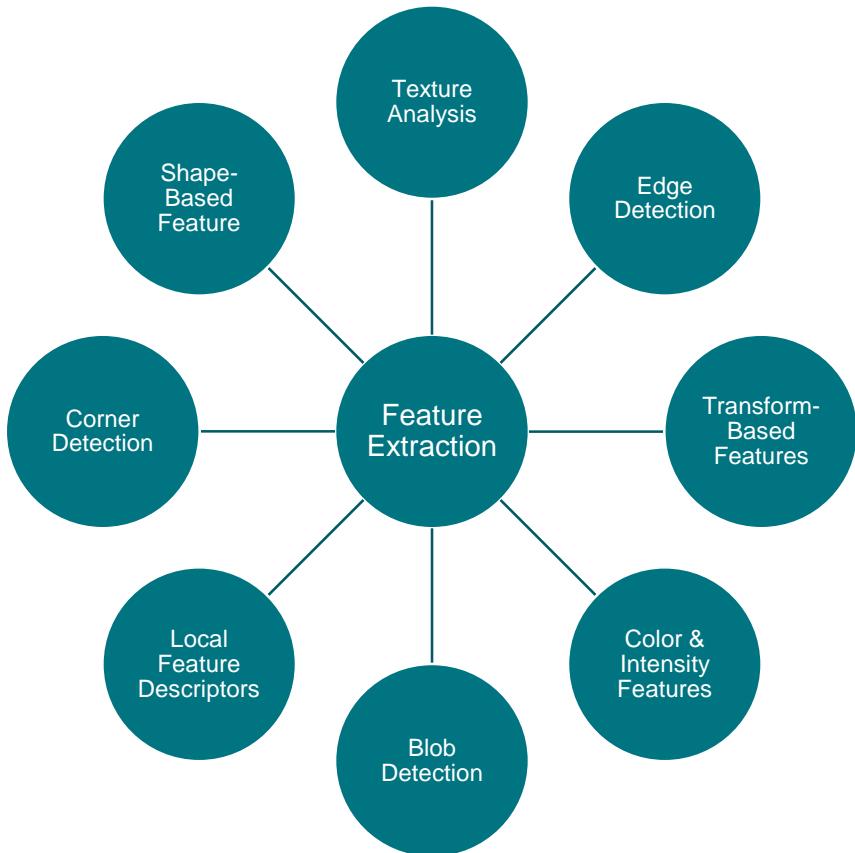


Prof. Dr. Olga Fink

Data Science for Infrastructure Condition Monitoring: Visual condition monitoring

April 2025



- **Edge Detection**

- Identifies points in an image where brightness changes sharply, used for object boundaries.

- **Texture Analysis**

- Examines surface patterns and variations to classify regions based on their textures.

- **Corner Detection**

- Detects points where edges meet, useful in motion tracking and object recognition.

- **Blob Detection**

- Identifies regions in an image that differ in properties like brightness or color.

- **Shape-Based Feature**

- Captures geometric properties of objects like contours and region boundaries.

- **Transform-Based Features**

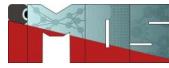
- Extracts features using transformations like Fourier or Wavelet for frequency domain analysis.

- **Local Feature Descriptors**

- Captures distinctive patterns in image patches like SIFT, SURF, or ORB.

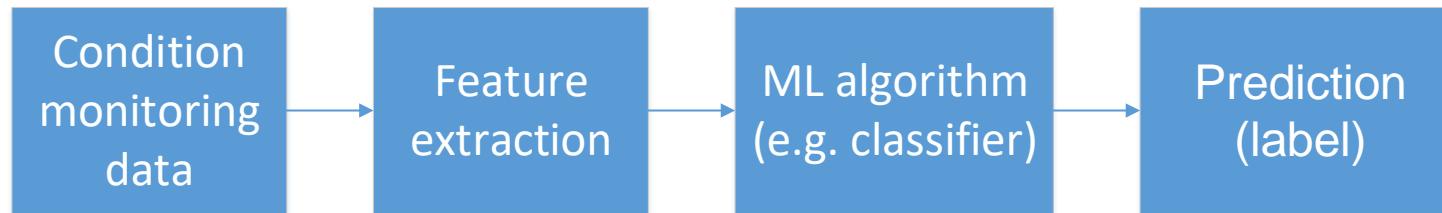
- **Color & Intensity Features**

- Uses pixel color and brightness levels as features, helpful in segmentation and recognition



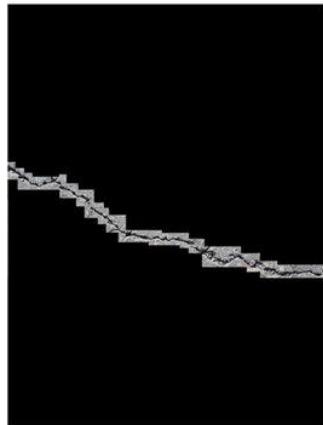
Visual condition monitoring: Examples

- Bridges
- Tunnels
- Underground pipes
- Roads: e.g. asphalt pavement
- Railway infrastructure (rails, sleepers, ballast, supporting walls...)
- Subsea infrastructure monitoring (e.g. pipeline corrosion)
- ...



Performed tasks

- Classification
- Regression
- Segmentation
- Object detection
- Anomaly detection
- Reconstruction
- Matching
- ...

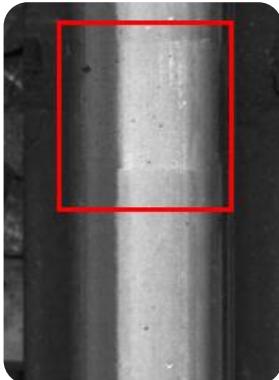
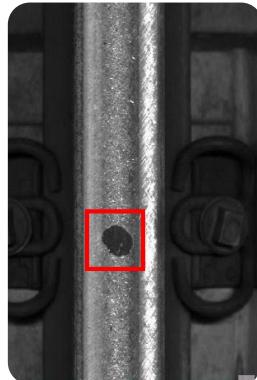
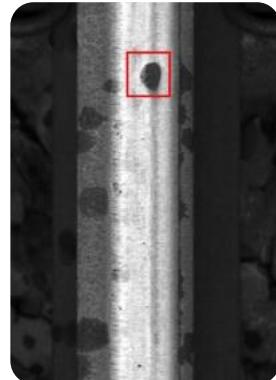
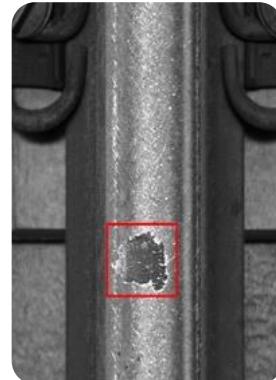


Classification

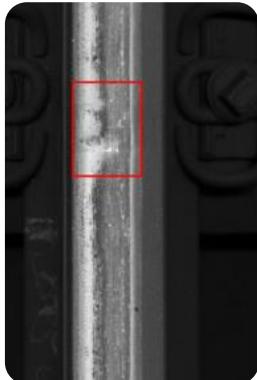
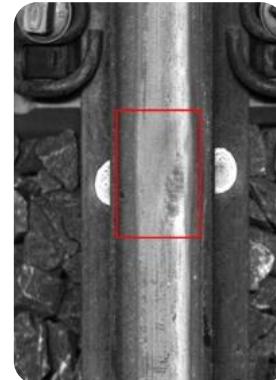
Object Detection

Segmentation

Welding

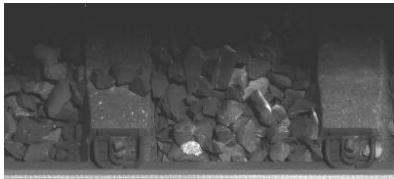
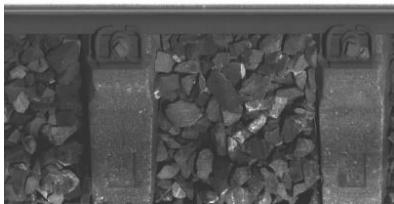
Plastic
ParticleSurface
DefectChewing
Gum

Squat

Wheel
Slip

Defect detection of track: example SBB

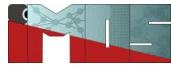
Source: J. Casutt, SBB



Healthy

Crack

Spalling



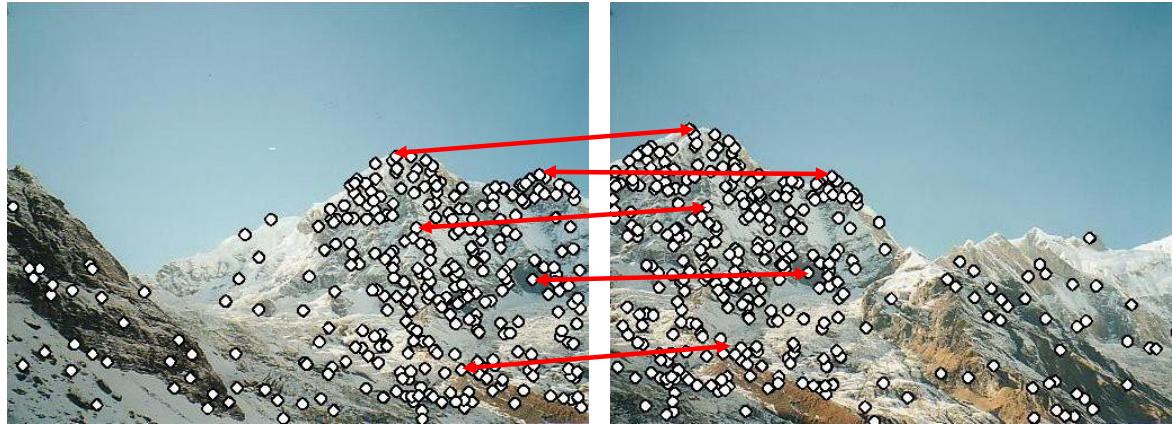
Feature detection and matching

Suppose you want to create a panorama

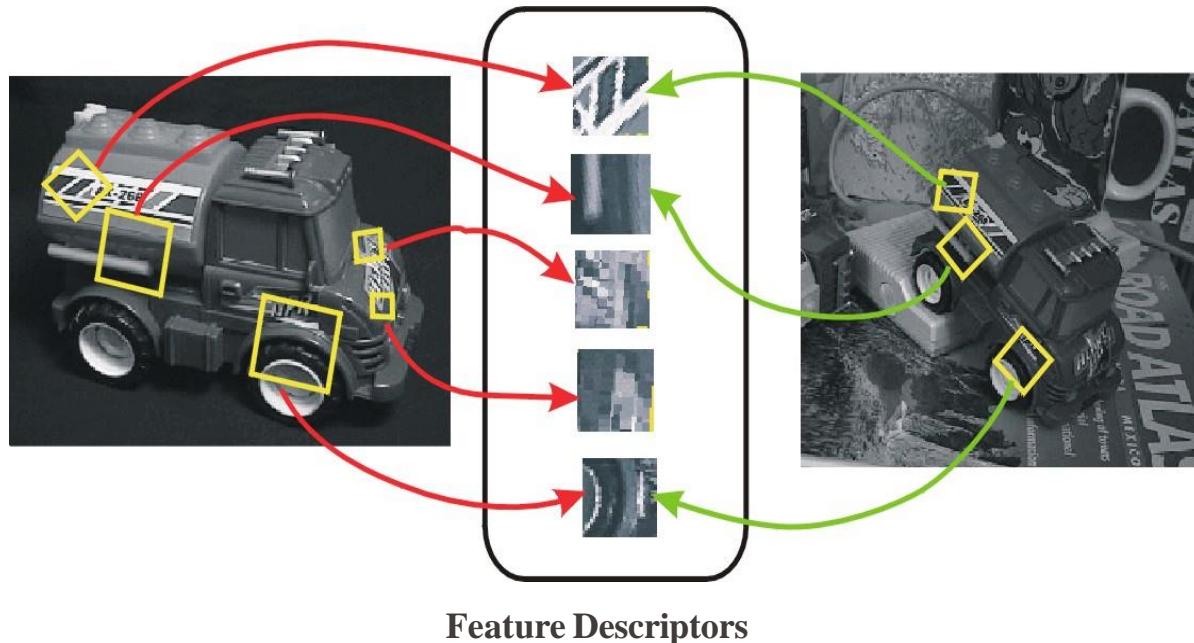
What is the first step?

Need to match portions of images

Solution: Match image regions using local features



Features can also be used for object recognition

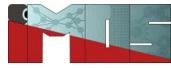


Feature Descriptors

- Locality
 - features are local, so robust to occlusion and clutter
- Distinctiveness:
 - can differentiate a large database of objects
- Quantity
 - hundreds or thousands in a single image
- Efficiency
 - real-time performance achievable
- Generality
 - exploit different types of features in different situations

- Features are used for:

- Image alignment (e.g., panoramic mosaics)
- Object recognition
- 3D reconstruction
- Motion tracking
- Indexing and content-based retrieval
- ...



Feature detection

What about edges?

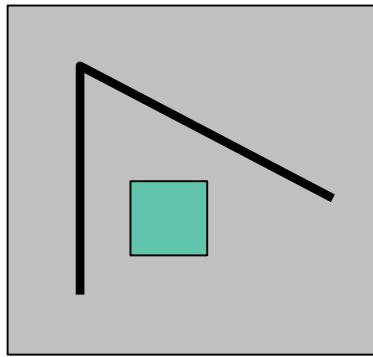
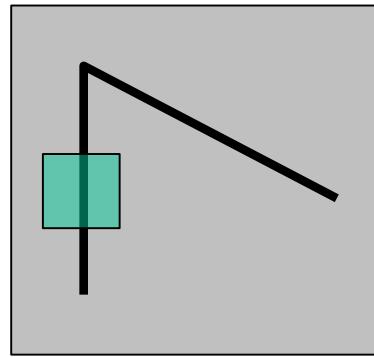
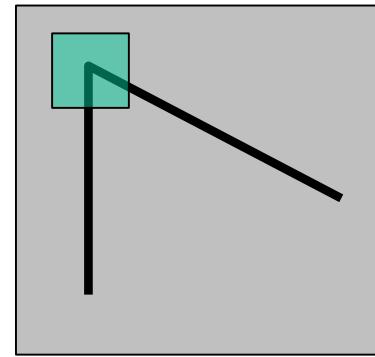
- Edges can be invariant to brightness changes but typically not invariant to other transformations

Source: UW CSE vision faculty

What makes a good feature?

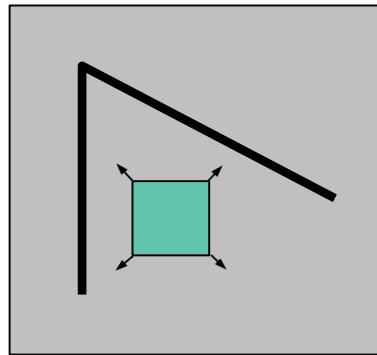
- Want uniqueness
 - Leads to unambiguous matches in other images
- Look for “interest points”: image regions that are unusual
- How to define “unusual”?

- Suppose we only consider a small window of pixels
 - ⑩ What defines whether a feature is a good or bad candidate?

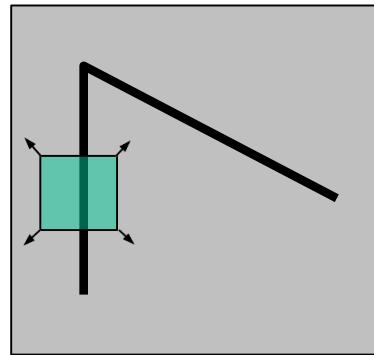


Finding interest points in an image

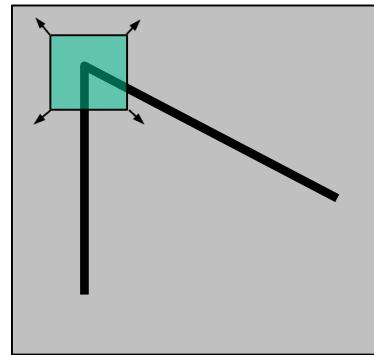
- How does the window change when you shift it?



“flat” region: no change in all directions



“edge”: no change along the edge direction

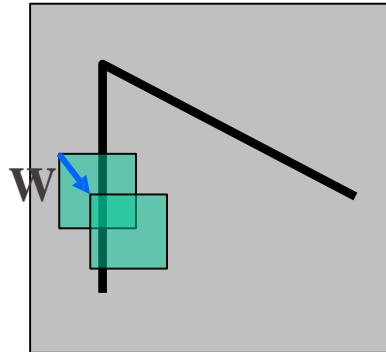


“corner”: significant change in all directions, i.e., even the minimum change is large

- Find locations such that the minimum change caused by shifting the window in any direction is large

Finding interest points (Feature Detection): the math

- Consider shifting the window W by (u, v)
 - how do the pixels in W change?
 - compare each pixel before and after using the sum of squared differences (SSD)
 - this defines an SSD “error”
 $E(u, v)$:



$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

Small motion assumption

Taylor Series expansion of I :

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u, v) is small, then first order approx. is good

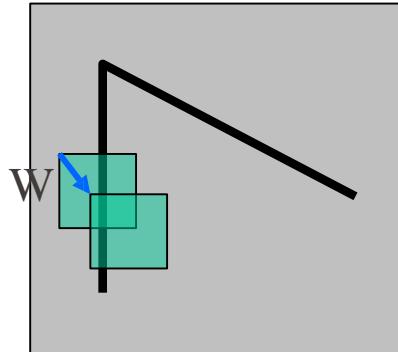
$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Feature detection: the math



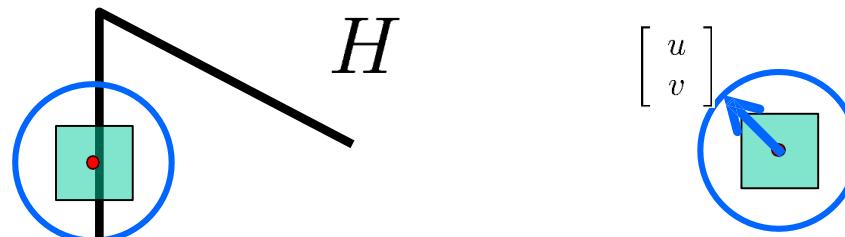
$$\begin{aligned} E(u, v) &= \sum_{(x,y) \in W} [I(x+u, y+v) - I(x, y)]^2 \\ &\approx \sum_{(x,y) \in W} [I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix} - I(x, y)]^2 \\ &\approx \sum_{(x,y) \in W} \left[[I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix} \right]^2 \end{aligned}$$

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Feature detection: the math

This can be rewritten:

$$E(u, v) \approx [u \ v] \left(\sum_{(x, y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$



For the example above:

- You can move the center of the green window to anywhere on the blue unit circle
- How do we find directions that will result in the largest and smallest E values?
- Find these directions by looking at the eigenvectors of H

Feature detection: the math

$$E(u, v) \approx [u \ v] \underbrace{\left(\sum_{(x, y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right)}_{H} \begin{bmatrix} u \\ v \end{bmatrix}$$



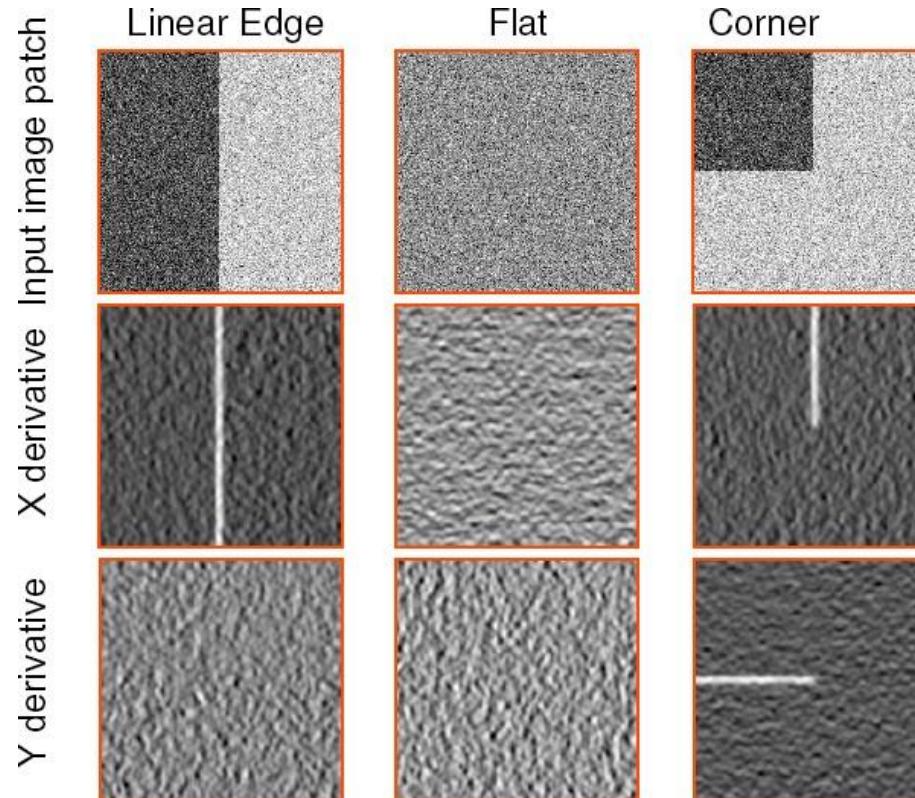
Eigenvalues and eigenvectors of H

- Capture shifts with the smallest and largest change (E value)
- x_+ = direction of **largest** increase in E.
- λ_+ = amount of increase in direction x_+
- x_- = direction of **smallest** increase in E.
- λ_- = amount of increase in direction x_-

$$\begin{aligned} Hx_+ &= \lambda_+ x_+ \\ Hx_- &= \lambda_- x_- \end{aligned}$$

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

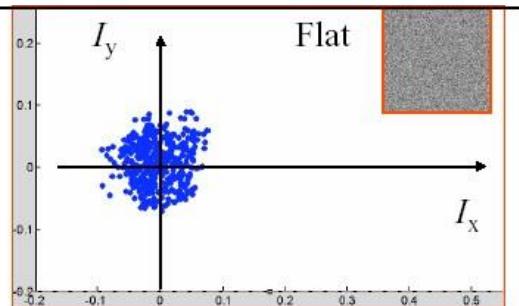
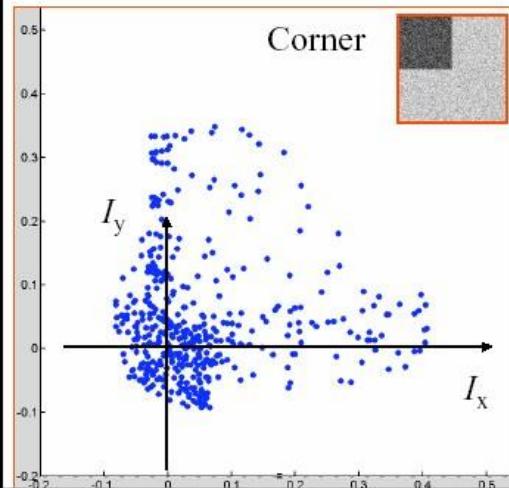
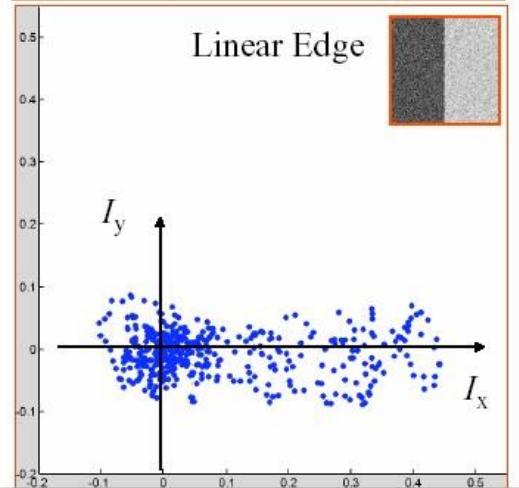
Example: Cases and 2D Derivatives



Slide adapted from Robert Collins

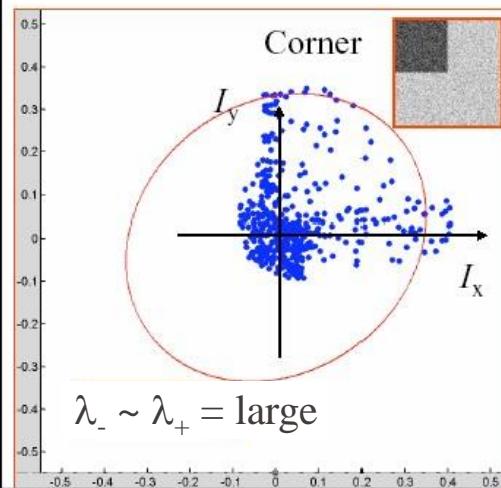
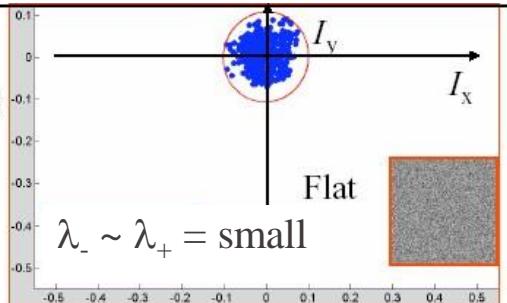
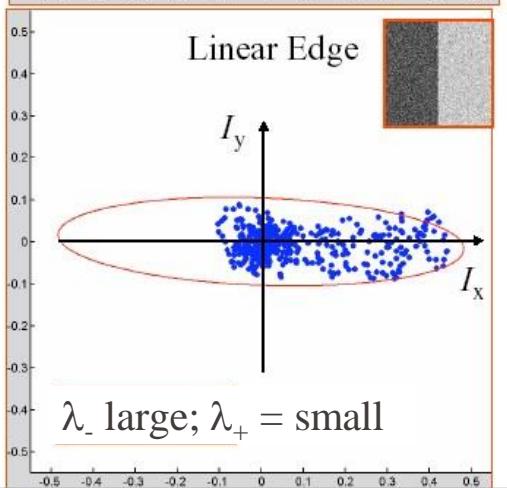
Plotting Derivatives as 2D Points

The distribution of the x and y derivatives is very different for all three types of patches



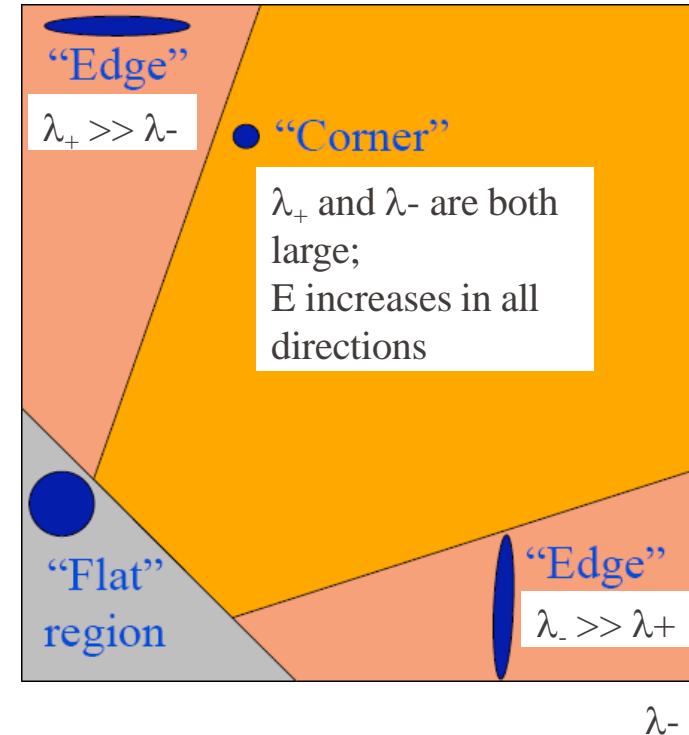
Fitting Ellipse to each Set of Points

The distribution of x and y derivatives can be characterized by the shape and size of the principal component ellipse



Feature detection: the math

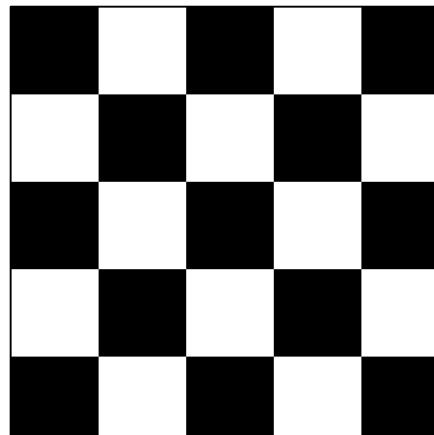
How are λ_+ , \mathbf{x}_+ , λ_- , and \mathbf{x}_- relevant for feature detection?



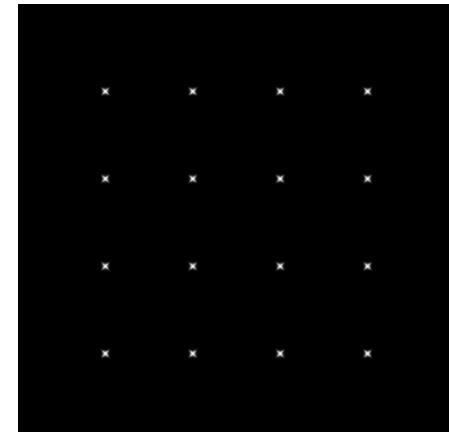
Source: UW CSE vision faculty

Feature detection summary

- Here's what you do
 - Compute the gradient at each point in the image
 - Create the H matrix from the entries in the gradient
 - Compute the eigenvalues
 - Find points with large λ_- (i.e., $\lambda_- >$ threshold)
 - Choose points where λ_- is a local maximum as interest points



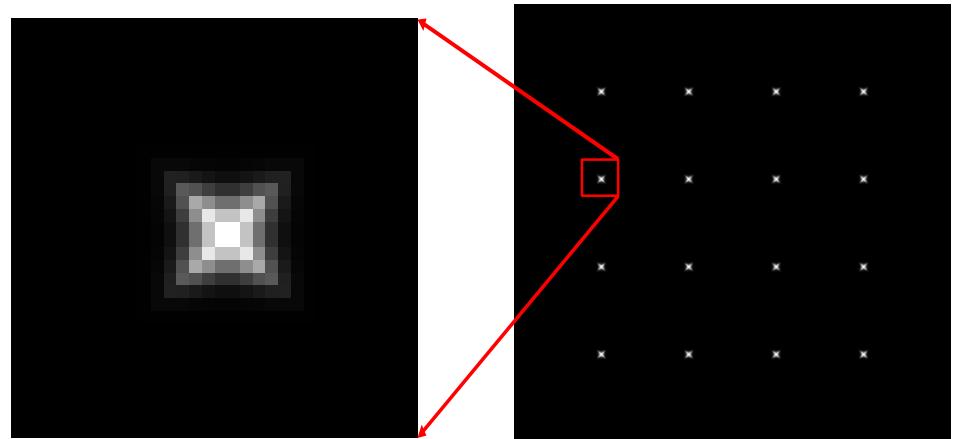
I



λ_-

Feature detection summary

- Here's what you do
 - Compute the gradient at each point in the image
 - Create the H matrix from the entries in the gradient
 - Compute the eigenvalues
 - Find points with large λ_- (i.e., $\lambda_- > \text{threshold}$)
 - Choose points where λ_- is a local maximum as interest points

 λ_-

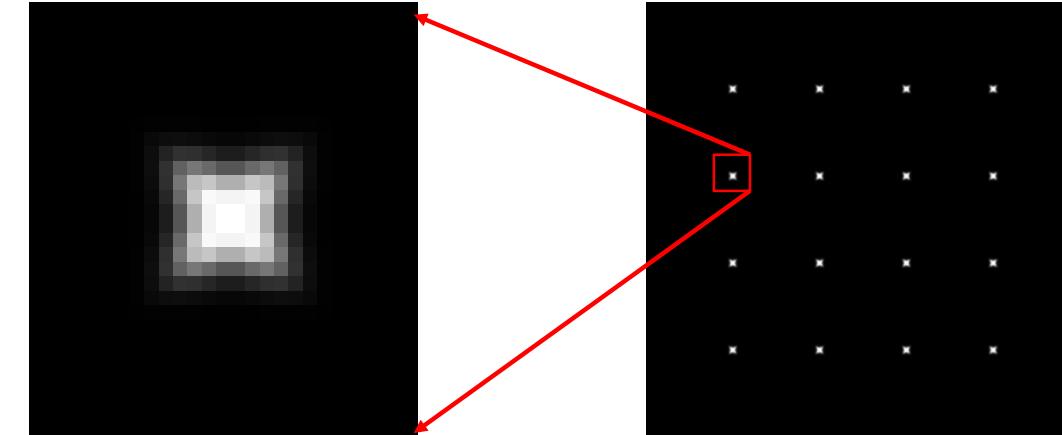
The Harris operator

λ_- is a variant of the “Harris operator” for feature detection

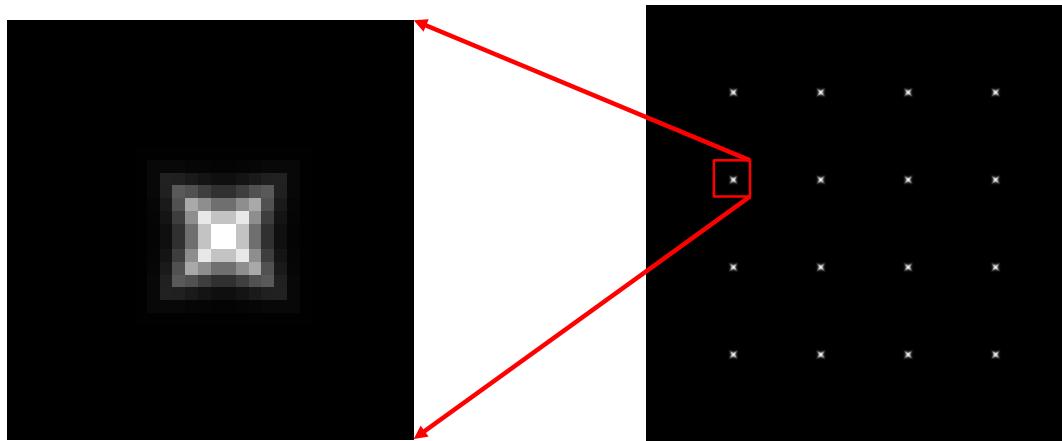
$$\begin{aligned} f_{Harris} &= \lambda_+ \lambda_- - k(\lambda_+ + \lambda_-)^2 = (h_{11}h_{22} - h_{12}h_{21}) - k(h_{11} + h_{22})^2 \\ &= \det(H) - k \operatorname{trace}(H)^2 \end{aligned}$$

- \det is the determinant; $\operatorname{trace} =$ sum of diagonal elements of a matrix
- Very similar to λ_- but less expensive (no eigenvalue computation)
- Called the “Harris Corner Detector” or “Harris Operator”
- Most popular among all detectors

The Harris operator



Harris operator

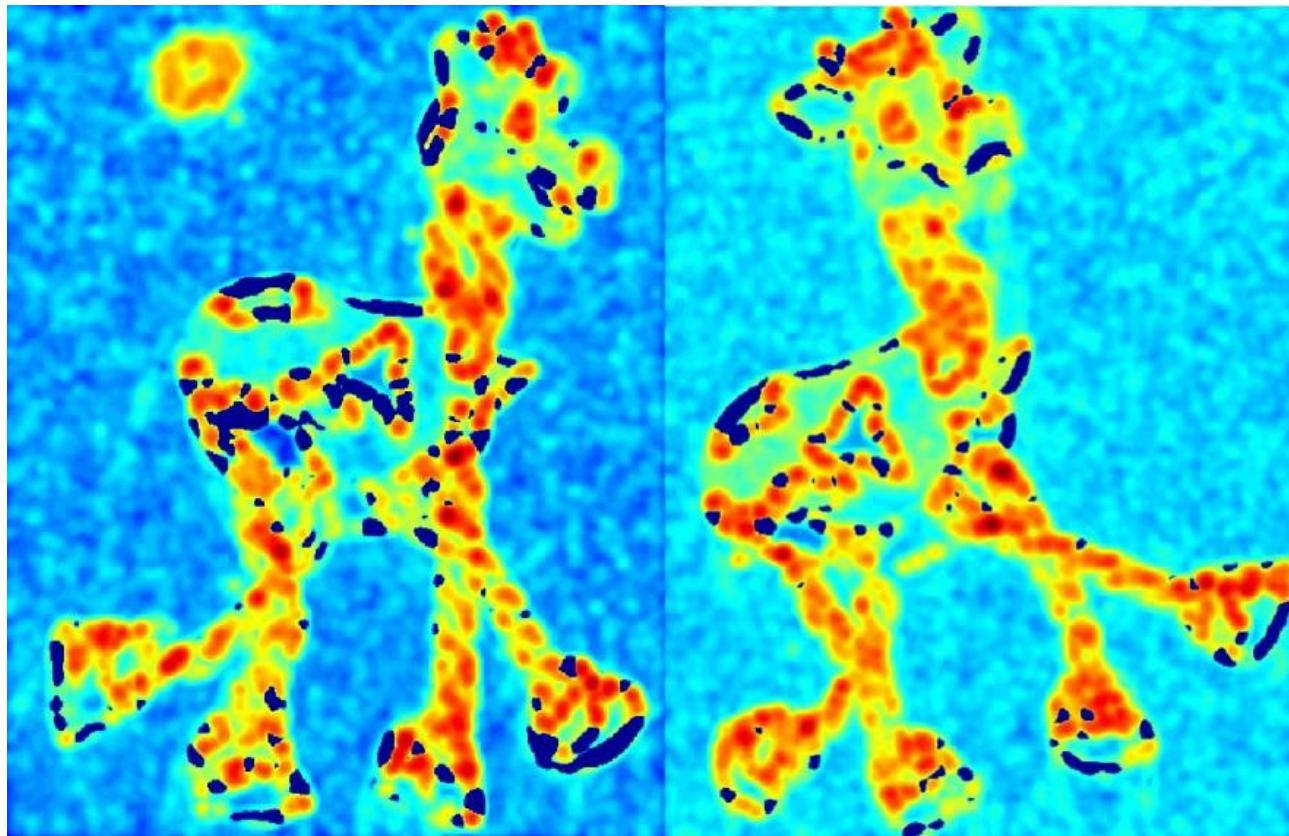


λ_-

Harris detector example

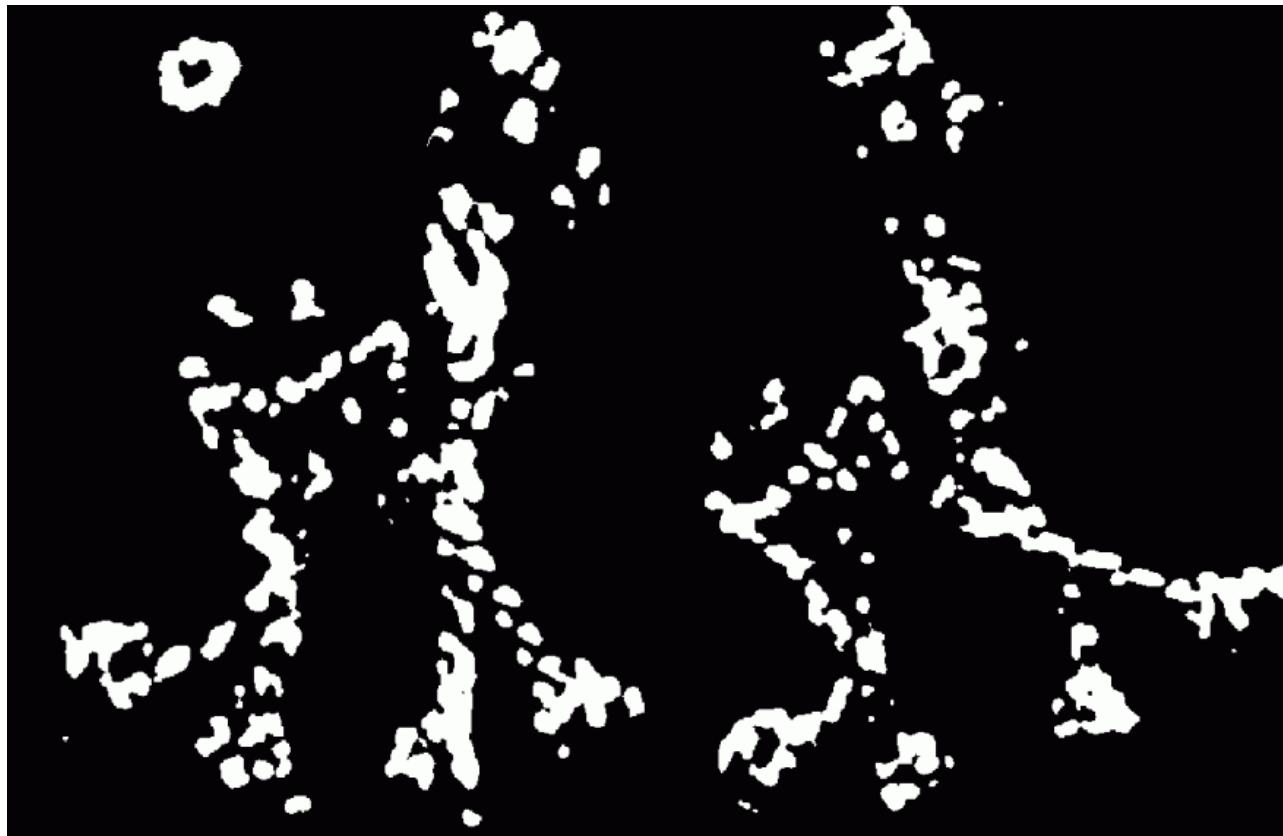
Source: UW CSE vision faculty

f_{Haus} value (red high, blue low)



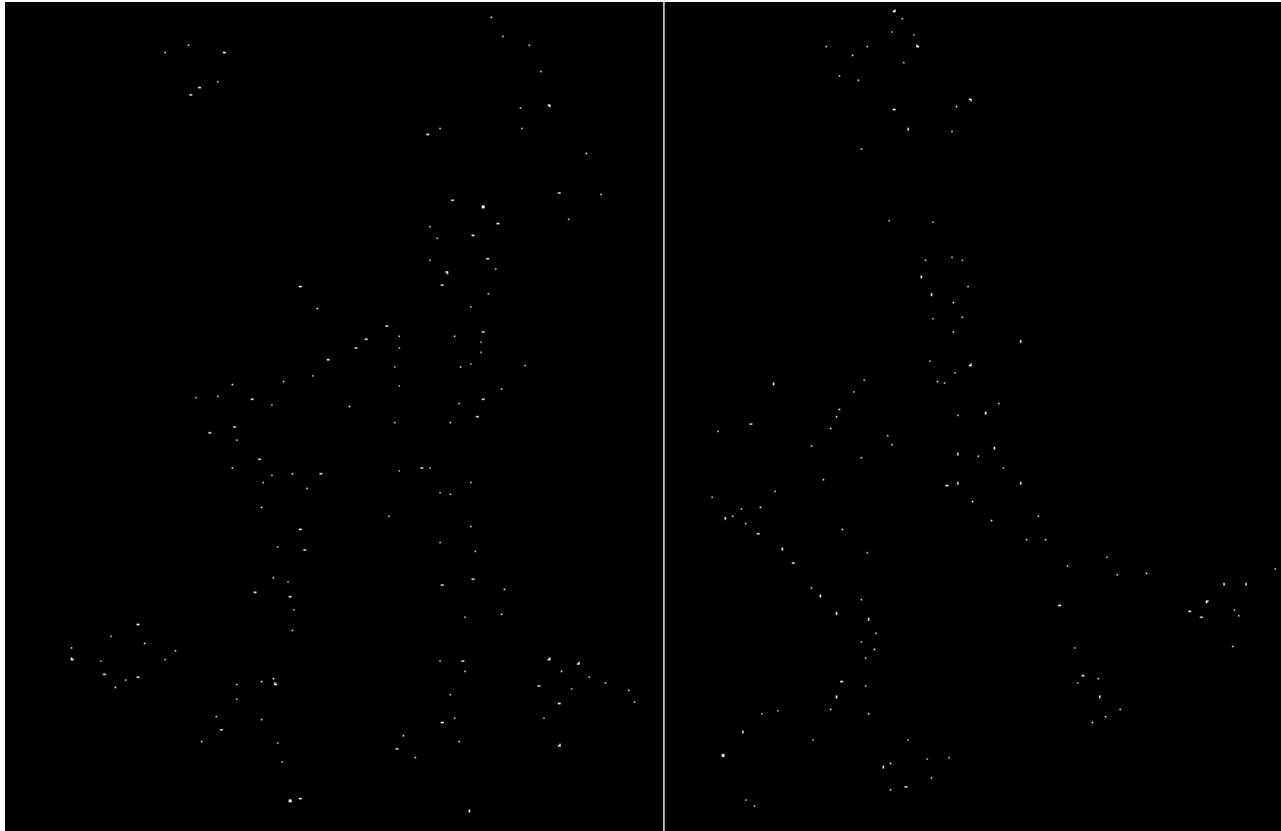
Source: UW CSE vision faculty

Threshold ($f_{\text{Harris}} > \text{threshold value}$)



Source: UW CSE vision faculty

Find local maxima of f_{Harris}

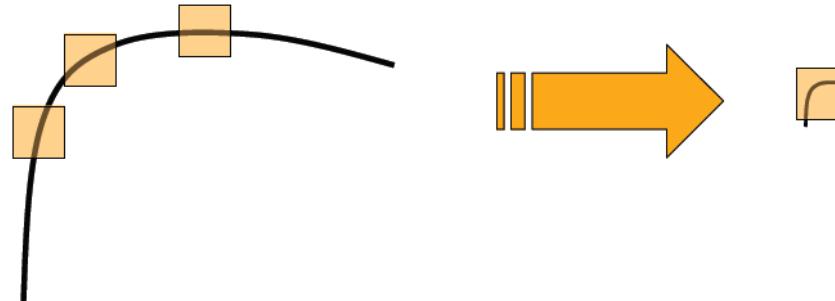


Source: UW CSE vision faculty

Harris features (in red)

Source: UW CSE vision faculty

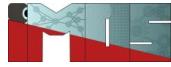
- Suppose you rotate the image by some angle
 - Will you still pick up the same feature points?
 - Yes (since eigenvalues remain the same)
- What if you change the brightness?
 - Will you still pick up the same feature points?
 - Mostly yes (uses gradients which involve pixel differences)
- Scale?
 - No!



All points will be
classified as **edges**

Corner !

Source: UW CSE vision faculty



Feature matching

How to achieve invariance in image matching

- Two steps:

1. Make sure your feature detector is invariant

- Harris is invariant to translation and rotation
- Scale is trickier
 - common approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS)
 - More sophisticated methods find “the best scale” to represent each feature (e.g., SIFT)

2. Design an invariant feature descriptor

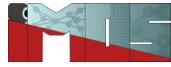
- A descriptor captures the intensity information in a region around the detected feature point
- The simplest descriptor: a square window of pixels
 - What's this invariant to?

Rotation invariance for feature descriptors

Find dominant orientation of the image patch

- This is given by \mathbf{x}_+ , the eigenvector of \mathbf{H} corresponding to λ_+
(λ_+ is the *larger* eigenvalue)
- Rotate the patch according to this angle

Figure by Matthew Brown



SIFT algorithm

- SIFT algorithm helps locate the local features in an image
→ known as the '*keypoints*' of the image.
- These keypoints are **scale & rotation invariant**
→ can be used for various computer vision applications, like image matching, object detection, scene detection, etc

1. Constructing a Scale Space

→ make sure that features are scale-independent

2. Keypoint Localisation

→ Identifying the suitable features or keypoints

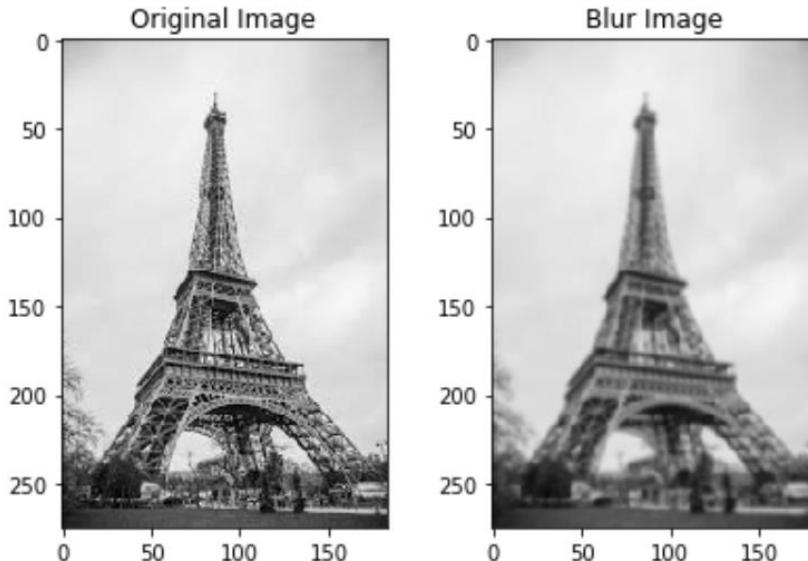
3. Orientation Assignment

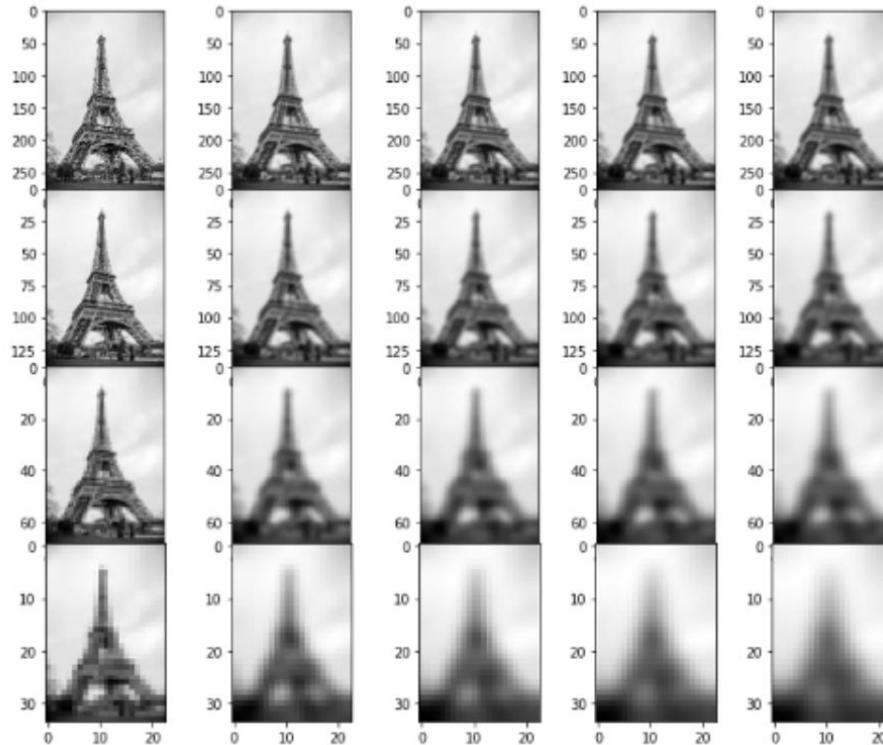
→ Ensure the keypoints are rotation invariant

4. Keypoint Descriptor

→ Assign a unique fingerprint to each keypoint

Gaussian Blurring





First Octave

Second Octave

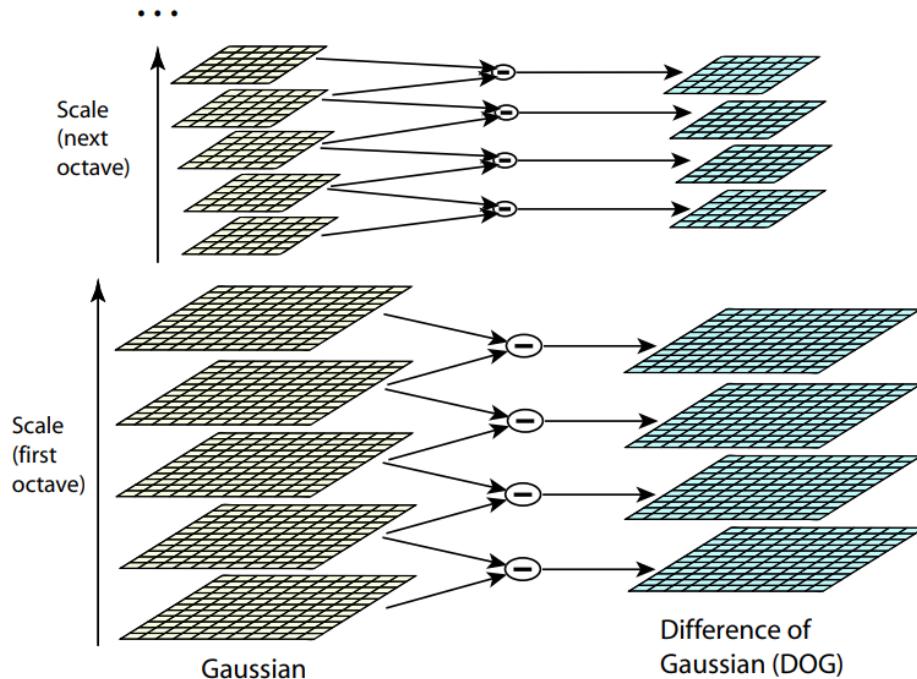
Third Octave

Fourth Octave

Scale space is a collection of images having different scales, generated from a single image

Difference of Gaussians

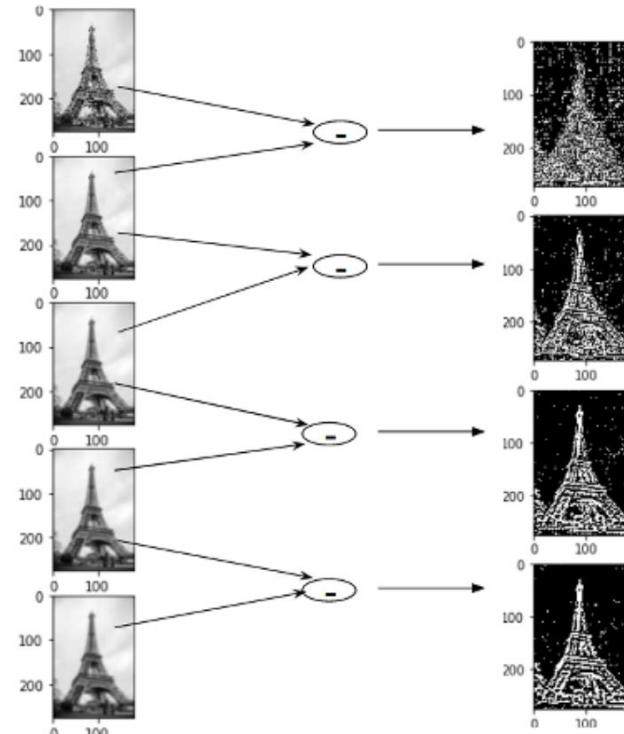
Detection of scale-space extrema



Source: Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004

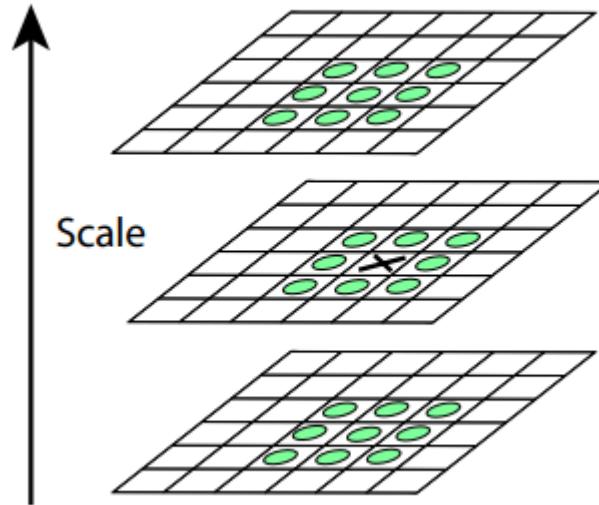
Difference of Gaussians

Detection of scale-space extrema



Source: www.datascience.com

Maxima and minima of the difference-of-Gaussian images



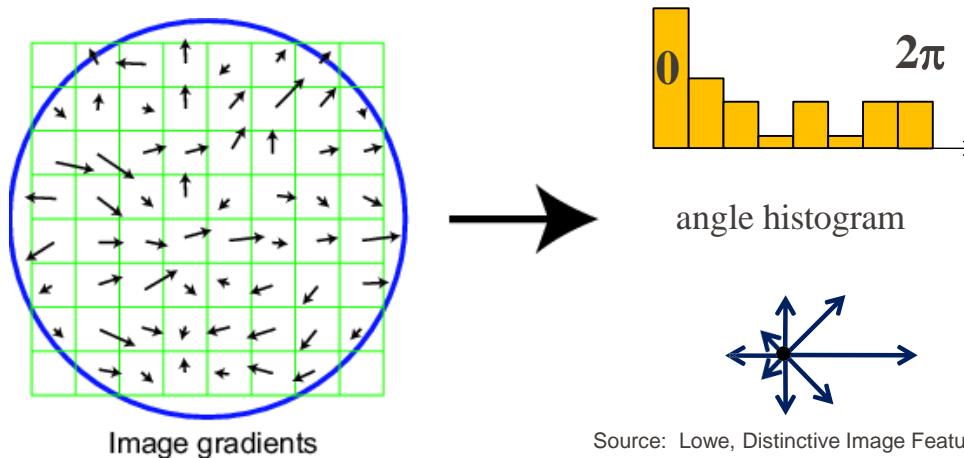
→ comparing a pixel (marked with X) to its 26 neighbors in 3×3 regions at the current and adjacent scales

- Calculate the magnitude and orientation
- Create a histogram for magnitude and orientation
- The bin at which we see the peak will be the orientation for the keypoint

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

Feature descriptor

- Use the neighboring pixels, their orientations, and their magnitude to generate a unique fingerprint for each keypoint called a ‘descriptor’
- Basic idea:
 - Take 16x16 square window around detected interest point (8x8 shown below)
 - Compute edge orientation (angle of the gradient minus 90°) for each pixel
 - Throw out weak edges (threshold gradient magnitude)
 - Create histogram of surviving edge orientations (8 bins)



SIFT descriptor

- Full version

- Divide the 16x16 window into a 4x4 grid of cells
- (8x8 window and 2x2 grid shown below for simplicity)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

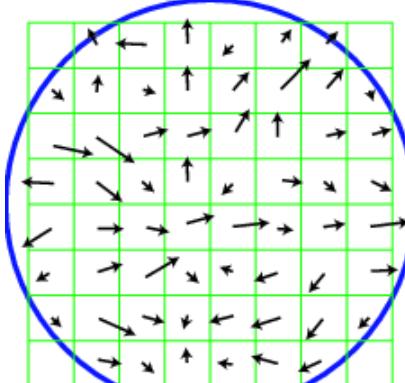
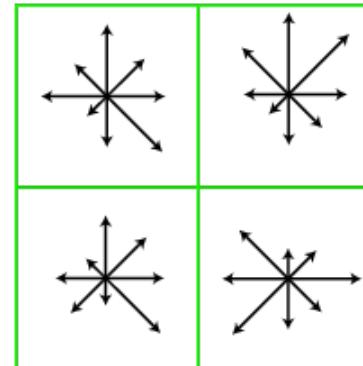


Image gradients



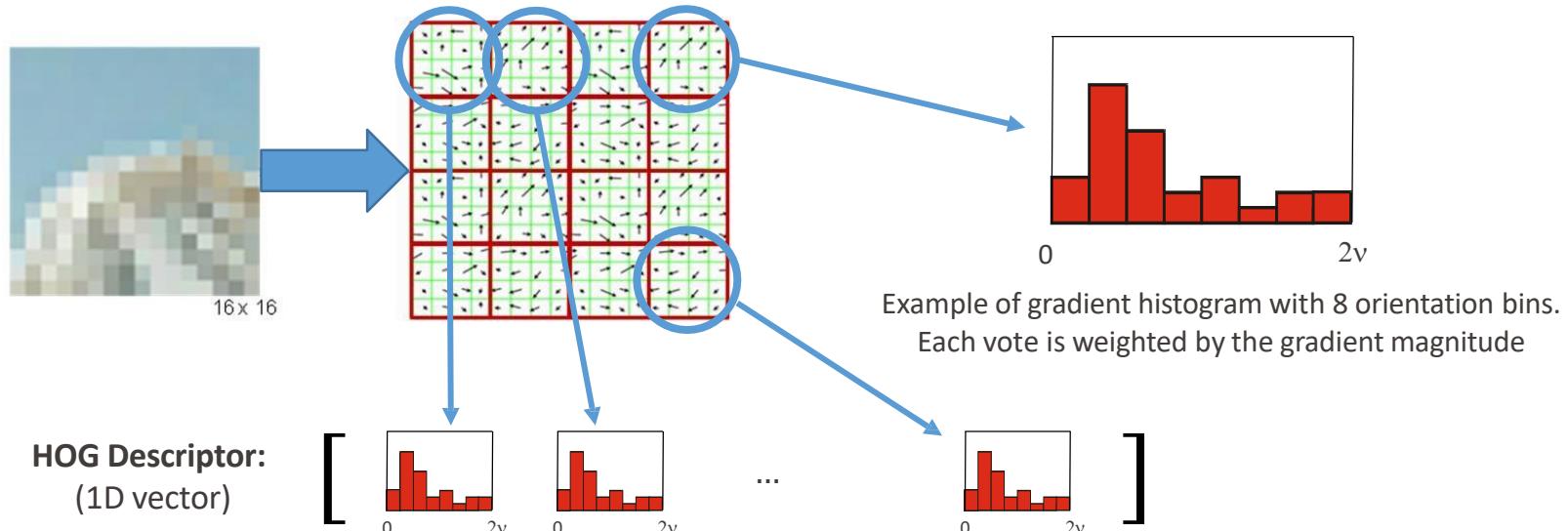
Keypoint descriptor

Properties of SIFT-based matching

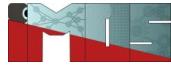
- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination: Sometimes even day vs. night (below)
 - Fast and efficient — can run in real time

HOG Descriptor (Histogram of Oriented Gradients)

- The patch is divided into a **grid of cells** and for each cell a **histogram of gradient directions** is compiled.
- The HOG descriptor is the **concatenation of these histograms** (used in SIFT)
- Differently from the patch descriptors, HOG has **float values**.



Aspect	SIFT Descriptor	HOG Descriptor
Input Region	Local patch around each keypoint	Regular dense grid of patches across whole image
Detection	Tied to detected keypoints (interest points)	Not tied to keypoints; computed over sliding windows
Invariant to	Scale, rotation, illumination	Mostly illumination and pose
Descriptor Size	128-dim vector per keypoint	Large vector (e.g., 3780-dim) for whole image region
Orientation Encoding	Orientation histograms in 4x4 grid around point	Orientation histograms in cells (e.g., 8x8 px)
Normalization	Local (each keypoint is normalized)	Block-level normalization (overlapping cells)
Sparsity	Sparse descriptors (only at keypoints)	Dense descriptors (computed on fixed grid)
Computation	More complex (keypoint detection + descriptor)	Faster (just compute gradients + histograms)
SIFT Descriptor	4x4 grid of subregions, 8-bin histograms	N/A
HOG Descriptor	N/A	Histograms over blocks (2x2 cells), high dimensional
Intuition	Describes unique local keypoint features	Describes texture/edge flow of a region
Matching keypoints	Yes	No
Object detection	Rarely	Yes



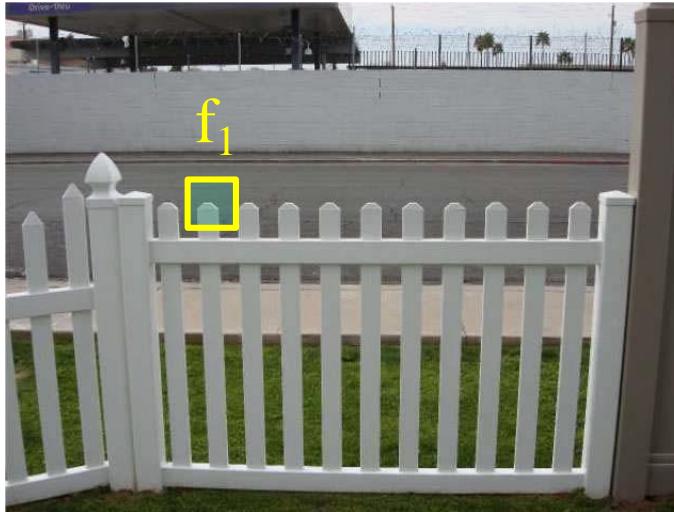
Feature matching

Feature matching

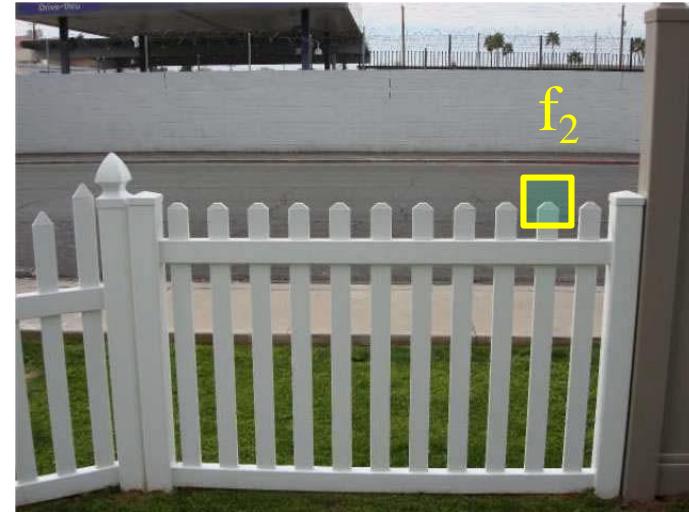
- Given a feature in I_1 , how to find the best match in I_2 ?
 1. Define distance function that compares two descriptors
 2. Test all the features in I_2 , find the one with min distance

Feature distance: SSD

- How to define the similarity between two features f_1, f_2 ?
 - Simple approach is $SSD(f_1, f_2)$
 - Sum of square differences (SSD) between entries of the two descriptors
 - Doesn't provide a way to discard ambiguous (bad) matches



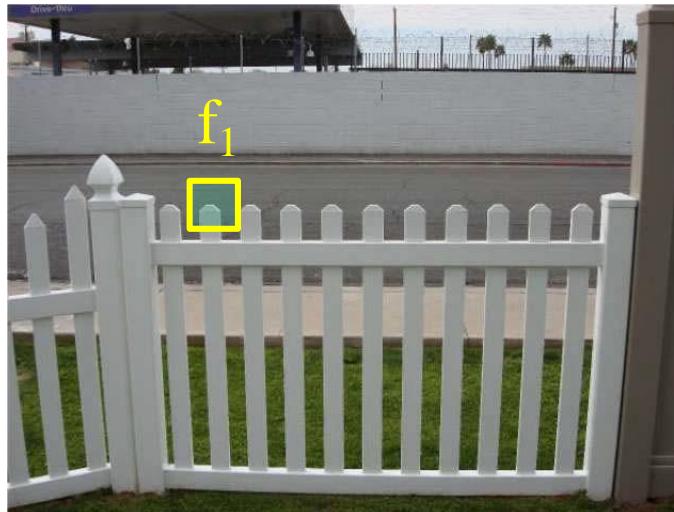
I_1



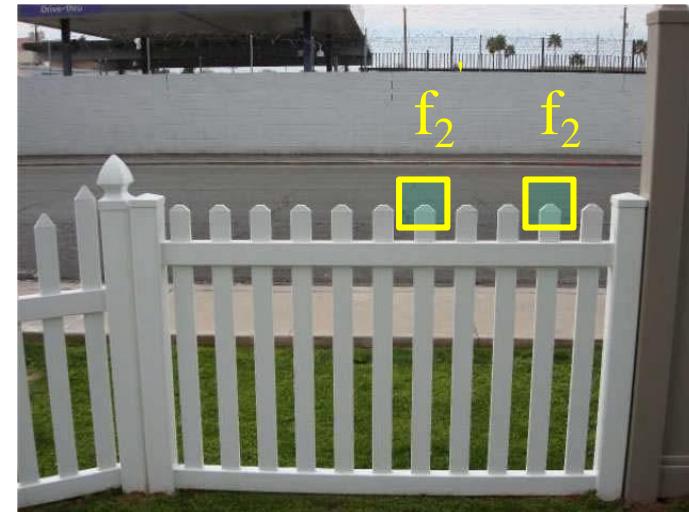
I_2

Feature distance: Ratio of SSDs

- How to define the difference between two features f_1, f_2 ?
 - Better approach: ratio distance = $SSD(f_1, f_2) / SSD(f_1, f_2')$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - An ambiguous/bad match will have ratio close to 1
 - Look for unique matches which have low ratio

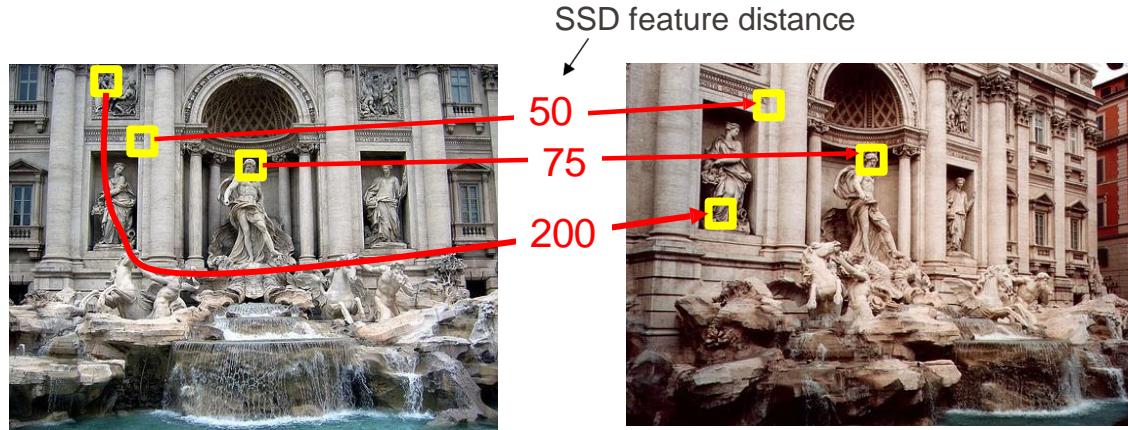


I_1



I_2

Image matching



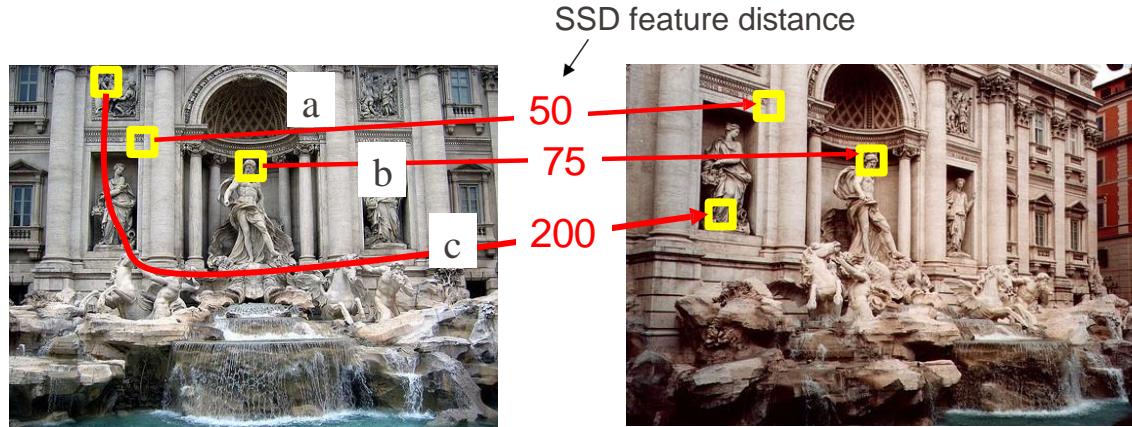
Suppose we use SSD

Small values are possible matches but how small?

Decision rule: Accept match if $SSD < T$ where T is a threshold

What is the effect of choosing a particular T ?

Effect of threshold T



Decision rule: Accept match if $SSD < T$

Example: **Large T**

$T = 250 \rightarrow a, b, c$ are all accepted as matches

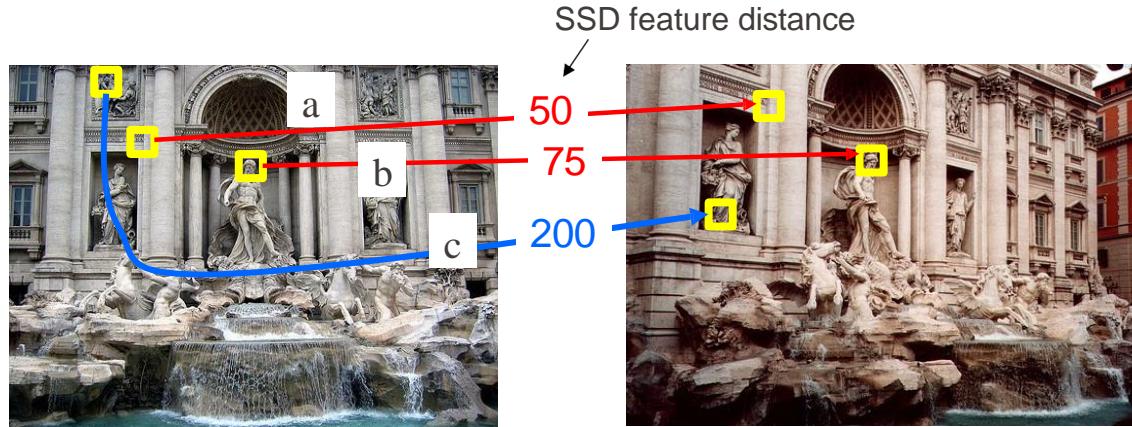
a and b are true matches ("true positives")

- they are actually matches

c is a false match ("false positive")

- actually not a match

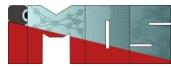
Effect of threshold T



Decision rule: Accept match if $\text{SSD} < T$

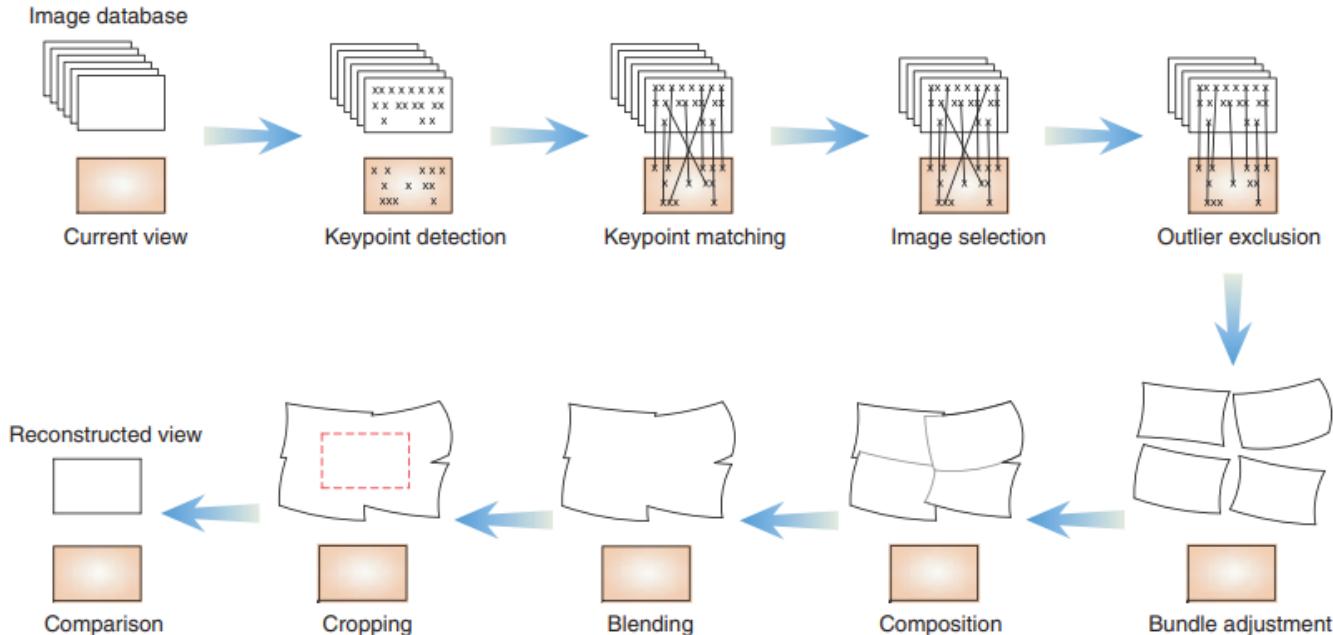
Example: **Smaller T**

$T = 100 \rightarrow$ only a and b are accepted as matches
a and b are true matches (“true positives”)
c is no longer a “false positive” (it is a “true negative”)



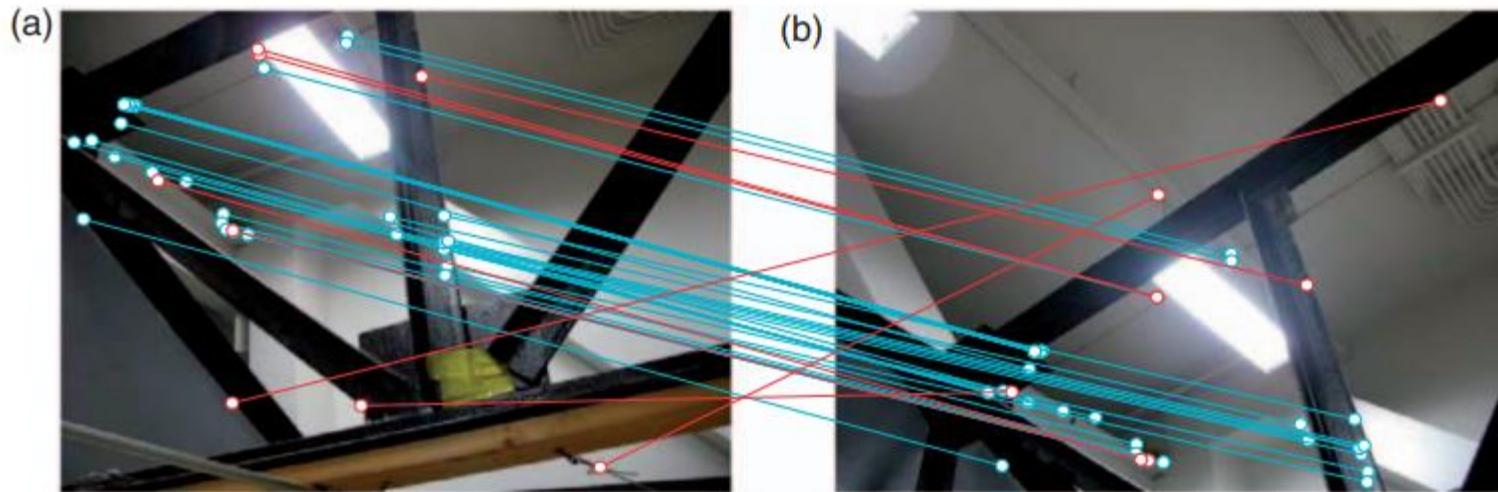
Example applications of feature detection + matching

Multi-image stitching and scene reconstruction for evaluating defect evolution in structures

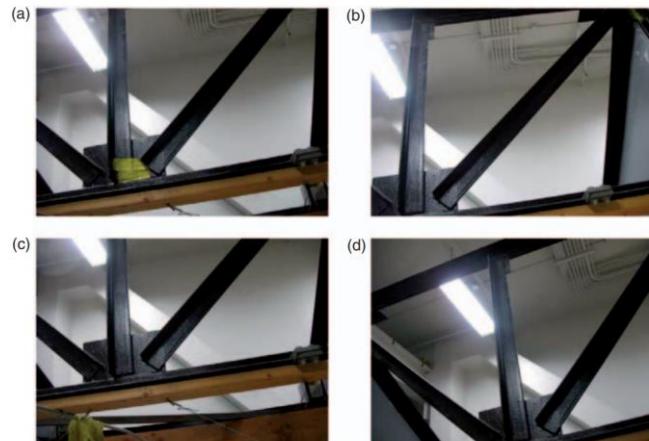


Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect evolution in structures. *Structural Health Monitoring*, 10(6), 643-657.

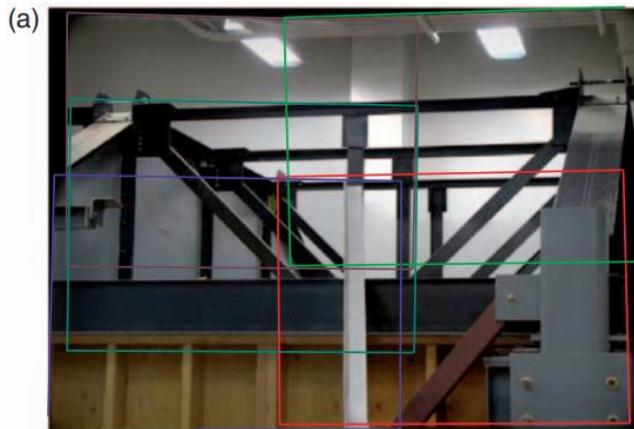
Matching SIFT keypoints in two overlapping images



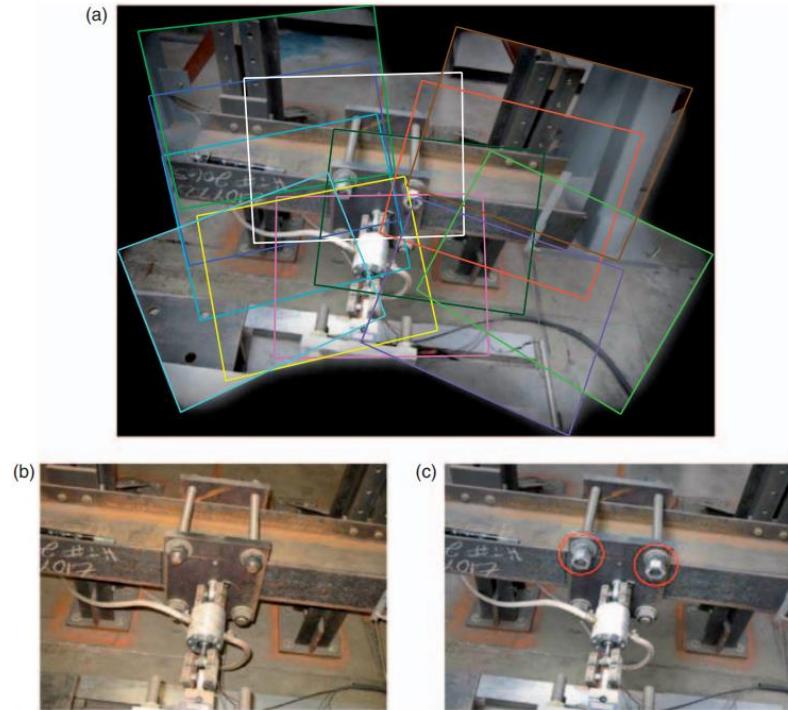
The reconstructed scene and the contribution of the selected images



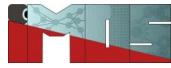
The reconstructed scene and the contribution of the selected images



The reconstructed scene and the contribution of the selected images



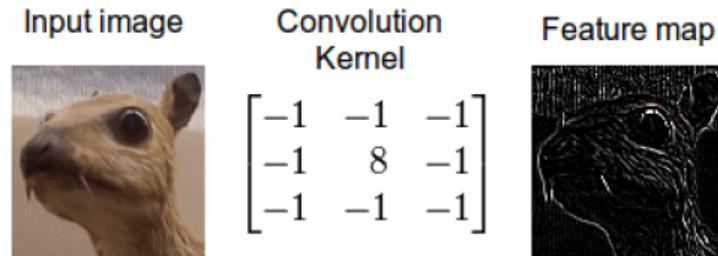
Jahanshahi, M. R., Masri, S. F., & Sukhatme, G. S. (2011). Multi-image stitching and scene reconstruction for evaluating defect evolution in structures. *Structural Health Monitoring*, 10(6), 643-657.



Recap: Convolutional neural networks

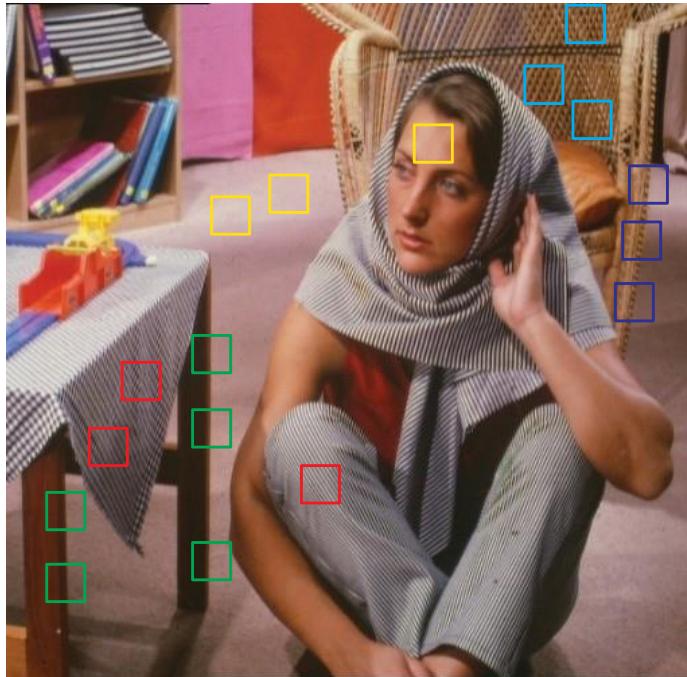
General intuition behind using convolutional filters

- Image filters can enhance image attributes
- Convolutional neural networks are similar to conventional image filtering
- Filter kernels are learnt



Source: UIO, 2017

Stationarity and Self-similarity



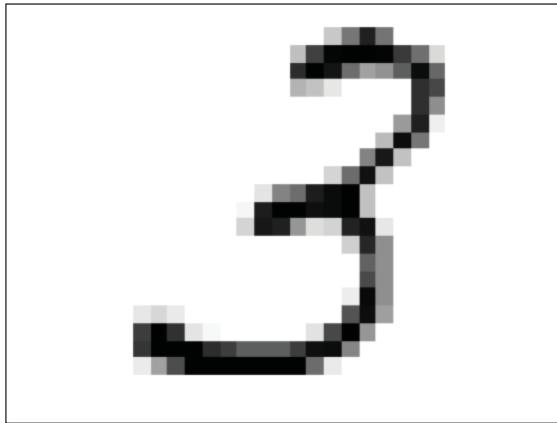
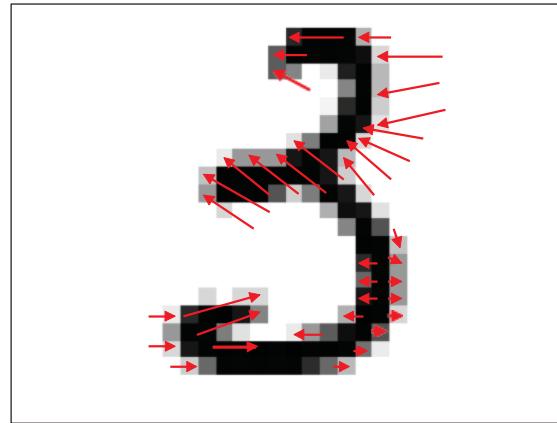
Data is self-similar across the domain

Translation Invariance (Image classification tasks)

$$f(\mathcal{T}_{\mathbf{v}}x) = f(x) \quad \forall x, \mathbf{v}$$

where

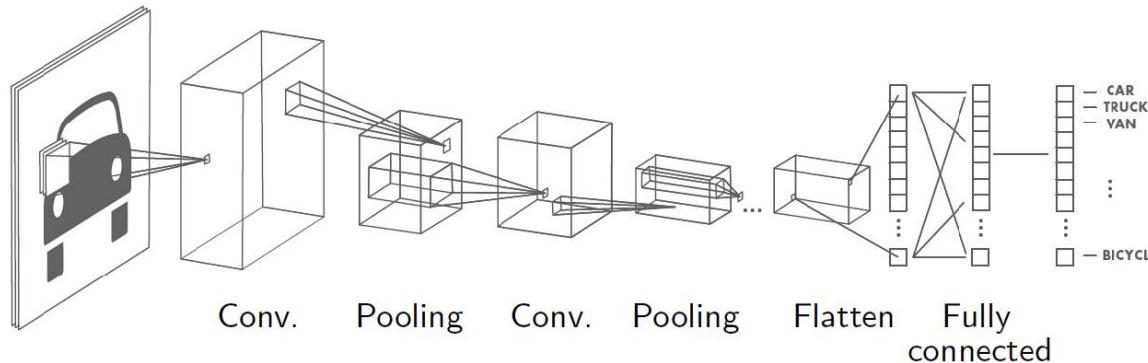
- image is modeled as a function $x \in L^2([0, 1]^2)$
- $\mathcal{T}_{\mathbf{v}}x(\mathbf{u}) = x(\mathbf{u} - \mathbf{v})$ is a **translation operator**
- $\mathbf{v} \in [0, 1]^2$ is a **translation vector**
- $f : L^2([0, 1]^2) \rightarrow \{1, \dots, L\}$ is a **classification functional**



$$|f(\mathcal{L}_\tau x) - f(x)| \approx \|\nabla \tau\| \quad \forall f, \tau$$

where

- image is modeled as a function $x \in L^2([0, 1]^2)$
- $\mathcal{L}_\tau x(\mathbf{u}) = x(\mathbf{u} - \tau(\mathbf{u}))$ is a **warping operator**
- $\tau : [0, 1]^2 \rightarrow [0, 1]^2$ is a smooth **deformation field**
- $f : L^2([0, 1]^2) \rightarrow \{1, \dots, L\}$ is a classification functional



Conv. layer

$$x_{\ell'}^{(l+1)}(\mathbf{u}) = \xi \left(\sum_{\ell=1}^{d^{(l)}} (w_{\ell'\ell}^{(l+1)} \star x_{\ell}^{(l)})(\mathbf{u}) \right)$$

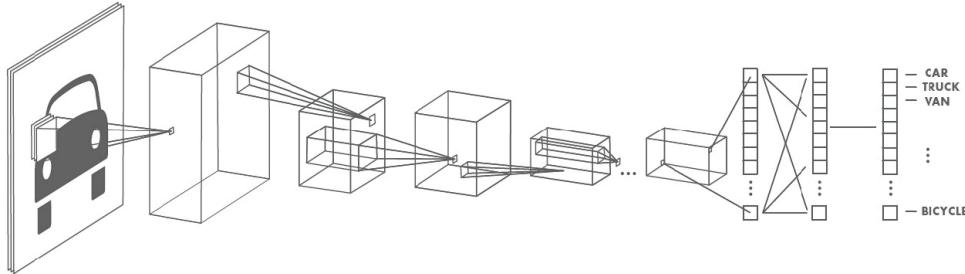
Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU)

Parameters filters $W^{(1)}, \dots, W^{(L)}$

Pooling

$$x_{\ell}^{(l+1)}(\mathbf{u}) = \|x_{\ell}^{(l)}(\mathbf{u}') : \mathbf{u}' \in \mathcal{N}(\mathbf{u})\|_p \quad p = 1, 2, \text{ or } \infty$$

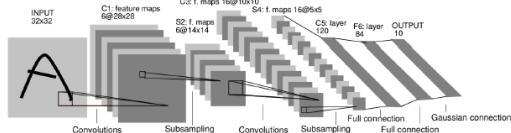
LeCun et al. 1989 (Image: Debarko De)



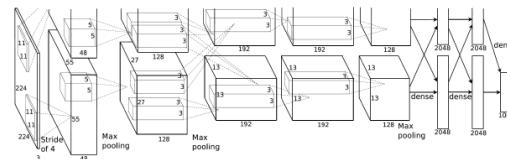
- ☺ Convolutional filters (**Translation invariance+Self-similarity**)
- ☺ Multiple layers (**Compositionality**)
- ☺ Filters localized in space (**Locality**)
- ☺ $\mathcal{O}(1)$ parameters per filter (independent of input image size n)
- ☺ $\mathcal{O}(n)$ complexity per layer (filtering done in the spatial domain)
- ☺ $\mathcal{O}(\log n)$ layers in classification tasks

Convolutional Neural Networks (historical perspective)

1989



2012



- 3 convolutional + 1 fully connected layer
- 1M parameters
- Trained on MNIST 70K
- CPU-based
- tanh non-linearity
- 5 convolutional + 3 fully connected layers
- 60M parameters
- Trained on ImageNet 1.5M
- GPU-based
- ReLU, Dropout

0	0	0	0	0	0	0	0
0	2	4	9	1	4	0	0
0	2	1	4	4	6	0	0
0	1	1	2	9	2	0	0
0	7	3	5	1	3	0	0
0	2	3	4	8	5	0	0
0	0	0	0	0	0	0	0

Image

$$\begin{array}{c}
 \text{Image} \times \text{Filter / Kernel} = \text{Feature} \\
 \begin{array}{c}
 \begin{array}{|c|c|c|} \hline 1 & 2 & 3 \\ \hline -4 & 7 & 4 \\ \hline 2 & -5 & 1 \\ \hline \end{array} \\
 \text{Filter / Kernel}
 \end{array}
 \end{array}$$

21	59	37	-19	2
30	51	66	20	43
-14	31	49	101	-19
59	15	53	-2	21
49	57	64	76	10

$$O = \frac{n - f + 2p}{s} + 1$$

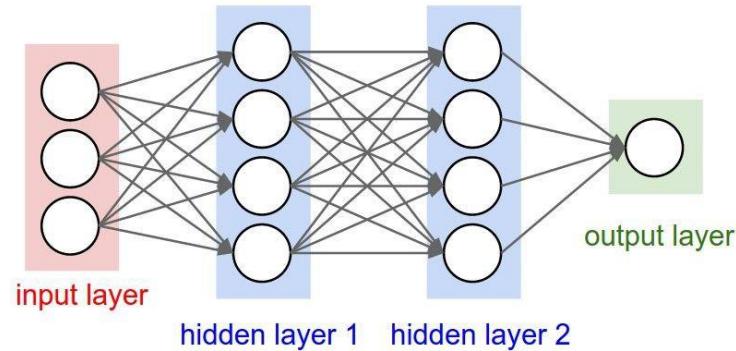
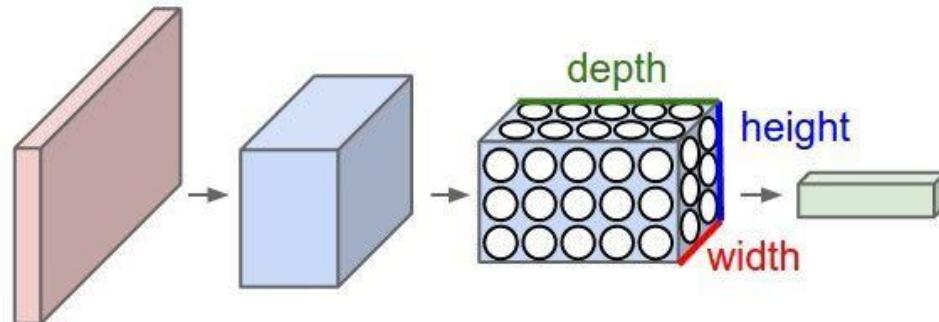
Where O is the output height/length, n is input height / length, f is filter size, p is the padding, and s is the stride

6	8	6	3	1	0
9	13	10	5	2	0
9	14	11	6	3	0
9	13	11	6	2	0
8	13	10	5	3	0
6	7	5	3	1	0

Feature map

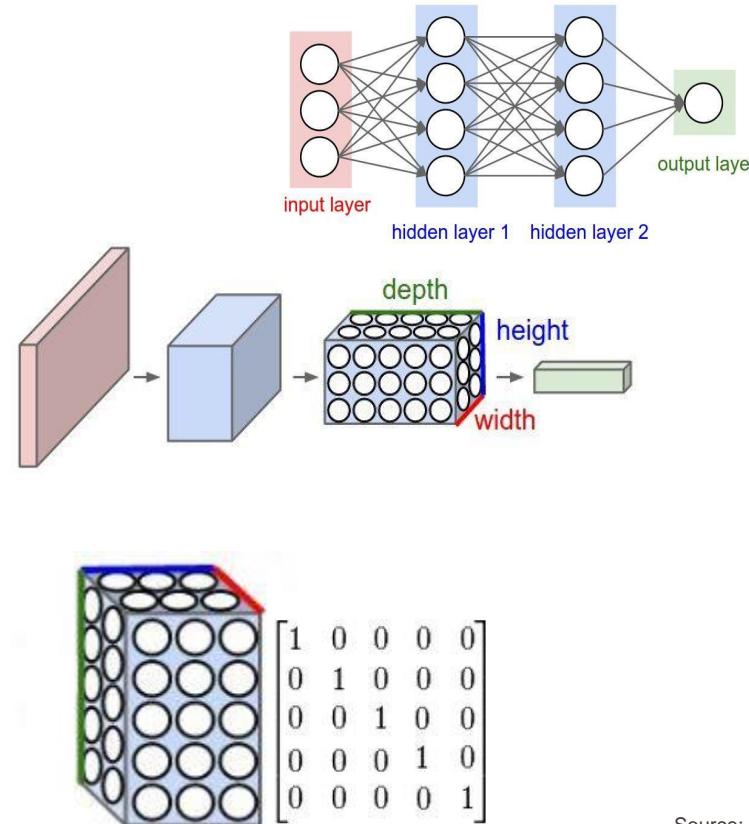
13	10	2
14	11	3
13	10	3

Max pooling

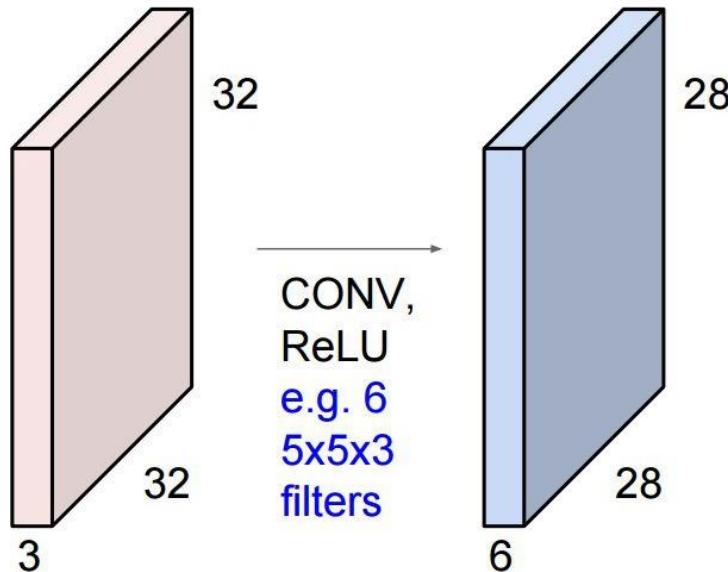


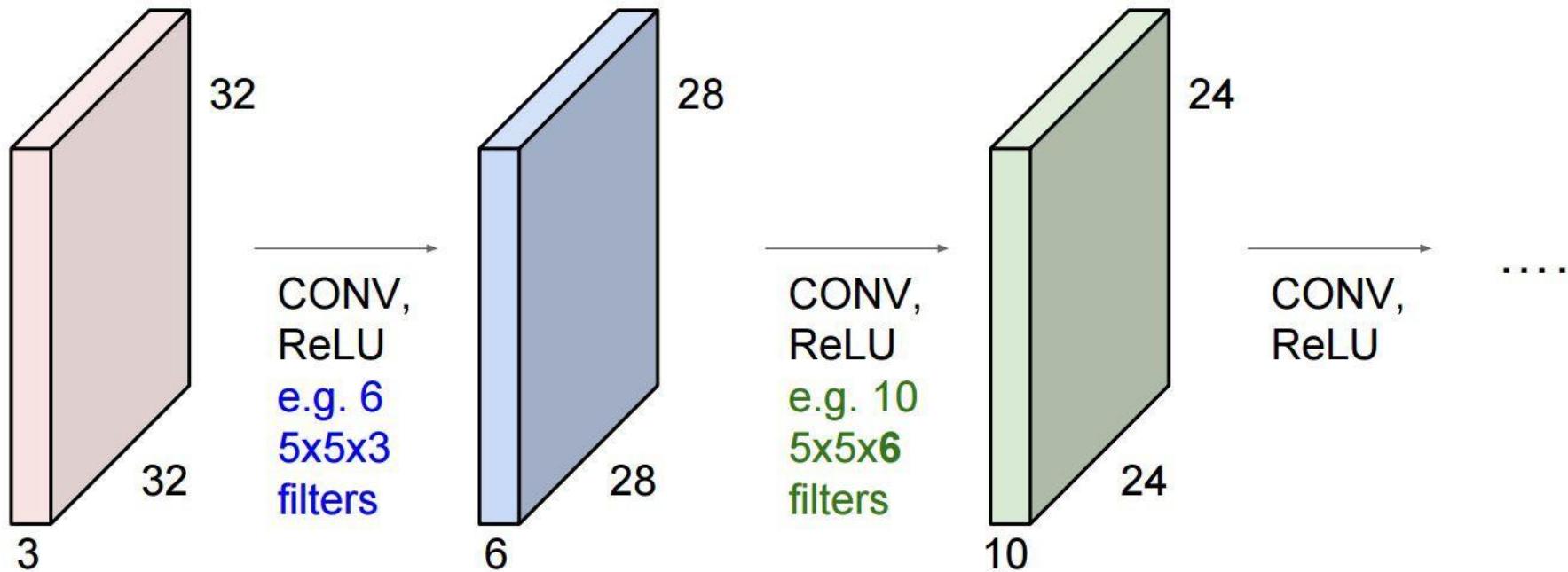
Source: UIO, 2017

- If we combine all the filters we get a 4D tensor
- The operation can be viewed as:
 - a matrix multiplication for each spatial position
 - a sum over spatial dimensions
- This is a useful representation as many deep learning frameworks present it in this way

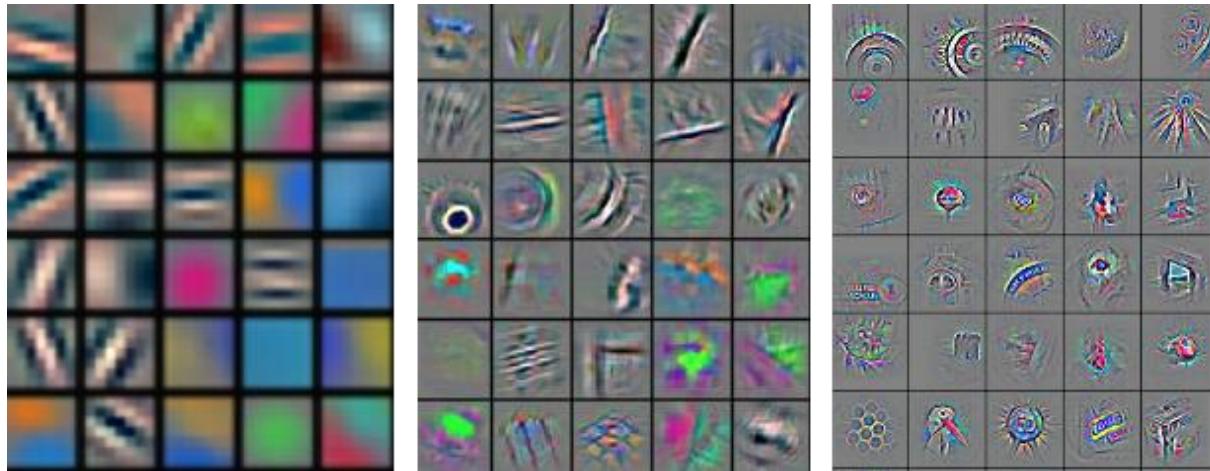


Source: UIO, 2017



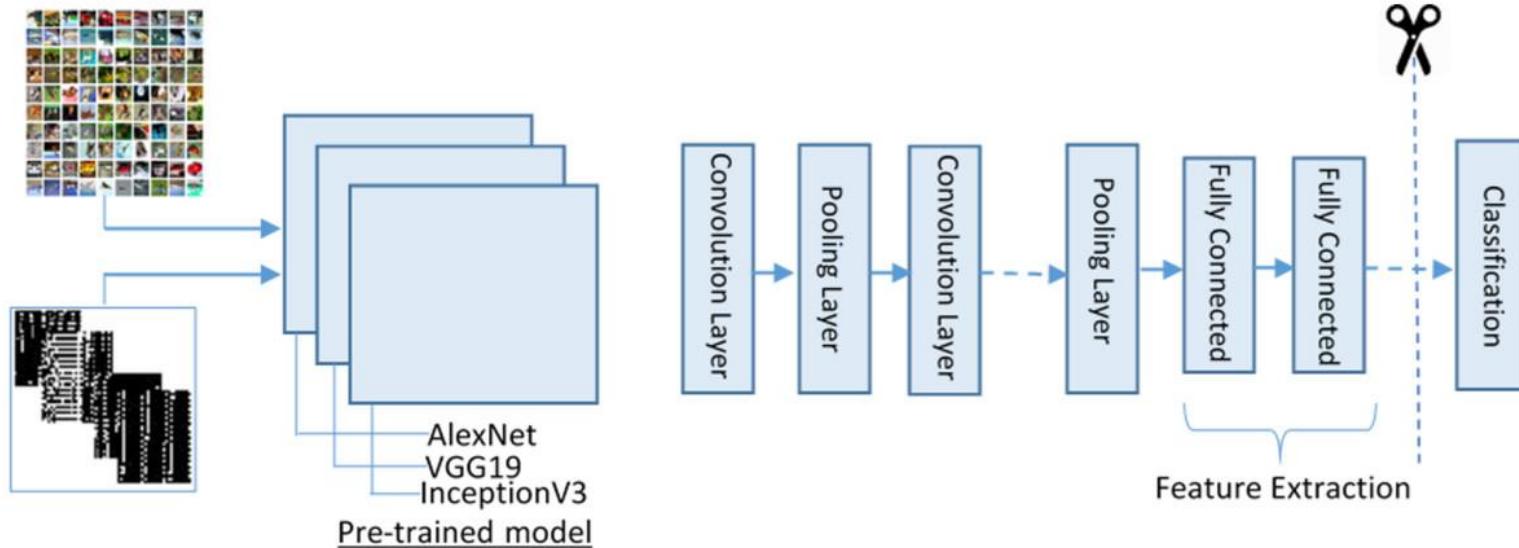


Source: UIO, 2017

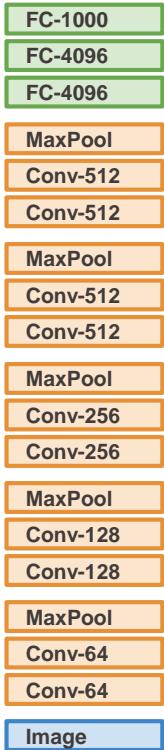


Typical features learned by a CNN becoming increasingly complex
at deeper layers

Making use of pre-trained models



1. Train on Imagenet

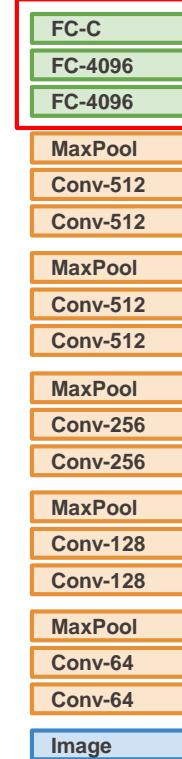


2. Small Dataset (C classes)

Reinitialize
this and train

Freeze these

3. Bigger dataset



Train
these
With bigger
dataset, train
more layers

Freeze
these
Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point