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=PFL  Brief Description of Feature Extraction Techniques

= Edge Detection
* |dentifies points in an image where brightness changes sharply, used for object boundaries.

= Texture Analysis
« Examines surface patterns and variations to classify regions based on their textures.

= Corner Detection
» Detects points where edges meet, useful in motion tracking and object recognition.

» Blob Detection
* |dentifies regions in an image that differ in properties like brightness or color.

= Shape-Based Feature
» Captures geometric properties of objects like contours and region boundaries.

= Transform-Based Features
» Extracts features using transformations like Fourier or Wavelet for frequency domain analysis.

* Local Feature Descriptors
« Captures distinctive patterns in image patches like SIFT, SURF, or ORB.

* Color & Intensity Features
» Uses pixel color and brightness levels as features, helpful in segmentation and recognition

B 31.03.25
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=PFL  Types of infrastructures monitored visually

= Bridges

= Tunnels

= Underground pipes

= Roads: e.g. asphalt pavement

= Railway infrastructure ( rails, sleepers, ballast, supporting walls...)
= Subsee infrastructure monitoring (e.g. pipeline corrosion)

B 31.03.25
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=P7L  Essential steps In ML-based predictions

Condition
monitoring
data

Feature ML algorithm Prediction
extraction (e.g. classifier) (label)

B 31.03.25
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Performed tasks

Classification
Regression
Segmentation
Object detection
Anomaly detection
Reconstruction
Matching

Classification

Object Detection

Segmentation

Olga Fink



=PFL  Defect detection of track: example SBB

Welding Plastic Surface Chewing Squat
Particle Defect Gum

Source: J. Casutt, SBB

B 31.03.25
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=PFL  Defect detection of track: example SBB

-Position: 560.544768
1 Surface Defect

-Position: 689.915904
3 Surface Defect

1 No Defect
0 Delete Label

Source: J. Casutt, SBB

B 31.03.25
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=PFL - Defect Type Classification of Sleepers : example SBB -mia

Healthy Crack Spalling

B 31.03.25
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=PrL

Suppose you want to create a panorama

Source: Matthew Brown
Olga Fink 12
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“P'L " Whatis the first step?

Need to match portions of images

Source: UW CSE vision faculty

B 31.03.25
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=PrL

Solution: Match image regions using local features

Source: UW CSE vision faculty

B 31.03.25
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Feature Descriptors



=PrL

B 31.03.25

Why local features?

= Locality
» features are local, so robust to occlusion and clutter

= Distinctiveness:

« can differentiate a large database of objects
= Quantity

» hundreds or thousands in a single image
= Efficiency

* real-time performance achievable

= Generality
« exploit different types of features in different situations

Source: UW CSE vision faculty

Olga Fink
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=P7L  Applications

= Features are used for:

Image alignment (e.g., panoramic mosaics)
Object recognition

3D reconstruction

Motion tracking

Indexing and content-based retrieval

B 31.03.25

Source: UW CSE vision faculty
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B 31.03.25

What about edges?

= Edges can be invariant to brightness changes but typically not invariant

to other transformations
'|.

Source: UW CSE vision faculty

Olga Fink
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=PFL What makes a good feature?

= Want uniqueness
» Leads to unambiguous matches in other images

= Look for “interest points”: image regions that are unusual
= How to define “unusual™?

Source: UW CSE vision faculty

B 31.03.25
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=L Finding interest points in an image

= Suppose we only consider a small window of pixels
® What defines whether a feature is a good or bad candidate?

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.

B 31.03.25
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B 31.03.25

Finding interest points in an image g

= How does the window change when you shift it?

“flat” region: no “edge”: “corner”:
change in all no change along significant change in all
directions the edge direction directions, i.e., even the

minimum change is large

= Find locations such that the minimum change caused by shifting the
window in any direction is large

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.




*FL " Finding Interest points (Feature Detection):
the math

= Consider shifting the window W
by (u,v)
* how do the pixels in W change? wW

« compare each pixel before and
after using the sum of squared
differences (SSD)

* this defines an SSD “error”
E(u,v):

E(wv)= Y [Hz+uwy+v)—I(zy)]
(x,y)eWw

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.

B 31.03.25
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EPF

B 31.03.25

Small motion assumption -

Taylor Series expansion of .

I(x4+u,y+v) = I(x, y)+%u—|—g—£v+higher order terms
If the motion (u,v) is small, then first order approx. is good

I(a:—l—uy—l—v)"’[(a:y)—l— —I—a—yv

~ 1(@,y) + o 1] ['j]

shorthand: I, = gi

Plugging this into the formula on the previous slide...

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.

Olga Fink 24
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Feature detection: the math

E(u,v)

Q

Q

Z [I(ﬂﬁ-i-U,y—l—v)—I(;c,y)]Q

(z,y)EW
2
U
Z [I(x,y) + [Ix Iy] [ " ] _I(xay)]
(z,y)eW
y 2
Z [[Ix Iy][’l)” Slide adapted form Darya Frolova, Denis Simakov, Wei nstitut
(.’.C,y)EW p orm Darya Frolova, Denis Simakov, Weizmann Institute.
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“"" Feature detection: the math g

This can be rewritten:

E,v)=~[u v] Z y 7

| J
'
H u
For the example above:

= You can move the center of the green window to anywhere
on the blue unit circle

= How do we find directions that will result in the largest
and smallest E values?

» Find these directions by looking at the eigenvectors of H

B 31.03.25

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.
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“"" Feature detection: the math s

B 31.03.25

Eawy=v)| | = 5D

@H s

Eigenvalues and eigenvectors of H
» Capture shifts with the smallest and largest change (E

value)
°* X4 i direction of largest |.ncr(.aase- in E. Hx_|_ — )\_|_£L‘_|_
* A, =amount of increase in direction X,
» x_=direction of smallest increase in E. Hx_ = A_x_

* A-=amount of increase in direction x_
Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.
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=PrL  Example: Cases and 2D Derivatives

Linear Edge Flat Corner

S

X derivative Input image patch

Y derivative

Slide adapted from Robert Collins

B 31.03.25
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=L Plotting Derivatives as 2D Points

. 3 5 02 Flat
The distribution of the x and y
derivatives is very different for |«
all three types of patches | N
0. IX
°32 ) 3 04 05
“ Corner & Linear Edge
04 04
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Slide adapted from Robert Collins

B 31.03.25
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=PFL Fitting Ellipse to each Set of Points

The distribution of x and y |
derivatives can be characterized [
by the shape and size of the 02

principal component ellipse
A~ A, =small
‘ 05 4 03 %2 04 0 61 02 03 04 05 |
05
N Corner - ' Linear Edge
03}
02
o1
or |
0.1
02|
-0.3] 2 e R 0.3
e A~ A, = large o A large; A, = small
0.5) 05
T8 b4~ 63 %7 Hi 8 61 02 63 b4 Bs ©5 %4 03 03 061 0 01 02 063 064 08

Slide adapted from Robert Collins

B 31.03.25
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=PrL

Feature detection:the math

How are A, X,, A_, and X_relevant for feature detection?

A, and A- are both
large;

E increases in all
directions

B 31.03.25

Source: UW CSE vision faculty
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EPF

" Feature detection summary

= Here’s what you do
« Compute the gradient at each
point in the image
* Create the H matrix from the
entries in the gradient
« Compute the eigenvalues

» Find points with large A_ (i.e., A.
> threshold)
« Choose points where A_is a

local maximum as interest
points

A

B 31.03.25

Source: UW CSE vision faculty
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EPF

" Feature detection summary

= Here’s what you do
« Compute the gradient at each
point in the image
« Create the H matrix from the
entries in the gradient
« Compute the eigenvalues

 Find points with large A_ (i.e., A.
> threshold)
« Choose points where A_is a

local maximum as interest )\
points -

B 31.03.25

Source: UW CSE vision faculty
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=PrL

The Hanis operator

A_1s a variant of the “Harris operator” for feature detection

f = l+ﬂ~— - k(ﬂ+ + /1—)2 - (h11h22 - h12 h21) - k(hll + hzz)2

= det(H)—k trace(H)?

Harris

= detis the determinant; trace = sum of diagonal elements of a matrix
= Very similar to A_but less expensive (no eigenvalue computation)

= Called the “Harris Corner Detector” or “Harris Operator”

= Most popular among all detectors

B 31.03.25

Source: UW CSE vision faculty

Olga Fink 35



m

PF

B 31.03.25

" TheHanis operator

Harris
operator

A

Source: UW CSE vision faculty

Olga Fink
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=PrL

Hamris detector example

Source: UW CSE vision faculty

B 31.03.25
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=PrL

f,..ms Value (red high, blue low)

B 31.03.25



Threshold (f;,, ;s > threshold value)

=PrL




Find local maxima of f,,_ ..

Source: UW CSE vision faculty

B 31.03.25
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=PrL

Hanis features (inred)

Source: UW CSE vision faculty

B 31.03.25
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“*"! Invariance of Eigenvalue-based feature detectors iruis

= Suppose you rotate the image by some angle ™ ﬂ][> /\
» Will you still pick up the same feature points? g R
* Yes (since eigenvalues remain the same)

= What if you change the brightness?
» Will you still pick up the same feature points?
* Mostly yes (uses gradients which involve pixel differences)

= Scale?

o 2 )y B

Source: UW CSE vision faculty

B 31.03.25

All points will be Corner !

classified as edges
Olga Fink 42
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=PrL

How to achieve invariance in image matching

= Two steps:

1. Make sure your feature detector is invariant
« Harris is invariant to translation and rotation

» Scale is trickier
= common approach is to detect features at many scales using a Gaussian
pyramid (e.g., MOPS)
= More sophisticated methods find “the best scale” to represent each feature
(e.g., SIFT)
2. Design an invariant feature descriptor

» A descriptor captures the intensity information in a region around the
detected feature point

* The simplest descriptor: a square window of pixels
= What's this invariant to?

B 31.03.25

Source: UW CSE vision faculty
Olga Fink 44



EPFL -

Rotation invariance for feature descriptors

Find dominant orientation of the image patch
« Thisis given by x,, the eigenvector of H corresponding to A,
(A, is the larger eigenvalue)
» Rotate the patch according to this angle

B 31.03.25

Figure by Matthew Brown Source: UW CSZ;;S‘F?:kfa°”"y45



SIFT algorithm
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=PrL

B 31.03.25

Scale Invariant Feature Transform

= SIFT algorithm helps locate the local features in an image
—>known as the ‘keypoints’ of the image.
= These keypoints are scale & rotation invariant

—> can be used for various computer vision applications, like image
matching, object detection, scene detection, etc

Source: UW CSE vision faculty
Olga Fink 47



£PFL  Four steps of the SIFT algorithm

1. Constructing a Scale Space

- make sure that features are scale-independent
2. Keypoint Localisation

-> Identifying the suitable features or keypoints

3. Orientation Assignment

- Ensure the keypoints are rotation invariant

4. Keypoint Descriptor

-> Assign a unique fingerprint to each keypoint

B 31.03.25

Source: UW CSE vision faculty
Olga Fink 48



=PrL

B 31.03.25

100 -
150 A

200 {

250

Gaussian Blurring

Original Image

100 -

150 1

200

250

Blur Image

0 50 100 150

Source: www.datascience.com

Olga Fink
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B 31.03.25

Scale + blur

First Octave
Scale space is a
collection of images
having different
Second Octave scales, generated
from a single image

Third Octave

Fourth Octave

Source: www.datascience.com

Olga Fink 50



=PFL  Difference of Gaussians -5
Detection of scale-space extrema

= |
octave) >¥‘3 > =

Scale —— >-> > 7 = =
(first = —
b St

z Difference of
Gaussian Gaussian (DOG)

Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004

B 31.03.25
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PFL Difference of Gaussians
Detection of scale-space extrema
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Source: www.datascience.com
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':P':

£ S

A = o
A Y
R N

Maxima and minima of the difference-of- -5
Gaussian images

- comparing a pixel (marked with
X) to its 26 neighbors in 3x3
regions at the current and
adjacent scales

Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004
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=F7L  Orientation asignment

= Calculate the magnitude and orientation
= Create a histogram for magnitude and orientation
= The bin at which we see the peak will be the orientation for the keypoint

35|40 |41 |45 |50

40 40 42f46 52

42 46 |50||55 55
-

48 52 (56 |58 60

56 |60 |65 |70 (75

B 31.03.25
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=PrL

Feature descriptor i

= Use the neighboring pixels, their orientations, and their magnitude to
generate a unique fingerprint for each keypoint called a ‘descriptor’

= Basic idea:

» Take 16x16 square window around detected interest point (8x8 shown
below)

« Compute edge orientation (angle of the gradient minus 90°) for each pixel
« Throw out weak edges (threshold gradient magnitude)
« Create histogram of surviving edge orientations (8 bins)

— o~
(7 Hﬁﬂ%
ﬁ :.,.r‘f i}

e

t N
R B —> angle histogram
— - -
-

"‘Jh"-lr"

"4
.“'*if*"a-"( IS
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|mage gradients Source: Lowe, Distinctive Image Features from Scale-Invariant B?Q’Jjﬂm(ts 2004
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=PrL

SIFT descriptor

= Full version
 Divide the 16x16 window into a 4x4 grid of cells
* (8x8 window and 2x2 grid shown below for simplicity)
« Compute an orientation histogram for each cell
» 16 cells * 8 orientations = 128 dimensional descriptor

Tt >
ﬁ/:*’,?#f\\
— Ny |

w e

11; Y ,
.--.}'J-—"?.p - —F
“"-n-___—-'""

-";”x * 4r"‘
Image gradients Keypoint descriptor

'
Nl PR
e
Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004
Olga Fink 56
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L Properties of SIFT-based matching

= Extraordinarily robust matching technique
« Can handle changes in viewpoint
= Up to about 60 degree out of plane rotation

« Can handle significant changes in illumination: Sometimes even day vs. night
(below)

* Fast and efficient — can run in real time

B 31.03.25

Source: UW CSE vision faculty
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“""" HOG Descriptor (Histogram of Oriented Gradients)

B 31.03.25

The patch is divided into a grid of cells and for each cell a histogram of gradient directions is
compiled.

The HOG descriptor is the concatenation of these histograms (used in SIFT)

Differently from the patch descriptors, HOG has float values.

0 2v

16 16 Example of gradient histogram with 8 orientation bins.

Each vote is weighted by the gradient magnitude

HOG Descriptor:
(1D vector)

Olga Fink
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[ ]
- SIFTvs HOG Descriptors

Input Region
Detection

Invariant to

Descriptor Size
Orientation Encoding
Normalization
Sparsity
Computation

SIFT Descriptor

HOG Descriptor

Intuition

Matching keypoints
Object detection

Local patch around each keypoint
Tied to detected keypoints (interest points)

Scale, rotation, illumination

128-dim vector per keypoint

Orientation histograms in 4x4 grid around point
Local (each keypoint is normalized)

Sparse descriptors (only at keypoints)

More complex (keypoint detection + descriptor)
4x4 grid of subregions, 8-bin histograms

N/A

Describes unique local keypoint features

Yes

Rarely

Regular dense grid of patches across whole image
Not tied to keypoints; computed over sliding windows

Mostly illumination and pose

Large vector (e.g., 3780-dim) for whole image region
Orientation histograms in cells (e.g., 8x8 px)
Block-level normalization (overlapping cells)

Dense descriptors (computed on fixed grid)

Faster (just compute gradients + histograms)

N/A

Histograms over blocks (2x2 cells), high dimensional

Describes texture/edge flow of a region

No

Yes
Olga Fink 59
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=PrL

Feature matching

= Given a feature in |, how to find the best match in I,?
1. Define distance function that compares two descriptors
2. Test all the features in |, find the one with min distance

B 31.03.25

Source: UW CSE vision faculty
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=PrL

Feature distance: SSD

= How to define the similarity between two features f,, f,?
» Simple approach is SSD(f,, f,)
« Sum of square differences (SSD) between entries of the two descriptors
» Doesn’t provide a way to discard ambiguous (bad) matches

B 31.03.25

I 2 Source: UW CSE vision faculty
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=PrL

Feature distance: Ratio of SSDs

= How to define the difference between two features f;, f,?
 Better approach: ratio distance = SSD(f,, f,) / SSD(f,, f,’)
= f, is best SSD match to f; in I,
= f,’is 2"d best SSD match to f, in |,
= An ambiguous/bad match will have ratio close to 1
= Look for unique matches which have low ratio

B 31.03.25

Source: UW CSE vision faculty
2 Olga Fink 63




=PrL

Image matching

SSD feature distance

Suppose we use SSD
Small values are possible matches but how small?

Decision rule: Accept match if SSD < T where T is a threshold

What is the effect of choosing a particular T?

B 31.03.25

Source: UW CSE vision faculty
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=PrL

Effect of threshold T

SSD feature distance

Decision rule: Accept match if SSD < T

Example: Large T
T =250 - a, b, c are all accepted as matches

a and b are true matches (“true positives”)
— they are actually matches

B 31.03.25

c is a false match (“false positive”)
— actually not a match Source: UW CSE ision facuty



=PrL

Effect of threshold T

SSD feature distance

Decision rule: Accept match if SSD < T
Example: Smaller T
T =100 - only a and b are accepted as matches a and b

are true matches (“true positives”)
c is no longer a “false positive” (it is a “true negative”)

B 31.03.25

Source: UW CSE vision faculty
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Example applications of
feature detection +
matching




=PrL

B 31.03.25

Multi-image stitching and scene reconstruction
for evaluating defect evolution in structures

Image database

:l!l;‘l‘-': l‘..J: 3‘&23‘:‘*’1 K’kiikx p 1‘; :.11.'“ !.J
> » ll K \!{0 - Iﬁ{\ > £ i! ]i
Current view Keypoint detection Keypoint matching Image selection Outlier exclusion
\
Reconstructed view E E D O
- -« - - : D
Comparison Cropping Blending Composition Bundle adjustment

Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect
evolution in structures. Structural Health Monitoring, 10(6), 643-657.
Olga Fink 68



=PFL Matching SIFT keypoints in two overlapping e
Images

Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect
evolution in structures. Structural Health Monitoring, 10(6), 643-657.

B 31.03.25
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PFL  The reconstructed scene and the contribution of -l
the selected images

B 31.03.25

Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect

evolution in structures. Structural Health Monitoring, 10(6), 643-657. Olga Fink 70



=PFL  The reconstructed scene and the contribution of k-
the selected images

Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect
evolution in structures. Structural Health Monitoring, 10(6), 643-657.

B 31.03.25
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=PFL The reconstructed scene and the contribution of
the selected Images

(@)

(b)

Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect
evolution in structures. Structural Health Monitoring, 10(6), 643-657.

B 31.03.25
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Convolutional neural
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B 31.03.25

L

General intuition behind unsing convolutional =I5
filters

= Image filters can enhance image attributes

= Convolutional neural networks are similar to conventional image
filtering

» Filter kernels are learnt

Inputimage Convolution Feature map
Kemel _
-1 -1 -1
—1 8 -1
-1 -1 -1

Source: UIO, 2017
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=PFL Stationarity and Self-similarity

Data is self-similar across the domain

B 31.03.25

Olga Fink 75



=PFL Translation Invariance (image classification

tasks)

B 31.03.25

— f(z) Vv
where

@ image is modeled as a function x € L?([0, 1]?)
e Tyx(u) = z(u— v) is a translation operator
e v € [0,1]? is a translation vector

e f:L%([0,1]?) — {1,..., L} is a classification functional

Bruna, Mallat 2012

Olga Fink
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EPFL Deformation invariance (image classification tasks) oS

[f(Lrx) = f(x)| = V7] Vf,7
where
@ image is modeled as a function » € L*([0,1]?)
o L. x(u) =x(u—7(u)) is a warping operator
e 7:[0,1]%2 = [0,1]? is a smooth deformation field

o f:L%([0,1]%) — {1,..., L} is a classification functional

B 31.03.25

Bruna, Mallat 2012
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=PFL  Convolutional Neural Networks (CNN) =N

— CAR
— TRUCK
— VAN

ﬁ d — BICYCLE

Conv. Pooling  Conv. Pooling  Flatten Fully
connected

dW
Conv. layer :cgﬂ)(u) =& Z(wéil) *372[))(11)
(=1

Activation, e.g.  {(z) = max{x,0}  rectified linear unit (ReLU)
Parameters filters W . W)
Pooling :rzglﬂ)(u) = ||x§l)(u’) ' e N, p=1,2 or o0

LeCun et al. 1989 (Image: Debarko De)

Olga Fink 78
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=PFL  Key properties of CNNs

— CAR
— TRUCK
— VAN

D — BICYCLE

© Convolutional filters (Translation invariance+Self-similarity)
© Multiple layers (Compositionality)
© Filters localized in space (Locality)
© O(1) parameters per filter (independent of input image size n)
© O(n) complexity per layer (filtering done in the spatial domain)

© O(logn) layers in classification tasks

LeCun et al. 1989

Olga Fink 79



=PFL  Convolutional Neural Networks (historical
perspective)

3 convolutional + 1 fully @ 5 convolutional + 3 fully
connected layer connected layers

o 1M parameters
Trained on MNIST 70K
CPU-based

60M parameters

Trained on ImageNet 1.5M
GPU-based
RelLU, Dropout

tanh non-linearity

LeCun et al. 1998; Krizhevsky, Sutskever, Hinton 2012

B 31.03.25
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=PFL  Filters

0 0 0 0 0 0 0
0 2 4 9 1 4 0 21 59 37 -9 2
0 2 1 4 4 6 0 1 2 3 30 51 66 20 43
0 1 1 2 9 2 0 yx 4 7 4 = 14 31 49 101 -19
0|7 3|5|1]3]0 2 5 1 50 15 53 2 21
0 2 3 4 8 5 0 Filter / 49 57 64 76 10
0 0 0 0 0 0 O Kemnel Feature
Image
0=n—fS + Zp_l_1

Where O is the output height/length, n is input height / length, f is filter size, p is the padding, and s is the stride

B 31.03.25
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=F7L  Pooling

6 8 6 3 1 0 13110 2
9(13(10 5| 2| 0 14 11 3
9 14 11 6 3 0 13 10 3
9 13 11 6 2 0 Max pooling
8 1310 5 3 0

6/ 7|5 |3|1|0

Feature map
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=PrL

B 31.03.25

... kemels are 4D

If we combine all the filters we get a
4D tensor
The operation can be viewed as:

- a matrix multiplication for

each spatial position

- asum over spatial dimensions
This is a useful representation as
many deep learning frameworks
present it in this way
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=PFL  Convolutional neural network consist of multiple layers oS

A A

CONYV,
RelLU

e.g.6
5x5x3
32 filters 28

Source: UIO, 2017
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=PFL  Convolutional neural network consist of multiple layers oS

32 28 24
CONV, CONV, CONV,
RelLU RelLU RelLU
e.g.6 e.g. 10
SAbX3 5x5x6
32 filters 28 filters 24

10

w
(®))

Source 1UIO, 2017
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=PrL Hierarchy and Compositionality

Typical features learned by a CNN becoming increasingly complex
at deeper layers

Zeiler, Fergus 2013
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=PrL
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Making use of pre-trained models
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=PFL  Transfer Leaming with CNNs

2. Small Dataset (C classes)

1. Train on Imagenet

B 31.03.25

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

-
@
o

_

Reinitialize
this and train

> Freeze these

—

3. Bigger dataset

FC-C
MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

_/

Train

these
With bigger
dataset, train
more layers

> Freeze

these
Lower learning rate

when finetuning;
1/10 of original LR
is good starting

—

point
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