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How much information is the machine given
during learning?
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Source: Y. LeCun



 We have access to {x1, x2, x3, · · ·, xN} but not {y1, y2, y3, · · ·, yN}

 Why would we want to tackle such a task:
• Extracting interesting information from data
• Clustering
• Discovering interesting trend
• Data compression
• Learn better representations

Unsupervised (also self-supervised, predictive) 
Learning
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Autoencoders
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▪ Network is trained to output the input (learn identify function). 
▪ Two parts encoder/decoder

▪ x′ = g(f(x))
▪ g - decoder
▪ 𝑓𝑓 - encoder
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Trivial solution unless:
- Constrain number of units in Layer 2 (learn compressed 
representation), or
- Constrain Layer 2 to be sparse



Basic principles of an autoencoder
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If the input is 𝑥𝑥 ∈ ℝ𝑛𝑛 an autoencoder will produce a ℎ ∈ ℝ𝑑𝑑 where d < n, which is designed to contain most of the important features of x
to reconstruct it.

Autoencoder performs the following steps:
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Source: J.C. Kao, UCLA
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 Pretext task  important strategy for learning data representations 
under self-supervised mode
 Self-defined pseudo-labels
 Pseudo-labels automatically generated based on the attributes found in 

the unlabeled data

Self-supervised learning
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Pretext tasks
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Self-supervised learning tasks (time series)
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Example: rotation
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Gidaris et al. 2018

https://arxiv.org/abs/1803.07728


 color transformations
 geometric transformations
 context-based tasks
 cross-modal-based tasks

Important pretext tasks
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Basic idea of self-supervised learning
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Semi-supervised learning
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Why/How Might Unlabeled Data Help?
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Source: Piyush Rai 2011



 Semi-supervised learning leverages the available unlabeled data to
improve the performance of the supervised learning task.
 Different concepts have been proposed for semi-supervised learning

tasks
• generative models
• graph-based methods
• transductive methods

 A further possibility to distinguish the different semi-supervised learning
approaches is to differentiate between those based on

• consistency regularization
• entropy minimization
• traditional regularization

Semi-supervised learning
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 Cost-effective: Collecting labeled data can be time-consuming and 
expensive, especially for large datasets. Semi-supervised learning allows 
for the use of large amounts of unlabeled data, which can be collected 
relatively easily and inexpensively, to train the model.
 Improved accuracy: By incorporating both labeled and unlabeled data into 

the training process, those models can learn patterns and relationships 
within the data that may not be easily visible from the labeled data alone. 
This can lead to improved accuracy compared to models trained solely on 
labeled data.
 Better generalization: They tend to generalize better to new data 

compared to models trained solely on labeled data. This is because the 
models are able to learn more about the underlying structure of the data by 
incorporating both labeled and unlabeled data into the training process.
 Flexibility: It is a flexible approach that can be used in a variety of different 

applications, including image classification, natural language processing, 
and more.

Benefits of Semi-Supervised Learning:
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 Labeled data limitations: The effectiveness of semi-supervised 
learning models is dependent on the quality and quantity of the labeled 
data available. If the labeled data is limited or of poor quality, the model 
may not perform as well.
 Model selection: Selecting the right model for a semi-supervised 

learning problem can be challenging, as different models may perform 
better or worse depending on the specific problem and dataset.
 Evaluation difficulty: Evaluating the performance of that kind of model 

can be challenging, as the available labeled data may be limited and it 
can be difficult to determine the effectiveness of the model in making 
predictions for new data.

Limitations of Semi-Supervised Learning
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 Continuity assumption  objects near each other are likely to share 
the same group or label +data points that are part of the same cluster 
are more likely to share the same label
 Cluster assumptions data points that are part of the same cluster 

are more likely to share the same label
 Manifold assumptions  high-dimensional data lie on a low-

dimensional manifold  the learning algorithm should respect the 
manifold structure  learning should primarily happen on the manifold
 Smoothness assumption: if two points in a high-dimensional space 

are close to each other, then so should be their outputs

Assumptions for different methods
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 Using both labeled and unlabeled data to build better learners, than using  
each one alone

The Learning Problem
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Source: Piyush Rai 2011



Pseudo-labeling
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Pseudo-labeling
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Source: Potrimba, 2022



Self-Training
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Self-Training
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Source: Piyush Rai 2011



Learning algorithm (k-nearest neighbors)
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Source: Piyush Rai 2011



Self-Training: A Good Case
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Source: Piyush Rai 2011



Self-Training: A bad Case
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Source: Piyush Rai 2011



Co-Training
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 Given: Labeled data , unlabeled data
 Each example has 2 views: 
 How do we get different views?
 Naturally available (different types of features for the same object)

• Webpages: view 1 from page text; view 2 from social tags
• Images: view 1 from pixel features; view 2 from Fourier coefficients

 ... or by splitting the original features into two groups

 Assumption: Given sufficient data, each view is good enough to learn from Co-training:
Utilize both views to learn better with fewer labeled examples Idea: Each view teaching
(training) the other view
 Technical Condition: Views should be conditionally independent
 Intuitively, we don’t want redundancy between the views

Co-Training
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Source: Piyush Rai 2011



 Given labeled data L and unlabeled data U
 Create two labeled datasets L1 and L2 from L using views 1 and 2  
 Learn classifier f (1) using L1 and classifier f (2) using L2

 Apply f (1) and f (2) on unlabeled data pool U to predict labels
 Predictions are made only using their own set (view) of features

 Add K most confident predictions ((x, f (1)(x)) of f1 to L2  

 Add K most confident predictions ((x, f (2)(x)) of f2 to L1  

 Note: Absolute margin could be used to measure confidence  
 Remove these examples from the unlabeled pool
 Re-train f (1) using L1, f (1) using L2

 Like self-training but two classifiers teaching each other
 Finally, use a voting or averaging to make predictions on the test data

Co-Training
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Source: Piyush Rai 2011



Multi-view Learning
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 A general class of algorithms for semi-supervised learning
 Based on using multiple views (feature representations) of the data  Co-training is a 
special type of multi-view learning algorithm  
 General Idea: Train multiple classifiers, each using a different view
 Modus Operandi: Multiple classifiers must agree on the unlabeled data  How might it 
help learn better?

• Learning is essentially searching for the best classifier
• By enforcing agreement among classifiers, we are reducing the search space
• ⇒ hope is that the best classifier can be found easily with little labeled data

 For test data, these multiple classifiers can be combined
 E.g., voting, consensus, etc.
 Backed by a number of theoretical results

Multi-view Learning
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Source: Piyush Rai 2011



Cluster-and-Label 
Approach
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Cluster-and-Label Approach
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 Finally train a supervised learner on the entire labeled data
 Assumption: Clusters coincide with decision boundaries

• Poor results if this assumption is wrong

Source: Piyush Rai 2011



Pre-training
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 First train an unsupervised model on unlabeled data
 Then incorporate the model’s learned weights into a supervised model 

and train it on the labeled data
• Optional: continue fine-tuning the unsupervised weights.

Pre-training

unsupervised 
learning

big corpus of 
unlabeled data

1. pre-training 
phase

2. supervised learning 
phase

shared part of the 
model

supervised-only 
part of the model

supervised 
learning

smaller corpus of 
labeled data

shared part of the 
model

unsupervised-only 
part of the model

initialize weights

14
.0

4.
25

Olga Fink

Source: Clark.2019



 ”Smart” initialization for the model
 More meaningful representations in the model

Why does pre-training work?

input

supervised NN

input

pre-trained NN

supervised NN

Supervised learning: have to learn 
everything from “raw” input

Pre-training: supervised part gets 
more useful representations as 
input
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Source: Clark.2019



Why does pre-training work?
original representation space

learned representation 
space after pre-training
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Source: Clark.2019



Why does pre-training work?
original representation space

learned representation 
space after pre-training

Supervised part of the model has a 
much easier job after pre-training14
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Source: Clark.2019



Graph Based Semi-
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 Graph based approaches exploit the property of label smoothness
 Idea: Represent each example (labeled/unlabeled) as vertices of some 
graph  

 Idea: The labels should vary smoothly along the graph
 ⇒ Nearby vertices should have similar labels
 This idea is called Graph-based Regularization

Graph Based Semi-supervised Learning
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Source: Piyush Rai 2011



Graph Regularization
14

.0
4.

25

Olga Fink

Source: Piyush Rai 2011



Graph Regularization
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 Assume the predictions on the entire data L∪U to be defined by function f
 Graph regularization assumes that the function f is smooth
 ⇒ Similar examples i and j should have similar predictions fi and fj
 Graph regularization optimizes the following objective:

 First part is minimizing the loss on labeled data, second part ensures  smoothness
of labels of labeled and unlabeled data
 ⇒ Minimization makes fi and fj to be very similar if wij is large
 λ is a trade-off parameter
 Several variants and ways to solve the above problem

Source: Piyush Rai 2011



Consistency 
regularization
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Consistency Regularization
• Add noise to the student’s inputs

• Where is a vector with a random direction and a small 
magnitude

Soft target Model learns to produce 
target even when noise is 
added to its input
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Source: Clark.2019



Consistency Regularization
• Add noise to the student’s inputs

• Where is a vector with a random direction and a small 
magnitude

• Train the model so a bit of noise doesn’t mess up its predictions
• Equivalently, the model must give consistent predictions to 

nearby data points

The model is trained to 
give the same prediction 
for any point in the circle

“distributional smoothing”

unlabeled 
example
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Source: Clark.2019



Consistency Regularization: Example
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Source: Clark.2019



Consistency Regularization: Example

Model should produce the same predictions 
everywhere in the circles -> overlapping circles should 
have the same prediction
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Source: Clark.2019



Consistency Regularization: Example

Decision boundary will look like this

14
.0

4.
25

Olga Fink

Source: Clark.2019



Semi-supervised
SVMs(S3VMs)
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 SVMs

 Semi-supervised SVMs(S3VMs) = Transductive SVMs (TSVMs)

 Assumption: unlabeled data from different classes are separated by large 
margin

 Idea: The decision boundary shouldn’t lie in the regions of high density

Semi-supervised SVMs (S3VMs)
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Source: Xiaojin Zhu 2007



S3VM objective function
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Source: Xiaojin Zhu 2007



The hat loss on unlabeled data
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Source: Xiaojin Zhu 2007



Avoiding unlabeled data in the margin
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Source: Xiaojin Zhu 2007



Semi-Supervised 
Learning: examples
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Helical guided ultrasonic waves on a pipe
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



A comparison between envelope of mean damaged 
and mean undamaged response signals
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



The general setup of the pipes
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



The experimental setup
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



A typical undamaged and damaged signal
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



 Step 1: Acquire response signals (damaged or undamaged) from a 
pitch-catch set up.
 Step 2: Apply hierarchical clustering with complete linkage and 

Euclidean distance as the difference measure with number of clusters 
set to two.
 Step 3: Search for the labeled undamaged data in the clusters.
 Step 4: Assign the cluster with the undamaged label where the labeled 

data is present. This essentially leads to the knowledge about existence 
of damage

Algorithm
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



Results obtained from the proposed semi-
supervised algorithm (Pipe A) 
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



Results obtained from the proposed semi-
supervised algorithm (Pipe B) 
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



Results obtained from the proposed semi-
supervised algorithm (Pipe B) 
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



Results obtained from the proposed semi-
supervised algorithm (Pipe B) 
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Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S., Baraniuk, R., & Dabak, A. (2019). Data-driven semi-supervised and supervised
learning algorithms for health monitoring of pipes. Mechanical Systems and Signal Processing, 131, 524-537.



Semi-Supervised 
Learning: RUL example 2
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Proposed architecture: Restricted Boltzmann 
Machines used for pre-training
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Ellefsen, André Listou, et al. "Remaining useful life predictions for turbofan engine degradation using semi-
supervised deep architecture." Reliability Engineering & System Safety 183 (2019): 240-251.



Hyperparameter optimization
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Ellefsen, André Listou, et al. "Remaining useful life predictions for turbofan engine
degradation using semi-supervised deep architecture." Reliability Engineering & System 
Safety 183 (2019): 240-251.



Remaining useful life predictions for turbofan engine 
degradation using semi-supervised deep architecture
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Ellefsen, André Listou, et al. "Remaining useful life predictions for turbofan engine degradation using semi-
supervised deep architecture." Reliability Engineering & System Safety 183 (2019): 240-251.
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