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1. Damage Detection and Classification → Fault Diagnostics

▪ Objective: Identify and classify damage types (e.g., cracks, corrosion, delamination).

▪ Data: Sensor measurements (strain, acceleration, temperature), images (vision-based inspections).

▪ Example: Classifying crack severity in bridge components using labeled inspection images.

2. Anomaly/Fault Detection

▪ Objective: Detect deviations from normal structural behavior.

▪ Data: Time-series data from sensors (vibration, strain gauges).

▪ Example: Identifying abnormal vibration patterns in wind turbines indicating early-stage failures.

3. Remaining Useful Life (RUL) Prediction → Prognostics

▪ Objective: Estimate how much time is left before maintenance is required or failure occurs.

▪ Data: Historical degradation data, maintenance records.

▪ Example: Predicting the lifespan of bridge cables under varying load conditions.

4. Load and Stress Estimation

▪ Objective: Predict loads or stress levels on structural components in real time.

▪ Data: Displacement, strain, temperature measurements.

▪ Example: Estimating traffic-induced stress on highway overpasses.

Applications in Infrastructure Monitoring
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▪ Predicts continuous numerical values based on input data.

▪ Examples in Infrastructure Monitoring

▪ Remaining Useful Life (RUL) Prediction
→ Predict how many days/weeks a bridge component will last before 
maintenance is needed.

▪ Stress / Strain Estimation
→ Estimate stress at a specific point on a bridge deck not directly 
instrumented.

▪ Deflection / Displacement Prediction
→ Predict the displacement of a structure under load in real time.

▪ Crack Length Growth Prediction
→ Forecast how long a crack in concrete or steel will become over time.

Regression in Infrastructure Monitoring
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▪ Assigns categories to input data

→Determine the state or condition of the structure by placing it into 
predefined classes.

▪ Fault Type Identification→ Identify the type of fault: corrosion, crack, 
delamination.

▪ Health State Classification→ Classify a bridge as "Healthy", "Warning", 
or "Critical".

Classification in Infrastructure Monitoring
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▪ Definition:
Virtual sensing (also known as soft sensing) refers to the estimation or 
reconstruction of unmeasured physical quantities at specific locations or 
times using mathematical models and data from existing physical 
sensors.

▪ How it works:
Virtual sensors use machine learning, physics-based models, or 
data-driven algorithms to infer measurements in locations where 
installing physical sensors is impractical or too costly.

Virtual Sensing in Infrastructure Monitoring
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1. Collect data from existing sensors(e.g., strain, acceleration, 
temperature).

2. Train predictive models (e.g., Machine Learning).

3. Estimate unmeasured states or variables(e.g., stress at an 
unmonitored point, displacement, load).

How Does Virtual Sensing Work?
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1. Structural Response Estimation

Use Case: Predict strain, displacement, or stress in regions of a structure where no sensors are 
installed.

Example: Estimating stress at mid-span of a bridge using data from sensors placed at supports.

2. Damage Localization and Quantification

Use Case: Detect and localize potential damage zones by reconstructing full-field responses.

Example: Virtual strain sensing to detect damage in wind turbine blades or offshore platforms.

3. Cost-Effective Monitoring

Use Case: Reduce the number of physical sensors required without compromising data coverage.

Example: Use fewer accelerometers on large buildings but infer vibrations in unmeasured areas.

4. Hard-to-Access or Hazardous Areas

Use Case: Monitor areas where deploying physical sensors is dangerous or infeasible.

Example: Virtual sensing inside pipelines, deep inside dams, or underwater structures.

5. Enhancing Sparse Sensor Networks

Use Case: Fill in gaps in sensor data, improving the spatial resolution of monitoring systems.

Example: Reconstructing full bridge deck deflection profiles from a limited number of displacement 
sensors.

When and Where Can Virtual Sensing Be Applied?
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▪ Reduces hardware and maintenance costs

▪ Enables monitoring of inaccessible locations

▪ Increases spatial resolution of monitoring data

▪ Enhances understanding of structural behavior

▪ Supports proactive maintenance and decision-making

Benefits of Virtual Sensing
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▪ Lack of Labeled Anomaly Data
• Anomalies are rare by nature-collecting enough labeled examples is difficult.

• Manual labeling of anomalies (e.g., structural damage) is time-consuming, expensive, and often requires expert 
domain knowledge.

• Real-world systems (e.g., bridges, turbines) rarely fail or exhibit damage during normal operation, so anomaly 
datasets are typically highly imbalanced.

▪ Class Imbalance Problem
• Anomalies are rare → massive imbalance between normal and abnormal examples.

• Supervised algorithms can become biased toward the normal class, leading to:

▪ High false negatives (missed anomalies)

▪ Poor detection of rare but critical events (e.g., early signs of failure)

▪ Anomalies Are Not Always the Same
• Anomalies can be unexpected, diverse, and unpredictable.

• Supervised models require pre-defined classes of anomalies to train on.

• New, unseen anomalies will not be detected well because the model has never encountered them during 
training.

▪ Data Drift and Changing Conditions
• Infrastructure systems change over time:

▪ Wear and tear 

▪ Environmental variations

▪ Sensor noise/failures

• Supervised models trained on historical data may fail to generalize to new operating conditions unless frequently 
retrained, which is impractical.

Why Supervised Learning Is Often a Bad Idea for 
Anomaly Detection
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PHM Process
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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment(HA)

State Detection (SD)

Data Manipulation (DM)

DataAcquisition (DA)



Performance Evaluation
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Confusion matrix: missed alarms/ false alarms
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▪ Rate of missed alarms:

FN/(TP+FN)

▪ Rate of false alarms:  
FP/(FP+TN)

True class →

Predicted class ↓

Fault No fault

Positive (detected) TP FP

Negative (not 

detected)

FN TN

P=TP+FN N=FP+TN

19.03.2019Olga Fink 19



Classification performance
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒

True class →

Predicted class ↓

Fault No fault

Positive (detected) TP FP

Negative (not 

detected)

FN TN

Precision

Recall Specificity

𝐹1 =
2 ∙ (𝑅𝑒𝑐𝑎𝑙𝑙 ∙ 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛
𝐹𝛽 = (1 + 𝛽2)

𝑅𝑒𝑐𝑎𝑙𝑙 ∙ 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝛽2𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛



ROC = Receiver Operating Characteristic
AUC = Area under the curve
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Performance Metrics for Regression

Metric Description Equation Interpretation

Mean Absolute 

Error (MAE)

Average of absolute 

differences between predicted 

and actual values.

Lower is better. Easy to interpret as average error in 

units of the target.

Mean Squared 

Error (MSE)

Average of squared 

differences between predicted 

and actual values.

Lower is better. Penalizes larger errors more heavily.

Root Mean 

Squared Error 

(RMSE)

Square root of the MSE. 

Provides error in same units 

as target.

Lower is better. Sensitive to large deviations.

R-squared (R²) Proportion of variance 

explained by the model 

(goodness-of-fit).

Closer to 1 is better. Measures explained variability.

Mean Absolute 

Percentage Error 

(MAPE)

Average absolute percentage 

errors between predicted and 

actual values.

Lower % is better. Intuitive relative error measure.

Symmetric MAPE 

(sMAPE)

Scale-independent error. 

Avoids division by zero.

Lower % is better. Useful near zero values.
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▪ Generalization Ability (How well does the model perform on unseen data?)

• Overfitting vs. Underfitting

• Performance gap between training and testing (or validation)

▪ Robustness (How stable is the model when inputs are noisy, incomplete, or perturbed)

• Noise sensitivity analysis (injecting realistic noise into sensor data)

• Outlier detection and performance under anomalous inputs

▪ Computational Efficiency (How resource-efficient is the model in terms of time and 
memory?)

• Training time

• Inference time (important for real-time monitoring)

• Memory/CPU/GPU requirements

▪ Scalability (Can the model handle larger datasets or growing system complexity?)

• Increase number of sensors/inputs (high-dimensional data)

• Increase number of monitored structures

▪ Interpretability / Explainability (Can stakeholders understand and trust the model?)

▪ Robustness to Data Imbalance

Other considerations
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Logistic Regression
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▪ Logistic regression is a statistical model used to predict the probability 
of a binary outcome (i.e., a "yes" or "no" answer) based on one or more 
predictor variables. It is a type of regression analysis commonly used in 
machine learning and statistics to model the relationship between the 
input features and the binary target variable.

Logistic regression
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Linear regression vs. Logistic regression
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Source: www.towardsdatascience.com



Logistic regression
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Logistic Regression

29

1) Linear Regression:
𝑧(𝑖) =𝐰𝑇𝒙(𝑖) +𝑏

2) Activation Function:

𝑦
̂ (𝑖) =𝜎(𝑧(𝑖))

3) Classification:

𝑖𝑓𝑦
̂ (𝑖) >0.5⇒ 𝑙𝑎𝑏𝑒𝑙1

𝑖𝑓𝑦
̂ (𝑖) ≤0.5⇒ 𝑙𝑎𝑏𝑒𝑙0

𝑥1

𝑥2

𝑥𝑛−1

…

𝑥𝑛

𝑤1

𝑤2

𝑤𝑛−1

𝑤𝑛

𝜎𝐰𝑇𝑥 + 𝑏
𝑦
̂

Input Weight
Activation 

function
Output

Visualisation
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Logistic Regression

30

Binary cross-entropy loss

Loss function

How to learn w?

Active when y = 1 Active when y = 0
Penalize when ℎ𝑤(𝑥) → 0 Penalize when ℎ𝑤(𝑥) → 1

𝐽 = −
1

𝑁
∑
𝑖=1

𝑁

𝑦(𝑖)log(ℎ𝐰(𝒙
(𝑖))) + (1 − 𝑦(𝑖))log(1 − ℎ𝐰(𝒙

(𝑖)))
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Gradient descent
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Logistic Regression

32

Softmax regression

𝜎(𝐳)𝑖 =
exp(𝑧𝑖)

∑𝑗=1
𝐾 exp(𝑧𝑗)

, 𝑖 ∈ {1, . . . , 𝐾}

After applying softmax, each component will be in

the interval (0,1) and the component will add up to

1, so that they can be interpreted as probabilities

Softmax function

Softmax regression is a generalization of logistic regression to multi-class 

problems.

Note: For softmax regression, 𝐳 is obtained as follows: 

• 𝐳 = 𝐖𝑇𝒙 + 𝐛

• 𝑧𝑘 = 𝐰𝑘
𝑇𝒙 + 𝑏𝑘 where 𝐰𝑘 is the k-th column of the D x K weight matrix 𝐖.
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Logistic Regression
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Categorical cross-entropy

Categorical Cross-Entropy Loss

𝐽(𝐰, 𝑏) = − ∑
𝑖=1

𝑁

∑
𝑘=1

𝐾

𝟏{𝑦(𝑖) = 𝑘}log
exp(𝐰𝑘

𝑇𝒙(𝑖) + 𝑏𝑘)

∑𝑗=1
𝐾 exp(𝐰𝑗

𝑇𝒙(𝑖) + 𝑏𝑗)

where 𝟏{𝑦𝑖 = 𝑘} is “indicator function”, it works as:

𝟏{True statement} = 1 and 𝟏{False statement} = 0
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Example Logistic
Regression
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Input:

• Room Temperature

• Outside Temperature

• Past Room Temperature (Tt-1, Tt-2)

• Room Temperature difference (∆Tt-1, ∆Tt-2)

• Presence Sensor

Timestep=1min.

Output

For each time 𝑡:
• 𝑦𝑡 = 𝟏 if no opening at time 𝑡
• 𝑦𝑡 = 𝟎 if an opening at time 𝑡

Problem Definition: detect open windows
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Results for different office rooms (AUC)
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Room OT+RT=B B+RT_t-1 B+RT_t-

1+RT_t-

2=C

B+diff

RT_t-1 + 

diff RT_t-

2=D

B+ 

presence

C+presen

ce

D+presen

ce

01_01_07 0.60 0.60 0.61 0.62 0.87 0.87 0.87

01_01_27 0.67 0.67 0.67 0.67 0.78 0.78 0.78

01_01_56 0.58 0.58 0.59 0.59 0.71 0.71 0.71

01_01_57 0.80 0.78 0.76 0.71 0.81 0.80 0.79

03_02_26 0.69 0.69 0.69 0.69 0.79 0.79 0.79



Examples of ROC curves
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Examples of ROC curves
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K-Nearest Neighbor 
algorithm
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▪ Approximating real valued or discrete-valued target functions

▪ Learning in this algorithm consists of storing the presented training data

▪ When a new query instance is encountered, a set of similar related 
instances is retrieved from memory and used to classify the new query 
instance

▪ Construct only local approximation to the target function that applies in 
the neighborhood of the new query instance

▪ Instance-based methods can use vector or symbolic representation

▪ Appropriate definition of „neighboring“ instances

▪ Disadvantage of instance-based methods is that the costs of classifying 
new instances can be high

▪ Nearly all computation takes place at inference time rather than learning 
time

Instance based learning
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Source: Fenix, 2015



▪ Most basic instance-based method

▪ Data are represented in a vector space 

▪ Supervised learning algorithm

▪ Distance measure required

k-Nearest Neighbor algorithm
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▪ Used to classify objects based on closest 
training examples in the feature space

• Feature space: raw data transformed into 
sample vectors of fixed length using 
feature extraction (Training Data)

▪ Among the simplest classification algorithms

▪ Implementation of lazy learner

• All computation deferred until 
classification

Why k-NN?
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Source: Connor, 2006



▪ Requires 3 things:

• Feature Space (Training Data)

• Distance metric 

▪ to compute distance between records

• The value of k

▪ the number of nearest neighbors to retrieve from 
which to get majority class

▪ To classify an unknown record:

• Compute distance to other training records

• Identify k nearest neighbors

• Use class labels of nearest neighbors to 
determine  the class label of unknown 
record 

k-NN Requirements
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Source: Connor, 2006



▪ Common Distance Metrics:

• Euclidean distance (continuous distribution)

• Cosine similarity

• Hamming distance (overlap metric)

• Discrete Metric(boolean metric)

▪ Determine the class from k nearest neighbor list

• Take the majority vote of class labels among the k-nearest neighbors

• Weighted factor: w =1/d (generalized linear interpolation) or 1/d2 

k-NN Distance measures
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bat (distance = 1) toned (distance = 3) 

cat roses

if x = y then d(x,y) = 0. Otherwise, d(x,y) = 1

 

x − y = (x i − y i)
2

i=1

d



Source: Connor, 2006



▪ Imagine instances described by 20 features (attributes) but only 3 are relevant to 
target function

▪ Curse of dimensionality: nearest neighbor is easily misled when instance space is 
high-dimensional

▪ Dominated by large number of irrelevant features

Possible solutions

▪ Stretch j-th axis by weight zj, where z1,…,zn chosen to minimize prediction error 
(weight different features differently)

▪ Use cross-validation to automatically choose weights z1,…,zn

▪ Feature subset selection if zj set zero 

▪ Dimensionality reduction

Curse of Dimensionality
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▪ Requires same things as classification: 

• Feature Space

• Distance Measure

• The value of k

▪ Regression Prediction: Unlike classification, where the most common 
class of the 'k' neighbors is typically returned, k-NN regression 
averages the target values of these neighbors to determine the 
prediction. The average can be a simple arithmetic mean or a weighted 
mean if some neighbors are closer than others.

k-NN for Regression (similar to classification)
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▪ Instances map to points in Rd

▪ Less than 20 features per instance, typically normalized

▪ Sufficient training data

Advantages:

▪ Training is very fast 

▪ Learn complex target functions

▪ Do not loose information

Disadvantages:

▪ Slow at query time 
• Presorting and indexing training samples into search trees reduces time

▪ Easily fooled by irrelevant features (attributes)

When to Consider Nearest Neighbors
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▪ Data Collection & Preprocessing

• Collect sensor data (e.g., vibration, strain, displacement).

• Extract meaningful features (RMS, peak amplitude, frequencies).

▪ Build a Reference Dataset

• Use data from normal (healthy) operating conditions.

▪ Apply k-NN Algorithm

• For each new data point, find its K nearest neighbors from the reference 
dataset.

• Calculate the distance (Euclidean or other) to its neighbors.

▪ Anomaly Detection Rule

• If the average distance is greater than a threshold, classify it as anomalous.

• Threshold selection: Based on validation data or statistical methods.

How unserupervised k-NN can work for anomaly 
detection
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Support Vector Machine
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SVM

52

Classification Algorithm

Based on maximizing margin

Margin : Defined as the width that the boundary

could increase by before hitting a datapoint

Optimal hyperplane separation
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SVM

53

Optimal hyperplane separation

We obtain our constraints

Negative example : -1

Positive example :  1 𝐰𝑇𝐱 + 𝑏 = 0

𝐰𝑇𝐱 + 𝑏 = +1

𝐰𝑇𝐱 + 𝑏 = −1

The margin on either side of the 

hyperplane satisfies

𝐰𝑇𝐱 + 𝑏 = ±1
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SVM
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Optimal hyperplane separation

We obtain an optimization problem:

𝑚𝑖𝑛
𝐰,𝑏

∥ 𝐰 ∥

2

2

𝐰𝑇𝐱(𝑖) + 𝑏 ≤ −1 when 𝑦(𝑖) = −1

𝐰𝑇𝐱(𝑖) + 𝑏 ≥ 1 when 𝑦(𝑖) = +1
𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 when 𝑖 = 1,2, . . . , 𝑀

Objective

Constraints

This is hard-margin SVM, and it work only for separable data
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SVM

55

Optimal hyperplane separation

Maximizing this condition is equivalent to minimizing
∥𝐰∥

2

Better to minimize a square form :
∥𝐰∥

2

2

We obtain our objective criteria

The margin between two classes is at least
2

∥𝐰∥
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SVM

56

What should we do ?
Constraints relaxed by 

slack variables 𝜉𝑖

𝜉1

𝜉2

𝜉3

𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖𝑠. 𝑡𝜉𝑖 ≥
0 ∀ 𝑖 = 1,2, . . . , 𝑁

We need to add a penalty for 

too large slack variable

𝑚𝑖𝑛
𝐰,𝑏

(
∥ 𝐰 ∥

2

2

+
𝐶

𝑁
∑
𝑖=1

𝑁

𝜉𝑖)

C > 0 weight the influence of the penalty term

Find trade off  between maximizing margin and minimizing the classification errors

Dealing with non-separable data

M : number of examples in the margin

or misclassified
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SVM

57

Dealing with non-separable data

𝑚𝑖𝑛
𝐰,𝑏

(
∥ 𝐰 ∥

2

2

+
𝐶

𝑁
∑
𝑖=1

𝑁

𝜉𝑖)

Control size of the margin

Control number of misclassification

Note that : 𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ⇔ 𝜉𝑖 ≥ 1 − 𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏)

Because 𝜉𝑖 ≥ 0 Note that : 𝜉𝑖 = 𝑚𝑎𝑥(0,1 − 𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏))

𝐰𝑇𝐱(𝑖) + 𝑏 ≤ −1 + 𝜉𝑖 when 𝑦(𝑖) = −1

𝐰𝑇𝐱(𝑖) + 𝑏 ≥ 1 − 𝜉𝑖 when 𝑦(𝑖) = +1
𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 when 𝑖 = 1,2, . . . , 𝑀
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Dealing with non-separable data

Regularization term

Hinge loss

We can reformulate into a form more adapted for learning as :

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝑚𝑎𝑥(0,1 − 𝑦(𝑛)𝐱(𝑛)
𝑇
𝐰) +

𝜆

2
∥ 𝐰 ∥2)

𝑚𝑖𝑛
𝐰,𝑏

(
∥ 𝐰 ∥

2

2

+
𝐶

𝑁
∑
𝑖=1

𝑁

𝜉𝑖)

Control size of the margin

Control number of misclassification
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Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss

The margin
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Dealing with non-separable data

𝑚𝑖𝑛
𝐰

(
𝜆

2
∥ 𝐰 ∥2)

Leads to :

1. A separating hypeplane

2. A scaling of 𝐰 so that no point of the data is in the margin

Guarantee that separating hyperplane and scaling for which

the margin is the largest

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝑚𝑎𝑥(0,1 − 𝑦(𝑛)𝐱(𝑛)
𝑇
𝐰)
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Dealing with non-separable data

Note that this function is convex

So we can use SGD to optimize it efficiently 

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝑚𝑎𝑥(0,1 − 𝑦(𝑛)𝐱(𝑛)
𝑇
𝐰) +

𝜆

2
∥ 𝐰 ∥2)
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Dealing with non-separable data

The 𝛼𝑛 are the support vectors !

The support vectors are the nearest 

samples from the hyperplane

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛(1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰) +
𝜆

2
∥ 𝐰 ∥2)
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Dealing with non-separable data

𝛼𝑛 = 0 when 1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰 < 0

Examples that lie on the correct side 

and outside of the margin

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛(1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰) +
𝜆

2
∥ 𝐰 ∥2)
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Dealing with non-separable data

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛[1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰]+ +
𝜆

2
∥ 𝐰 ∥2)

𝛼𝑛 = 1 when 1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰 > 0

Examples that lie strictly inside the 

margin, or on the wrong side
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▪ The linear classifier relies on dot product between vectors K(xi,xj)=xi
Txj

▪ If every data point is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the dot product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

▪ A kernel function is some function that corresponds to an inner product 
in some expanded feature space.

The “Kernel Trick”
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Dealing with non-linear classification
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Dealing with non-linear classification

𝑚𝑎𝑥
𝛼∈[0,1]𝑁

𝛼𝑇𝟏 −
1

2𝜆
𝛼𝑇𝐘𝐗𝐗𝑇𝐘𝛼

We saw that in this alternative formulation the data only enters in the

form of a ‘’kernel‘’𝐊 = 𝐗𝐗𝑇

By definition, a ‘’kernel’’𝐊 = 𝐗𝐗𝑇 is equivalent to an inner product

There exists an infinity of inner products dependent to the geometry of

spaces where we use it

𝑋: [𝑁 × 𝐷] with 𝑁 the number of samples and 𝐷 the number of features
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Dealing with non-linear classification

Kernel Equation

Linear 𝐾(𝑥, 𝑦) = 𝑥𝑦

Sigmoid 𝐾(𝑥, 𝑦) = tanh(𝑎𝑥𝑦 + 𝑏)

Polynomial 𝐾(𝑥, 𝑦) = (1 + 𝑥𝑦)𝑑

KMOD

𝐾(𝑥, 𝑦) = 𝑎[exp(
𝛾

||𝑥 − 𝑦||2 + 𝑠𝑖𝑔𝑚𝑎2
) − 1]RBF

𝐾(𝑥, 𝑦) = exp(−𝑎||𝑥 − 𝑦||)Exponential RBF

𝐾(𝑥, 𝑦) = exp(−𝑎||𝑥 − 𝑦||2)
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Constructing the Decision Function
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▪ Flexibility in choosing a similarity function

▪ Sparseness of solution when dealing with large data sets

- only support vectors are used to specify the separating hyperplane 

▪ Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the feature space

▪ Overfitting can be controlled by soft margin approach

▪ Nice math property: a simple convex optimization problem which is guaranteed to 
converge to a single global solution

▪ Feature Selection

Properties of SVM
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▪ Support Vector Machine (SVM) is fundamentally a binary classifier, which 
means that it's naturally suited for distinguishing between two classes. 
However, it can be extended for use in multi-class classification through 
several strategies:

▪ One-vs-Rest (OvR): Also known as one-vs-all, this strategy involves 
training a single SVM for each class, with the samples of that class as 
positive samples and all other samples as negatives. This results in as 
many classifiers as there are classes. For prediction, the classifier with the 
highest output function (distance from the decision boundary) is typically 
chosen as the class label.

▪ One-vs-One (OvO): This approach trains an SVM for every pair of classes. 

If there are N classes, this means training 
𝑁(𝑁−1)

2
classifiers. For a new input 

instance, each SVM votes for a class, and the class with the most votes 
determines the instance's label. Although OvO requires training more 
classifiers than OvR, each classifier only needs to be trained on the part of 
the training set for the two classes that it needs to separate.

SVM for multi-class classification
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▪ Support Vector Regression (SVR) applies the principles of Support 
Vector Machines (SVM) to regression problems. While SVM is used for 
classification tasks, SVR is designed to predict continuous values. 

▪ The main idea behind SVR is similar to SVM, which is to find a function 
that has at most ε deviation from the actual target values of the training 
data and at the same time is as flat as possible.

Support Vector Regression (SVR) 
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▪ Fitting the Best Line: In SVR, instead of looking for a separating hyperplane as in SVM 
classification, the algorithm tries to fit the best line (in 2D) or hyperplane (in higher 
dimensions) within a threshold value, ε, which defines a tube around the estimated function.

▪ Epsilon Tube (ε-Tube): This tube is the acceptable error margin; points inside this tube are 
not penalized, as their predicted values fall within a tolerable range of the actual values.

▪ Objective: The goal is to find the flattest tube so that for the training points outside this ε-
tube, the distances to the tube boundaries are minimized. This is achieved by minimizing a 
function that represents the flatness of the tube, which is often the norm of the weights 
vector ww.

▪ Loss Function: SVR uses a special type of loss function called the ε-insensitive loss 
function which ignores errors that are within the distance ε of the true value. It only penalizes 
data points that fall outside of the ε-tube.

▪ Support Vectors: The data points that lie at the boundary of the ε-tube or outside it are the 
Support Vectors. They are the only points that influence the shape of the regression function.

▪ Dual Form and Kernel Trick: As with SVM, SVR can be formulated in a dual form which 
allows it to take advantage of the kernel trick for dealing with nonlinear data. This means that 
the linear regression function is mapped into a higher-dimensional space using a kernel 
function (like the radial basis function, polynomial, or sigmoid), where it is assumed that the 
data can be fitted with a linear function.

▪ Optimization: The fitting process involves a constrained optimization problem where you 
maximize the margin while penalizing points that fall outside the ε-tube.

Support Vector Regression (SVR) 
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