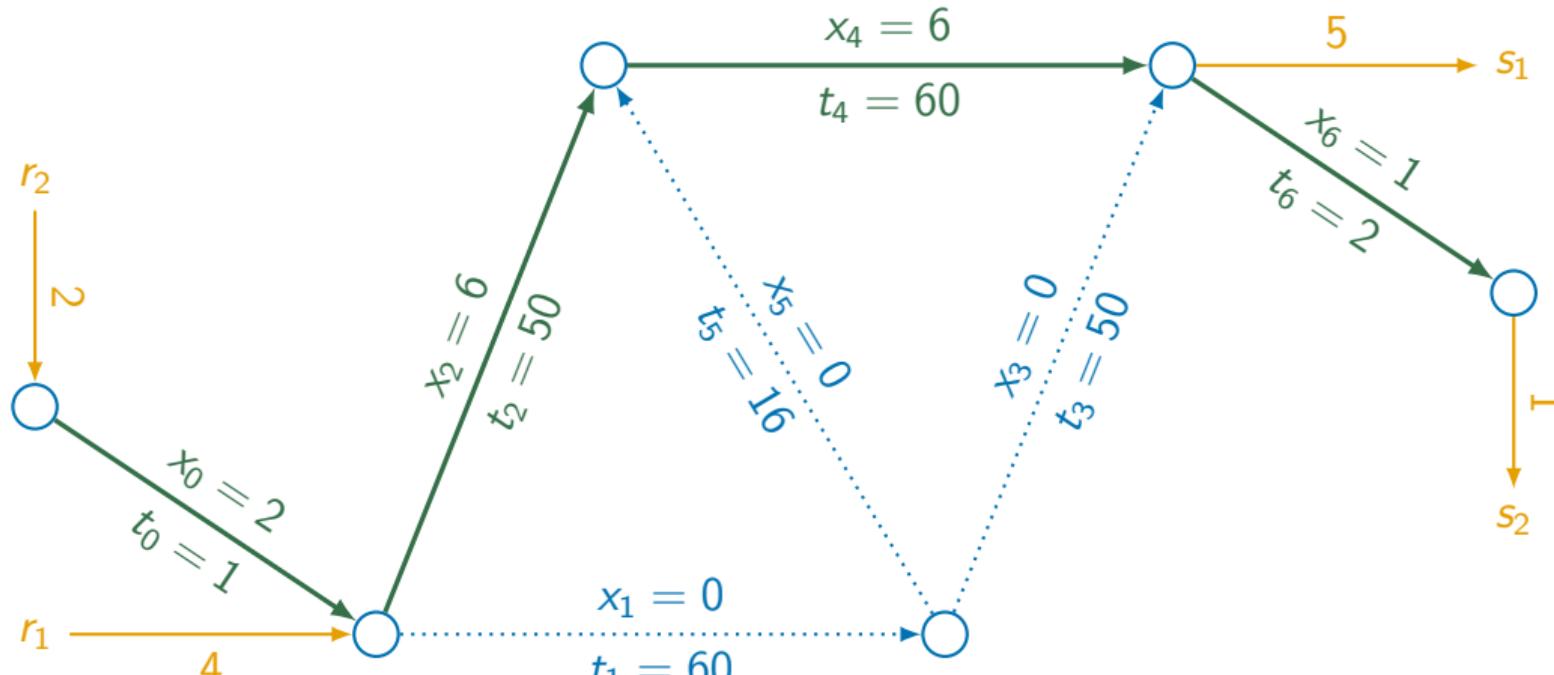


$$c_{11}^* = 10, c_{12}^* = 12, c_{21}^* = 11$$

Updated costs



All-or-nothing with updated costs

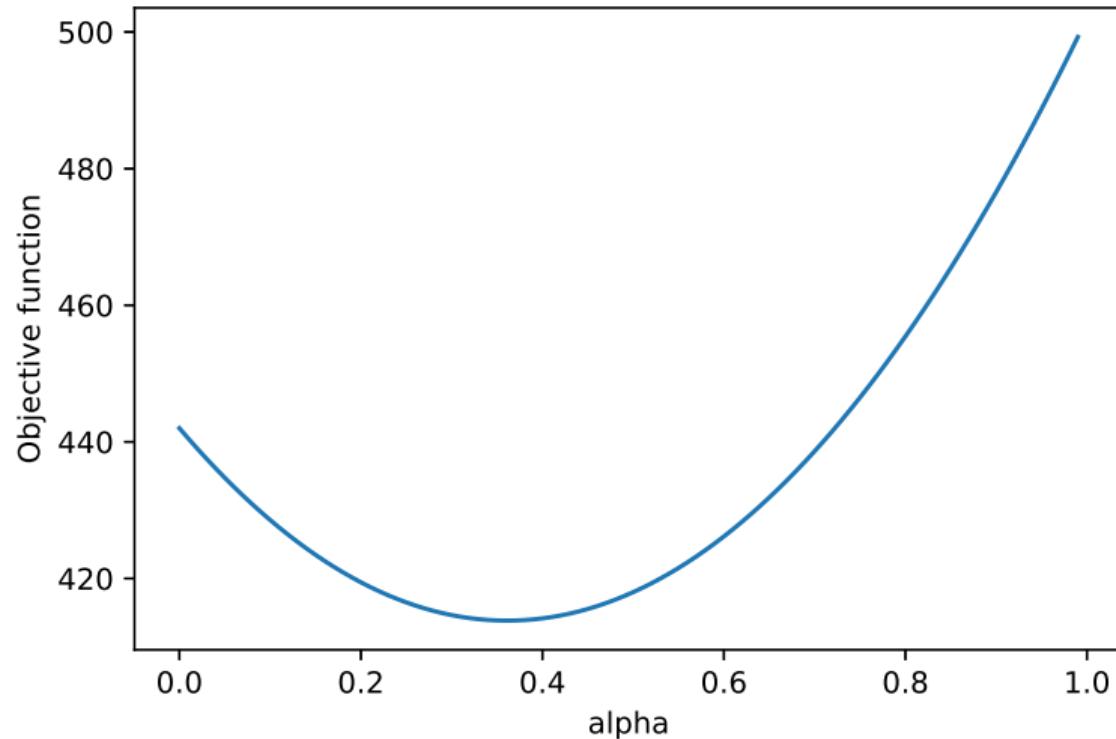


$$c_{11}^* = 110, c_{12}^* = 112, c_{21}^* = 111$$

Convex combination

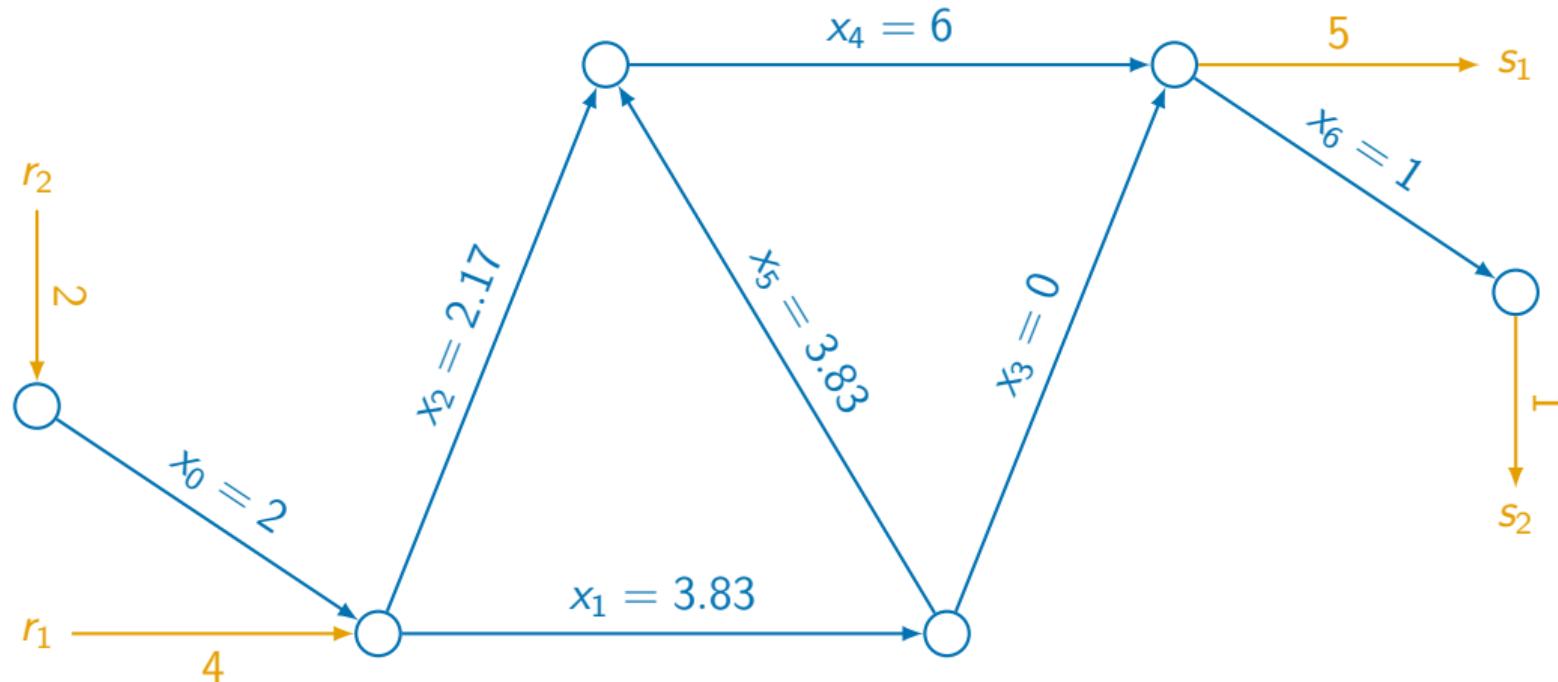
Arc	First flow	Second flow	Convex combination	
0	2	2	$2 + \alpha (2-2)$	$= 2$
1	6	0	$6 + \alpha (0-6)$	$= 6 - 6 \alpha$
2	0	6	$0 + \alpha (6-0)$	$= 6 \alpha$
3	0	0	$0 + \alpha (0-0)$	$= 0$
4	6	6	$6 + \alpha (6-6)$	$= 6$
5	6	0	$6 + \alpha (0-6)$	$= 6 - 6 \alpha$
6	1	1	$1 + \alpha (1-1)$	$= 1$

Line search



$$\alpha^* = 0.361$$

Updated flows



Iterations

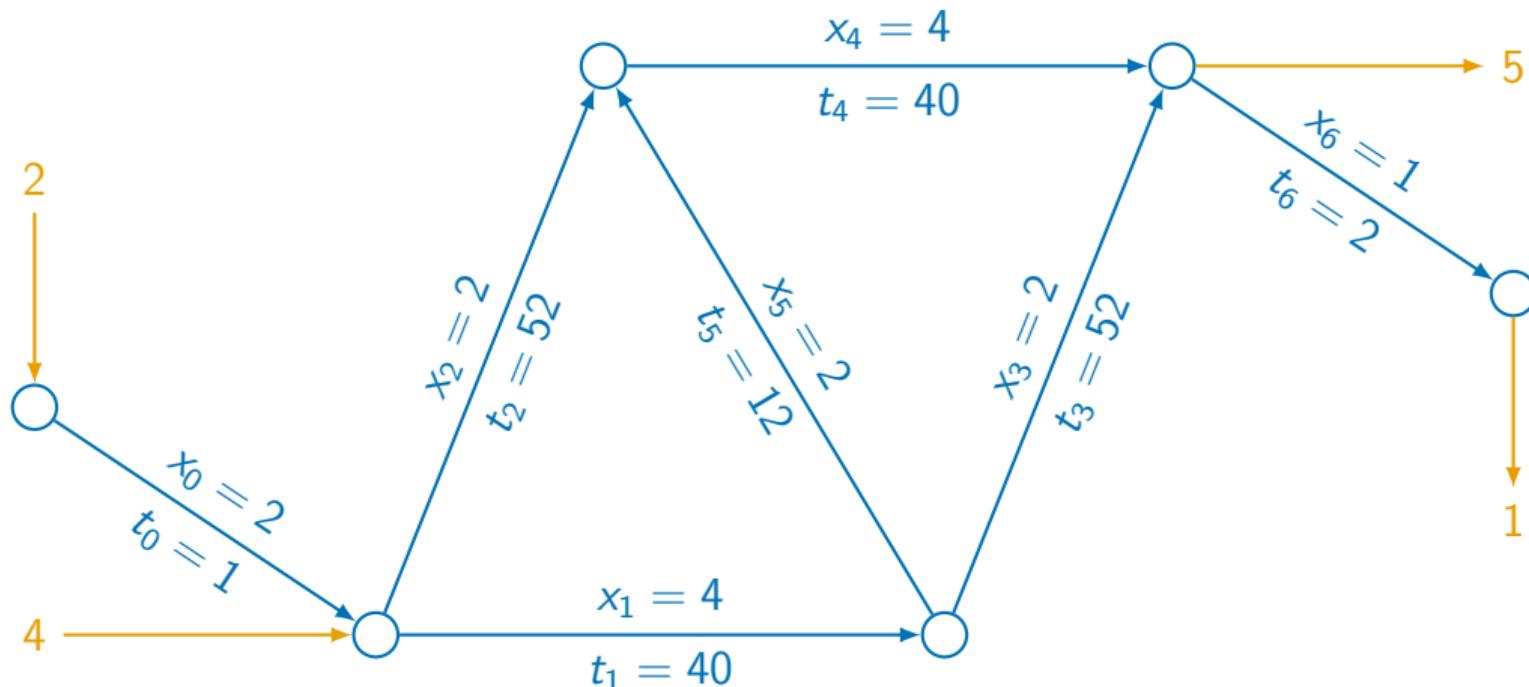
Iter	α	Objective function
0		442.00
1	0.361	413.83
2	0.309	391.72
3	0.0885	390.67
4	0.0538	390.31
5	0.0358	390.15
6	0.0249	390.08
7	0.0179	390.04
8	0.0131	390.02
9	0.00967	390.01
10	0.00722	390.01
11	0.00544	390.00

Comments

Complexity

- ▶ All-or-nothing: Dijkstra.
- ▶ Line search: link-based objective function
- ▶ No path enumeration is needed.
- ▶ Convergence may be slow.
- ▶ Convergence slower for highly congested networks.

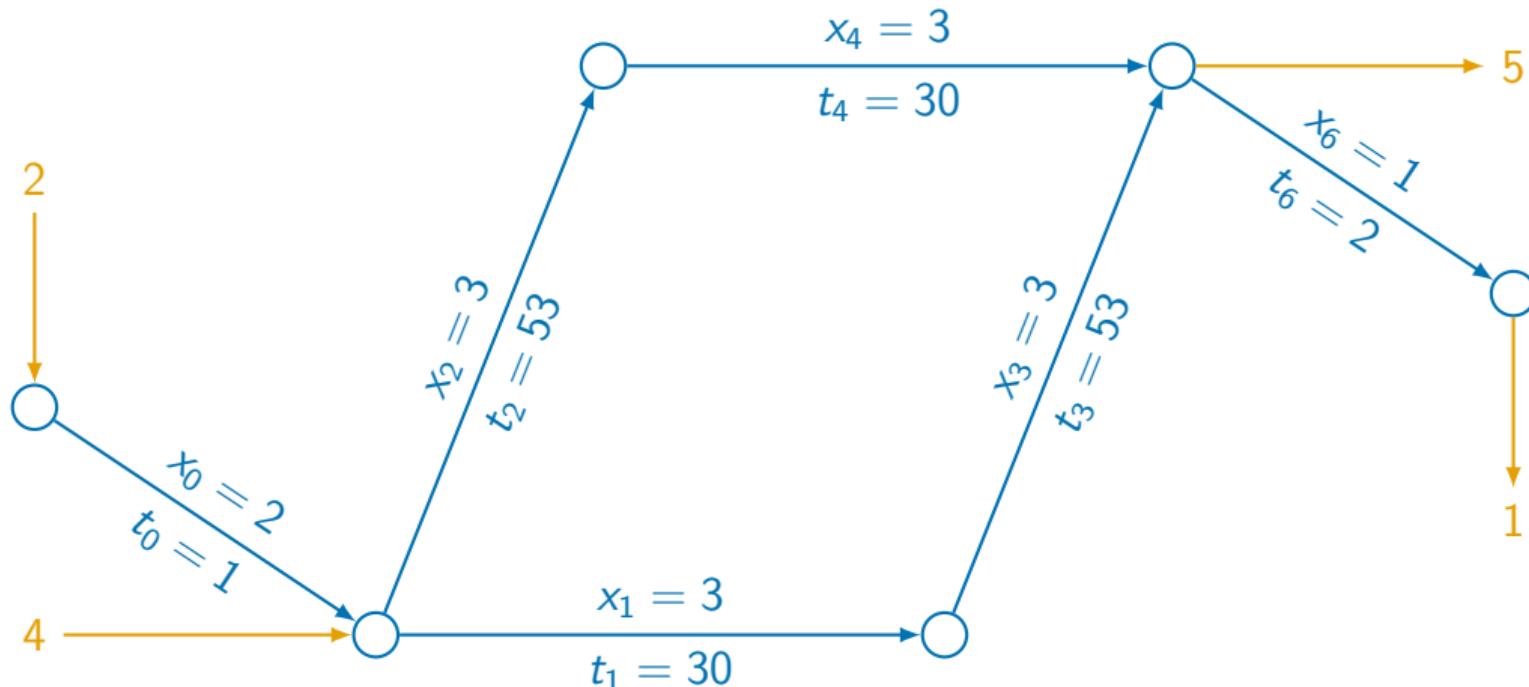
Equilibrium: level of service



$$c_{11}^* = 92, c_{12}^* = 94, c_{21}^* = 93, \text{ Mean: } \frac{1}{6}(92 \cdot 3 + 94 \cdot 1 + 93 \cdot 2) = 92.7$$

Level of service when a link is removed

Level of service when a link is removed



$$c_{11}^* = 83, c_{12}^* = 85, c_{21}^* = 84, \text{ Mean: } \frac{1}{6}(83 \cdot 3 + 85 \cdot 1 + 84 \cdot 2) = 83.7$$

Braess paradox

Observation

- ▶ The capacity of the network is reduced.
- ▶ The performance of the network is improved.

Equivalently...

- ▶ The capacity of the network is increased.
- ▶ The performance of the network is deteriorated.

Is it a mathematical artifact? Or does it happen in reality?

Stuttgart, 1968

Events

- ▶ Schlossplatz
- ▶ Opening of a new traffic network.
- ▶ Consequences: big chaos.
- ▶ Solution: close Königstrasse

Source: [Knödel, 1969]

New-York, 1990

Events

- ▶ Earth Day (April 22)
- ▶ Closing of 42th street.
- ▶ Expectations: “earth day = doomsday”
- ▶ “You didn’t need to be a rocket scientist or have a sophisticated computer queuing model to see that this could have been a major problem.”
- ▶ Actually, the situation was better than expected.

Source: [Kolata, 1990]

Seoul, 2003

Events

- ▶ Cheonggyecheon, Seoul
- ▶ Removal of a 6-lane highway.
- ▶ Expectations: catastrophe.
- ▶ In reality: “Many transportation professionals were surprised to learn that the city’s traffic flow had actually improved, instead of worsening”

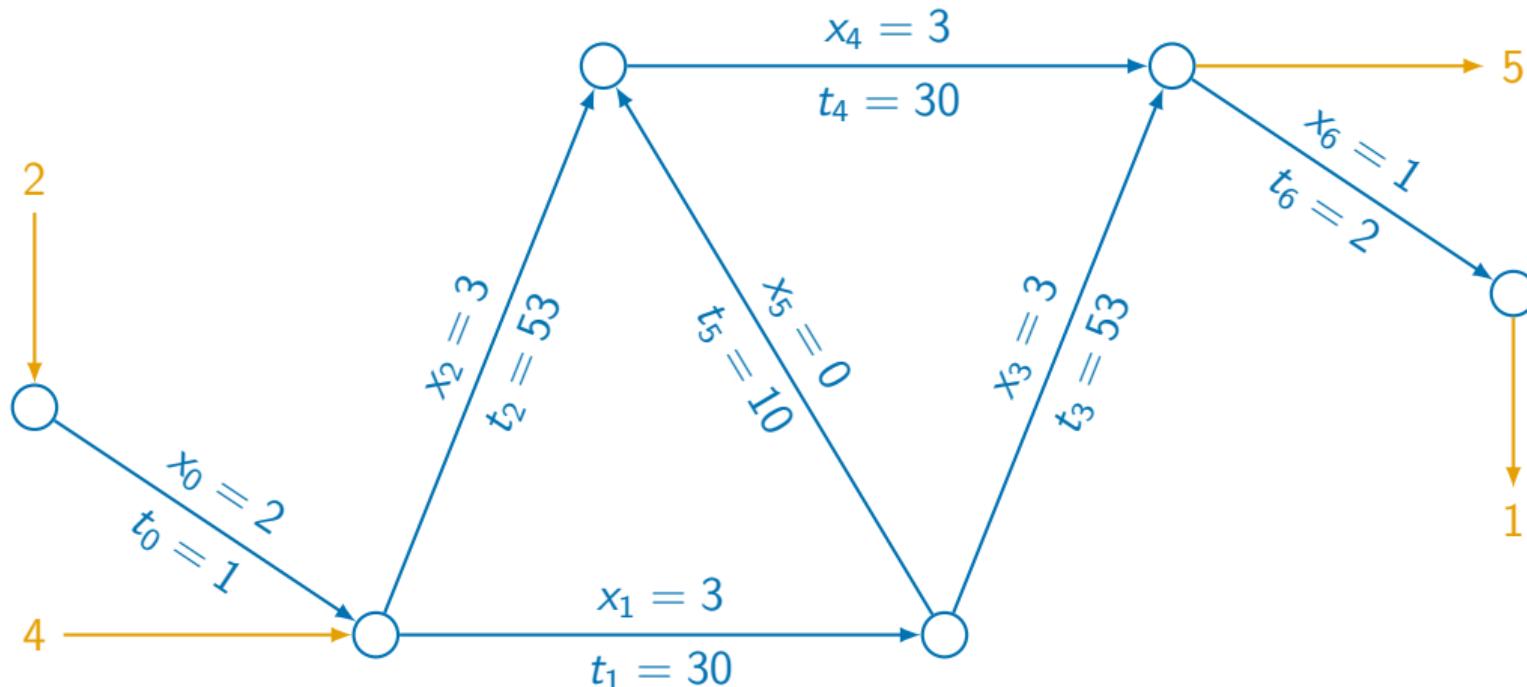
Source: [Baker, 2009]

Braess paradox

Why does it happen?

- ▶ People do not cooperate
- ▶ The new highway brings traffic in small roads.

What if we convince travelers to do the following?



$$c_{11}^* = 83, c_{12}^* = 85, c_{21}^* = 84, \text{ Mean: } \frac{1}{6}(83 \cdot 3 + 85 \cdot 1 + 84 \cdot 2) = 83.7$$

Prisoner's dilemma

Context

- ▶ Joe and Averell have been arrested.
- ▶ They are separated and isolated.
- ▶ They are accused of a small robbery, with evidence.
- ▶ They are suspected of a major robbery, without evidence.

Prisoner's dilemma

Bargain

- ▶ To Joe: you can stay silent, or betray Averell.
- ▶ To Averell: you can stay silent, or betray Joe.
- ▶ If both stay silent: 1 year in prison.
- ▶ If both betray each other: 2 years in prison.
- ▶ If Joe betrays Averell, and Averell stays silent, Joe is free and 3 years of prison for Averell.
- ▶ If Averell betrays Joe, and Joe stays silent, Averell is free and 3 years of prison for Joe.

Prisoner's dilemma: global point of view

Strategies

Decision		Penalty		Total penalty
Joe	Averell	Joe	Averell	
Silent	Silent	1	1	2
Silent	Betray	3	0	3
Betray	Silent	0	3	3
Betray	Betray	2	2	4

Best strategy

- ▶ Both stay silent.
- ▶ Optimal globally and individually.

Prisoner's dilemma: individual points of view

Joe's point of view

Assume that Averell stays silent

- ▶ If I stay silent: 1 year in prison.
- ▶ If I betray Averell: I am free.

Assume that Averell betrays me

- ▶ If I stay silent: 3 years in prison.
- ▶ If I betray Averell: 2 years in prison.

Whatever Averell does, I am better off betraying him.

Averell's point of view

Assume that Joe stays silent

- ▶ If I stay silent: 1 year in prison.
- ▶ If I betray Joe: I am free.

Assume that Joe betrays me

- ▶ If I stay silent: 3 years in prison.
- ▶ If I betray Joe: 2 years in prison.

Whatever Joe does, I am better off betraying him.

Prisoner's dilemma

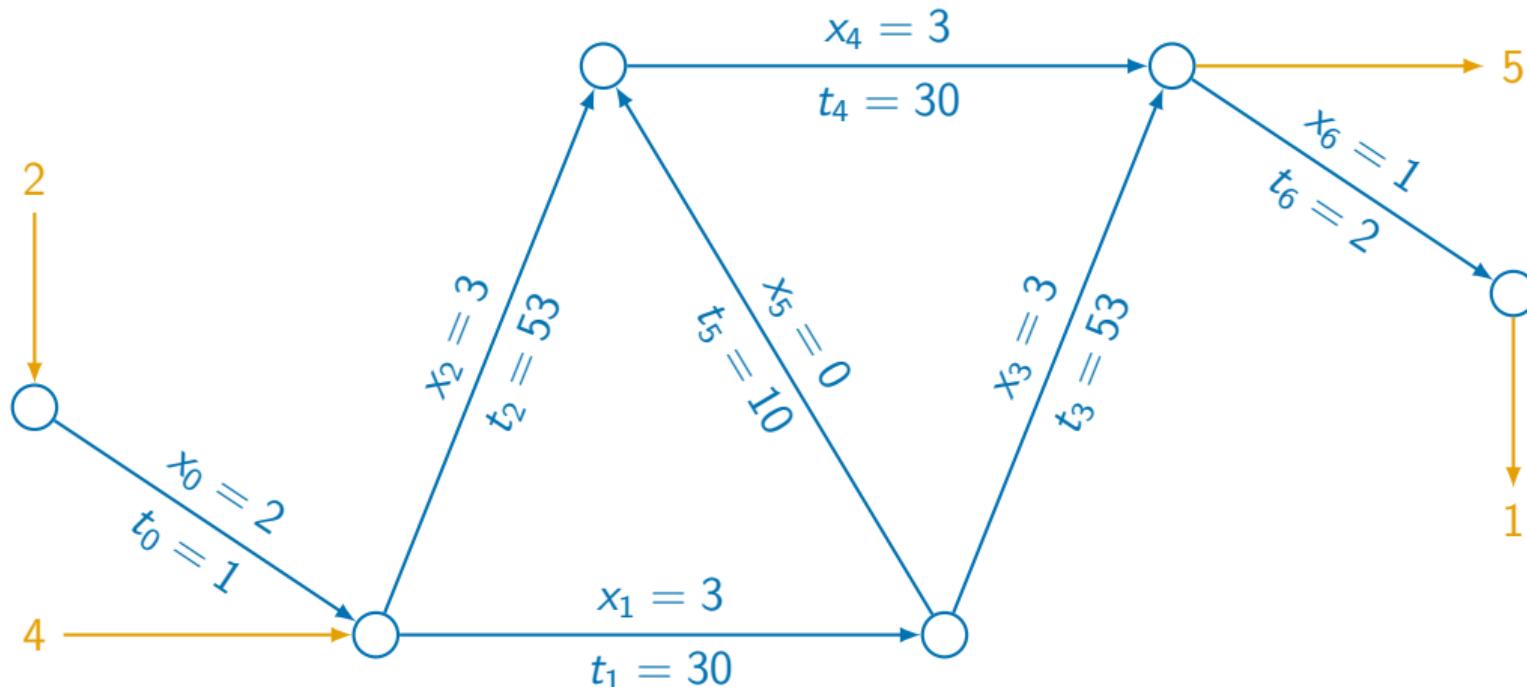
Nash equilibrium

- ▶ Equilibrium: betray the other.
- ▶ No player can improve the situation with a unilateral decision.

Cooperation

- ▶ Best joined decision: stay both silent.
- ▶ It requires cooperation and trust.

Can we convince travelers to do the following?



$$c_{11}^* = 83, c_{12}^* = 85, c_{21}^* = 84, \text{ Mean: } \frac{1}{6}(83 \cdot 3 + 85 \cdot 1 + 84 \cdot 2) = 83.7$$

Traffic assignment

User equilibrium

$$y^* = \operatorname{argmin}_y \sum_{\ell} \int_0^{x_{\ell}} t_{\ell}(z) dz$$

subject to

$$\sum_p y_p^q = f_q, \quad \forall q,$$

$$y_p^q \geq 0, \quad \forall p, q.$$

System optimum

$$\tilde{y}^* = \operatorname{argmin}_y \sum_{\ell} x_{\ell} t_{\ell}(x_{\ell})$$

subject to

$$\sum_p y_p^q = f_q, \quad \forall q,$$

$$y_p^q \geq 0, \quad \forall p, q.$$

$$\sum_{\ell} x_{\ell}^* t_{\ell}(x_{\ell}^*) - \sum_{\ell} \tilde{x}_{\ell}^* t_{\ell}(\tilde{x}_{\ell}^*) \geq 0: \text{ price of anarchy}$$

Engineering point of view

Role

- ▶ Design
- ▶ Maintain
- ▶ Operate

Objective

- ▶ Minimize the price of anarchy.
- ▶ Benchmark: system optimum.

Actions

- ▶ Infrastructure.
- ▶ Influence the travelers.

Towards system optimum

Supply-based

- ▶ Traffic lights, speed limit, etc.
- ▶ Control strategies.
- ▶ Compliance guaranteed by law.
- ▶ See the course of Prof. Geroliminis.

Demand-based

- ▶ Information and incentives.
- ▶ Compliance not guaranteed.
- ▶ Pricing.

System optimum

Engineering and policy makers

- ▶ System optimum is about the average traveler.
- ▶ In the example, all travelers were better off when the link was removed.
- ▶ In practice, some travelers may pay a high price for the greater good.
- ▶ Concepts like equity, minimum level of service, etc. are important as well.

Summary

User equilibrium

- ▶ No traveler can improve her travel time by unilaterally changing routes.
- ▶ Minimum cost of all used paths.
- ▶ No flow on paths with higher costs.
- ▶ Equivalent optimization problem.

Braess paradox

- ▶ Decreasing capacity may improve the level of service.
- ▶ Increasing capacity may deteriorate the level of service.

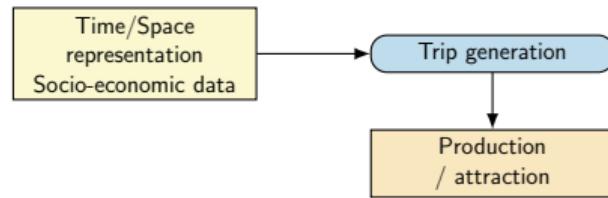
System optimum

- ▶ Requires cooperation among travelers.
- ▶ Prisoner's dilemma.
- ▶ Main objective for the engineer.

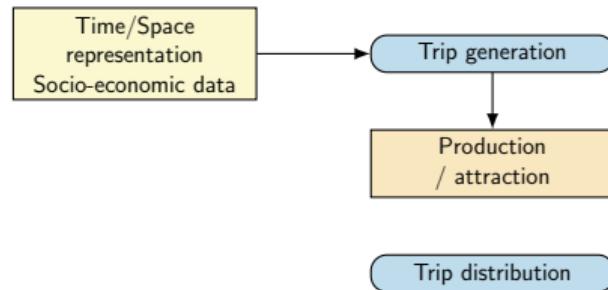
The 4-step approach: summary

Trip generation

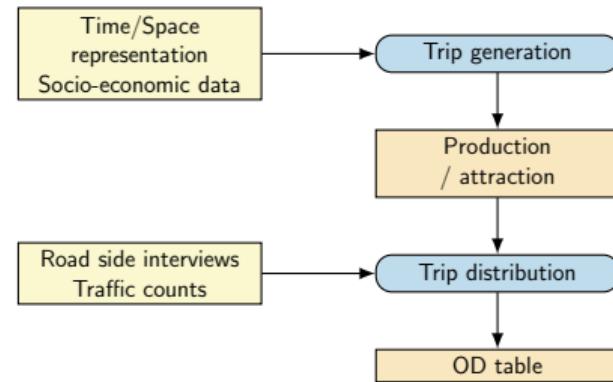
The 4-step approach: summary



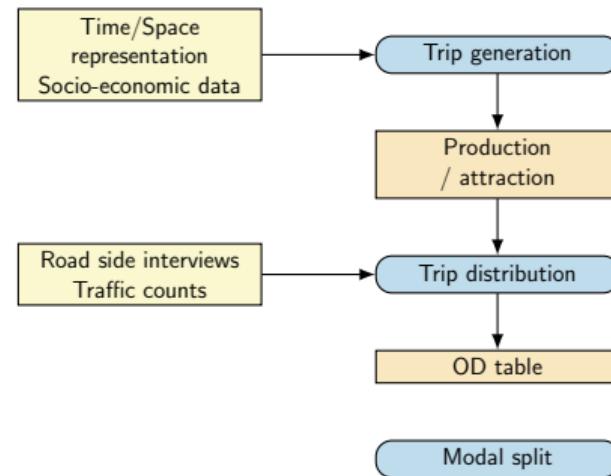
The 4-step approach: summary



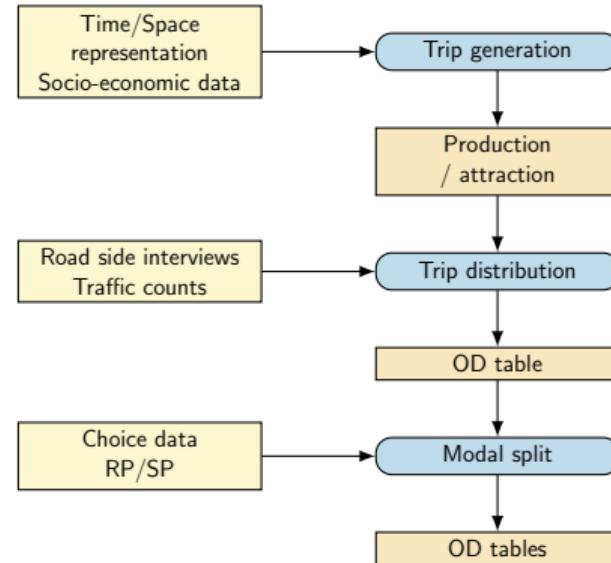
The 4-step approach: summary



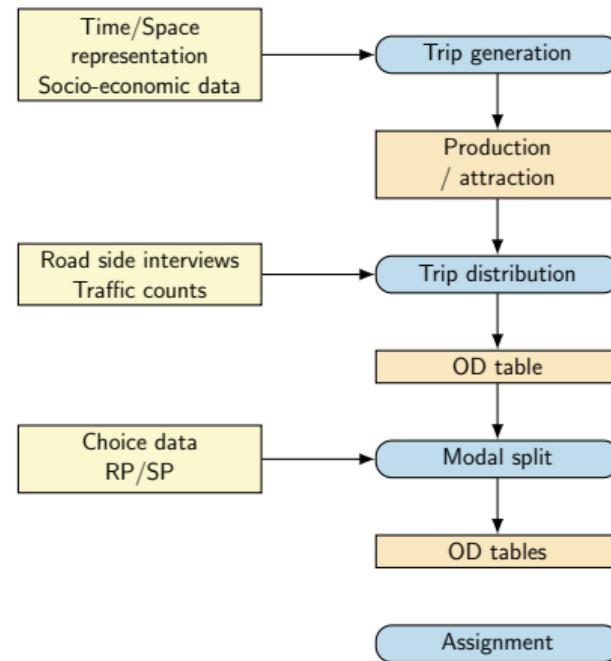
The 4-step approach: summary



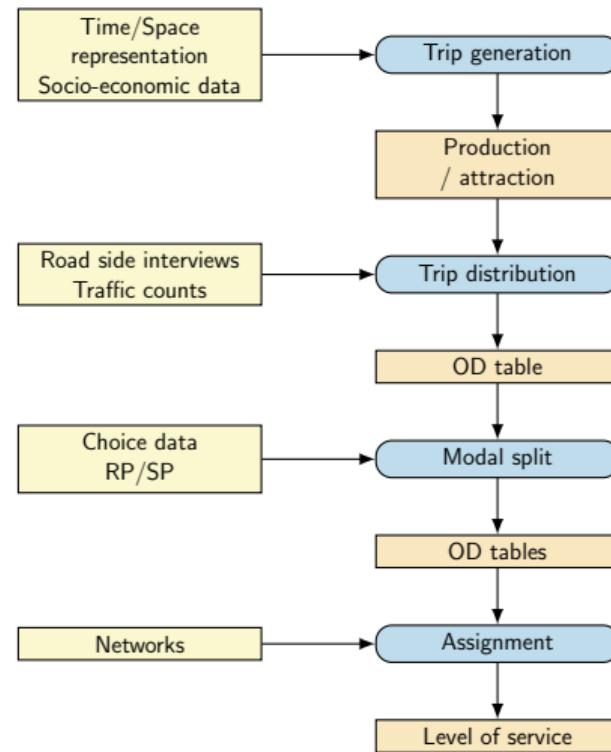
The 4-step approach: summary



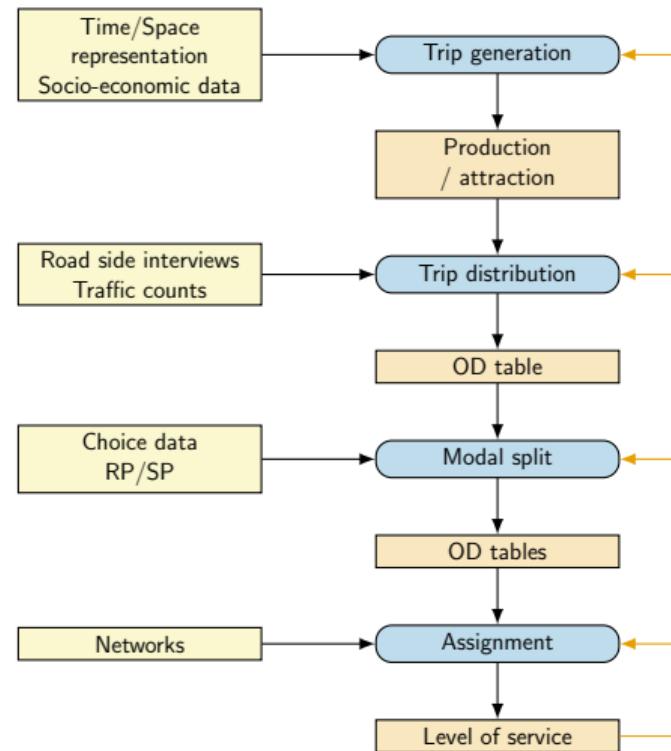
The 4-step approach: summary



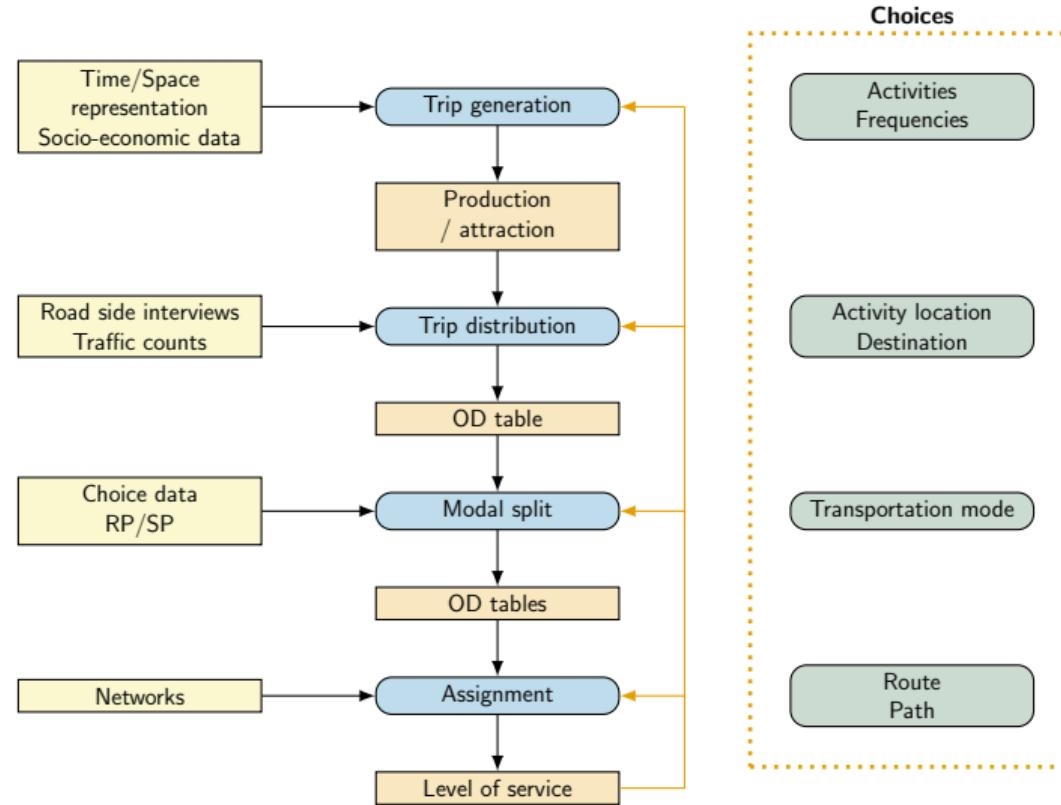
The 4-step approach: summary



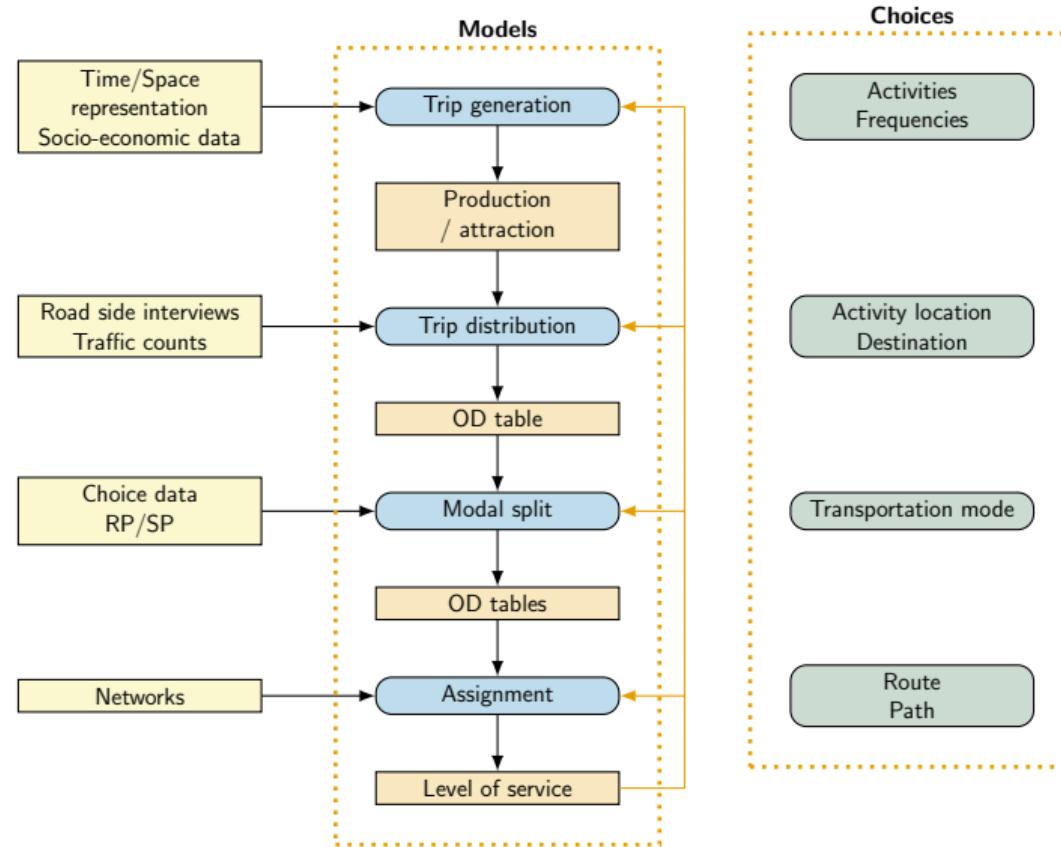
The 4-step approach: summary



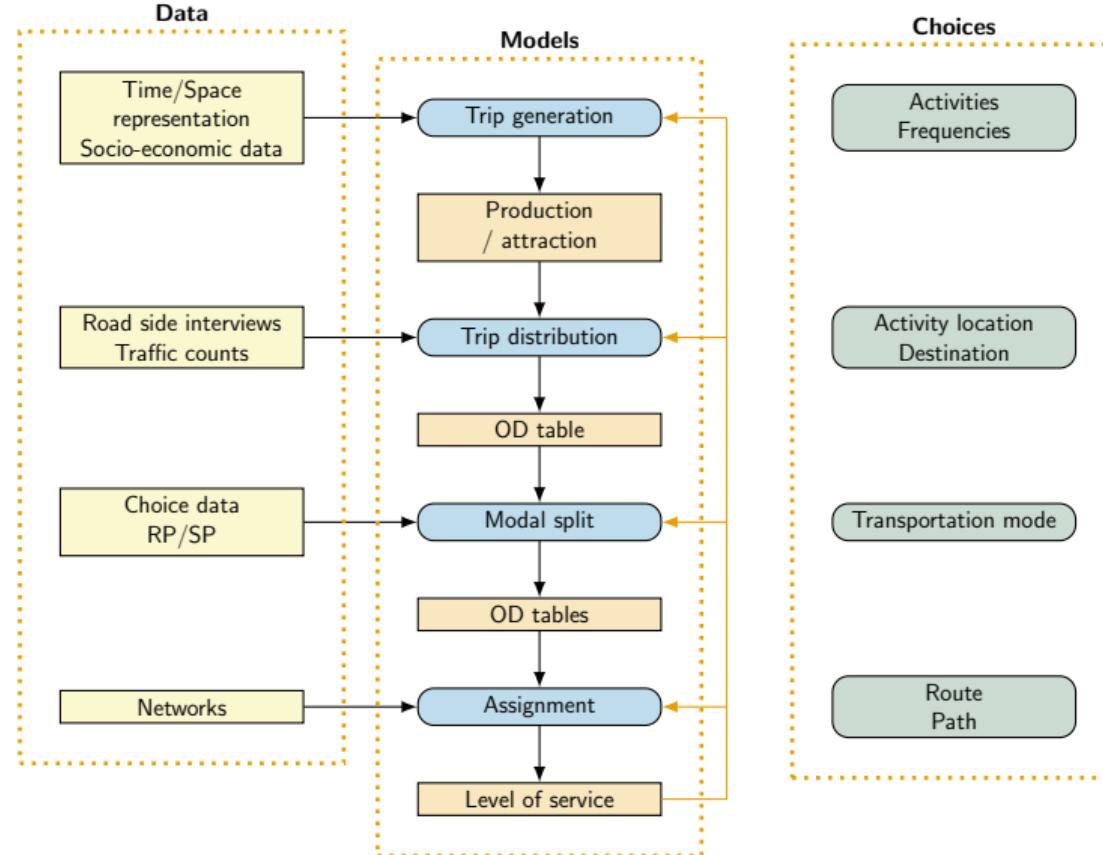
The 4-step approach: summary



The 4-step approach: summary



The 4-step approach: summary



Bibliography

- Baker, L. (2009).
Removing roads and traffic lights speeds urban travel.
Scientific American.
- Knödel, W. (1969).
Graphentheoretische Methoden und ihre Anwendungen.
Springer, Berlin.
- Kolata, G. (1990).
What if they closed 42d street and nobody noticed?
The New York Times, page 38.