Data Science for
Infrastructure Condition
Monitoring:

Clustering / Principal Component

Analysis/Signal Reconstruction/
Autoencoders
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Clustering for fault detection

= assumption that similar data points tend to cluster together in groups,
as determined by their proximity to local centroids.

= data instances that fall outside of these groups are considered as data

anomalies
s Detection B X
a Healthy or faulty HEALTH |
.‘é" operation?
% Segmentation v e A
o Are there different Type O Type 1
% faults types? _
;3 Diagnostics M i ¥ *
b Normal Faultof X~ Fault of Y
o Root cause of the (* component, system,
© faults? sensor, etc.)

Interpretability Level
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=PFL Clustering for fault detection

B 07.04.25
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=PFL Clustering for fault dignostics

= Segmentation of different fault types in an unsupervised way

= Only mapping between which cluster belongs to which fault type is
missing

B 07.04.25
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=PFL  Clustering for fault diagnostics o=
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=P7L  Cluster analysis

= Cluster: A collection of data objects
 similar (or related) to one another within the same group
« dissimilar (or unrelated) to the objects in other groups

= Cluster analysis (or clustering, data segmentation, ...)
 Finding similarities between data according to the characteristics
found in the data and grouping similar data objects into clusters

= The subgroups are chosen such that the intra-cluster differences are
minimized and the inter-cluster differences are maximized.

= Unsupervised learning: no predefined classes

= Applications of cluster analysis:
« As a stand-alone tool to get insight into data distribution
* As a preprocessing step for other algorithms

B 07.04.25
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=P7L  Clustering

= Basic idea: group together similar instances

= |n the context of feature selection: group together similar features (and
replace the groups by a «representative» feature)

= How do we define similarity?
e Classical: Euclidean distance, Manhatten distance
* Correlation-based distances

B 07.04.25
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=PFL  Clustering for pre-processing

= Summarization:
» Preprocessing for regression, PCA, classification, and association
analysis
= Compression:
* Image processing: vector quantization

= Finding K-nearest Neighbors
 Localizing search to one or a small number of clusters

= Qutlier detection
 Qutliers are often viewed as those “far away” from any cluster

B 07.04.25
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=PFL  Quality of the cluster analysis

= A good clustering method will produce high quality clusters

* high intra-class similarity: cohesive within clusters

* low inter-class similarity: distinctive between clusters

= The quality of a clustering method depends on
* the similarity measure used by the method
* its implementation, and

* |Its ability to discover some or all of the hidden patterns

©2011 Han, Kamber & Pei.
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=F7L  Requirements and Challenges

Scalability
 Clustering all the data instead of only on samples

Ability to deal with different types of attributes
* Numerical, binary, categorical, ordinal, linked, and mixture of these

Constraint-based clustering
User may give inputs on constraints
Use domain knowledge to determine input parameters

Interpretability and usability

Others
 Discovery of clusters with arbitrary shape
* Ability to deal with noisy data
* Incremental clustering and insensitivity to input order
« High dimensionality

©2011 Han, Kamber & Pei.
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=P7L  Major Clustering algorithms
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=PrL

B 07.04.25

Partitioning based clustering

= Partitioning based clustering algorithms divide the dataset into initial ‘K’
clusters and iteratively improve the clustering quality based on a
objective function,

= K-means is an example of a partitioning based clustering algorithm.
= Partitioning based algorithm are sensitive to initialization.

Olga Fink 13



=PFL  K-means procedure

= An iterative clustering algorithm
= |nitialize: Pick k random points as cluster centers (k pre-defined)

= Alternate:
1. Assign data points to closest cluster center
2. Change the cluster center to the average of its assigned points

= Stop when no points’ assignments change

B 07.04.25
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=P7L An Example of A-Means Clustering

07.04.25

The initial data
set

K=2
—_

Arbitrarily
partition
objects
into k
groups

Partition objects into k non-

empty subsets

Repeat

= Compute centroid (i.e.,
mean point) for each

partition

= Assign each object to the
cluster of its nearest

centroid

Until no change

R e
Update
the
cluster
centroids

4—
Update
the
cluster
centroids

©2011 Han, Kamber & Pei.
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=PrL

B 07.04.25

Comments on the A-MeansMethod

= Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations.
Normally, k, t << n.

= Comparing: PAM: O(k(n-k)?), CLARA: O(ks? + k(n-k))
= Comment: Often terminates at a local optimal.

= Weakness
» Applicable only to objects in a continuous n-dimensional space
= Using the k-modes method for categorical data
= In comparison, k-medoids can be applied to a wide range of data

* Need to specify k, the number of clusters, in advance (there are ways to
automatically determine the best k (see Hastie et al., 2009)

» Sensitive to noisy data and outliers
» Not suitable to discover clusters with non-convex shapes 2011 Han. Kamber & Pei

Olga Fink 16



=PrL

B 07.04.25

What Is the Problem of the K-Means Method?

= The k-means algorithm is sensitive to outliers !
« Since an object with an extremely large value may substantially distort the

distribution of the data

= K-Medoids: Instead of taking the mean value of the object in a cluster as a reference

point, medoids can be used, which is the most centrally located object in a cluster

©2011 Han, Kamber & Pei.
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=PFL Variations of the K-Means Method

» Most of the variants of the k-means differ in
» Selection of the initial k means

 Dissimilarity calculations

 Strategies to calculate cluster means

= Handling categorical data: k-modes

Replacing means of clusters with modes

Using new dissimilarity measures to deal with categorical objects

Using a frequency-based method to update modes of clusters

A mixture of categorical and numerical data: k-prototype method ©2011 Han, Kamber & Pl

B 07.04.25
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£PFL  Number of clusters

Cx

o

-

Number of clusters

C,: Total within-clusters sum of squares

Olga Fink

19



PF

B 07.04.25

L

s(i) =

Silhoutte Coefficient = -

= Can be used to study the separation distance between the resulting
clusters

= A measure how close each point in one cluster is to points in the
neighboring clusters - can be assessed visually in silhoutte plots

= a(i) average distance between i and all observations within the same
cluster

= b(i) be the smallest average distance of i to all points in any other
cluster (excluding the cluster that it is member of)

b(i) — a(i) o) { 1 —a(i)/b(i), if () < b(i)

A 0, if a(i) = b(3)
max{a(i), b(:)} b()/a(i) — 1, ifa(s) > b(s)

Olga Fink



=P7L  Sllhoutte Plot: example
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=F7L Spectral clustering

= Spectral clustering methods are attractive:
= Easy to implement,

= Reasonably fast especially for sparse data sets up to several
thousands.

= Spectral clustering treats the data clustering as a graph partitioning
problem without making any assumption on the form of the data
clusters.

Source: Hamad & Biela

B 07.04.25
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=PrL Spectral clustering s

K-means - compactness Spectral clustering = connectivity
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PPl Keyidea of spectral clustering

= Builds a similarity graph from the data.
= Computes the Laplacian matrix of the graph.

= Uses the eigenvectors of the Laplacian to embed the data into a lower-
dimensional space.

—> great at capturing manifold structures, where clusters are connected
but not necessarily blob-shaped.

B 07.04.25
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=F7LSpectral clustering

Group points based on links in a graph

Source: James Hays
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=P7L Spectral Clustering

Goal: Given data points X1, ..., Xn and similarities w(Xi,Xj), partition the data into groups so that points in a
group are similar and points in different groups are dissimilar.

Similarity Graph: G(V,E,W) V — Vertices (Data points) E — Edge if similarity > 0
W - Edge weights (similarities)

Data Similarities Similarity graph

Partition the graph so that edges within a group have large weights and edges across groups
have small weights.

B 07.04.25

Source: Hamad & Biela
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=PFL  Graph notation b5

e W = (w;;) adjacency matrix of the graph
e d; = ) w; degree of a vertex
e D = diag(dy,...,d,) degree matrix

e |A| = number of vertices in A

o vol(A) = ¥4 d

e

In the following: vector f = (fi, ..., f,,) interpreted as function on
the graph with f(X;) = f;.

Source: Hein & Luxburg

B 07.04.25
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=F7L Similarity graph construction

Similarity Graphs: Model local neighborhood relations between data points

E.g. Gaussian kernel similarity function

=1
W’Lj = e 252 ——————3 Controls size of neighborhood

P
e o L .
F e
™ T ﬁ’ é IJ >
- e o
2, KJ’M? S
o g
-,i‘.;.t v -
i —_— T
Data clustering G= {\ ,E}

B 07.04.25

Olga Fink



=P7LGraph construction

B 07.04.25

= Different ways to construct a graph representing the
relationships between data points :

Fully connected graph: All vertices having non-null similarities are
connected to each other.

r-neighborhood graph: Each vertex is connected to vertices falling
inside a ball of radius r where r is a real value that has to be tuned
in order to catch the local structure of data.

k-nearest neighbor graph: Each vertex is connected to its k-nearest
neighbors where k is an integer number which controls the local
relationships of data.

r-neighborhood and k-nearest neighbor combined

Source: Hamad & Biela
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=PFL 2-.way Normalized Cuts s

1. Compute the affinity matrix W, compute the degree matrix (D), D is
diagonal and

D(i,i) =Xy W(,J)
2. Solve (D — W)y = ADy, where D — W is called the Laplacian matrix

3. Use the eigenvector with the second smallest eigen-value to bipartition
the graph into two parts.

Source: D. Sonntag

B 07.04.25
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=P*L IMlustrative example

- -
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Source: Hamad & Biela
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=PFL Graph and similarity matrix =l
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=PFLSpectral bipartitioning: lllustrative example

B 07.04.25

Pre-processing Sl I N I I

Build Laplacian matrix L of the graph 0 T

o Q o 0.8 0 0.2 25 0.8 0.7

O -0.1 0 0 0.8 17 -0.8

Decomposition : Find :

eigenvalues A and < . o S

e v ==

eigenvectors X of matrix L 25
Map vertices to the w | o
corresponding components of w | o
2nd eigenvector (also w | o
referred to as Fiedler vector) % | o

Source: Hamad & Biela
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=P7L  Spectral Clustering Algorithms
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=P7L Spectral Clustering for k > 2 Clusters

1. Construct Similarity Graph
- Nodes = data points
- Edges = similarity (e.g., Gaussian kernel)

2. Compute Graph Laplacian

3. Compute Eigenvectors
- Take first k eigenvectors of L
- Each point becomes a k-dimensional vector

4. Cluster in Spectral Space
- Apply k-means on rows of eigenvector matrix

Intuition:
- Eigenvectors capture graph structure
- Clustering in this space separates complex shapes

- Spectral clustering projects onto directions that capture graph structure



Example Clustering for
Structural Health
Monitoring




=PFL Flowchart of the proposed clustering based S
approach for SHM

Fourier Clusterin
KNN g
transform
Bridge data Feature Outliers Signals Behavior
(vibration events) extraction removal processing characterization
TRIG]
o B |

Diez, Alberto, Nguyen Lu Dang Khoa, Mehrisadat Makki Alamdari, Yang Wang, Fang Chen, and Peter Runcie. "A clustering approach for structural health
monitoring on bridges." Journal of Civil Structural Health Monitoring 6 (2016): 429-445.

B 07.04.25
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=Pl @-Joints case

=  Comprises Joints 1, 2 and 3 in North
main span and Joints 4, 5 and 6 in North

pylon

412000

*= a map of pairwise distances among
representatives of all joints was
generated.

410000

= A joint representative is calculated as
the mean values of all events of each
joint, after outlier removal phase.

Diez, Alberto, Nguyen Lu Dang Khoa, Mehrisadat Makki Alamdari, Yang Wang, Fang Chen, and Peter Runcie. "A clustering approach for structural health
monitoring on bridges." Journal of Civil Structural Health Monitoring 6 (2016): 429-445.

B 07.04.25
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=PrL

B 07.04.25

71-Joint case, span 7: map of pairwise distances
using cross correlation
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Principal component
analysis (PCA)




=F7L Why dimensionality reduction?

= Handling High-Dimensional Data: In many engineering fields, data collected from sensors, simulations, or
exfper_lments can be extremely high-dimensional. High-dimensional data can be difficult to process and analyze
effectively due to the sheer volume of variables involved.

= Avoiding the Curse of Dimensionality: As the number of dimensions increases, the volume of the space increases
exponentially, which requires exponentially more data to maintain the same level of statistical reliability. This )
Phenomenon is known as the curse of dimensionality. Dimensionality reduction helps mitigate this issue by reducing
he number of random variables under consideration, simplifying models without significant loss of information.

= Improved Model Performance and Generalization: Reducing the dimensionality of data can lead to improvements
in the performance of predictive models. By eliminating irrelevant or redundant features, models can be made more
efficient and less prone to overfitting. This means that models are better at generalizing from training data to unseen
data, which is crucial for robust engineering solutions.

= Cost and Time Efficiency: Processing fewer dimensions requires less computational resources, thus reducing both
the time and cost associated with data analysis and model training. This is particularly important in engineering
appthcatlons where real-time or near-real-time processing is crucial, such as in control systems or online monitoring
systems.

= Enhanced Data Visualization; High-dimensional data is challenging to visualize, but reducing the number of
dimensions can allow for effective visualization techniques. Visualization is essential for exploring data, identifying
patterns, and communicating findings clearly in many engineering disciplines.

» Feature Extraction and Engineering _InS|g11ht: Dimensionality reduction technigues can also be used for feature
extraction, where new features are derived from the original set that retain most of the important information. This can
lead to insights into the underlying processes and mechanisms, which can be invaluable in fields like mechanical
engineering, electrical engineering, and systems biology.

= Data Compression: In many applications, reducing the dimensionality of data can significantly decrease the storage
SEace rleqwred, which is beneficial for systems with limited memory or for transmitting data over bandwidth-limited
channels.

B 07.04.25

Olga Fink 41



=PFL  Underfitting vs overfitting

Under fitting Over fitting
model structure residual variation
...included in the is included as if it were
residuals structural /

Bias?
Variance

Many

Number of Parameters

B 07.04.25
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EPFL
Different approaches to dimensionality reduction

Filter

approaches

B Feature Bl \Wrapper
selection approaches

Embedded
approaches

reduction

Linear

Feature dimensionality

= Non-Linear

B 07.04.25
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=Pl Feature selection vs. Feature low-dim.
Projection

= Removing features - Equivalent to projecting data onto lower-
dimensional linear subspace perpendicular to the feature removed

B 07.04.25
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L

Principal component analysis b5

= PCA seeks to preserve as much of the randomness (variance) in the
high-dimensional space as possible

= Projection of the dataset onto a lower dimensional space
= |In the direction of maximum variance

Olga Fink 45



=PrL

B 07.04.25

Key concepts of PCA

= Dimensionality Reduction: PCA reduces the number of variables
(features) in a dataset while preserving as much variability (information)
as possible.

= Principal Components: New uncorrelated variables that are linear
combinations of the original variables. Each principal component
captures a portion of the total variance in the data.

= Variance Maximization: The first principal component captures the
maximum variance, the second captures the next highest variance
orthogonal to the first, and so on.

= Orthogonality: Principal components are orthogonal (uncorrelated) to
each other, which eliminates redundancy.

Olga Fink 46



=PrL

B 07.04.25

PCA mainideas

= Splitting a measured signal (i.e. usually a mixture of many different
signal components) into a set of underlying variables (into a new base)

= |dentification of some (few) main source signals from a large number of
mixed signals

= Dimensionality reduction

= The goal of a PCA is to express a noisy data set in a new base,
expecting this new representation to filter out the noise and reveal
hidden structures in the data.

= What are the important dynamics underlying a data set and which
dynamics are of lesser importance? How can these be filtered out using
a PCA?

Olga Fink 47



=PrL

B 07.04.25

Uses of PCA

= Pre-processing method before classification to reduce computational
costs of the classifier.

= Compression method for ease of data storage and retrieval = also
used for signal reconstruction

= Feature extraction method

= Noise Reduction

= Visualization

= Detection of Changes in Variance (= fault or anomaly detection)

Olga Fink 48
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Steps to perform a PCA

3,04

2,5

2,0

Problem:

How to find the unit vector with maximum variance ?

Solution - eigenvalue problem :

1,0

0,5

Calculate the largest eigenvalue A and the corresponding
eigenvector x to the covariance matrix C

0,0

0,0

0,5

1,0

15 Cx = Ax

Cx=2Ax  isequivalentto (C—2E)x =0
E,, = unit matrix

det(C —AE))x =0

Olga Fink
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=PFL  Step 1: Subtraction of mean values

Subtraction of mean values X,,,Y,, 1,51
(for each of the dimensions) °
1,0 ®
- Creates a data set whose mean é
values in all dimensions are zero 0,5
o
£ 00 .
[$)
>
[ ]
I X=X =23 X o =0 - .
n i=1 I V) - n i=1 I,corr — -l,O ° °
1 VRV 1 Zn -1,5 )
HZH( iY== - Yicor =0 15 -10 -05 00 05 10 15
. X corr
In the example: X, = 0.587
Y, =1413

B 07.04.25
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=PFL  Step 2: Calculation of the covariance matrix

Calculation of the covariance matrix (of the mean-corrected data)

n-dimensional dataset - Covariance matrix has n rows and n columns;
-> quadratic matrix

- main diagonal = variance

- symmetrical matrix:

cov(x,y) = cov(y,X)

Zle(xi—xp)(xi—xu) Zin:l(xi_xp)(Yi_Yp)
var (X, X) = -] cov(X,Y)= n—1
For =2 O var(z,z) cov(x,y)
cov(y,x) war(y,y)
In the example O = 0.0862 0.2175 10
0.2175 0-6440 T e e o s

X corr

B 07.04.25

Olga Fink 51



PF

B 07.04.25

L

Step 3: Eigenvalues and Eigenvectors of the
Covariance Matrix

Example: Eigenvalues of the Covariance Matrix

0.0862 -A  0.2175
0.2175  0.6440 — A

det (C-AE)=0 —

A, and A ,are the
example: M =0.7188; A, =0.0114 two eigenvalues

of the covariance matrix.

=S

Olga Fink
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=PFL Step 3: Eigenvalues and Eigenvectors of the
Covariance Matnix

The eigenvectors belonging to the two eigenvalues result from the solution of (C—=2E)x =0

var(x,x)  cov(x, ) . 1 0 o 0
cov(y,x) var(y,y) 2o 1 N 0
In the example:

0.0862 0.2175 1 0O B 0
(0.2175 0.6440]_’?’”(0 1] m‘(o)

Eigenvector for A, = 0.7188: x; =(0.3251,0.9456); [x;|=1
Eigenvector for A, = 0.0114: X, =(-0.9456 , 0.3251 );|x 2| =1

B 07.04.25
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=PFL  Step 3: Eigenvalues and Eigenvectorsofthe r=ls
Covariance Matrix

dataset with the eigenvector for 1,5+
[ J
7\,1 =0.7188: 1,0 °
fo
X1 =(0.3251, 0.9456) 0,5
£ 00 °
°
-0,5
A
-1,0 L J
15

-5 -10 -05 00 05 10 15

X corr

B 07.04.25
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=PFL  Step 3: Eigenvalues and Eigenvectors of the el
Covariance Matrix

dataset with the eigenvector for 1,54
]
)\.1 =0.7188: 1,0 ®
/e
X1 =(0.3251, 0.9456) 0.5 <
and for: g 00 B e .
> RN
A, = 0.0114: -0,5 ~
[ J
X, =(-0.9456, 0.3251) -1,0 7/
15

-1 -10 -05 00 05 10 15

X corr
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=PFL  Step 4: transformation of the new data set el

1,0 1
Data transformation: 05
Y = XP, e I
0,01 ® -
[ ]
2 1 0 1 2

B 07.04.25
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=PFL  Step 4: transformation of the new data set iS5

1,0
0,5
New Dataset Y with 0.0 42%;0_@9—0«157
[ )
o OnePC K
® TwoPCs 05
-1,0
-2 1 0 1 2
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=FFL How PCA works

Standardization:
* Purpose: Ensures that each feature contributes equally to the analysis.
* Method: Subtract the mean and divide by the standard deviation for each feature.

Covariance Matrix Computation:
* Purpose: Measures how variables change together.
* Method: Calculate the covariance matrix of the standardized data.

Eigenvalue and Eigenvector Calculation:
» Eigenvalues: Indicate the amount of variance captured by each principal component.
» Eigenvectors: Define the direction of the principal components.

Selecting Principal Components:
+ Criteria: Choose components with the highest eigenvalues.
* Methods:
= Scree Plot: Visualize the eigenvalues to determine the "elbow point.”
» Explained Variance Ratio: Select components that cumulatively explain a desired amount of total
variance (e.g., 95%).
Transforming the Data:
» Projection: Multiply the original data by the selected eigenvectors to obtain the principal components.
* Result: A reduced dataset with uncorrelated features.

B 07.04.25
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=PrL

B 07.04.25

Summary of the most important assumptions and

limitations of a PCA

Linearity of the problem: data set is a linear combination of a certain base —
Problem solution by means of linear algebra (see also 4.)

PCA uses the eigenvectors of the covariance matrix and finds only
independent base vectors assuming a Gaussian probability distribution.

Assumption that large variances reflect important dynamics. PCA essentially
only performs a rotation of the coordinate system in the direction of maximum
variance.

Large variance principal components represent interesting dynamics; small
variance components represent noise.

Role of SNR (Signal to Noise Ratio)

Main components are orthogonal - Simplification that makes PCA solvable by
means of linear algebra.

Olga Fink 59



EPFL h- U5
Scree test for determining the number of PCs

PCA Scree Plot Signal

10° —w
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=PFL  Importance of Q and T2 Statistics in PCA

= In Principal Component Analysis (PCA), the Q-statistic (also known

as the Squared Prediction Error (SPE)) and Hotelling's T2 statistic
are essential metrics used for assessing the fit of observations within
the PCA model. They play a crucial role in:

» Outlier Detection

* Process Monitoring

« Fault Detection

* Quality Control

= These statistics help identify observations that deviate significantly from
the modeled behavior, enabling analysts to take corrective actions or
investigate anomalies.

B 07.04.25
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=PFL  Calculation of the Q and T2-Statistics s

ts; ' Hotelling's T2 statistic measures the
2 Usij 1 T —1pT T €lling \ e
I; = Z [V =tiA" 1 =x;PAT P x variation of an observation within the
j=1 "7 principal component (score) space defined

by the PCA model.

S‘I — x P Projection of the sample x; on the principal component - |t quantiﬁes hOW far an Observationls
scores are from the center (mean) of the
model, considering the variability captured

xf Sample vector representing all the measurements at the point i by the SeleCted pl‘inCipaI Components.
c 2T _ (T — PPT) T = The Q-statistic measures the residual
Qi = X, X = XL — X; variation of an observation not explained
by the PCA model.
X;  Proiectionofthe sample x,onthe residuals = |t quantifies the distance between the

original observation and its reconstruction
from the retained principal components.
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=PFL () and T>-Statistic

Sample with larger Q First PC
(unusual variation
‘ outside the model)

Sample with larger T2
(unusual variation
inside the model)

Variable 3

Variable 2
Variable 1

Muijica, L. E., J. Rodellar, A. Fernandez, and A. Gliemes. "Q-statistic and T2-statistic PCA-based measures for damage assessment in
structures." Structural Health Monitoring 10, no. 5 (2011): 539-553.

B 07.04.25

Olga Fink 63



=PFL  Q and T-Statistic to analyse the samples

Q-Statistic T2-Statistic

B 07.04.25
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=PrL

B 07.04.25

Other dimensionality reduction approaches

= Nonlinear PCA (NLPCA)
= Kernel PCA

= Exploratory Projection Pursuit (EPP)

« EPP seeks an M-dimensional (M=2,3 typically) linear projection of the data
that maximizes a measure of «interestingness»

* Interestingness is measured as departure from multivariate normality

= This measure is not the variance and is commonly scale-free. In most
implementations, it is also affine invariant, so it does not depend on the
correlations between features

= Kernel LDA

= T-distributed Stochastic Neighbor Embedding (t-SNE) (for visualization
purposes)
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=PFL  Autoencoder (will be considered later)

Input <« Ideally they are identical. - o mpt::

x ~ x'

Bottleneck!
Encoder Decoder -
= o 9¢ fo i -

An compressed low dimensional
representation of the input.

=
=
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Example Principal
component analysis
(PCA)




=PrL

B 07.04.25

Damage assessment in structures

= two structures are used for experimental assessment:
* a steel sheet and
* a turbine blade of an aircraft.

= The analysis has been performed in two ways:

* (i) by exciting the structure with low-frequency vibrations using a shaker and
using several piezoelectric (PZT) sensors attached on the surface

« (ii) by exciting at high-frequency vibrations using a single PZT as actuator
and several PZTs as sensors.

= A known vibration signal is applied and the dynamical responses are
analyzed

Muijica, L. E., J. Rodellar, A. Fernandez, and A. Gliemes. "Q-statistic and T2-statistic PCA-based measures for damage assessment in
structures." Structural Health Monitoring 10, no. 5 (2011): 539-553.
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=PrL  Collected data

(a) (b)
1 K 2K K

Sensor1 |Sensor 2 Sensor j == [Sensor J
Sensor

) >
Sensor x time

Experiments
&
]
Experiments

Time
(K)

Muijica, L. E., J. Rodellar, A. Fernandez, and A. Gliemes. "Q-statistic and T2-statistic PCA-based measures for damage assessment in
structures." Structural Health Monitoring 10, no. 5 (2011): 539-553.
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=F7L  Proposed procedure

Current structure
Undamaged structure

Muijica, L. E., J. Rodellar, A. Fernandez, and A. Gliemes. "Q-statistic and T2-statistic PCA-based measures for damage assessment in
structures." Structural Health Monitoring 10, no. 5 (2011): 539-553.
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=PFL  Results: Steel sheet low frequency
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Muijica, L. E., J. Rodellar, A. Fernandez, an X Guemes. "Q-statistic and T2-statistic PCA-based measures for damage assessment in
structures." Structural Health Monitoring 10, no. 5 (2011): 539-553.
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=PFL  Results: Steel sheet low frequency
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EPFL  Results: Blade low frequency
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EPFL  Results: Blade low frequency
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=PFL  Results: Blade high frequency e
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Fault detection with
signal reconstruction




=P*L  Fault detection with residual-based or
reconstruction-based approaches

SIGNAL RECONSTRUCTIONS

S
MEASURED MODEL OF COMPONENT bt

BEHAVIOR IN NORMAL
SIGNALS CONDITIONS

N— N COMPARISON
i SiS: Syp2
RESIDUALS
t

t
DECISION

NORMAL ABNORMAL
CONDITION: CONDITION:
No maintenance

maintenance required

B 07.04.25

Olga Fink




PF

B 07.04.25

L

Fault detection with residual-based or
reconstruction-based approaches

SIGNAL RECONSTRUCTIONS

Sy

MEASURED > MODEL OF COMPONENT [R
SIGNALS 4 BEHAVIORIN NORMAL L St
CONDITIONS _
51 b 32
/R /\_ﬂ—-—-'N-
— ! 4>1 A 4
S2
’V[ | COMPARISON
N n
t Si% S Syx 52
RESIDUALS —
L«-——)t M}
L
DECISION

CONDITION:
No
aintenance

CONDITION:
maintenance
required
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=PFL  Baslic Idea of residual based methods s

System Outputs >
Threshold
fl________ﬁ I
| | : | Fault
, Analytical | Residual | | [ | ! decision
T L + /,— — _|_’
| model N | / |
I | | I
\L | ' |
________ S
Residual generation Residual evaluation
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=P7L Different approaches to residual based methods

= Kalman filter

Model-based mmObserver based

= Statistics-based

m Signal-based

Machine

learning
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=PrL  Auto-associative models

Auto-associative model

X, X,
—_— —> A

X, Autp—_ 3, . = f(x ,xz,...,x”)
— | Associative —— vi—1

x, Model| i t=5...1
_— —

Empirical model built using training patterns = historical signal
measurements in normal system condition

F

X2
obs —nc obs —nc
¥11 ST Xn
Xobs ne
it Xig Vi
obs —nc obs —nc
Xy e X aes Xy
!n.'l.‘:f. N1 Ny Nn
."5'- -%o a “‘ll X
» M
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=PFL Baslc principles of auto-associative models

_obs —nc . _obs —nc
1 RST; Xin
aini . TR =] x x = histori Si 2ASUr 2nts i

® Training pattern X ™ X Xy Xin historical sianal measurements in

normalsystem condition

obs — . _obs -

Xy - X - X

. —obs obs obs . .
® Test pattern: input x = (.‘(1 v X, ) = measured signals at current time
TPEG ~ ne e 4 . .

* Test pattern: output X =(X; ..... X, ) = signal reconstructions (expected

values of the signals in normal
condition)

T
Y lo bs {, im:
—_— —_—
obs ~ne
SN HREEN
AAKR
obs ™ RE
X, R
e —_—
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=F*L Example: normal condition

_ohs —nc . ok —nic
T e T I
® Training pattern X**™ =| x .. Xy - X, |= historical signal measurements in
El 7] In S
normal system condition
_abs —ne . _oBs—ne
X X N o X

. —obs obs _obs . .
® Test pattern: input X = (.Tl S ) = measured signals at current time

* Test pattern: output x™ = (rl”‘ _1"(:") = weighted sum of the training patterns:

L ]
X T YT IR
sHEiEs

B 07.04.25

Olga Fink 83



=PFL  Example: abnormal condition (1/2) s

. . —ob b b
-Signal values at current time: x°” = (x;"....x) ") o

«3ighal reconstructions?
«Normal or abnormal condition?

Xo

-available historical signal measurements in normal system condition
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=PFL  Example: abnormal condition (2/2) s

. . —obh b b
*Signal values at current time:  x°* = (a7 .....x,, )

-Signal reconstructions: x™ =(x;"....x.°) * based on the available
historical signal measurements in normal system condition e

X, / i \
—ob e
R X E X"

Xy
A &
(] L]

abnormal condition

«available historical signal measurements in normal plant condition
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=PrL

B 07.04.25

Model is the data itself:
Auto-associative kemel regression for fault detection

e '"' Xy - xpEe
@ Training pattern X7 =| x, - Xy .. X |= historical sianal measurements in
S A normal system condition
\tbf -m e Xpg o \:e: ™
. Xobs — (Xobs Xobs ) . i
® Test pattern: input PR AL A = measured signals at current time
* Test pattern: X e = (X°,..., X) = signal reconstructions
output ! " (expected values of the signals
in normal condition)
X obs —nc
—~—
obs sne
X X
obs {ne
X3 X,
- AAKR —
X 0bs A nc
n Xn
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=P7L  Auto-Assoclative Kemel Regression

—nec

output X = (X7°,...,X7°) = weighted sum of the training patterns:
< b
oos—nec
Onalithe ——— | Z * Xy
training pattern X L\ k=t Xo
j
ZW(k *low weight
k=1 v
weights w(k) = similarity measures between x™ and x*™ I’:-'i:-:
(the test and the k-th training pattern): f:".-:} _ _
..é:,: high weight
k) °
- 2 23 ..i-?-..
T2h iy

n
—obs-nc

)= (" -x7")* Euclidean distance between ¥ and ¥

=1

with d*(

h = bandwidth parameter

B 07.04.25
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=PrL

B 07.04.25

Bandwidth parameter

d=0-> w=0.4/h wd=h) 02 _ 60
d=h > w=0.24/h w(d = 3h) G004
d=2h > w=0.05/h d=3h
> w=0.004/h
w 14
12 -
10
o
o ~ h=02
h=2
o
i
; n E) 0 2 7
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L

AAKR Performance: Accuracy b-U

Accuracy:

depends on the training set:
= *N - 1 Accuracy

Olga Fink 89




=PFL  Basic Idea of residual based methods

System Outputs >
Threshold

)

| |

! Data- |+

i > driven "

| model :

| |

Residual generation Residual evaluation
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=PrL

B 07.04.25

Thresholds

= Determine the thresholds based on the validation dataset (optionally:
add additional margin)

= Two types of thresholds: for all the signals/residuals + for single
signals/residuals - fault isolation

» Perform statistical tests on the distributions of the residuals

Olga Fink 91



Autoencoders
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" Autoencoders

= Why autoencoders?
= Map high-dimensional data to two dimensions for visualization

Compression (i.e. reducing the file size)
= Note: autoencoders don’t do this for free — it requires other ideas as well.

= | earn abstract features in an unsupervised way so you can apply them to a
supervised task

= Unlabled data can be much more plentiful than labeled data

B 07.04.25
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=PrL

- Two parts encoder/decoder

B 07.04.25

Autoencoders

Network is trained to output the input (learn identify function).

x' = g(f(x)) 2 - 1

g - decoder 3 _mw .

f - encoder _ @ x
Trivial solution unless: HlcleEEe)

- Constrain number of units in Layer 2 (learn compressed

representation), or
- Constrain Layer 2 to be sparse

Olga Fink 94



=PrL

B 07.04.25

Basic principles of an autoencoder

If the input is x € R™ an autoencoder will produce a h € R% where d < n, which is designed to contain most of the important features of
x to reconstruct it.

Autoencoder performs the following steps:

e Encoder: Perform a dimensionality reduction step on the data, x € R" to

© -
s
obtain features h € R?. g
o Decoder: Map the features h € R? to closely reproduce the input, _| @Z: 53 R GEI S

x e R".
A

Decoder

Thus, the autoencoder implements the following problem: g . f
o
Q
Let x e R”, f(-) : R" = R? and g(-) : R* = R". Let 0D |@@ ¢ e °@
x =g(f(x))
Define a loss function, £(x,x), and minimize £ with respect to the parameters
of f(-) and g(-).
There are different loss functions that you could consider, but a common one is
the squared loss: Source: J.C. Kao, UCLA

L(x, %) =[x —x|*
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L=

L

Simplest AE: Principal Component Analysis b5

= The simplest kind of autoencoder has one hidden layer, linear activations,
and squared error loss.

~ ~ 112 X D units
L(x.X) = [[x =X| 5
U decoder
K units
= This network computes X = UVx, which is a linear v 1 encoder
function.
X D units

= If K = D, we can choose U and V such that
UV is the identity. This isn’t very interesting.
= But suppose K <D:

= V maps X to a K-dimensional space, so it's doing dimensionality reduction.
= The output must lie in a K-dimensional subspace, namely the column space of U.

Source: R. Grosse
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=PrL

AE: PCA

= The autoencoder should learn to choose the subspace which minimizes the
squared distance from the data to the projections.

= This is equivalent to the subspace which maximizes the variance of the
projections.

B 07.04.25
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=PrL AE: PCA

PCA for faces (“Eigenfaces”)

- , _ N
=y e = o

-‘LI - -
b o 5 | £ o
= . ;.‘Iﬂ - :q‘.-
--
— f‘; e V ‘ ,- ‘. 1 - —
4 s &
L -] =

Source: R. Grosse
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- AE:PCA bl

PCA for digits

Source: R. Grosse
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=PFL  PCA as AE for fault detection I

n e Xy Xim
Training pattern x|y, Xy~ ¥, |= historical signal measurements in
- L normal condition
. obs __ obs obs i .
Test pattern: input X7 = (Xl 1 Xn ) = measured signals at current time
Test pattern: $me = (X°,..., X°) = signal reconstructions
output 1 n (expected values of the signals
in normal condition)
X obs —nc
—~—
obs &ne
X, X
_— —
obs o ne
BN %
PCA
obs A nc
a Xn Xn
3 _— > —
5
.
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=PFL  PCA as AE for fault detection

_obs —nc . ab.:-rnr

T e My Ao
. Historical data YoE =l Yg Xy
‘;’1‘-” Y - -\':v':siﬂ(
. . g ob
. Measured signals at present time: X = (XObS,..., XObS)
1 n

—~———

- Fnd P from X 0obs-nc

obs
. Trasform: X P
. Sne _ v ob . .
. Antrasform  X"¢ =x°"P Signal reconstructions
PT

—~—————

)—C»obs ~ {N° - normal condition

XObsi)?nc - abnormal condition
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=PFL PCA as AE for anomaly detection

1) Find Principal Components:
* PC; is the direction of maximum variance

« PC,,..., PC, are orthogonalto PC, and X, |
describe maximum residual variance
— PC, T
—> PC, X

B 07.04.25
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=PFL  PCA as AE for anomaly detection s

Step 1) Find Principal Components:
* PC,is the direction of maximum variance |
+ PC,,..., PC, are orthogonal to PC1 and X, |

describe maximum residual variance

—> PC,

— PG, X,

* Lost small information

« Example: number of
dimensions from n=10

PC1 P&2 PCE PC4 s PCE PLT PCE PCDD P to }\' —_— 4

B 07.04.25
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=PFL  PCA as AE for anomaly detection
Example 1

—obs __ obs y,0bs
*Measured signals at present time: X - (Xl ) X2 )
+Signal reconstructions?
*Normal or abnormal condition?

X

Xy

«available historical signal measurements in normal system condition

B 07.04.25
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=PFL  PCA as AE for anomaly detection
Example 1

—obs _ ( Eobs,x;bs)

*Measured signals at present time: X X
» Step 1: find principal components: 17119_5 |
o R e SO

X
X, 1

savailable historical signal measurements in normal system condition

B 07.04.25
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=PFL  PCA as AE for anomaly detection s
Example 1

*Measured signals at present time:

;abs — (xéi')bs,x;bs)

*Step 1: find principal components P1, P2

1
55555555555555
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=PFL  PCA as AE for anomaly detection
Example 1

. . —ob
- Measured signals at present time: = (a0, x3)

1
» Step 1: find principal components: 51 p_é |
* Step 2 (PCAapproximation): keep only i.e.1 PC )YObS . [31
X2 2
.._.-—__’.‘ R
R PC1
X X

Olga Fink
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=PFL  PCA as AE for anomaly detection
Example 1
2o _ (b o)

*Measured signals at present time: X e

« Step 1. find principal components: 51 p_é
—obs -

* Step 2 (PCA approximation): keep only 1 PC: X P
- Step 3 (Reconstruct to the original coordinates): ;n: _ xdp pT

& & S S o N > ) )
T T T T T T T T T

.5
5
&
&
IS
&
ol
~
IS
S
®
5

X

~ 1
obs ~ ync .
X% = X |::> normal condition
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=PFL  PCA as AE for anomaly detection s
Example 2

*Measured signals at present time: %obs — (bes’ ngs)
+Signal reconstructions?
*Normal or abnormal condition?

& o
T T

&
T

&

10 L
-10 8 % -4 2 0 2 4 6 8 10

«available historical signal measurements in normal system condition
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=PFL  PCA as AE for anomaly detection
Example 2

. . —obs obs  obs
+ Measured signals at present time: X =(x, ,X, )
» Step 1: find principal components: 51 p_é
* Step 2 (PCAapproximation): keep only i.e.1 PC )YObS . [31

. .
] sh N

N a7

. ] af v

i :
44444444444
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=PFL  PCA as AE for anomaly detection

B 07.04.25

Example 2
—obs obs  obs

*Measured signals at present time: X =(X ,X )
« Step 1: find principal components: ]Zp;
—obs -

* Step 2 (PCA approximation): keep only 1 PC: X P
- Step 3 (Reconstruct to the original coordinates): ;nc = xisp Pr

: 10
)‘(’obs + )ch X N
Abnormal condition

Olga Fink
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=PrL PCA as AE evaluation

* Performance:
Accuracy = satisfactory
Low robustness and spillover effects on highly correlated signals

X
X M M . /\C§
(0]
X2 E X,
N——— /\A:
|t Lt

Unsatisfactory for dataset characterized by highly non linear relationships.
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