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▪ assumption that similar data points tend to cluster together in groups, 
as determined by their proximity to local centroids.

▪ data instances that fall outside of these groups are considered as data 
anomalies

Clustering for fault detection
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Clustering for fault detection
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▪ Segmentation of different fault types in an unsupervised way

▪ Only mapping between which cluster belongs to which fault type is 
missing

Clustering for fault dignostics
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Clustering for fault diagnostics
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Arias Chao, M., Adey, B. T., & Fink, O. (2021). Implicit supervision for fault detection and segmentation of emerging fault types with Deep 

Variational Autoencoders. Neurocomputing, 454, 324-338.



▪ Cluster: A collection of data objects

• similar (or related) to one another within the same group

• dissimilar (or unrelated) to the objects in other groups

▪ Cluster analysis (or clustering, data segmentation, …)

• Finding similarities between data according to the characteristics 
found in the data and grouping similar data objects into clusters

▪ The subgroups are chosen such that the intra-cluster differences are 
minimized and the inter-cluster differences are maximized.

▪ Unsupervised learning: no predefined classes 

▪ Applications of cluster analysis:

• As a stand-alone tool to get insight into data distribution 

• As a preprocessing step for other algorithms

Cluster analysis
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▪ Basic idea: group together similar instances

▪ In the context of feature selection: group together similar features (and
replace the groups by a «representative» feature)

▪ How do we define similarity?

• Classical: Euclidean distance, Manhatten distance

• Correlation-based distances

Clustering
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▪ Summarization: 

• Preprocessing for regression, PCA, classification, and association 

analysis

▪ Compression:

• Image processing: vector quantization

▪ Finding K-nearest Neighbors

• Localizing search to one or a small number of clusters

▪ Outlier detection

• Outliers are often viewed as those “far away” from any cluster

Clustering for pre-processing
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▪ A good clustering method will produce high quality clusters

• high intra-class similarity: cohesive within clusters

• low inter-class similarity: distinctive between clusters

▪ The quality of a clustering method depends on

• the similarity measure used by the method 

• its implementation, and

• Its ability to discover some or all of the hidden patterns

Quality of the cluster analysis
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▪ Scalability

• Clustering all the data instead of only on samples

▪ Ability to deal with different types of attributes

• Numerical, binary, categorical, ordinal, linked, and mixture of these 

▪ Constraint-based clustering

▪ User may give inputs on constraints

▪ Use domain knowledge to determine input parameters

▪ Interpretability and usability

▪ Others 

• Discovery of clusters with arbitrary shape

• Ability to deal with noisy data

• Incremental clustering and insensitivity to input order

• High dimensionality

Requirements and Challenges
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Major Clustering algorithms
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▪ Partitioning based clustering algorithms divide the dataset into initial ‘K’ 
clusters and iteratively improve the clustering quality based on a 
objective function. 

▪ K-means is an example of a partitioning based clustering algorithm. 

▪ Partitioning based algorithm are sensitive to initialization. 

Partitioning based clustering
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▪ An iterative clustering algorithm

▪ Initialize: Pick k random points as cluster centers (k pre-defined)

▪ Alternate:

1. Assign data points to closest cluster center

2. Change the cluster center to the average of its assigned points

▪ Stop when no pointsʼ assignments change 

K-means procedure
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An Example of K-Means Clustering
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K=2

Arbitrarily 
partition 
objects 
into k 
groups

Update 
the 
cluster 
centroids

Update 
the 
cluster 
centroids

Reassign  objectsLoop if 
needed

The initial data 
set

◼ Partition objects into k non-

empty subsets

◼ Repeat

◼ Compute centroid (i.e., 

mean point) for each 

partition 

◼ Assign each object to the 

cluster of its nearest 

centroid  

◼ Until no change

©2011 Han, Kamber & Pei. 



▪ Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t  is # iterations. 

Normally, k, t << n.

▪ Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k))

▪ Comment: Often terminates at a local optimal. 

▪ Weakness

• Applicable only to objects in a continuous n-dimensional space 

▪ Using the k-modes method for categorical data

▪ In comparison, k-medoids can be applied to a wide range of data

• Need to specify k, the number of clusters, in advance (there are ways to 

automatically determine the best k (see Hastie et al., 2009)

• Sensitive to noisy data and outliers

• Not suitable to discover clusters with non-convex shapes

Comments on the K-Means Method
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▪ The k-means algorithm is sensitive to outliers !

• Since an object with an extremely large value may substantially distort the 

distribution of the data

▪ K-Medoids:  Instead of taking the mean value of the object in a cluster as a reference 

point, medoids can be used, which is the most centrally located object in a cluster

What Is the Problem of the K-Means Method?
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▪ Most of the variants of the k-means differ in

• Selection of the initial k means

• Dissimilarity calculations

• Strategies to calculate cluster means

▪ Handling categorical data: k-modes

• Replacing means of clusters with modes

• Using new dissimilarity measures to deal with categorical objects

• Using a frequency-based method to update modes of clusters

• A mixture of categorical and numerical data: k-prototype method

Variations of the K-Means  Method
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Number of clusters
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Number of clusters

Ck: Total within-clusters sum of squares



▪ Can be used to study the separation distance between the resulting
clusters

▪ A measure how close each point in one cluster is to points in the
neighboring clusters → can be assessed visually in silhoutte plots

▪ a(i) average distance between i and all observations within the same 
cluster

▪ b(i) be the smallest average distance of i to all points in any other 
cluster (excluding the cluster that it is member of)

Silhoutte Coefficient
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Silhoutte Plot: example
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▪ Spectral clustering methods are attractive:

▪ Easy to implement,

▪ Reasonably fast especially for sparse data sets up to several 
thousands.

▪ Spectral clustering treats the data clustering as a graph partitioning
problem without making any assumption on the form of the data
clusters.

Spectral clustering
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Spectral clustering
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[Shi & Malik ‘00; Ng, Jordan, Weiss NIPS ‘01]
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▪ Builds a similarity graph from the data.

▪ Computes the Laplacian matrix of the graph.

▪ Uses the eigenvectors of the Laplacian to embed the data into a lower-
dimensional space.

→ great at capturing manifold structures, where clusters are connected 
but not necessarily blob-shaped.

Key idea of spectral clustering
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Spectral clustering
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Group points based on links in a graph

A
B

Source: James Hays



Spectral Clustering
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Goal: Given data points X1, …, Xn and similarities w(Xi,Xj), partition the data into groups so that points in a

group are similar and points in different groups are dissimilar.

Similarity Graph: G(V,E,W) V – Vertices (Data points) E – Edge if similarity > 0

W - Edge weights (similarities)

Similarity graph

Partition the graph so that edges within a group have large weights and edges across groups

have small weights.

Source: Hamad & Biela



Graph notation
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Similarity graph construction
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Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function

Controls size of neighborhood

Data clustering

Wij



▪ Different ways to construct a graph representing the
relationships between data points :

• Fully connected graph: All vertices having non-null similarities are
connected to each other.

• r-neighborhood graph: Each vertex is connected to vertices falling
inside a ball of radius r where r is a real value that has to be tuned
in order to catch the local structure of data.

• k-nearest neighbor graph: Each vertex is connected to its k-nearest 
neighbors where k is an integer number which controls the local 
relationships of data.

• r-neighborhood and k-nearest neighbor combined

Graph construction
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2-way Normalized Cuts
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1. Compute the affinity matrix W, compute the degree matrix (D), D is
diagonal and

j EV

2. Solve , where is  called the Laplacian matrix

3. Use the eigenvector with the second smallest eigen-value to bipartition
the graph into two parts.

Source: D. Sonntag



Illustrative example
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x1 x2 x3 x4 x5 x6

x1 0 0.8 0.6 0 0.1 0

x2 0.8 0 0.8 0 0 0

x3 0.6 0.8 0 0.2 0 0

x4 0.8 0 0.2 0 0.8 0.7

x5 0.1 0 0 0.8 0 0.8

x6 0 0 0 0.7 0.8 0

Graph and similarity matrix
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Spectral bipartitioning: Illustrative example
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x1 1.5 -0.8 -0.6 0 -0.1 0

x2 -0.8 1.6 -0.8 0 0 0

x3 -0.6 -0.8 1.6 -0.2 0 0

x4 -0.8 0 -0.2 2.5 -0.8 -0.7

x5 -0.1 0 0 0.8 1.7 -0.8

x6 0 0 0 -0.7 -0.8 1.5

Pre-processing

Build Laplacian matrix L of the graph
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0.4 0.2 0.1 -0. 0.4 0.3

0.4 0.2 -0.2 0.0 -0.2 0.6

0.4 -0.4 0.9 0.2 -0.4 -0.6

0.4 -0.7 -0.4 -0.8 -0.6 -0.2

0.4 -0.7 -0.2 0.5 0.8 0.9

0.0
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2.5
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Λ = X =

Decomposition : Find

• eigenvalues Λ and

• eigenvectors X of matrix L

• Map vertices to the 
corresponding components of 
2nd eigenvector (also 
referred to as Fiedler vector)

How do we find 
the clusters?
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Source: Hamad & Biela



Spectral Clustering Algorithms
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x1 0.2

x2 0.2

x3 0.2

x4 -0.4

x5 -0.7

x6 -0.7

Split at value 0 

Cluster A: Positive points 

Cluster B: Negative points

x1 0.2
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x3 0.2

x4 -0.4
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x6 -0.7

A B
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x
3

2nd eigenvector

AB
Source: Hamad & Biela



1. Construct Similarity Graph
- Nodes = data points
- Edges = similarity (e.g., Gaussian kernel)

2. Compute Graph Laplacian

3. Compute Eigenvectors
- Take first k eigenvectors of L
- Each point becomes a k-dimensional vector

4. Cluster in Spectral Space
- Apply k-means on rows of eigenvector matrix

Intuition:
- Eigenvectors capture graph structure
- Clustering in this space separates complex shapes

- Spectral clustering projects onto directions that capture graph structure

Spectral Clustering for k > 2 Clusters

.



Example Clustering for 
Structural Health 
Monitoring
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Flowchart of the proposed clustering based 
approach for SHM
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Diez, Alberto, Nguyen Lu Dang Khoa, Mehrisadat Makki Alamdari, Yang Wang, Fang Chen, and Peter Runcie. "A clustering approach for structural health

monitoring on bridges." Journal of Civil Structural Health Monitoring 6 (2016): 429-445.

kNN
Fourier 

transform

Clustering



6-Joints case
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▪ Comprises Joints 1, 2 and 3 in North 
main span and Joints 4, 5 and 6 in North 
pylon

▪ a map of pairwise distances among 

representatives of all joints was 

generated. 

▪ A joint representative is calculated as 

the mean values of all events of each 

joint, after outlier removal phase.

Diez, Alberto, Nguyen Lu Dang Khoa, Mehrisadat Makki Alamdari, Yang Wang, Fang Chen, and Peter Runcie. "A clustering approach for structural health

monitoring on bridges." Journal of Civil Structural Health Monitoring 6 (2016): 429-445.



71-Joint case, span 7: map of pairwise distances 
using cross correlation
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Diez, Alberto, Nguyen Lu Dang Khoa, Mehrisadat Makki

Alamdari, Yang Wang, Fang Chen, and Peter Runcie. "A 

clustering approach for structural health monitoring on 

bridges." Journal of Civil Structural Health Monitoring 6 (2016): 

429-445.



Principal component 
analysis (PCA)
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▪ Handling High-Dimensional Data: In many engineering fields, data collected from sensors, simulations, or 
experiments can be extremely high-dimensional. High-dimensional data can be difficult to process and analyze 
effectively due to the sheer volume of variables involved.

▪ Avoiding the Curse of Dimensionality: As the number of dimensions increases, the volume of the space increases 
exponentially, which requires exponentially more data to maintain the same level of statistical reliability. This 
phenomenon is known as the curse of dimensionality. Dimensionality reduction helps mitigate this issue by reducing 
the number of random variables under consideration, simplifying models without significant loss of information.

▪ Improved Model Performance and Generalization: Reducing the dimensionality of data can lead to improvements 
in the performance of predictive models. By eliminating irrelevant or redundant features, models can be made more 
efficient and less prone to overfitting. This means that models are better at generalizing from training data to unseen 
data, which is crucial for robust engineering solutions.

▪ Cost and Time Efficiency: Processing fewer dimensions requires less computational resources, thus reducing both 
the time and cost associated with data analysis and model training. This is particularly important in engineering 
applications where real-time or near-real-time processing is crucial, such as in control systems or online monitoring 
systems.

▪ Enhanced Data Visualization: High-dimensional data is challenging to visualize, but reducing the number of 
dimensions can allow for effective visualization techniques. Visualization is essential for exploring data, identifying 
patterns, and communicating findings clearly in many engineering disciplines.

▪ Feature Extraction and Engineering Insight: Dimensionality reduction techniques can also be used for feature 
extraction, where new features are derived from the original set that retain most of the important information. This can 
lead to insights into the underlying processes and mechanisms, which can be invaluable in fields like mechanical 
engineering, electrical engineering, and systems biology.

▪ Data Compression: In many applications, reducing the dimensionality of data can significantly decrease the storage 
space required, which is beneficial for systems with limited memory or for transmitting data over bandwidth-limited 
channels.

Why dimensionality reduction?
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Underfitting vs overfitting
0
7
.0

4
.2

5

Olga Fink 42



0
7
.0

4
.2

5

Olga Fink 43

Different approaches to dimensionality reduction
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▪ Removing features → Equivalent to projecting data onto lower-
dimensional linear subspace perpendicular to the feature removed

Feature selection vs. Feature low-dim. 
Projection
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▪ PCA seeks to preserve as much of the randomness (variance) in  the 
high-dimensional space as possible

▪ Projection of the dataset onto a lower dimensional space

▪ In the direction of maximum variance

Principal component analysis
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▪ Dimensionality Reduction: PCA reduces the number of variables 
(features) in a dataset while preserving as much variability (information) 
as possible.

▪ Principal Components: New uncorrelated variables that are linear 
combinations of the original variables. Each principal component 
captures a portion of the total variance in the data.

▪ Variance Maximization: The first principal component captures the 
maximum variance, the second captures the next highest variance 
orthogonal to the first, and so on.

▪ Orthogonality: Principal components are orthogonal (uncorrelated) to 
each other, which eliminates redundancy.

Key concepts of PCA
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▪ Splitting a measured signal (i.e. usually a mixture of many different 
signal components) into a set of underlying variables (into a new base)

▪ Identification of some (few) main source signals from a large number of 
mixed signals

▪ Dimensionality reduction

▪ The goal of a PCA is to express a noisy data set in a new base, 
expecting this new representation to filter out the noise and reveal 
hidden structures in the data.

▪ What are the important dynamics underlying a data set and which 
dynamics are of lesser importance? How can these be filtered out using 
a PCA?

PCA main ideas
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▪ Pre-processing method before classification to reduce computational 
costs of the classifier. 

▪ Compression method for ease of data storage and retrieval → also 
used for signal reconstruction

▪ Feature extraction method

▪ Noise Reduction

▪ Visualization

▪ Detection of Changes in Variance (→ fault or anomaly detection)

Uses of PCA
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Problem:

How to find the unit vector with maximum variance ?

Solution  → eigenvalue problem :

Calculate the largest eigenvalue  and the corresponding
eigenvector x to the covariance matrix C

𝐶𝑥 = 𝜆𝑥0,0 0,5 1,0 1,5

2,5

2,0

1,5

1,0

0,5

0,0

3,0

Y

Steps to perform a PCA
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x

is equivalent to𝐶𝑥 = 𝜆𝑥 (𝐶 − 𝜆𝐸𝑛)𝑥 = 0

En = unit matrix

det(𝐶 − 𝜆𝐸𝑛)𝑥 = 0



Subtraction of mean values Xµ ,Yµ

(for each of the dimensions)

→ Creates a data set whose mean 

values in all dimensions are zero

-1,5 -1,0 -0,5 0,0 0,5

X corr

1,0 1,5
-1,5
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Y
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( X  − X ) =
1

n
X = 0

1
n

i=1
i ,corr

i=1
i µ

nn

In the example: Xµ = 0.587

Yµ = 1.413

= 0

Step 1: Subtraction of mean values
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1
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nn
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In the example

Calculation of the covariance matrix (of the mean-corrected data)

n-dimensional dataset → Covariance matrix has n rows and n columns;

→ quadratic matrix

→ main diagonal = variance

→ symmetrical matrix:

cov(x,y) = cov(y,x)

n −1

( X  − X  )( X  − X  )i=1

var ( X , X ) =

n

i µ i µ

n −1

( X  − X  )(Y  −Y )i=1

cov( X ,Y ) =

n

i µ i µ

For n = 2:

-1,5
-1,5    -1,0    -0,5     0,0     0,5

X corr

Step 2: Calculation of the covariance matrix
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det (C−E) = 0 = 0
0.2175

0.6440 − 

0.0862 − 

0.2175

2 = 0.01141 = 0.7188;

 and  are the

Step 3: Eigenvalues and Eigenvectors of the 
Covariance Matrix
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1 2

two eigenvalues

of the covariance matrix.

Example: Eigenvalues of the Covariance Matrix

example:



In the example:

Eigenvector for 1 = 0.7188: 

Eigenvector for 2 = 0.0114:

The eigenvectors belonging to the two eigenvalues result from the solution of

x1 = (0.3251, 0.9456); x1  =1

x 2 = ( −0.9456 , 0.3251 ); x 2  = 1

Step 3: Eigenvalues and Eigenvectors of the 
Covariance Matrix
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(𝐶 − 𝜆𝐸𝑛)𝑥 = 0



-1,5 -1,0 -0,5 0,0 0,5

X corr
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dataset with the eigenvector for

1 = 0.7188:

x1 = (0.3251, 0.9456)

Step 3: Eigenvalues and Eigenvectors of the 
Covariance Matrix
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dataset with the eigenvector for

1 = 0.7188:

x1 = (0.3251, 0.9456)

and for:

Step 3: Eigenvalues and Eigenvectors of the 
Covariance Matrix
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2 = 0.0114:

x 2 = (−0.9456 , 0.3251 )



Step 4: transformation of the new data set
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-2 -1 0 1 2
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1,0

𝑌 = 𝑋𝑃𝜆

Data transformation:



New Dataset Y with

One PC

Two PCs
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Step 4: transformation of the new data set
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▪ Standardization:
• Purpose: Ensures that each feature contributes equally to the analysis.

• Method: Subtract the mean and divide by the standard deviation for each feature.

▪ Covariance Matrix Computation:
• Purpose: Measures how variables change together.
• Method: Calculate the covariance matrix of the standardized data.

▪ Eigenvalue and Eigenvector Calculation:
• Eigenvalues: Indicate the amount of variance captured by each principal component.
• Eigenvectors: Define the direction of the principal components.

▪ Selecting Principal Components:
• Criteria: Choose components with the highest eigenvalues.

• Methods:
▪ Scree Plot: Visualize the eigenvalues to determine the "elbow point.“
▪ Explained Variance Ratio: Select components that cumulatively explain a desired amount of total 

variance (e.g., 95%).

▪ Transforming the Data:
• Projection: Multiply the original data by the selected eigenvectors to obtain the principal components.

• Result: A reduced dataset with uncorrelated features.

How PCA works
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▪ Linearity of the problem: data set is a linear combination of a certain base → 
Problem solution by means of linear algebra (see also 4.)

▪ PCA uses the eigenvectors of the covariance matrix and finds only 
independent base vectors assuming a Gaussian probability distribution.

▪ Assumption that large variances reflect important dynamics. PCA essentially 
only performs a rotation of the coordinate system in the direction of maximum 
variance.

▪ Large variance principal components represent interesting dynamics; small 
variance components represent noise.

▪ Role of SNR (Signal to Noise Ratio)

▪ Main components are orthogonal → Simplification that makes PCA solvable by 
means of linear algebra.

Summary of the most important assumptions and 
limitations of a PCA
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Scree test for determining the number of PCs

Source: Hyperspy 2011



▪ In Principal Component Analysis (PCA), the Q-statistic (also known 
as the Squared Prediction Error (SPE)) and Hotelling's T² statistic
are essential metrics used for assessing the fit of observations within 
the PCA model. They play a crucial role in:

• Outlier Detection

• Process Monitoring

• Fault Detection

• Quality Control

▪ These statistics help identify observations that deviate significantly from 
the modeled behavior, enabling analysts to take corrective actions or 
investigate anomalies.

Importance of Q and T² Statistics in PCA
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Calculation of the Q and T2-Statistics
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▪ Hotelling's T² statistic measures the 
variation of an observation within the 
principal component (score) space defined 
by the PCA model.

▪ It quantifies how far an observation's 
scores are from the center (mean) of the 
model, considering the variability captured 
by the selected principal components.

▪ The Q-statistic measures the residual 
variation of an observation not explained 
by the PCA model.

▪ It quantifies the distance between the 
original observation and its reconstruction 
from the retained principal components.

Sample vector representing all the measurements at the point i

Projection of the sample xi on the principal component

Projection of the sample xi on the residuals



Q and T2-Statistic
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Q and T2-Statistic to analyse the samples
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▪ Nonlinear PCA (NLPCA)

▪ Kernel PCA

▪ Exploratory Projection Pursuit (EPP)

• EPP seeks an M-dimensional (M=2,3 typically) linear projection of the data
that maximizes a measure of «interestingness»

• Interestingness is measured as departure from multivariate normality

▪ This measure is not the variance and is commonly scale-free. In most
implementations, it is also affine invariant, so it does not depend on the
correlations between features

▪ Kernel LDA

▪ T-distributed Stochastic Neighbor Embedding (t-SNE) (for visualization 
purposes)

Other dimensionality reduction approaches
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Autoencoder (will be considered later)
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Example Principal 
component analysis 
(PCA)
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▪ two structures are used for experimental assessment: 

• a steel sheet and 

• a turbine blade of an aircraft. 

▪ The analysis has been performed in two ways:

• (i) by exciting the structure with low-frequency vibrations using a shaker and 
using several piezoelectric (PZT) sensors attached on the surface

• (ii) by exciting at high-frequency vibrations using a single PZT as actuator 
and several PZTs as sensors. 

▪ A known vibration signal is applied and the dynamical responses are 
analyzed

Damage assessment in structures
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Collected data
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Proposed procedure
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Results: Steel sheet low frequency
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Results: Steel sheet low frequency
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Results: Blade low frequency
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Results: Blade low frequency
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Results: Blade high frequency
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Fault detection with 
signal reconstruction
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Fault detection with residual-based or
reconstruction-based approaches
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Fault detection with residual-based or
reconstruction-based approaches
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Basic idea of residual based methods
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Different approaches to residual based methods
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Auto-associative models
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Auto-

associative 

model

Basic principles of auto-associative models
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Example: normal condition
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Example: abnormal condition (1/2)
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Example: abnormal condition (2/2)
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Training pattern

Test pattern: input = measured signals at current time

Test pattern:

output

= signal reconstructions

(expected values of the signals

in normal condition)

x = (x obs ,..., x obs )
1 n

obs

AAKR

xobs

1

xobs

2

obsxn

x̂nc

1

x̂nc

2

nc
x̂n

X obs −nc

= ( x̂nc ,..., x̂nc )
1 n

x̂ nc

Model is the data itself: 
Auto-associative kernel regression for fault detection
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normal plant conditionsystem condition



Auto-Associative Kernel Regression
0
7
.0

4
.2

5

Olga Fink 87



-6 -4 -2 0 2 4 6
0

2

4

6

8

h=0.2

h=2

10

12

14

d=2h → w=0.05/h d=3h

→ w=0.004/h

w(d = h)
= 60

0.004

0.2

4w(d = 3h)
=

d

w

Bandwidth parameter
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d= 0 → w=0.4/h

d=h → w=0.24/h



Accuracy:

▪ depends on the training set:

▪ ↑N → ↑ Accuracy

x1

AAKR Performance: Accuracy
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Basic idea of residual based methods
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▪ Determine the thresholds based on the validation dataset (optionally:  
add additional margin)

▪ Two types of thresholds: for all the signals/residuals + for single
signals/residuals → fault isolation

▪ Perform statistical tests on the distributions of the residuals

Thresholds
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Autoencoders
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▪ Why autoencoders?

▪ Map high-dimensional data to two dimensions for visualization 

Compression (i.e. reducing the file size)

▪ Note: autoencoders don’t do this for free — it requires other ideas as well.

▪ Learn abstract features in an unsupervised way so you can apply them to a
supervised task

▪ Unlabled data can be much more plentiful than labeled data

Autoencoders
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Autoencoders
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▪ Network is trained to output the input (learn identify function). 

▪ Two parts encoder/decoder

▪ x′ = g(f(x))

▪ g - decoder

▪ 𝑓 - encoder

𝑥1 𝑥2 𝑥𝑛

ℎ1 ℎ2 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

E
n
c
o

d
e

r
D

e
c
o

d
e

r

Trivial solution unless:

- Constrain number of units in Layer 2 (learn compressed 

representation), or

- Constrain Layer 2 to be sparse
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Basic principles of an autoencoder
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If the input is 𝑥 ∈ ℝ𝑛 an autoencoder will produce a ℎ ∈ ℝ𝑑 where d < n, which is designed to contain most of the important features of

x to reconstruct it.

Autoencoder performs the following steps:

𝑥1 𝑥2 𝑥𝑛

ℎ1 ℎ2 ℎ𝑘

𝑥′2𝑥′1 𝑥′𝑛

𝑓

𝑔

E
n
c
o

d
e

r
D

e
c
o

d
e

r

Source: J.C. Kao, UCLA
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▪ The simplest kind of autoencoder has one hidden layer, linear activations,
and squared error loss.

▪ This network computes x̃ = UVx, which is a linear 

function.

▪ If K ≥ D, we can choose U and V such that
UV is the identity. This isn’t very interesting.

▪ But suppose K < D:
▪ V maps x to a K -dimensional space, so it’s doing dimensionality reduction.
▪ The output must lie in a K -dimensional subspace, namely the column space of U.

Simplest AE: Principal Component Analysis
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▪ The autoencoder should learn to choose the subspace which minimizes the 
squared distance from the data to the projections.

▪ This is equivalent to the subspace which maximizes the variance of the 
projections.

AE: PCA
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AE: PCA

PCA for faces (“Eigenfaces”)
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AE: PCA

PCA for digits

0
7
.0

4
.2

5

Olga Fink 99

Source: R. Grosse



Training pattern

Test pattern: input = measured signals at current time

Test pattern:

output

= signal reconstructions

(expected values of the signals

in normal condition)

x = (x obs ,..., x obs )
1 n

obs

historical signal measurements in
normal condition

PCA

xobs

1

xobs

2

obsxn

x̂nc

1

x̂nc

2

nc
x̂n

X obs −nc

= ( x̂nc ,..., x̂nc )
1 n

PCA as AE for fault detection
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• Historical data

• Measured signals at present time:

• Find

• Trasform: x P
from

• Antitrasform x̂nc

x = (xobs ,..., xobs )
1 n

obs

= x obs P

PT



obs
P X obs −nc

 x̂ ncxobs
→ normal condition

→ abnormal condition
xobs  x nc

ˆ

Signal reconstructions

PCA as AE for fault detection
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1) Find Principal Components:

• PC1 is the direction of maximum variance

• PC2,…, PCn are orthogonal to PC1 and 

describe maximum residual variance

-1 0 1 2

s
1

3 4 5
-6

-4

-2

0

2

4

6

8

10

12

2
s

PC1

PC2 x1

2x

PCA as AE for anomaly detection
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Step 1) Find Principal Components:
• PC1 is the direction of maximum variance

• PC2,…, PCn are orthogonal to PC1 and 

describe maximum residual variance

Step 2) PCA approximation: ignore the PCs of lower significance.

• Lost small information

• Example: number of
dimensions from n=10
to  = 4
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PCA as AE for anomaly detection
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= (xobs , xobs )
1 2

obs
x•Measured signals at present time:

•Signal reconstructions?

•Normal or abnormal condition?

•available historical signal measurements in normal system condition
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PCA as AE for anomaly detection
Example 1
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•available historical signal measurements in normal system condition
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•Measured signals at present time:

• Step 1: find principal components:

p1


p2



x1

x2 10x2

1x

PCA as AE for anomaly detection
Example 1
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•Measured signals at present time:

•Step 1: find principal components
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PCA as AE for anomaly detection
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• Step 2 (PCA approximation): keep only i.e.1 PC x  p1

obs 

PC1
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PCA as AE for anomaly detection
Example 1

• Measured signals at present time:

• Step 1: find principal components: p1,  p2

 



• Step 3 (Reconstruct to the original coordinates): = xobsP PT

 

xobs  x nc ˆ
normal condition
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PCA as AE for anomaly detection
Example 1
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• Step 2 (PCA approximation): keep only 1 PC: x  p1

obs 

•Measured signals at present time:

• Step 1: find principal components:

xnc

p1,  p2

 



= (xobs , xobs )
1 2

obs
x•Measured signals at present time:

•Signal reconstructions?

•Normal or abnormal condition?

x1

•available historical signal measurements in normal system condition

x2
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PCA as AE for anomaly detection
Example 2
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PCA as AE for anomaly detection
Example 2
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• Step 2 (PCA approximation): keep only i.e.1 PC x  p1

obs 

obs obs

=(x1 , x2 )
obs

• Measured signals at present time: x

• Step 1: find principal components: p1,  p2

 



xobs  x nc


ˆ
Abnormal condition

x1

x2
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PCA as AE for anomaly detection
Example 2
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= xobsP PT

 
• Step 2 (PCA approximation): keep only 1 PC: x  p1

obs 

obs obs

=(x1 , x2 )
obs

•Measured signals at present time: x

• Step 1: find principal components: p1,  p2

 

xnc• Step 3 (Reconstruct to the original coordinates):



• Performance:

• Accuracy = satisfactory

• Low robustness and spillover effects on highly correlated signals

• Unsatisfactory for dataset characterized by highly non linear relationships.
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