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▪ Edge Detection
• Identifies points in an image where brightness changes sharply, used for object boundaries.

▪ Texture Analysis
• Examines surface patterns and variations to classify regions based on their textures.

▪ Corner Detection
• Detects points where edges meet, useful in motion tracking and object recognition.

▪ Blob Detection
• Identifies regions in an image that differ in properties like brightness or color.

▪ Shape-Based Feature
• Captures geometric properties of objects like contours and region boundaries.

▪ Transform-Based Features
• Extracts features using transformations like Fourier or Wavelet for frequency domain analysis.

▪ Local Feature Descriptors
• Captures distinctive patterns in image patches like SIFT, SURF, or ORB.

▪ Color & Intensity Features
• Uses pixel color and brightness levels as features, helpful in segmentation and recognition

Brief Description of Feature Extraction Techniques
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Visual condition 
monitoring:
Examples
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▪ Bridges 

▪ Tunnels 

▪ Underground pipes

▪ Roads: e.g. asphalt pavement

▪ Railway infrastructure ( rails, sleepers, ballast, supporting walls…)

▪ Subsee infrastructure monitoring (e.g. pipeline corrosion)

▪ … 

Types of infrastructures monitored visually
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Essential steps in ML-based predictions
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▪ Classification

▪ Regression

▪ Segmentation

▪ Object detection

▪ Anomaly detection

▪ Reconstruction

▪ Matching

▪ …

Performed tasks
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Defect detection of track: example SBB
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Source: J. Casutt, SBB



Defect detection of track: example SBB
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Defect Type Classification of Sleepers : example SBB
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Healthy Crack Spalling



Feature detection and 
matching
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Suppose you want to create a panorama

Source: Matthew Brown
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What is the first step?

Need to match portions of images

Source: UW CSE vision faculty3
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Solution: Match image regions using local features
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Features can also be used for object recognition

Feature Descriptors
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▪ Locality

• features are local, so robust to occlusion and clutter

▪ Distinctiveness:

• can differentiate a large database of objects

▪ Quantity

• hundreds or thousands in a single image

▪ Efficiency

• real-time performance achievable

▪ Generality

• exploit different types of features in different situations

Why local features?
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▪ Features are used for:

• Image alignment (e.g., panoramic mosaics)

• Object recognition

• 3D reconstruction 

• Motion tracking

• Indexing and content-based retrieval

• …

Applications
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Feature detection
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▪ Edges can be invariant to brightness changes but typically not invariant 
to other transformations

What about edges?
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▪ Want uniqueness

• Leads to unambiguous matches in other images

▪ Look for “interest points”: image regions that are unusual

▪ How to define “unusual”?

What makes a good feature?
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▪ Suppose we only consider a small window of pixels
 What defines whether a feature is a good or bad candidate?

Finding interest points in an image

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.
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▪ How does the window change when you shift it?

▪ Find locations such that the minimum change caused by shifting the 
window in any direction is large

“flat” region: no

change in all 

directions

“edge”:

no change along

the edge direction

“corner”:

significant change in all 

directions, i.e., even the

minimum change is large

Finding interest points in an image
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Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.



Finding interest points (Feature Detection): 
the math
▪ Consider shifting the window W 

by (u,v)

• how do the pixels in W change?

• compare each pixel before and 
after using the sum of squared 
differences (SSD)

• this defines an SSD “error” 
E(u,v):

W
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Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.



Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx. is good

Plugging this into the formula on the previous slide…

Small motion assumption
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Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection:the math

W
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Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection:the math
This can be rewritten:

For the example above:

▪ You can move the center of the green window to anywhere

on the blue unit circle

▪ How do we find directions that will result in the largest

and smallest E values?

▪ Find these directions by looking at the eigenvectors of H
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Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.



Feature detection:the math

Eigenvalues and eigenvectors of H
• Capture shifts with the smallest and largest change (E

value)

• x+ = direction of largest increase in E.

• + = amount of increase in direction x+

• x- = direction of smallest increase in E.

• - = amount of increase in direction x-
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Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.



Example: Cases and 2D Derivatives
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Slide adapted from Robert Collins



Plotting Derivatives as 2D Points
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Slide adapted from Robert Collins



- ~ + = small

- large; + = small- ~ + = large

Fitting Ellipse to each Set of Points
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Slide adapted from Robert Collins



Feature detection:the math

+ >> -

- >> +

+ and - are both 

large;

E increases in all 

directions

How are +, x+, -, and x- relevant for feature detection?

-

+

Source: UW CSE vision faculty3
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▪ Here’s what you do

• Compute the gradient at each 
point in the image

• Create the H matrix from the 
entries in the gradient

• Compute the eigenvalues

• Find points with large - (i.e., -

> threshold)

• Choose points where - is a 
local maximum as interest 
points

Feature detection summary

Source: UW CSE vision faculty3
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▪ Here’s what you do

• Compute the gradient at each 
point in the image

• Create the H matrix from the 
entries in the gradient

• Compute the eigenvalues

• Find points with large - (i.e., -

> threshold)

• Choose points where - is a 
local maximum as interest 
points

Feature detection summary
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▪ det is the determinant; trace = sum of diagonal elements of a matrix

▪ Very similar to - but less expensive (no eigenvalue computation)

▪ Called the “Harris Corner Detector” or “Harris Operator”

▪ Most popular among all detectors

The Harris operator
- is a variant of the “Harris operator” for feature detection

11 22 12 21 11 22

2 )2

Harris
) = (h h − h h ) − k(h + hf = +− − k(+ +−

= det(H )− k trace(H )2

Source: UW CSE vision faculty3
1
.0

3
.2

5

Olga Fink 35



The Harris operator

Harris 
operator

Source: UW CSE vision faculty3
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Harris detector example

Source: UW CSE vision faculty
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fHarris value (red high, blue low)

Source: UW CSE vision faculty
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Threshold (fHarris > threshold value)

Source: UW CSE vision faculty
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Find local maxima of fHarris

Source: UW CSE vision faculty
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Harris features (in red)

Source: UW CSE vision faculty
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▪ Suppose you rotate the image by some angle

• Will you still pick up the same feature points?

• Yes (since eigenvalues remain the same)

▪ What if you change the brightness?

• Will you still pick up the same feature points?

• Mostly yes (uses gradients which involve pixel differences)

▪ Scale?

• No!

Invariance of Eigenvalue-based feature detectors

Source: UW CSE vision faculty
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Feature matching
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▪ Two steps:

1. Make sure your feature detector is invariant

• Harris is invariant to translation and rotation

• Scale is trickier

▪ common approach is to detect features at many scales using a Gaussian 
pyramid (e.g., MOPS)

▪ More sophisticated methods find “the best scale” to represent each feature 
(e.g., SIFT)

2. Design an invariant feature descriptor

• A descriptor captures the intensity information in a region around the 
detected feature point

• The simplest descriptor: a square window of pixels

▪ What’s this invariant to?

How to achieve invariance in image matching

Source: UW CSE vision faculty
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Find dominant orientation of the image patch

• This is given by x+, the eigenvector of H corresponding to +

(+ is the larger eigenvalue)

• Rotate the patch according to this angle

Rotation invariance for feature descriptors

Figure by Matthew Brown
Source: UW CSE vision faculty
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SIFT algorithm
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▪ SIFT algorithm helps locate the local features in an image

→known as the ‘keypoints‘ of the image. 

▪ These keypoints are scale & rotation invariant 

→ can be used for various computer vision applications, like image 
matching, object detection, scene detection, etc

Scale Invariant Feature Transform
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1. Constructing a Scale Space

→ make sure that features are scale-independent

2. Keypoint Localisation

→ Identifying the suitable features or keypoints

3. Orientation Assignment

→ Ensure the keypoints are rotation invariant

4. Keypoint Descriptor

→ Assign a unique fingerprint to each keypoint

Four steps of the SIFT algorithm
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Gaussian Blurring
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Source: www.datascience.com



Scale + blur
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Scale space is a 

collection of images 

having different 

scales, generated 

from a single image

Source: www.datascience.com



Difference of Gaussians
Detection of scale-space extrema
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Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004



Difference of Gaussians
Detection of scale-space extrema
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Source: www.datascience.com



Maxima and minima of the difference-of-
Gaussian images
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→ comparing a pixel (marked with 

X) to its 26 neighbors in 3x3 

regions at the current and 

adjacent scales

Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004



▪ Calculate the magnitude and orientation

▪ Create a histogram for magnitude and orientation

▪ The bin at which we see the peak will be the orientation for the keypoint

Orientation asignment
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▪ Use the neighboring pixels, their orientations, and their magnitude to 
generate a unique fingerprint for each keypoint called a ‘descriptor’

▪ Basic idea:

• Take 16x16 square window around detected interest point (8x8 shown 
below)

• Compute edge orientation (angle of the gradient minus 90°) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations (8 bins)

Feature descriptor

0 2

angle histogram

Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004
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▪ Full version

• Divide the 16x16 window into a 4x4 grid of cells

• (8x8 window and 2x2 grid shown below for simplicity)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

SIFT descriptor

Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004
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▪ Extraordinarily robust matching technique

• Can handle changes in viewpoint

▪ Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination: Sometimes even day vs. night 
(below)

• Fast and efficient — can run in real time

Properties of SIFT-based matching
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Source: UW CSE vision faculty



HOG Descriptor (Histogram of Oriented Gradients)

58

▪ The patch is divided into a grid of cells and for each cell a histogram of gradient directions is
compiled.

▪ The HOG descriptor is the concatenation of these histograms (used in SIFT)

▪ Differently from the patch descriptors, HOG has float values.

0 

Example of gradient histogram with 8 orientation bins.
Each vote is weighted by the gradient magnitude

HOG Descriptor:
(1D vector)

0  0  0 

…
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SIFT vs HOG Descriptors
Aspect SIFT Descriptor HOG Descriptor

Input Region Local patch around each keypoint Regular dense grid of patches across whole image

Detection Tied to detected keypoints (interest points) Not tied to keypoints; computed over sliding windows

Invariant to Scale, rotation, illumination Mostly illumination and pose

Descriptor Size 128-dim vector per keypoint Large vector (e.g., 3780-dim) for whole image region

Orientation Encoding Orientation histograms in 4x4 grid around point Orientation histograms in cells (e.g., 8x8 px)

Normalization Local (each keypoint is normalized) Block-level normalization (overlapping cells)

Sparsity Sparse descriptors (only at keypoints) Dense descriptors (computed on fixed grid)

Computation More complex (keypoint detection + descriptor) Faster (just compute gradients + histograms)

SIFT Descriptor 4×4 grid of subregions, 8-bin histograms N/A

HOG Descriptor N/A Histograms over blocks (2x2 cells), high dimensional

Intuition Describes unique local keypoint features Describes texture/edge flow of a region

Matching keypoints Yes No

Object detection Rarely Yes3
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Feature matching
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▪ Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance

Feature matching
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▪ How to define the similarity between two features f1, f2?

• Simple approach is SSD(f1, f2)

• Sum of square differences (SSD) between entries of the two descriptors

• Doesn’t provide a way to discard ambiguous (bad) matches

Feature distance: SSD

I1

f1

I2

f2
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Source: UW CSE vision faculty



▪ How to define the difference between two features f1, f2?

• Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2’)

▪ f2  is best SSD match to f1 in I2
▪ f2’ is 2nd best SSD match to f1 in I2
▪ An ambiguous/bad match will have ratio close to 1

▪ Look for unique matches which have low ratio

Feature distance: Ratio of SSDs

I1 I2

'
f2 f2f1
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Image matching

200

SSD feature distance

50

75

Suppose we use SSD

Small values are possible matches but how small?

Decision rule: Accept match if SSD < T where T is a threshold

What is the effect of choosing a particular T?
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Effect of threshold T

50

75

200

SSD feature distance

Decision rule: Accept match if SSD < T

Example: Large T

T = 250 → a, b, c are all accepted as matches 

a and b are true matches (“true positives”)

– they are actually matches

c is a false match (“false positive”)

– actually not a match

a

b

c
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Effect of threshold T

50

75

200

SSD feature distance

Decision rule: Accept match if SSD < T

Example: Smaller T

T = 100 → only a and b are accepted as matches a and b

are true matches (“true positives”)

c is no longer a “false positive” (it is a “true negative”)

a

b

c
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Example applications of 
feature detection + 
matching
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Multi-image stitching and scene reconstruction 
for evaluating defect evolution in structures
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Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect 

evolution in structures. Structural Health Monitoring, 10(6), 643-657.



Matching SIFT keypoints in two overlapping 
images
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Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect 

evolution in structures. Structural Health Monitoring, 10(6), 643-657.



The reconstructed scene and the contribution of 
the selected images
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Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect 

evolution in structures. Structural Health Monitoring, 10(6), 643-657.



The reconstructed scene and the contribution of 
the selected images
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Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect 

evolution in structures. Structural Health Monitoring, 10(6), 643-657.



The reconstructed scene and the contribution of 
the selected images
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Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect 

evolution in structures. Structural Health Monitoring, 10(6), 643-657.



Recap: 
Convolutional neural 
networks
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▪ Image filters can enhance  image attributes

▪ Convolutional neural networks  are similar to conventional  image 
filtering

▪ Filter kernels are learnt
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General intuition behind unsing convolutional
filters

Source: UIO, 2017



Data is self-similar across the domain

Stationarity and Self-similarity
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Translation invariance (image classification
tasks)
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Bruna, Mallat 2012



Deformation invariance (image classification tasks)
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Bruna, Mallat 2012



Convolutional Neural Networks (CNN)
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LeCun et al. 1989 (Image: Debarko De)



Key properties of CNNs
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Convolutional Neural Networks (historical
perspective)
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Filters
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𝑂 =
𝑛 − 𝑓 + 2𝑝

𝑠
+ 1

Where O is the output height/length, n is input height / length, f is filter size, p is the padding, and s is the stride



Pooling
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In convolutional networks, layers are 3D...
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Source: UIO, 2017



… kernels are 4D
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- If we combine all the filters we get a  
4D tensor

- The operation can be viewed as:

- a matrix multiplication for  
each spatial position

- a sum over spatial dimensions

- This is a useful representation as  
many deep learning frameworks  
present it in this way

Source: UIO, 2017

84



Convolutional neural network consist of multiple layers
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Source: UIO, 2017



Convolutional neural network consist of multiple layers
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Source: UIO, 2017



Hierarchy and Compositionality
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Typical features learned by a CNN becoming increasingly complex 
at deeper layers

Zeiler, Fergus 2013



Making use of pre-trained models
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Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

3. Bigger dataset

Freeze 

these

Train 

these
With bigger 

dataset, train 

more layers

Lower learning rate 

when finetuning; 

1/10 of original LR 

is good starting 

point

Transfer Learning with CNNs
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