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=PFL - Computing probabilities: Example

= Let's suppose you were worried that you might have a rare disease. You
decide to have a test done.

= The test gives a correct result in 99% of cases (99% correct if you have
no disease and 99% correct if you have a disease).

= Disease is very rare: 1 in 10,000 people in the population is affected.
= The test is positive. With what probability are you actually ill?

B 24.03.25
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B 24.03.25

Theorem of Bayes

= P (A| B): the (conditional) probability of A, given that B has

occurred
= P(A) und P(B) are a-priori probabilities.

P(B|A)P(A
P(A|B) = ( ’P(])B)( )
P(AB) - P(B|A)P(A)

P(B|A)P(A)+ P(B|A)P(A)

Olga Fink
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=PrL

B 24.03.25

What Are Statistical Tests?

= Tools to make inferences about populations from sample data.

= Help determine if observed differences or relationships are
statistically significant.
= Why Are They Important?
« Distinguish real effects from random variation.

» Support hypothesis testing in experiments and data analysis.
* Provide evidence for decision-making in research and practice.

Olga Fink 10



=P7L Key Concepts

= Null Hypothesis (Ho): No effect or difference.

= Alternative Hypothesis (Hy): There is an effect or difference.
= P-value: Probability of observing data under Ho.

= Significance Level (a): Common threshold = 0.05.

t-test Compare means between two groups
ANOVA Compare means among three or more groups
Chi-Square Test Association between categorical variables
Mann-Whitney U Compare two groups, nhon-parametric
Wilcoxon Signed-Rank Compare paired samples, non-parametric

B 24.03.25
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=PrL

B 24.03.25

t-Test

= Compares the means of two groups.

= Types:
» Independent samples t-test: Compares means of two independent groups.
» Paired samples t-test: Compares means from the same group at different
times.
= Assumptions:
« Data is continuous and normally distributed.
» Variances are equal (homogeneity of variance).
* Observations are independent.

= Example: Comparing the mean strain measurements of two different
types of bridge materials under similar load conditions to determine if
one material performs significantly better in reducing stress.

Olga Fink 12



=P*L  Hypothesis testing: Wald Test

= The Wald test (a.k.a. Wald Chi-Squared Test) is a parametric
statistical measure to confirm whether a set of independent variables are
collectively ‘significant’ for a model or not.

= Also used for confirming whether each independent variable presentin a
model is significant or not.

= A variable is said to be ‘significant’ if that variable adds some incremental
value to the model.

= Variables which fail to add value to the model, can be omitted without
affecting the model in any meaningful way.

= |f the Wald test shows that the parameters for certain explanatory variables
are zero, we can remove the variables from the model.

= If the test shows the parameters are not zero, we should include the
variables in the model

= This test is widely used in logistic regression, linear regression, and many
other statistical models for hypothesis testing.

B 24.03.25
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=PrL
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Wald test

(B
W= SE()?

= where £ is the estimate of the parameter of interest and SE(B)is the
standard error of that estimate.

= The standard error (SE) in the context of the Wald test represents the _
estimated variability or precision of the parameter estimate g . Essentially, it
measures how much the estimate of the coefficient is expected to vary
across different samples drawn from the same population. The smaller the
SE, the more precise the estimate is considered to be.

= This statistic, whjch follows a chi-square distribution, tests the null
hypothesis that f equals zero (implying the variable has no effect). If W
exceeds the chi-square critical value at a chosen significance level, the null

hypothesis is rejected, suggesting the parameter significantly differs from
zero.

Olga Fink
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Example 1:

Logistic regression for
infrastructure condition
monitoring




=F7L Water Pipe Failure Prediction
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Figure 1. Miles of pipe installed by material (data from the 2014 Asset
Management Report of the municipality)

Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines
2015 (pp. 1590-1601).
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=F7L Water Pipe Failure Prediction

30" 42" "

Figure 2. Water network analysis by pipe diameter (data from the 2014 Asset
Management Report of the municipality)

Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines
2015 (pp. 1590-1601).

B 24.03.25
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=P*L Water Pipe Failure Prediction

Table 1. Data categorization for developing the predictive failure model
Independent Variable Category 1 Category 2 Category 3

Pipe diameter 6" g™ 12~

Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines
2015 (pp. 1590-1601).

B 24.03.25
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=PFL  Water Pipe Failure Prediction s

Table 2. Log likelihood test of statistical significance of independent variables

Independent Critical value for
Variables in the Chi-square D.F.  Sig. Value CI1J‘ tical level Results
Nested Model (95 %)
Age 1035 1 0001  3.841 005  Ageisasiguificant
= variable
Age. Diameter 128752 1 0375  3.841 005 ~ Dlamewrrisnota

significant variable

Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines
2015 (pp. 1590-1601).

B 24.03.25
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=PFL  Water Pipe Failure Prediction s

P
f(x) = log. (P) = log [ﬁ] = 15.25—-0.131 * Age — 0.011 * Diameter

Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines
2015 (pp. 1590-1601).

B 24.03.25

Olga Fink 20



=PFL  Water Pipe Failure Prediction s
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Figure 4. 6, 8” and 12” cast iron pipe (installed between 1900 and 1910) failure
model using Binary Logistic Regression

Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines
2015 (pp. 1590-1601).
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Olga Fink 21



Example 2:

Logistic regression for
infrastructure condition
monitoring




=FrL  Example (multinomial) Logistic regression: s
evaluation of the local sewer system

= The data comprised of
* pipe segments/locations
* length (manhole to manhole)
* pipe material
* pipe diameter
* pipe age (current year minus year of installation)
 depth (depth of backfill over the crown of pipe in ft)
« soil conditions
 Corrosivity
» Slope
« surface condition—highway/street
 condition rating (1-5)

B 24.03.25

Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using

Multinomial Logistic Regression and Artificial Neural Network. Sustainability, 14(9), 5549. .
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Example of the data

. Pipe Surface Soil Corrosion Corrosion Condition

D Diameter  Age Matfrial Slope Condition Depth  Length pH Type Concrete Steel Rating
2472 12 43 PVC 0.24 Street 15 480.157 6.7 Sand Low Moderate 1
1814 10 50 VCP 0.1 Easement 15 421.0372 6.7 Sand Low Moderate 1
843 6 97 VCP 0.8 Alley 15 263.5681 6.7 Sand Low Moderate 1
2343 8 23 rvc 0.3 Street 15 235.9731 6.7 Sand Low Moderate 1
2795 18 50 VCP 0.08 Alley 15 80.58689 6.7 Sand Low Moderate 1
65 8 50 VCrP 0.3 Street 11 535.9586 6.7 Sand Low Moderate 1
623 12 71 CONC 0.6 Highway 10 4721441 6.7 Sand Low Moderate 1
624 24 64 CONC 0.12 Street 10 465.4685 6.7 Sand Low Moderate 1
2366 12 51 VCP 0.3 Alley 10 401.3963 6.7 Sand Low Moderate 1
3215 8 22 rvc 0.33 Street 10 384.402 6.7 Sand Low Moderate 1
3097 12 51 VCrP 0.3 Street 10 325.2434 6.7 Sand Low Moderate 1
1365 8 24 PVC 04 Alley 10 283.7502 6.7 Sand Low Moderate 1
3327 48 29 PVC 0.14 Street 10 278.4683 6.7 Sand Low Moderate 1
2146 12 39 PVC 2.1 Street 10 159.0316 6.7 Sand Low Moderate 1
2295 15 66 vCr 0.32 Street 10 156.1034 6.7 Sand Low Moderate 1
285 8 35 PvC 0.8 Easement 10 99.28742 6.7 Sand Low Moderate 1
181 10 48 VCP 0.8 Alley 10 70.07311 6.7 Sand Low Moderate 1
47 8 16 PVC 04 Street 10 2448685 6.7 Sand Low Moderate 1
2428 12 9 PVC 0.2 Street 8 479.9761 6.7 Sand Low Moderate 1

Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using

Multinomial Logistic Regression and Artificial Neural Network. Sustainability, 14(9), 5549.

Olga Fink 24



=PFL  Example of a derived equation for condition 1

= 0.978 * Diameter + 0.945 * Age +1.023 x Slope + 1.018 * Depth 4-0.999 x Length

+ 1.321 * pH + 1.146 * Material CONC + 1.899 x MaterialPVC + 0.721 = SurfaceAlley (16)
+ 0.771 % SurfaceEasement + 0.879 x SurfaceHighway + 0.619 * SoilTypeClay + 1.037

* SoilTypeLoam + 0.942 * SoilTypeRock + 0.962 * CorrosivityConcreteHigh + 3.653

* CorrosivityConcreteLow + 1.533 % CorrosivitySteelHigh

where:

Pr (C = 1) is the probability of sanitary sewer pipe condition dependent variable being
condition 1 relative to condition 5.
Pr (C =5) is the probability of reference category condition 5.

Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using
Multinomial Logistic Regression and Artificial Neural Network. Sustainability, 14(9), 5549.

B 24.03.25
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Probabilities for the sewer pipe conditions (all =S
conditions)

egl{xj
Pr(C =1|x) = .
1+ e81(%) 4 e82(x) 4 e83(x)+e84(x)
882{xj
Pr(C=2|x) = .
1+ e81(x) 4+ e82(x) 1 e33(x)+eB4(x)
P C 3 883{)(]
r(C=3x) = 1+ e81(%) 4 e82(%) 1 e83(x)+eB4(x)
egé{x]
Pr(C =4|x) = .
1 + e81(%) 4 e82(x) 4 o83(x)+eB4(x)
1
Pr(C =5|x) =

1+ e81(X) 4+ e82(x) 1 eB3(x)+e84(x)

Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using
Multinomial Logistic Regression and Atrtificial Neural Network. Sustainability, 14(9), 5549.

Olga Fink 26



Significant factors =

Sewer Pipe Condition

Factors
1 2 3 4
Diameter 0.001 0.000 0.199 0.008
Age 0.000 0.001 0.000 0.807
Length 0.000 0.228 0.113 0.980
Material 0.503 0.025 0.001 0.280

B 24.03.25

Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using
Multinomial Logistic Regression and Atrtificial Neural Network. Sustainability, 14(9), 5549.
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=PFL  Influence of the variables

Normalized Importance
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Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using
Multinomial Logistic Regression and Atrtificial Neural Network. Sustainability, 14(9), 5549.
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=PrL

Decisio trees

B 24.03.25
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=PFL  PHM Process

DataAcquisition (DA)
Data Manipulation(DM)
State Detection(SD)

Health Assessment(HA)

Prognostics Assessment(PA)

Advisory Generation(AG)

Olga Fink 30



=PrL
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Decision Trees
Terminology

Nodes are checked on a single
feature

Branches are feature values

Leavesindaieclssiabel o G N AN
Leaf Node Leaf Node Leaf Node Leaf Node

Olga Fink 31



=PrL  Decision Trees
Tree construction

= We select the most discriminative Feature
» Discriminative power based on a score:
 Information gain
« Gini impurity

= We create a node based on this feature

= We repeat for each new branch until all the samples are
classified

B 24.03.25
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Decision Trees
Information gain

At a given branch in the tree, the set of samples S to be classified has P positive and N
negative instances

The entropy of theset Sis :  H(P,N) = | P N | N
py L HPN) == log ) + 508G )

Note: H(P,N) = 0 »Nouncertainty ; H(P,N) = 1 —»Maximal uncertainty

Feature A partitions Sinto Sy, S»,..., Sy
v

.+ N-
The entropy of the feature A is : H(A) = ) : “H (P, N;)

The information gain obtained by spilitting S using Ais : Gain(A) = H(P,N) —H(A)

Olga Fink 33



=PrL  Decision Trees
Continuous features

With continuous features, we cannot have a separate branch for each value
— use binary decision trees

Binary decision trees :

= For continuous feature A, a splitis defined by val(A) < X

= For categorical feature A, a splitis defined by a subset X € domain(A)

B 24.03.25
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=PrL
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Decision Trees

Characteristics of decision tree induction

+

Automatic feature selection
Minimal data preparation
Non-linear model

Easy to interpret and explain

Sensitive to small perturbations
in the data

Tend to overfit

No incremental updates

Olga Fink 35
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=P7L  Ensemble approaches

= Methods that combine the predictions of multiple models to improve
overall accuracy and reduce overfitting

= The idea is to create an ensemble of models that are individually weak
but collectively strong

B 24.03.25
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=PrL

B 24.03.25

Two common ensemble approaches

= Bagging
—>short for Bootstrap Aggregating

->machine learning ensemble
method

—>combines the predictions of
multiple models to improve
overall accuracy and reduce
overfitting.

—->works by randomly selecting
subsets of the original dataset
(with replacemen

—training a separate model on
each subset

—>then aggregating the predictions
of all models to produce a final
prediction.

= Boosting

->machine learning ensemble
method

—>combines weak learners to
create a stronger model

~>based on the idea of
iteratively adding weak models
to the ensemble, where each
subsequent model is trained to
improve the performance of the
previous model.

—~>a weak learner is a model that
performs slightly better than
random guessing

Olga Fink 38



=F7L  Baggingvs. Boosting

Bagging Boosting
1 Ut 4
@—*‘ﬁ%’/ @_./

Parallel Sequential

Source

: www.towardsdatascience.co

Olga Fink
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=PrL

B 24.03.25

Random forest

= Random forest is used for both classification and regression tasks.

= |t is an ensemble learning method that combines multiple decision trees
to make predictions.

= The name "random forest" comes from the fact that the algorithm
creates a "forest" of decision trees that are constructed using a random
subset of the training data and a random subset of the features.

= Decision tree;

« goal is to create a model that predicts the value of a target variable by
learning simple decision rules inferred from the data features

« follows a set of if-else conditions to visualize the data and classify it
according to the conditions

Olga Fink 41



=PFL  Example of a decision tree

i1 00 0 0O

Yes l Is red? l No
1 39 O 0 0 O
l
Yes l Is underlined? l No

Source: www.towardsdatascience.com
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=PrL
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Basics of Random Forest

a & b Pe

Randomly select a subset of the training data.

Randomly select a subset of the features.

Construct a decision tree using the selected data and features.
Repeat steps 1-3 multiple times to create a forest of decision trees.

To make a prediction, the algorithm combines the predictions of all the
decision trees in the forest. For classification tasks, it uses the
majority vote of the trees to determine the predicted class. For
regression tasks, it takes the average

Olga Fink 43
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Node splitting

Decision Tree

Feature 2

Feature 3

Feature 4

Left Right
Node Node

Random Forest
Tree 1

Feature 3

Voo

Left Right
Node Node

Random Forest
Tree 2

Feature 3

Voo

Left Right
Node Node

Source: www.towardsdatascience.com

Olga Fink
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- Basic principle

Training
Set

Test Set

Training Training Training
Data Data oee Data
1 2 n
Decision Decision Decision
Tree Tree Tree
1 \ 2} ’
Voting .
regression

(averaging)

v

Prediction

Voting

. Classification
(majority)

Source: www.towardsdatascience.com
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=PrL  Assumptions

= There should be some actual values in the feature variable of the
dataset so that the classifier can predict accurate results rather than a
guessed result.

= The predictions from each tree must have very low correlations.

B 24.03.25
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=PrL

B 24.03.25

Why use Random Forest?

= |t takes less training time as compared to other algorithms.

= |t can predict output with high accuracy, even for the large dataset it
runs efficiently.

= |t can also maintain accuracy when a large proportion of data is
missing.

Olga Fink 47



=PFL  Advantages of random forest

= Diversity: Not all attributes/variables/features are considered while
making an individual tree; each tree is different.

= Immune to the curse of dimensionality: Since each tree does not
consider all the features, the feature space is reduced.

= Parallelization: Each tree is created independently out of different data
and attributes.

= Stability/Robustness: Stability/Robustness arises because the result
Is based on majority voting/ averaging.

= Interpretability: Easier to interpret the single decision trees.

B 24.03.25
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Example Random Forest
for infrastructure
condition monitoring




=P7L  Large-scale Continual Road Inspection:
Visual Infrastructure Assessment in the Wild

POOR FAIR GOOD

Ma, K., Hoai, M. and Samatras, D., 2017, September. Large-scale Continual Road Inspection: Visual Infrastructure
Assessment in the Wild. In BMVC.

B 24.03.25
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=P7L  Challenges

= Class imbalance:
* Only 0.7% of the pavement data is rated poor.
« fair and good, correspond to 28.8% and 70.5% of the data respectively

= Images are taken under diverse environmental conditions

= images from the same category can look drastically different, depending
on the construction materials (e.g., concrete, asphalt, composite) and
weather and illumination conditions (e.g., sunny, snow, shadow)

= The estimated time gap between when an image was taken and when it
was rated is 1.2 year (estimated on a small subset of the data) - label
noise

Ma, K., Hoai, M. and Samatras, D., 2017, September. Large-scale Continual Road Inspection: Visual Infrastructure
Assessment in the Wild. In BMVC.

B 24.03.25

Olga Fink 51



=P7L  Large-scale Continual Road Inspection:

Visual Infrastructure Assessment in the Wiild

L1 normalization

Aggregate through
all images within one
street segment

Images belonging to one street segment VGG16 Responses of deep filter banks
&
3
) Ma, K., Hoai, M. and Samatras, D., 2017, September. Large-scale Continual Road Inspection: Visual Infrastructure
- Assessment in the Wild. In BMVC.

Fisher
Vector

-

Random Forest

Condition:
POOR
FAIR
GOOD
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=P7L " Results b ul5

Model FV-SIFT FC-CNN  FV-CNN FV-CNN FV-CNN FV-CNN
SVM SVM  Image SVM Patch SVM Patch L1 SVM Patch L1 RF
POOR 78.0 68.3 [.2 18.5 33.6 72.2
FAIR 35.8 35.2 41.8 36.1 30.6 50.7
GOOD 46.6 42.6 84.4 86.7 85.9 51.7
AVG 53.5 48.7 42.5 47.1 50.0 58.2

Ma, K., Hoai, M. and Samatras, D., 2017, September. Large-scale Continual Road Inspection: Visual Infrastructure
Assessment in the Wild. In BMVC.

B 24.03.25
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Multi-Layer-Perceptrons
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=P7L  Perceptrons

= |nitial proposal of connectionist networks
= Rosenblatt, 50’s and 60’s
= Essentially a linear discriminant composed of nodes, weights

W3 W3
Activation Function @
0={1:<Zwixi>+b>0} b

0: otherwise

B 24.03.25
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L

Linear Perceptrons s

They are multivariate linear models:

Out(x) = wTx

“training” consists of minimizing sum-of-squared residuals by gradient
descent

E =2 (Out(x\)- i )
= ;(V\’Txk — Yk )2

The Perceptron was only capable of handling linearly separable data

Source: Moore, 2003

Olga Fink
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=F7L  Linear Perceptron Training Rule s

E & 0 G
—=> — (Y, —W X
5 k§:1,5 _(yk )

J

Mm

o
2(yk WTXK)W(yk _WTXk)

1 j

,\_
Il

R o -
=-2) & —W'X,

k=1 i

...where...

O = Vi W' X,

= —225 —ZW X,

J i=1

B 24.03.25

R
= —22 5k ij Source: Moore, 2003
k=1
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=PFL Linear Perceptron Training Rule

R
E= Z(yk _WTXk)2
k=1

\
OE -
W, <= W, 51—
OW.
| W, < W, +277) X
...where... > J J J
°E " k=1
= _22 O Xy | | .
@W. k=1 n is the Learning Rate - a small positive number, e.g.

J - y n=0.05

B 24.03.25
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=PFL Deltarule

T
O, < Y, —W X
W; < W, +77§ixij
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=P7L Basic principle neurons

_Inputs
J . Weights

) _Activation
" function

Output

Node

B 24.03.25
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=PFL  Activation functions

Popular activation functions:

tanh(x) sigmoid(x) = 1+;_X ReLU(x) = max(0,x) >
Rectified Linear Unit

I " I -

B 24.03.25
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=F7L Basic principle neural network

Feedforward of information

Hidden Output

Backpropagation of errors

Olga Fink 62
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L

Gradient Descent

Suppose we have a scalar function f(W) R o R

We want to find a local minimum.
Assume our current weight is w
_ 0
Gradient descent rule: W%W—U%f(w)

n is again the Learning Rate



PF
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L

Gradient Descent in “m” Dimensions b5

Given f(w): R" >R
- f(w)
vf(w)= . points in direction of steepest ascent.
if(w)
oW

m

Vf(W) is the gradient in that direction
GRADIENT DESCENT RULE: W « w -7V (w)

Equivalently w, « w, -qawif(w)

; ....where w; is the jth weight

just like a linear feedback system” @ 0

Olga Fink 64



=PrL  Gradient Descent h-us

rrent Point

radient far Wi

Source: Moore, 2003

B 24.03.25
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=PFL  Gradient descent with sigmoid on a perceptron kalS

First,notice g'(x)=g(x)1-g(x))

so g'(x)=
1+e X (1+e_xj2

T = e e

(1+e—x)2 (1+e—x)2 1+e X 14 % 1+e~

Because: g(x)=

Out(x) = Q(Zk:WkaJ The sigmoid perceptron update rule:
2 dE  dEdg ds R
E:Z(yi‘g(zk:""kxikj] du ~ dgdsdy W; <= W, +7725igi(1_ gi)xij

i1

N . oS
_Z— (Y—Q(ZWX D (wa ] Zk:w X, . j_:l

=2.-259( s s N1-g( s ), i=Yi— G
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“local gradient”

OL
0z
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Improving Simple Gradient Descent

Momentum
Don'’t just change weights according to the current datapoint.
Re-use changes from earlier iterations.

Let Aw(t) = weight changes at time t.

Let _ OE be the change we would make with regular gradient
descent. ~ 7 5w

Instead we use W(t +1) = W(t)+ AW(’[)

E
Aw(t+1)=—7 % +aAw(t)
Momentum damps oscillations.

Source: Moore, 2003
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Class imbalance
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=PrL
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Introduction to Class Imbalance

= What is Class Imbalance?: A situation in datasets where classes are
not represented equally.

= Impact on Machine Learning: Models become biased towards the
majority class, potentially compromising accuracy.

= Significance: Crucial to address for fair and effective machine learning
outcomes in various applications, from finance to healthcare and in
particular for infrastructure monitoring.

Olga Fink 73



=PrL  |mbalance of datasets

Between-class

Within-class
Intrinsic and extrinsic

Relativity and rarity

Imbalance and small sample size

Source: H. He and E. A. Garcia, 2009
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=PrL

B 24.03.25

Effects of Class Imbalance

= Skews Model Performance: Models might perform well overall while
failing on the minority class.

= | eads to Misleading Accuracy: High accuracy scores can be
deceptive, not reflecting true predictive performance.

= Compromises Model Generalization: Models may struggle to
generalize to unseen data, especially from the minority class.

= Affects Model Fairness: Risks unfair outcomes, particularly in
sensitive applications like loan approval or disease screening.

= Increases False Negatives: Vital in contexts where missing the
minority class (like fraud or disease) is costly.

= Reduces Recall for Minority Class: Lower ability to correctly identify
all actual positive cases.

= Encourages Poor Decision-making: Biased models can lead to
decisions that perpetuate existing inequalities.
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=PFL  Leaming with iImbalanced datasets e

Two main approaches

Act on the data Act on the cost function

Sampling Methods Cost-Sensitive Methods

Source: H. He and E. A. Garcia, 2009
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=P7L Sampling methods

If data is Modify data Create

balanced

Imbalanced... distribution dataset

Create balance though sampling

Source: H. He and E. A. Garcia, 2009
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=PrL Sampling Methods

Increase Dataset

Generate new data points for the
smallest class

Compensate the
lack of data by:

Decrease Dataset

Remove redundant datapoints
from the largest class

Source: H. He and E. A. Garcia, 2009
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=PFL Undersampling s

Remove redundant datapoints

Looses statistics — good only if enough datapoints on

undersampled class and for low dimensional datasets
Source: H. He and E. A. Garcia, 2009
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=PFL Oversampling o

Pick neighbour and create new datapoint

O
o004 O O 0O

O o O <o
*x 3

|:|*EI* O
|:|E||:||:|D~Z%

Risk overfitting, especially if one does this for points that are noise
Source: H. He and E. A. Garcia, 2009
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cPFL  Sampling methods

Random Sampling

S: training data set; S,,,;,,: set of minority class samples,
Snaj et of majority class samples; E: generated samples

Random oversampling Random undersampling
* Expand the minority * Shrink the majority
* S minl < [Sminl + |E| * |8 majl < |Smaj| — |E|
* ISl & ISminl + [Smaj| + E] ¢ ISl < ISminl + |Smaj| = |E]
* Overfitting due to * Loss of important
multiple “tied” instances concepts
Source: H. He and E. A. Garcia, 2009
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=PFL  Sampling methods: Informed Undersampling

« EasyEnsemble

* Unsupervised: use random subsets of the majority class to
create balance and form multiple classifiers

 BalanceCascade

» Supervised: iteratively create balance and pull out redundant
samples in majority class to form a final classifier

Source: H. He and E. A. Garcia, 2009
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=PFL  Sampling methods: Informed Undersampling

= Start with Imbalanced Data
» Majority class heavily outweighs the minority class.

= Compute Informativeness (e.g., Entropy H(n))
» Measure how informative each majority class sample is.
« Common metric: Entropy H(n) — higher means more informative.

= Rank Samples
« Sort majority samples by informativeness (e.g., H(n)).

= Select N*maj Samples
» Retain the most informative samples (top-N or threshold-based).
» Discard redundant or less informative ones.

= Create a Balanced Dataset
« Combine selected majority samples with minority class data.

= Train the Model
« Train on the balanced set for better performance and reduced Rias, 1e ana e, A carcia, 2009
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=P7L_SMOTE: Synthetic minority oversampling
technique

Generate new samples inbetween existing datapoints based on their local
density and their borders with the other class. Can use cleaning techniques
(undersampling) to remove redundancy in the end.

] L
Dp " "o oo
O D,‘~ C //’ ‘\\
4 \ I 1 ,f’--“\\
‘\ * ; \ / ﬁ ™
S~ AR _’ t ’|
- ’
o0 o O X
C
No Neighbors of the Several Neighbors
same class = noise of the same class Surrounded only on one

side by the other class
Surrounded by the S safe

Other C|aSS Source: H. He and E. A. Garcia, 2009

- in danger
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=F7L  Data augmentation

= Introduction of Synthetic Samples: Generating new instances in the
minority class using techniques like SMOTE to balance class distribution.

= Image Manipulation: For image data, employing rotations, flips, crops, and
color variations to create additional examples of the minority class.

= Interpolation: Creating synthetic samples by interpolating between existing
minority class instances.

= Noise Injection: Adding slight variations to data to generate new samples
without altering the class meaning.

= Utilizing Generative models (such as GANs): Generating realistic,
synthetic data for the minority class using Generative Adversarial Networks.

= Adaptive Resampling: Dynamically adjusting augmentation strategies
based on the model's performance to better address class imbalance.

= Evaluation and Adjustment: Continuously monitoring the impact of
augmentation on model performance and adjusting strategies to avoid
overfitting.
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=F7L  Data augmentation

[ w Original Image

De-texturized

De-colorized

—b[ Data Augmentation

Edge Enhanced

Salient Edge Map

Flip/Rotate
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=PrL Data augmentation in time series

= Jittering, where random noise is added

= Scaling, to adjust the amplitude

= Window slicing, to create sub-sequences

= Time warping, to simulate variations in the speed of time series events;

= Rotation, for multivariate time series to capture different perspectives of
the same phenomena.
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=PrL  Cost-sensitive methods

Utilize cost-
sensitive
methods for
imbalanced
learning

Considering
the cost of
misclassifica
tion

Instead of
modifying
data...

Source: H. He and E. A. Garcia, 2009
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=F7L Cost-Sensitive Neural Networks

RN Altering outputs Replacing error-
probability estimate d'g tI P Modify learning rate WAL %e S
of outputs Irectly minimizing function
» Applied only at * Bias neural « Set n higher for » Use expected cost
testing stage networks during costly examples minimization
« Maintain original training to focus on and lower for low-- function instead
neural networks expensive class cost examples

Source: H. He and E. A. Garcia, 2009
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=F7L  Probability Basics

e  Prior, conditional and joint probability for random
variables
—  Prior probability: P(x)
—  Conditional probability: P(x,|x,), P(x,1x,)
—  Joint probability:  x=(x,,x,), P(x)=P(x, ,x,)
—  Relationship:  P(x, ,x,)=P(x, | x,)P(x,)= P(x, | x,)P(x,)
— Independence: P(x, | x,) = P(x,), P(x, | x,) = P(x,), P(x, ,x,) = P(x,)P(x,)

Discri minative Generative Source: Ke Chen, 2011

B 24.03.25

Olga Fink 91



=PFL Probabilistic Classification Principle

e  Establishing a probabilistic model for classification
— Discriminative model

P(c,Ix) P(c,1x) P(c, Ix)

g » To train a discriminative classifier (regardless
its probabilistic or non-probabilistic nature), all
training examples of different classes must be
jointly used to build up a single discriminative
classifier.

* Output L probabilities for L class labels in a
probabilistic classifier while a single label is
achieved by a non-probabilistic discriminative
classifier .

Source: Ke Chen, 2011
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=PFL  Probabilistic Classification Principle bl

e  Establishing a probabilistic model for classification (cont.)
—  Generative model (must be probabilistic)

P(xlc) c=c,, -+, ¢, x=(x;,-,%,)

» L probabilistic models have to be

P(xlc,) P(xlc;) : :
trained independently
Generative Generative « Eachis trained on only the examples
Probabilistic Model °es Probabilistic Model of the same label
1 tfor SEETE 1 1 tfor e 1  Output L probabilities for a given
X, x, coeo X, X, x, cco X, input with L models

« “Generative” means that such a
model can produce data subject to
the distribution via sampling.

Source: Ke Chen, 2011
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L

Probabilistic Classification Principle

e  Maximum A Posterior (MAP) classification rule

—  For an input X, find the largest one from L probabilities output
by a discriminative probabilistic classifier P(c, |x),..., P(c; | x).

—  Assign x to label c* if P(c’ 1x) is the largest.
e  Generative classification with the MAP rule
—  Apply Bayesian rule to convert them into posterior probabilities

P(x1c,)P(c;)

P(c; Ix)= oc P(x1¢c;)P(c;)

Common factor
forall L

for i=1,2,...,I.  probabilities

—  Then apply the MAP rule to assign a label

Source: Ke Chen, 2011
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=PrL
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Naive Bayes

Bayes classification

Difficulty: learning the joint probability P(X,,---, X, | C) is often infeasible!
Naive Bayes classification
— Assume all input features are class conditionally independent!

Applying the

independence
assumption

—  Apply the MAP classification rule: assign X'=(a,,8,,:,a,) to c*if

estimateof P(a,,---a, |c") esitmate of P(a; - a, [c)

Source: Ke Chen, 2011
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=P7L " Naive Bayes

o Algorithm: Discrete-Valued Features
— Learning Phase: Given a training set S of F features and L classes,

Output: F = L conditional probabilistic (generative) models
— Test Phase: Given an unknown instance x'= (aj,---,a.)

“Look up tables” to assign the label ¢* to X" if

Source: Ke Chen, 2011
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=PrL
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Example

e  Example: Play Tennis

PlayTennis: training examples

Day Outlook  Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Source: Ke Chen, 2011
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=PrL

Example

e Learning Phase

Outlook | Play=Yes | Play=No | | Temperature | Play=Yes | Play=No
Sunny 2/9 3/5 Hot 2/9 2/5
Overcast | 4/9 | 0/5 Mild 4/9 2/5
It 3/9 2/5 Lo 3/9 1/5
Humidity [Play=Yes | Play=N Wind | Play=Yes | Play=No
High 3/9 4(;5 o oD o5
Uit 6/9 2/5
Normal | 6/9 | 1/5

P(Play=Yes) =9/14  P(Play=No) = 5/14

Source: Ke Chen, 2011
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=F7L Example

o Test Phase

—  Given a new instance, predict its label
X’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)
—  Look up tables achieved in the learning phrase
P(Outlook=Sunny|Play=Yes) = 2/9 P(Outlook=Sunny|Play=No) = 3/5
P(Temperature=Cool|Play=Yes) = 3/9 P(Temperature=Cool|Play=No) = 1/5
P(Huminity=High|Play=Yes) = 3/9 P(Huminity=High|Play=No) = 4/5
P(Wind=Strong|Play=Yes) = 3/9 P(Wind=Strong|Play=No) = 3/5
P(Play=Yes) = 9/14 P(Play=No) = 5/14

—  Decision making with the MAP rule
P(Yes|X’) = [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053
P(No|X’) = [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given the fact P(Yes|X’) < P(No|X’), we label X’ to be “No”.

Source: Ke Chen, 2011

B 24.03.25

Olga Fink 99



=Pl Example SHM

Data Assumption
Assume we have historical data that indicate the following probabilities:

Prior Probabilities of Each Condition:
* P(Goo0d)=0.70
* P(Minor Damage)=0.20
* P(Major Damage)=0.10
Likelihood of Vibration Frequency Deviations (Hz):
» Good Condition: Normally around 0.5 Hz deviation.
* Minor Damage: Deviations around 2 Hz.
» Major Damage: Deviations exceed 4 Hz.

Likelihood of Maximum Daily Temperature Variation (°C):
« Good Condition: Variation within +5°C.
« Minor Damage: Variation within +10°C.
* Major Damage: Variation exceeds £15°C.

B 24.03.25
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=PrL
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Example SHM

= For simplicity, let's assume we categorize the deviations into "low,"
"medium," and "high" for both features and assign probabilities based
on our historical data.

= Scenario:

= One day, sensors on the bridge report a vibration frequency deviation of
3 Hz and a maximum daily temperature variation of 12°C. We need to
classify the bridge's condition based on this data.
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Example SHM cont.

= Let's simplify and assume:

» The probability of observing a 3 Hz deviation is:
* P(3Hz|Good)=0.1
* P(3 Hz|Minor Damage)=0.7
* P(3 Hz|Major Damage)=0.2

= The probability of observing a 12°C variation is:
* P(12°C|Go0d)=0.05
* P(12°C|Minor Damage)=0.6
+ P(12°C|Major Damage)=0.35

= Calculating Probabilities

= To classify the bridge's condition, we calculate the posterior probability for each condition
usin _B_{alyes' theorem, focusing on the product of the likelihood and the prior probability for
simplicity.

= Let's calculate these probabilities.

= Based on the calculated probabilities, the bridge's health condition is classified as follows:
+ Good: 3.7%
* Minor Damage: 88.9%
* Major Damage: 7.4%
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=PFL  Naive Bayes s

e  Algorithm: Continuous-valued Features
—  Numberless values taken by a continuous-valued feature
—  Conditional probability is often modelled with the normal distribution
1 (Xj_ll’lji)z
\/ﬁaﬁ p( ZO'J-Zi

45 *mean (avearage) of feature values x; of examples for whichc = c;

Is(xj |Ci) =

o ; :standard deviation of feature values x ; of examples for whichc =c;

—  Learning Phase: for X=(X;,--, X¢), C=c¢;,-+,CL
Output:F xL normal distributions and P(C=¢)i=1,--L
—  Test Phase: Given an unknown instance X =(ay,--4a))

e Instead of looking-up tables, calculate conditional probabilities with all the normal distributions
achieved in the learning phrase

e Apply the MAP rule to assign a label (the same as done for the discrete case) Source: Ke Chen, 2011
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=F7L " Naive Bayes

. Example: Continuous-valued Features
—  Temperature is naturally of continuous value.
Yes: 25.2,19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8
No: 27.3,30.1,17.4, 29.5, 15.1

— Estimate mean and variance for each class
My, =21.64, 6y, =2.35

—lix Gz—l%(x — )2
et O Tyat T Hyo = 23.88, oy, =7.09

—  Learning Phase: output two Gaussian models for P(temp|C)

1 exp_(x—21.64)2 B 1 exp_(x—21.64)2
2.35\2x 2x2.352 2.35\2x 11.09

. 1 (x—23.88)? 1 (x—23.88)?
P(x| NO) = —F—exp| — — | = exp| —
7.09'\/ 272' 2 X 709 709’\/ 272' 5025 ource: Ke Chen, 2011
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=PFL Summary

=  Probabilistic Classification Principle
«  Discriminative vs. Generative models: learning P(c|x) vs. P(x|c)P(c)
«  Generative models for classification: MAP and Bayesian rule

= Naive Bayes: the conditional independence assumption
« Training and test are very efficient.
« Two different data types lead to two different learning algorithms.

= Naive Bayes: a popular generative model for classification

« Performance competitive to many state-of-the-art classifiers even in the presence of
violating the conditional independence assumption

« Many successful applications, e.g., spam mail filtering, ...
« Agood candidate of a base learner in ensemble learning

Source: Ke Chen, 2011
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