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=PFL  Unsupervised leaming

Condition
monitoring
data

Feature ML algorithm
extraction (e.g. classifier)

Condition
monitoring End-to-end learning

data
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=PFL How much information is the machine given
during leaming?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)
» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data
» 10—10,000 bits per sample

P Self-Supervised Learning (cake génoise)

P The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos

P Millions of bits per sample Source: Y. LeCun
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=Pl Unsupervised (also self-supervised, predictive)
Leaming

= We have access to {X;, X,, X3, * * -, X5} but not {y4, ¥,, V3, * = *, Yn}

= Why would we want to tackle such a task:
« Extracting interesting information from data

Clustering

Discovering interesting trend

Data compression

Learn better representations

B 14.04.25
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=PrL

Autoencoders

- Network is trained to output the input (learn identify function).

- Two parts encoder/decoder

B 14.04.25

X' = g(f(x)) S

g - decoder 8 _mw :

f - encoder i @ 1
Trivial solution unless: Sl CIcEREC

- Constrain number of units in Layer 2 (learn compressed

representation), or
- Constrain Layer 2 to be sparse

Olga Fink




=PrL

B 14.04.25

Basic principles of an autoencoder

If the input is x € R™ an autoencoder will produce a h € R% where d < n, which is designed to contain most of the important features of x
to reconstruct it.

Autoencoder performs the following steps:

e Encoder: Perform a dimensionality reduction step on the data, x € R" to

© -
1
obtain features h € R<. g
o Decoder: Map the features h € R? to closely reproduce the input, _| @Z: SG R er S

x e R".
a

Decoder

Thus, the autoencoder implements the following problem: g - f
o
()
Let x € R”, f(-) : R = R% and g(-) : R* = R™. Let (T |@@ ° “@
x = g(f(x))
Define a loss function, £(x,x), and minimize £ with respect to the parameters
of () and g(.).
There are different loss functions that you could consider, but a common one is
the squared loss: Source: J.C. Kao, UCLA

Lx,%) = |Jx - x|I”
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=PFL  Leaming features from raw condition
monitoring data

Recon-

Feature structed
Decoder Condition
Network Monitoring

Signals

Raw
Condition Encoder
Monitoring Network
Signals

Represen-
tation
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=PrL  Self-supervised leaming

= Pretext task - important strategy for learning data representations
under self-supervised mode

= Self-defined pseudo-labels

= Pseudo-labels automatically generated based on the attributes found in
the unlabeled data

B 14.04.25
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Pretext tasks
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=PrL  Self-supervised leaming tasks (time series)

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predict the future from the recent past. ' '

» Predict the past from the present.

» Predict the top from the bottom.

» Predict the occluded from the visible

» Pretend there is a part of the input you « Past Present Future —
don’t know and predict that. Slide: LeCun

|

B 14.04.25

Olga Fink



=PFL  Example: rotation

| Obj ectiveS'

ConvNet ‘ Maxnmze prob
model F( ) |

Predlct 0 degrees rotation (y=0)
Rotated image: X° |

ﬂ’ g(Xx,y=0)

Rotate 0 degrees

ConvNet | Maximize prob.
model F(;)/Jﬁf\ Fl(x) |
Predict 90 degrees rotation (y=1) |

g(x,y=1) |

Rotate 90 degrees

Rotated image: X'

- | O

ConvNet \

Maximize prob.
model F() ’ HE ()

| g(x,y=2)

Rotate 180 degrees | Predict 180 degrees rotation (y=2) |

o —— = ™ |

ConvNet Maximize prob.

model FQ/ 7 \ L F(X?)
| Predict 270 degrees rotation (y=3) |

Rotated image: X

—>’ g(Xx,y=3)

Rotate 270 degrees

Rotated image: X*

14.04.25

Gidaris et al. 2018
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https://arxiv.org/abs/1803.07728

=PrL

B 14.04.25

Important pretext tasks

color transformations

geometric transformations
context-based tasks

cross-modal-based tasks

Olga Fink



=P7L  Basic Idea of self-supervised leaming

Raw
Condition Encoder Feature Pretext
Monitoring Network Represen- task

Signals tation

Down-stream
task: e.g. fault
detection
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Semi-supervised leaming




=PrL
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Why/How Might Unlabeled Data Help?

O CO8 O @ QOO0 @ OO0 @

Source: Piyush Rai 2011
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=PrL

B 14.04.25

Semi-supervised leaming

= Semi-supervised learning leverages the available unlabeled data to
improve the performance of the supervised learning task.

= Different concepts have been proposed for semi-supervised learning
tasks

» generative models
« graph-based methods
* transductive methods

= A further possibility to distinguish the different semi-supervised learning
approaches is to differentiate between those based on

* consistency regularization
 entropy minimization
« traditional regularization

Olga Fink




=PFL  Benefits of Semi-Supervised Leaming:

= Cost-effective: Collecting labeled data can be time-consuming and
expensive, especially for large datasets. Semi-supervised learning allows
for the use of large amounts of unlabeled data, which can be collected
relatively easily and inexpensively, to train the model.

= Improved accuracy: By incorporating both labeled and unlabeled data into
the training process, those models can learn patterns and relationships
within the data that may not be easily visible from the labeled data alone.
I'I'rgislcgndlead to improved accuracy compared to models trained solely on
abeled data.

= Better generalization: They tend to generalize better to new data
compared to models trained solely on labeled data. This is because the
models are able to learn more about the underlying structure of the data by
incorporating both labeled and unlabeled data into the training process.

= Flexibility: It is a flexible approach that can be used in a variety of different
applications, including image classification, natural language processing,
and more.

B 14.04.25
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B 14.04.25

Limitations of Semi-Supervised Leaming

= Labeled data limitations: The effectiveness of semi-supervised
learning models is dependent on the quality and quantity of the labeled
data available. If the labeled data is limited or of poor quality, the model
may not perform as well.

= Model selection: Selecting the right model for a semi-supervised
learning problem can be challenging, as different models may perform
better or worse depending on the specific problem and dataset.

= Evaluation difficulty: Evaluating the performance of that kind of model
can be challenging, as the available labeled data may be limited and it
can be difficult to determine the effectiveness of the model in making
predictions for new data.

Olga Fink




=PFL  Assumptions for different methods

= Continuity assumption -2 objects near each other are likely to share
the same group or label +data points that are part of the same cluster
are more likely to share the same label

= Cluster assumptions =>data points that are part of the same cluster
are more likely to share the same label

= Manifold assumptions - high-dimensional data lie on a low-
dimensional manifold - the learning algorithm should respect the
manifold structure - learning should primarily happen on the manifold

= Smoothness assumption: if two points in a high-dimensional space
are close to each other, then so should be their outputs

B 14.04.25
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=P7L  The Learning Problem

= Using both labeled and unlabeled data to build better learners, than using
each one alone

input instance z, label y

learner f: X' — Y

labeled data (X;,Y)) = {(x1.,y1.4)}

unlabeled data X,, = {x;11.,}, available during training
usually [ < n

test data X¢eor = {@,, 1.}, not available during training

Source: Piyush Rai 2011

B 14.04.25
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Pseudo-labeling
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=P7L  Pseudo-labeling

labeled data 1. train the model
0000 with labeled data
o000
(I XX
o000
Model
unlabeled data
000
(X X ] .
Y'Y ) 2. use the trained model
o000 to predict labels for the
X unlabeled data
pseudo-labeled data labeled data
o000 (X X X )
000 (X X X J
(X X ) 0000
000 o000
3. retrained the
model with the
pseudo and
labeled datasets Model
together

Source: Potrimba, 2022
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=PrL  Self-Training

B 14.04.25

Input: labeled data {(xi.yi)_}g:l, unlabeled data {Xj};—:l;_'_l-

1. Initially, let L = {(xs,5:)}_, and U = {x; 11+

j=l+1
2. Repeat:
3. Train f from L using supervised learning.
4. Apply f to the unlabeled instances in U.
5 Remove a subset S from U; add {(x, f(x))|x € S} to L.

Self-training is a wrapper method
@ the choice of learner for f in step 3 is left completely open
@ good for many real world tasks like natural language processing

@ but mistake by f can reinforce itself |

Source: Piyush Rai 2011
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=P7L  Leaming algorithm (k-nearest neighbors)

Input: labeled data {(x;,v:) 2:1. unlabeled data {Xj_};t’j"H,

distance function d().

1. Initially, let L = {(xs, %) }'_q and U = {x;}}17, .

2. Repeat until U is empty:

3 Select x = argming;; ming oz, d(x, x’).

4, Set f(x) to the label of x's nearest instance in L.
Break ties randomly.

5. Remove x from U; add (x, f(x)) to L.

Source: Piyush Rai 2011
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=PrL
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=PrL

B 14.04.25

Co-Training

Given: Labeled data {xi,yi}t—; , unlabeled data {x;}/7%;

Each example has 2 views: x = [x(l) X[E)]

How do we get different views?

Naturally available (different types of features for the same object)
» Webpages: view 1 from page text; view 2 from social tags
» Images: view 1 from pixel features; view 2 from Fourier coefficients

... Or by splitting the original features into two groups

= Assumption: Given sufficient data, each view is good enough to learn from Co-training:
Utilize both views to learn better with fewer labeled examples Idea: Each view teaching

(training) the other view

= Technical Condition: Views should be conditionally independent
= Intuitively, we don't want redundancy between the views

Source: Piyush Rai 2011
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=P7L  Co-Training

= Given labeled data L and unlabeled data U
= Create two labeled datasets Lsand L, from L using views 1 and 2
= Learn classifier f (1) using L4 and classifier f (2) using L

= Apply f (M and f (2 on unlabeled data pool U to predict labels
» Predictions are made only using their own set (view) of features
= Add K most confident predictions ((x, f ()(x)) of f;to Lo

= Add K most confident predictions ((x, f ?2(x)) of f,to L4

= Note: Absolute margin could be used to measure confidence

= Remove these examples from the unlabeled pool

= Re-train f (W using L4, f (Y using L,

= Like self-training but two classifiers teaching each other

= Finally, use a voting or averaging to make predictions on the test data

Source: Piyush Rai 2011

B 14.04.25
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=PrL
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Multi-view Leaming

= A general class of algorithms for semi-supervised learning

= Based on using multiple views (feature representations) of the data Co-training is a
special type of multi-view learning algorithm

= General Idea: Train multiple classifiers, each using a different view

= Modus Operandi: Multiple classifiers must agree on the unlabeled data How might it
help learn better?

« Learning is essentially searching for the best classifier
» By enforcing agreement among classifiers, we are reducing the search space
« = hope is that the best classifier can be found easily with little labeled data

= For test data, these multiple classifiers can be combined
= E.g., voting, consensus, etc.
= Backed by a number of theoretical results

Source: Piyush Rai 2011

Olga Fink
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=PFL  Cluster-and-Label Approach

Input: (x1,91),-.-, (X5, %), Xe415-- -, Xl4u
a clustering algorithm A, a supervised learning algorithm £
1. Clusrer 8. .u X]1qy Using A.

2. For each cluster, let S be the labeled instances in it:
3. Learn a supervised predictor from S: fg = L(S).

4. Apply fs to all unlabeled instances in this cluster.
Output: labels on unlabeled data y;41..... Yitu-

= Finally train a supervised learner on the entire labeled data

= Assumption: Clusters coincide with decision boundaries
» Poor results if this assumption is wrong

Source: Piyush Rai 2011

B 14.04.25
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Pre-training




= Pre-training

B 14.04.25

= First train an unsupervised model on unlabeled data

= Then incorporate the model’s learned weights into a supervised model
and train it on the labeled data
» Optional: continue fine-tuning the unsupervised weights.

1. pre-training 2. supervised learning

phase phase
unsupervised-only supervised-only
part of the model part of the model
shared part of the » shared part of the

model initialize weights model

unsupervised supervised
learning learning
big corpus of smaller corpus of source: Clark.2019

unlabeled data labeled data Olga Fink
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Why does pre-training work?

= "Smart” initialization for the model

= More meaningful representations in the model

Supervised learning: have to learn
everything from “raw” input

supervised NN

f

input

Pre-training: supervised part gets
more useful representations as
input

supervised NN

f

pre-trained NN

T Source: Clark.2019

input

Olga Fink



EPFL -

Why does pre-training work?
learned representation

original representation space space after pre-training

Source: Clark.2019

B 14.04.25
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=PrL

Why does pre-training work? o

learned representation
original representation space space after pre-training

Supervised part of the model has a
much easier job after pre-training

Source: Clark.2019

B 14.04.25
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=PFL  Graph Based Semi-supervised Leaming

= Graph based approaches exploit the property of label smoothness
= Jdea: Represent each example (labeled/unlabeled) as vertices of some
graph

= Idea: The labels should vary smoothly along the graph
= =  Nearby vertices should have similar labels
= This idea is called Graph-based Regularization

Handwritten digits recognition with pixel-wise Euclidean distance

A AL R

not similar ‘indirectly’ similar
with stepping stones Source: Piyush Rai 2011

B 14.04.25
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=P7L  Graph Regularization

@ Nodes: X; U X,
@ Edges: similarity weights computed from features, e.g.,

» k-nearest-neighbor graph, unweighted (0, 1 weights)

» fully connected graph, weight decays with distance

w = exp (—||z; — z;[|*/o?)

» e-radius graph

@ Assumption Instances connected by heavy edge tend to have the
same label.

Q x1 —._
QX AR
S A
£% Oo—0 x3 O
2 L@

) % il
M
; \7\‘ O O
)\( I Source: Piyush Rai 2011

Olga Fink
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=P7L  Graph Regularization

= Assume the predictions on the entire data L UU to be defined by function f
= Graph regularization assumes that the function fis smooth
= = Similar examples i and j should have similar predictions f;and f;
= Graph regularization optimizes the following objective:
min Y (yi— )7+ A wi(fi — £;)°
| ;(y ) U;u i (fi = 1)

= First part is minimizing the loss on labeled data, second part ensures smoothness
of labels of labeled and unlabeled data

= = Minimization makes fjand fjto be very similar if wj; is large
= A\ is a trade-off parameter
= Several variants and ways to solve the above problem

Source: Piyush Rai 2011

B 14.04.25
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=PrL

B 14.04.25

Consistency Regularization

e Add noise to the student’s inputs

J(0) = CE(p(yTlfL’j» 0),p(ylz; +1,0))

Soft target Model learns to produce
target even when noise is
added to its input

* Where n is a vector with a random direction and a small
magnitude €

Source: Clark.2019

Olga Fink




= Consistency Regularization

* Add noise to the student’s inputs

J(0) = CE(p(y|z;,0),p(y|z; +1,0))
* Where 177 is a vector with a random direction and a small
magnitude €

e Train the model so a bit of noise doesn’t mess up its predictions

* Equivalently, the model must give consistent predictions to
nearby data points

The model is trained to
give the same prediction
for any point in the circle

unlabeled
example

“distributional smoothing” Source: Clark 2019

B 14.04.25
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Source: Clark.2019

Olga Fink
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Model should produce the same predictions
everywhere in the circles -> overlapping circles should
have the same prediction

Source: Clark.2019

Olga Fink
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Decision boundary will look like this

Source: Clark.2019

Olga Fink




Semi-supervised
SVMs(S3VMs)
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Semi-supervised SVYMs (S3VMs)

= SVMs

C

= Assumption: unlabeled data from different classes are separated by large
margin

= |dea: The decision boundary shouldn’t lie in the regions of high density

Source: Xiaojin Zhu 2007

Olga Fink



=PrL  S3VM objective function -

How to incorporate unlabeled points?
@ Assign putative labels sign(f(x)) to = € X,

o sign(f(x))f(x) = [[(x)]

@ The hinge loss on unlabeled points becomes
(L —wif(@:))+ = (1= [f(2:)])+

S3VM objective:

n

mmZ L—yif ()« + Mllhl, + A > (1= [f(2)])+
i=l+1

Source: Xiaojin Zhu 2007

B 14.04.25
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=PrL  The hat loss on unlabeled data

(1 - (i) ])+

251
2k

1.5F

1,
0.5¢ /\

92 -1.5 -1 -05 0 0.5 1 1.5 2

flai)
Prefers f(x) > 1 or f(x) < —1, i.e., unlabeled instance away from decision
boundary f(x) = 0.

Source: Xiaojin Zhu 2007

B 14.04.25
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=PFL Avoiding unlabeled data in the margin

S3VM objective:

[ n
min Y01 = i)+ Ml + Ao D (1= 1))+
i=1 i=l+1

the third term prefers unlabeled points outside the margin. Equivalently,
the decision boundary f = 0 wants to be placed so that there is few
unlabeled data near it.

Source: Xiaojin Zhu 2007

Olga Fink



re]
N
<
<
<
-
-

Semi-Supervised
Leaming: examples




=PrL

Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.

14.04.25
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£PFL A comparison between envelope of mean damaged

and mean undamaged response signals

" c%omparison of damaged and undamaged signals

1 ¢ undamaged
— — —mean undamaged
1 ¢ damaged
1 s |~———mean damaged

=
(=)
a

Response (V)
o o
Q o
w =

o
o
(]

14.04.25

Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.

Olga Fink



=PFL  The general setup of the pipes

A Actuator Sensor
S | |
- 3 - 4 -
Region 2 Region 1 Region 3
/ i
jf<—— 50 cm —>
" O
+
o Rubber support
View A-A
@ Actuator/Sensor location
O Possible damage locations
Pipe label Material Length (m) Outer diameter (cm) Thickness (mm)
A Cast iron 1.23 16 5.2
B Cast iron 3.05 16 6.73
&
g Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
i learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.
.
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=PFL  The experimental setup

10 mm
3 mm

~ ~Sensor'2

1\CDdéRegion 3

Actuator \.
4
Region 2 y

N
3
I Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
] learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.
Olga Fink



=P7L A typical undamaged and damaged signal

0.2 ] I ] I I ] I 1 1 1
—Undamaged

—Damaged |

0.15

T

0.1 y

0.051 =

{m’"lﬂ ’v |

Response (V)
o

1 2 3 4 5 6 T 8 9 10
Time (s) %107

Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.

B 14.04.25
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B 14.04.25

Algorithm

= Step 1: Acquire response signals (damaged or undamaged) from a
pitch-catch set up.

= Step 2: Apply hierarchical clustering with complete linkage and
Euclidean distance as the difference measure with number of clusters
set to two.

= Step 3: Search for the labeled undamaged data in the clusters.

= Step 4: Assign the cluster with the undamaged label where the labeled
data is present. This essentially leads to the knowledge about existence
of damage

Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.

Olga Fink




=PFL Results obtained from the proposed semi- =
supervised algorithm (Pipe A)

0.4 Clustering 04 Ground Truth
“|@cCluster 1] - ' ' | @ Uncracked| A ' '
W Cluster 2 A Region 1
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0.2} m = : 0.2} A ¢ |
@ ]
mm = AAA
< O1r e 1T T e :
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.

B 14.04.25

Olga Fink



=PFL  Results obtained from the proposed semi-
supervised algorithm (Pipe B)

Clustering Ground Truth
0.2 0.2
u] &
1 'L ¢
01 > l- 1 01 I ‘ .
o [
. % |
T8 T8
o. a3 o.
QO 01f i1 o1}
o) o L )
(<] - ° *
02} ® L g5 *
S e
B *
® Uncracked
03} . -0.3| ARegion 1 : 1
@ Cluster 1 = ¥ Region 2
= :
04 Cluster 2 | 04 ¥ Region 3 |
-0.4 0.2 0 0.2 0.4 -0.2 0 0.2
PCA PC1
(a) 30°

Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.
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=PFL  Results obtained from the proposed semi-
supervised algorithm (Pipe B)
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=PFL  Results obtained from the proposed semi-
supervised algorithm (Pipe B)
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Semi-Supervised
Leaming: RUL example 2




=PFL  Proposed architecture: Restricted Boltzmann
Machines used for pre-training
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=P7L  Hyperparameter optimization
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=PrL

Remaining useful life predictions for turbofan engine
degradation using semi-supervised deep architecture

The proposed semi-supervised deep architecture with and without unsupervised pre-training on subset FD0O04 when the labeled training data is reduced from 100%

to 10%. Improvement = (1 —

Semi — supervised )

14.04.25

Supervised
RMSE 100% 80% 60% 40% 20% 10%
Semi-supervised with 100% training features in the pre-training stage 22.66 23.04 24.07 25.46 30.26 34.19
jsed aﬁ ﬁ? 23 20 27
I Im:rovement 4.06% 1.75% 0,29% 3.56% 0.03% 2.03% I

S 100% 80% 60% 40% 20% 10%
Semi-supervised with 100% training features in the pre-training stage 2840 3175 3576 5522 9562 22,476
Supervised 3234 3427 3650 6536 15,612 27,138
Improvement 12.18% 7.35% 2.03% 15.51% 38.75% 17.18%
Average training time per epoch (s) 100% 80% 60% 40% 20% 10%
Pre-training stage 7.08 7.08 7.08 7.08 7.08 7.08
Fine-tuning procedure 34.14 28.97 22.39 15.2 9.74 5.93
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