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▪ Let's suppose you were worried that you might have a rare disease. You 
decide to have a test done. 

▪ The test gives a correct result in 99% of cases (99% correct if you have 
no disease and 99% correct if you have a disease). 

▪ Disease is very rare: 1 in 10,000 people in the population is affected. 

▪ The test is positive. With what probability are you actually ill?

Computing probabilities: Example
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Bayes Theorem
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▪ P (A | B ): the (conditional) probability of A, given that B has 
occurred

▪ P(A) und P(B) are a-priori probabilities.

Theorem of Bayes
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Statistical tests
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▪ Tools to make inferences about populations from sample data.

▪ Help determine if observed differences or relationships are 
statistically significant.

▪ Why Are They Important?

• Distinguish real effects from random variation.

• Support hypothesis testing in experiments and data analysis.

• Provide evidence for decision-making in research and practice.

What Are Statistical Tests?
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▪ Null Hypothesis (H₀): No effect or difference.

▪ Alternative Hypothesis (H₁): There is an effect or difference.

▪ P-value: Probability of observing data under H₀.

▪ Significance Level (α): Common threshold = 0.05.

Key Concepts
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Test Purpose

t-test Compare means between two groups

ANOVA Compare means among three or more groups

Chi-Square Test Association between categorical variables

Mann-Whitney U Compare two groups, non-parametric

Wilcoxon Signed-Rank Compare paired samples, non-parametric



▪ Compares the means of two groups.

▪ Types:

• Independent samples t-test: Compares means of two independent groups.

• Paired samples t-test: Compares means from the same group at different 
times.

▪ Assumptions:

• Data is continuous and normally distributed.

• Variances are equal (homogeneity of variance).

• Observations are independent.

▪ Example: Comparing the mean strain measurements of two different 
types of bridge materials under similar load conditions to determine if 
one material performs significantly better in reducing stress.

t-Test
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▪ The Wald test (a.k.a. Wald Chi-Squared Test) is a parametric 
statistical measure to confirm whether a set of independent variables are 
collectively ‘significant’ for a model or not. 

▪ Also used for confirming whether each independent variable present in a 
model is significant or not.

▪ A variable is said to be ‘significant’ if that variable adds some incremental 
value to the model. 

▪ Variables which fail to add value to the model, can be omitted without 
affecting the model in any meaningful way.

▪ If the Wald test shows that the parameters for certain explanatory variables 
are zero, we can remove the variables from the model.

▪ If the test shows the parameters are not zero, we should include the 
variables in the model

▪ This test is widely used in logistic regression, linear regression, and many 
other statistical models for hypothesis testing.

Hypothesis testing: Wald Test
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▪ where ෡𝛽 is the estimate of the parameter of interest and SE( መ𝛽)is the 
standard error of that estimate. 

▪ The standard error (SE) in the context of the Wald test represents the 
estimated variability or precision of the parameter estimate ෡𝛽 . Essentially, it 
measures how much the estimate of the coefficient is expected to vary 
across different samples drawn from the same population. The smaller the 
SE, the more precise the estimate is considered to be. 

▪ This statistic, which follows a chi-square distribution, tests the null 
hypothesis that መ𝛽 equals zero (implying the variable has no effect). If W 
exceeds the chi-square critical value at a chosen significance level, the null 
hypothesis is rejected, suggesting the parameter significantly differs from 
zero.

Wald test
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Example 1:
Logistic regression for 
infrastructure condition 
monitoring
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Water Pipe Failure Prediction
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Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines 

2015 (pp. 1590-1601).



Water Pipe Failure Prediction
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Water Pipe Failure Prediction
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Water Pipe Failure Prediction
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Water Pipe Failure Prediction
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Water Pipe Failure Prediction
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Vladeanu, G. J., & Koo, D. D. (2015). A comparison study of water pipe failure prediction models using Weibull distribution and binary logistic regression. In Pipelines 
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Example 2:
Logistic regression for 
infrastructure condition 
monitoring
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▪ The data comprised of 

• pipe segments/locations

• length (manhole to manhole) 

• pipe material

• pipe diameter

• pipe age (current year minus year of installation)

• depth (depth of backfill over the crown of pipe in ft)

• soil conditions

• Corrosivity

• Slope

• surface condition–highway/street

• condition rating (1-5)

Example (multinomial) Logistic regression:
evaluation of the local sewer system
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Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using

Multinomial Logistic Regression and Artificial Neural Network. Sustainability, 14(9), 5549.



Example of the data
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Atambo, D. O., Najafi, M., & Kaushal, V. (2022). Development and Comparison of Prediction Models for Sanitary Sewer Pipes Condition Assessment Using
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Example of a derived equation for condition 1
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Probabilities for the sewer pipe conditions (all 
conditions)
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Significant factors
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Influence of the variables
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Decisio trees
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PHM Process
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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment(HA)

State Detection(SD)

Data Manipulation(DM)

DataAcquisition (DA)



Decision Trees

31

▪ Nodes are checked on a single 

feature

▪ Branches are feature values

▪ Leaves indicate class label

Terminology

Root Node

Internal Node

Internal Node Internal Node

Internal Node

Leaf Node

Leaf Node

Leaf Node Leaf Node Leaf Node

Leaf Node
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Decision Trees

32

Tree construction

▪ We select the most discriminative Feature

• Discriminative power based on a score:

• Information gain

• Gini impurity

▪ We create a node based on this feature

▪ We repeat for each new branch until all the samples are

classified
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Decision Trees
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Information gain

At a given branch in the tree, the set of samples S to be classified has P positive and N 
negative instances

The entropy of the set S is  : 𝐻(𝑃,𝑁) = −(
𝑃

𝑃+𝑁
log2(

𝑃

𝑃+𝑁
)+

𝑁

𝑃+𝑁
log2(

𝑁

𝑃+𝑁
))

Note : 𝐻(𝑃,𝑁) = 0 →No uncertainty 𝐻(𝑃,𝑁) = 1 →Maximal uncertainty;

The entropy of the feature A is  : 𝐻(𝐴) = ∑
𝑖=1

𝑣 𝑃𝑖 +𝑁𝑖
𝑃+𝑁

𝐻(𝑃𝑖,𝑁𝑖)

Feature A partitions S into S1, S2 ,…, Sv

The information gain obtained by splitting S using A is : 𝐺𝑎𝑖𝑛(𝐴) = 𝐻(𝑃,𝑁)−𝐻(𝐴)
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Decision Trees
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Continuous features

With continuous features,we cannot have a separatebranch for each value
→ use binary decision trees

Binary decision trees :

▪ For continuous featureA, a split is defined by𝑣𝑎𝑙(𝐴) < 𝑋

▪ For categorical featureA, a split is definedby a subset𝑋 ⊆ 𝑑𝑜𝑚𝑎𝑖𝑛(𝐴)
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Decision Trees

35

Characteristics of decision tree induction

Automatic feature selection

Minimal data preparation

Non-linearmodel

Easy to interpretand explain

Sensitive to small perturbations 
in the data

Tend to overfit

No incremental updates
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Ensemble approaches
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▪ Methods that combine the predictions of multiple models to improve 
overall accuracy and reduce overfitting

▪ The idea is to create an ensemble of models that are individually weak 
but collectively strong

Ensemble approaches
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▪ Bagging

→short for Bootstrap Aggregating

→machine learning ensemble 
method 

→combines the predictions of 
multiple models to improve 
overall accuracy and reduce 
overfitting.

→works by randomly selecting 
subsets of the original dataset 
(with replacement)

→training a separate model on 
each subset

→then aggregating the predictions 
of all models to produce a final 
prediction.

▪ Boosting

→machine learning ensemble 
method

→combines weak learners to 
create a stronger model

→based on the idea of 
iteratively adding weak models 
to the ensemble, where each 
subsequent model is trained to 
improve the performance of the 
previous model.

→a weak learner is a model that 
performs slightly better than 
random guessing

Two common ensemble approaches
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Bagging vs. Boosting
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Source: www.towardsdatascience.com



Random forest
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▪ Random forest is used for both classification and regression tasks. 

▪ It is an ensemble learning method that combines multiple decision trees 
to make predictions. 

▪ The name "random forest" comes from the fact that the algorithm 
creates a "forest" of decision trees that are constructed using a random 
subset of the training data and a random subset of the features.

▪ Decision tree: 

• goal is to create a model that predicts the value of a target variable by 
learning simple decision rules inferred from the data features

• follows a set of if-else conditions to visualize the data and classify it 
according to the conditions

Random forest
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Example of a decision tree
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Source: www.towardsdatascience.com



1. Randomly select a subset of the training data.

2. Randomly select a subset of the features.

3. Construct a decision tree using the selected data and features.

4. Repeat steps 1-3 multiple times to create a forest of decision trees.

5. To make a prediction, the algorithm combines the predictions of all the 
decision trees in the forest. For classification tasks, it uses the 
majority vote of the trees to determine the predicted class. For 
regression tasks, it takes the average

Basics of Random Forest
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Node splitting
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Basic principle
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Voting 

(majority)
regression Classification

Source: www.towardsdatascience.com



▪ There should be some actual values in the feature variable of the 
dataset so that the classifier can predict accurate results rather than a 
guessed result.

▪ The predictions from each tree must have very low correlations.

Assumptions
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▪ It takes less training time as compared to other algorithms.

▪ It can predict output with high accuracy, even for the large dataset it 
runs efficiently.

▪ It can also maintain accuracy when a large proportion of data is 
missing.

Why use Random Forest?
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▪ Diversity: Not all attributes/variables/features are considered while 
making an individual tree; each tree is different.

▪ Immune to the curse of dimensionality: Since each tree does not 
consider all the features, the feature space is reduced.

▪ Parallelization: Each tree is created independently out of different data 
and attributes. 

▪ Stability/Robustness: Stability/Robustness arises because the result 
is based on majority voting/ averaging.

▪ Interpretability: Easier to interpret the single decision trees.

Advantages of random forest
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Example Random Forest 
for infrastructure 
condition monitoring
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Large-scale Continual Road Inspection:
Visual Infrastructure Assessment in the Wild
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Ma, K., Hoai, M. and Samaras, D., 2017, September. Large-scale Continual Road Inspection: Visual Infrastructure 

Assessment in the Wild. In BMVC.



▪ Class imbalance:

• Only 0.7% of the pavement data is rated poor. 

• fair and good, correspond to 28.8% and 70.5% of the data respectively

▪ Images are taken under diverse environmental conditions

▪ images from the same category can look drastically different, depending 
on the construction materials (e.g., concrete, asphalt, composite) and 
weather and illumination conditions (e.g., sunny, snow, shadow)

▪ The estimated time gap between when an image was taken and when it 
was rated is 1.2 year (estimated on a small subset of the data) → label 
noise

Challenges
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Ma, K., Hoai, M. and Samaras, D., 2017, September. Large-scale Continual Road Inspection: Visual Infrastructure 
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Large-scale Continual Road Inspection:
Visual Infrastructure Assessment in the Wild
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Results
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Multi-Layer-Perceptrons
Recap
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▪ Initial proposal of connectionist networks

▪ Rosenblatt, 50’s and 60’s

▪ Essentially a linear discriminant composed of nodes, weights

Perceptrons
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They are multivariate linear models:

Out(x) = wTx

“training” consists of minimizing sum-of-squared residuals by gradient 
descent

Linear Perceptrons
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The Perceptron was only capable of handling linearly separable data



Linear Perceptron Training Rule
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Linear Perceptron Training Rule
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Delta rule
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Basic principle neurons
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Activation functions
2
4
.0

3
.2

5

Olga Fink 61

tanh(x) sigmoid(x) = 1

1+e
− x ReLU(x) = max(0,x) →

Rectified Linear Unit

Popular activation functions:



Basic principle neural network
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Feedforward of information

Backpropagation of errors



Suppose we have a scalar function

We want to find a local minimum.

Assume our current weight is w

Gradient descent rule:

η is again the Learning Rate

Gradient Descent
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Gradient Descent in “m” Dimensions
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points in direction of steepest ascent.

GRADIENT DESCENT RULE:

Equivalently
….where wj is the jth weight

“just like a linear feedback system”
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Gradient Descent
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Source: Moore, 2003



Gradient descent with sigmoid on a perceptron
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f

“local gradient”

gradients

70 70
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Momentum

Don’t just change weights according to the current datapoint.

Re-use changes from earlier iterations.

Let  ∆w(t) = weight changes at time t.

Let                be the change we would make with regular gradient 
descent.

Instead we use

Momentum damps oscillations.

Improving Simple Gradient Descent
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Class imbalance
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▪ What is Class Imbalance?: A situation in datasets where classes are 
not represented equally.

▪ Impact on Machine Learning: Models become biased towards the 
majority class, potentially compromising accuracy.

▪ Significance: Crucial to address for fair and effective machine learning 
outcomes in various applications, from finance to healthcare and in 
particular for infrastructure monitoring.

Introduction to Class Imbalance
2
4
.0

3
.2

5

Olga Fink 73



5

Between-class

Within-class

Intrinsic and extrinsic

Relativity and rarity

Imbalance and small sample size

Imbalance of datasets
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Source: H. He and E. A. Garcia, 2009



▪ Skews Model Performance: Models might perform well overall while 
failing on the minority class.

▪ Leads to Misleading Accuracy: High accuracy scores can be 
deceptive, not reflecting true predictive performance.

▪ Compromises Model Generalization: Models may struggle to 
generalize to unseen data, especially from the minority class.

▪ Affects Model Fairness: Risks unfair outcomes, particularly in 
sensitive applications like loan approval or disease screening.

▪ Increases False Negatives: Vital in contexts where missing the 
minority class (like fraud or disease) is costly.

▪ Reduces Recall for Minority Class: Lower ability to correctly identify 
all actual positive cases.

▪ Encourages Poor Decision-making: Biased models can lead to 
decisions that perpetuate existing inequalities.

Effects of Class Imbalance
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Learning with imbalanced datasets
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Sampling Methods Cost-Sensitive Methods

Two main approaches

Act on the data Act on the cost function

Source: H. He and E. A. Garcia, 2009
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Source: H. He and E. A. Garcia, 2009



Sampling Methods
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Increase Dataset

Generate new data points for the  

smallest class

Decrease Dataset

Remove redundant datapoints  

from the largest class

Compensate the  

lack of data by:

Source: H. He and E. A. Garcia, 2009



Undersampling
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Remove redundant datapoints

Looses statistics – good only if enough datapoints on

undersampled class and for low dimensional datasets
Source: H. He and E. A. Garcia, 2009



Oversampling
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Pick neighbour and create new datapoint

Risk overfitting, especially if one does this for points that are noise

Source: H. He and E. A. Garcia, 2009



Sampling methods
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Random Sampling
S: training data set; Smin: set of minority class samples, 

Smaj: set of majority class samples; E: generated samples

Source: H. He and E. A. Garcia, 2009



Sampling methods: Informed Undersampling
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• EasyEnsemble
• Unsupervised: use random subsets of the majority class to  

create balance and form multiple classifiers

• BalanceCascade
• Supervised: iteratively create balance and pull out redundant  

samples in majority class to form a final classifier

Source: H. He and E. A. Garcia, 2009



▪ Start with Imbalanced Data
• Majority class heavily outweighs the minority class.

▪ Compute Informativeness (e.g., Entropy H(n))
• Measure how informative each majority class sample is.

• Common metric: Entropy H(n) → higher means more informative.

▪ Rank Samples
• Sort majority samples by informativeness (e.g., H(n)).

▪ Select N*maj Samples
• Retain the most informative samples (top-N or threshold-based).

• Discard redundant or less informative ones.

▪ Create a Balanced Dataset
• Combine selected majority samples with minority class data.

▪ Train the Model
• Train on the balanced set for better performance and reduced bias.

Sampling methods: Informed Undersampling
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Source: H. He and E. A. Garcia, 2009



SMOTE: Synthetic minority oversampling 
technique
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No Neighbors of the  

same class → noise

Several Neighbors  

of the same class

Surrounded by the  

other class

→ in danger

Surrounded only on one  

side by the other class

→ safe

Generate new samples inbetween existing datapoints based on their local  

density and their borders with the other class. Can use cleaning techniques  

(undersampling) to remove redundancy in the end.

Source: H. He and E. A. Garcia, 2009



▪ Introduction of Synthetic Samples: Generating new instances in the 
minority class using techniques like SMOTE to balance class distribution.

▪ Image Manipulation: For image data, employing rotations, flips, crops, and 
color variations to create additional examples of the minority class.

▪ Interpolation: Creating synthetic samples by interpolating between existing 
minority class instances.

▪ Noise Injection: Adding slight variations to data to generate new samples 
without altering the class meaning.

▪ Utilizing Generative models (such as GANs): Generating realistic, 
synthetic data for the minority class using Generative Adversarial Networks.

▪ Adaptive Resampling: Dynamically adjusting augmentation strategies 
based on the model's performance to better address class imbalance.

▪ Evaluation and Adjustment: Continuously monitoring the impact of 
augmentation on model performance and adjusting strategies to avoid 
overfitting.

Data augmentation
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Data augmentation
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▪ Jittering, where random noise is added

▪ Scaling, to adjust the amplitude

▪ Window slicing, to create sub-sequences

▪ Time warping, to simulate variations in the speed of time series events; 

▪ Rotation, for multivariate time series to capture different perspectives of 
the same phenomena. 

Data augmentation in time series
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Cost-sensitive methods
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Source: H. He and E. A. Garcia, 2009



Cost-Sensitive Neural Networks
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Modifying  
probability estimate  

of outputs

• Applied only at  
testing stage

• Maintain original  
neural networks

Altering outputs  
directly

• Bias neural  
networks during  
training to focus on  
expensive class

Modify learning rate

• Set η higher for  
costly examples  
and lower for low-‐
cost examples

Replacing error-‐
minimizing function

• Use expected cost  
minimization  
function instead

Source: H. He and E. A. Garcia, 2009



Naïve Bayes
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Probability Basics
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• Prior, conditional and joint probability for random 

variables

– Prior probability: 

– Conditional probability: 

– Joint probability: 

– Relationship:

– Independence: 

• Bayesian Rule
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  )(xP

))(),,( 22 ,xP(xPxx 11    == xx
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
=

Discriminative Generative Source: Ke Chen, 2011



Probabilistic Classification Principle
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• Establishing a probabilistic model for classification

– Discriminative model

),,,( 21 nxxx =x

Discriminative 

Probabilistic Classifier

1x 2x nx

)|( 1 xcP )|( 2 xcP )|( xLcP

•••

••• • To train a discriminative classifier (regardless 

its probabilistic or non-probabilistic nature), all 

training examples of different classes must be 

jointly used to build up a single discriminative 

classifier.

• Output  L probabilities for L class labels in a 

probabilistic classifier while a single label is 

achieved by a non-probabilistic discriminative 

classifier .

),,)( 1 n1L x(xc,,cc|cP ==   ,   xx

Source: Ke Chen, 2011



Probabilistic Classification Principle
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• Establishing a probabilistic model for classification (cont.)

– Generative model (must be probabilistic)

),,)( 1 n1L x(xc,,ccc|P ==   ,   xx

Generative

Probabilistic Model

for Class 1

)|( 1cP x

1x 2x nx
•••

•••

),,,( 21 nxxx =x

Generative

Probabilistic Model

for Class L

)LcP |(x

1x 2x nx
•••

• L probabilistic models have to be 

trained independently 

• Each is trained on only the examples 

of the same label

• Output  L probabilities for a given 

input with L models

• “Generative” means that such a 

model can produce data subject to 

the distribution via sampling.

Source: Ke Chen, 2011



Probabilistic Classification Principle
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• Maximum A Posterior (MAP) classification rule

– For an input x, find the largest one from L probabilities output 

by a discriminative probabilistic classifier

– Assign x to label c*  if            is the largest.

• Generative classification with the MAP rule

– Apply Bayesian rule to convert them into posterior probabilities

– Then apply the MAP rule to assign a label

    ..., , ).()( 1 xx |cP|cP L

Li

cPc|P
P

cPc|P
|cP ii

ii
i

   for                                    

 

,,2,1

)()(
)(

)()(
)(

=

= x
x

x
x

   )( * x|cP

Common factor 

for all L

probabilities 

Source: Ke Chen, 2011



Naïve Bayes
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• Bayes classification

Difficulty: learning the joint probability                       is often infeasible!              

• Naïve Bayes classification

– Assume all input features are class conditionally independent!

– Apply the MAP classification rule: assign                           to c* if

.,...,for   )()|,,()()( )( 11 Ln ccccPcxxPcPc|P|cP == xx

)|,,( 1 cxxP n
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1
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22121
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nnn
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=

=

                                  

                                  

),,,(' 21 naaa =x

Applying the 

independence 

assumption  
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Source: Ke Chen, 2011



Naïve Bayes
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• Example: Play Tennis

Source: Ke Chen, 2011
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• Learning Phase

Outlook Play=Yes Play=No

Sunny 2/9 3/5
Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5

Humidity Play=Yes Play=N
o

High 3/9 4/5
Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5
Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

Source: Ke Chen, 2011
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• Test Phase

– Given a new instance, predict its label

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

– Look up tables achieved in the learning phrase

– Decision making with the MAP rule

P(Outlook=Sunny|Play=No) = 3/5

P(Temperature=Cool|Play=No) = 1/5

P(Huminity=High|Play=No) = 4/5

P(Wind=Strong|Play=No) = 3/5

P(Play=No) = 5/14

P(Outlook=Sunny|Play=Yes) = 2/9

P(Temperature=Cool|Play=Yes) = 3/9

P(Huminity=High|Play=Yes) = 3/9

P(Wind=Strong|Play=Yes) = 3/9

P(Play=Yes) = 9/14

P(Yes|x’) ≈ [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053

P(No|x’) ≈ [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.

Source: Ke Chen, 2011



▪ Data Assumption

▪ Assume we have historical data that indicate the following probabilities:

▪ Prior Probabilities of Each Condition:
• P(Good)=0.70

• P(Minor Damage)=0.20

• P(Major Damage)=0.10

▪ Likelihood of Vibration Frequency Deviations (Hz):
• Good Condition: Normally around 0.5 Hz deviation.

• Minor Damage: Deviations around 2 Hz.

• Major Damage: Deviations exceed 4 Hz.

▪ Likelihood of Maximum Daily Temperature Variation (°C):
• Good Condition: Variation within ±5°C.

• Minor Damage: Variation within ±10°C.

• Major Damage: Variation exceeds ±15°C.

Example SHM
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▪ For simplicity, let's assume we categorize the deviations into "low," 
"medium," and "high" for both features and assign probabilities based 
on our historical data.

▪ Scenario:

▪ One day, sensors on the bridge report a vibration frequency deviation of 
3 Hz and a maximum daily temperature variation of 12°C. We need to 
classify the bridge's condition based on this data.

Example SHM
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▪ Let's simplify and assume:

▪ The probability of observing a 3 Hz deviation is:
• P(3 Hz∣Good)=0.1
• P(3 Hz∣Minor Damage)=0.7

• P(3 Hz∣Major Damage)=0.2

▪ The probability of observing a 12°C variation is:
• P(12°C∣Good)=0.05
• P(12°C∣Minor Damage)=0.6
• P(12°C∣Major Damage)=0.35

▪ Calculating Probabilities

▪ To classify the bridge's condition, we calculate the posterior probability for each condition 
using Bayes' theorem, focusing on the product of the likelihood and the prior probability for 
simplicity.

▪ Let's calculate these probabilities.

▪ Based on the calculated probabilities, the bridge's health condition is classified as follows:
• Good: 3.7%

• Minor Damage: 88.9%
• Major Damage: 7.4%

Example SHM cont.
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Naïve Bayes 
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• Algorithm: Continuous-valued Features

– Numberless values taken by a continuous-valued feature

– Conditional probability is often modelled with the normal distribution

– Learning Phase: 

Output:           normal distributions and 

– Test Phase: Given an unknown instance 

• Instead of looking-up tables, calculate conditional probabilities with all the normal distributions 
achieved in the learning phrase

• Apply the MAP rule to assign a label (the same as done for the discrete case)
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• Example: Continuous-valued Features 

– Temperature is naturally of continuous value.

Yes: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8

No: 27.3, 30.1, 17.4, 29.5, 15.1

– Estimate mean and variance for each class

– Learning Phase: output two Gaussian models for P(temp|C)
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▪ Probabilistic Classification Principle

• Discriminative vs. Generative models: learning P(c|x) vs. P(x|c)P(c)

• Generative models for classification: MAP and Bayesian rule

▪ Naïve Bayes: the conditional independence assumption

• Training and test are very efficient.

• Two different data types lead to two different learning algorithms.

▪ Naïve Bayes: a popular generative model for classification

• Performance competitive to many state-of-the-art classifiers even in the presence of 

violating the conditional independence assumption

• Many successful applications, e.g., spam mail filtering, …

• A good candidate of a base learner in ensemble learning

Summary
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Source: Ke Chen, 2011


