Infrastructure Condition

Monitoring: supervised leaming:
Logistic regression / KNN / SVM
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=PFL  Applications in Infrastructure Monitoring

1. Damage Detection and Classification - Fault Diagnostics

= Objective: Identify and classify damage types (e.g., cracks, corrosion, delamination).

= Data: Sensor measurements (strain, acceleration, temperature), images (vision-based inspections).
= Example: Classifying crack severity in bridge components using labeled inspection images.

2. Anomaly/Fault Detection

= Objective: Detect deviations from normal structural behavior.

= Data: Time-series data from sensors (vibration, strain gauges).

= Example: Identifying abnormal vibration patterns in wind turbines indicating early-stage failures.
3. Remaining Useful Life (RUL) Prediction = Prognostics

= Objective: Estimate how much time is left before maintenance is required or failure occurs.

= Data: Historical degradation data, maintenance records.

= Example: Predicting the lifespan of bridge cables under varying load conditions.

4. Load and Stress Estimation

= Objective: Predict loads or stress levels on structural components in real time.

= Data: Displacement, strain, temperature measurements.

= Example: Estimating traffic-induced stress on highway overpasses.
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=PrL

B 17.03.25

Regression in Infrastructure Monitoring

= Predicts continuous numerical values based on input data.
= Examples in Infrastructure Monitoring

= Remaining Useful Life (RUL) Prediction
— Predict how many days/weeks a bridge component will last before
maintenance is needed.

= Stress / Strain Estimation
— Estimate stress at a specific point on a bridge deck not directly
instrumented.

= Deflection / Displacement Prediction
— Predict the displacement of a structure under load in real time.

= Crack Length Growth Prediction
— Forecast how long a crack in concrete or steel will become over time.

Olga Fink 10



=PrL
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Classification in Infrastructure Monitoring

= Assigns categories to input data

—>Determine the state or condition of the structure by placing it into
predefined classes.

= Fault Type ldentification— Identify the type of fault: corrosion, crack,
delamination.

= Health State Classification— Classify a bridge as "Healthy", "Warning",
or "Critical".

Olga Fink 11



=PFL  Virtual Sensing In Infrastructure Monitoring

= Definition:
Virtual sensing (also known as soft sensing) refers to the estimation or
reconstruction of unmeasured physical quantities at specific locations or
times using mathematical models and data from existing physical
Sensors.

= How it works:
Virtual sensors use machine learning, physics-based models, or
data-driven algorithms to infer measurements in locations where
installing physical sensors is impractical or too costly.

B 17.03.25
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=F*L How Does Virtual Sensing Work?

1. Collect data from existing sensors(e.g., strain, acceleration,
temperature).

Train predictive models (e.g., Machine Learning).

Estimate unmeasured states or variables(e.g., stress at an
unmonitored point, displacement, load).

B 17.03.25
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1. Structural Response Estimation

Use I(IZaase: Predict strain, displacement, or stress in regions of a structure where no sensors are
installed.

Example: Estimating stress at mid-span of a bridge using data from sensors placed at supports.
2. Damage Localization and Quantification

Use Case: Detect and localize potential damage zones by reconstructing full-field responses.
Example: Virtual strain sensing to detect damage in wind turbine blades or offshore platforms.

3. Cost-Effective Monitoring

Use Case: Reduce the number of physical sensors required without compromising data coverage.
Example: Use fewer accelerometers on large buildings but infer vibrations in unmeasured areas.
4. Hard-to-Access or Hazardous Areas

Use Case: Monitor areas where deploying physical sensors is dangerous or infeasible.
Example: Virtual sensing inside pipelines, deep inside dams, or underwater structures.

5. Enhancing Sparse Sensor Networks

Use Case: Fill in gaps in sensor data, improving the spatial resolution of monitoring systems.

Example: Reconstructing full bridge deck deflection profiles from a limited number of displacement
sensors.

Olga Fink 14



=PFL  Benefits of Virtual Sensing

= Reduces hardware and maintenance costs

= Enables monitoring of inaccessible locations

= |[ncreases spatial resolution of monitoring data

= Enhances understanding of structural behavior

= Supports proactive maintenance and decision-making

B 17.03.25
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Why Supervised Leaming Is Often a Bad Idea for
Anomaly Detection

Lack of Labeled Anomaly Data
* Anomalies are rare by nature-collecting enough labeled examples is difficult.

* Manual labeling of anomalies (e.g., structural damage) is time-consuming, expensive, and often requires expert
domain knowledge.

* Real-world systems (e.g., bridges, turbines) rarely fail or exhibit damage during normal operation, so anomaly
datasets are typically highly imbalanced.
Class Imbalance Problem
* Anomalies are rare — massive imbalance between normal and abnormal examples.
» Supervised algorithms can become biased toward the normal class, leading to:
= High false negatives (missed anomalies)
= Poor detection of rare but critical events (e.g., early signs of failure)

Anomalies Are Not Always the Same
* Anomalies can be unexpected, diverse, and unpredictable.
» Supervised models require pre-defined classes of anomalies to train on.
. tl\rlgivr\llinlénseen anomalies will not be detected well because the model has never encountered them during
Data Drift and Changing Conditions
* Infrastructure systems change over time:
= Wear and tear
= Environmental variations
= Sensor noise/failures

» Supervised models trained on historical data may fail to generalize to new operating conditions unless frequently
retrained, which is impractical.
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=PFL  PHM Process

DataAcquisition (DA)
Data Manipulation (DM)
State Detection (SD)

Health Assessment(HA)

Prognostics Assessment(PA)

Advisory Generation(AG)

Olga Fink 17
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=PFL Confusion matrix: missed alarms/ false alarms

Fault No fault .
True class — = Rate of missed alarms:
Predicted class l

FN/(TP+FN)
Positive (detected) | TP FP
Negative (not FN N = Rate of false alarms:
detected)
FP/(FP+TN)
P=TP+FN N=FP+TN
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=PFL  Classification performance

True Positive

Precision —
reciston True Postitive + False Positive
True class — Fault No fault
True Negative Predicted class l
Specificity = - —
True Negative + False Postitive
I  — ——— ————————————— ||
Positive (detected) | TP FP L
Precision
Recall(Sensitivity) = True Positive Negative (not FN TN
ecall(Sensitivity) = True Postitive + False Negative detected)
Recall Specificity
True Positive + True Negative
Accuracy =
Total
2 - (Recall - Precesion) Recall - Precesion . 1 /(TP TN
F = Fg = (1+p? Balanced Accuracy = = | —+ —
! Recall + Precesion p=(+h )Recall+B2Precesion y 2\ P N
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ROC= Recelver Operating Characteristic s
AUC = Area under the curve
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Performance Metrics for Regression

Metric

Mean Absolute
Error (MAE)

Mean Squared
Error (MSE)

Root Mean
Squared Error
(RMSE)

R-squared (R?)

Mean Absolute
Percentage Error
(MAPE)

Symmetric MAPE
(SMAPE)

Description

Average of absolute
differences between predicted
and actual values.

Average of squared
differences between predicted
and actual values.

Square root of the MSE.
Provides error in same units
as target.

Proportion of variance
explained by the model
(goodness-of-fit).

Average absolute percentage
errors between predicted and
actual values.

Scale-independent error.
Avoids division by zero.

Equation

n
MAE = (1/n) 3 |y; - Vil
=1

MSE = (1/n) X (y; — Vi)

i=1

RMSE = \/(lln) > (yi—yi)?
=1

2 lyi—yi)?
R2 = 1 _ ﬁ=nl
2 vi-y?
i=1

n o
MAPE = (100/n) > ||
i=1

n ~
SMAPE = (100/n) 3 ¥~V

i=1

(lyil + IyiD/2

Interpretation

Lower is better. Easy to interpret as average error in
units of the target.

Lower is better. Penalizes larger errors more heavily.

Lower is better. Sensitive to large deviations.

Closer to 1 is better. Measures explained variability.

Lower % is better. Intuitive relative error measure.

Lower % is better. Useful near zero values.

Olga Fink
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Other considerations

Generalization Ability (How well does the model perform on unseen data?)
 Overfitting vs. Underfitting
» Performance gap between training and testing (or validation)

Robustness (How stable is the model when inputs are noisy, incomplete, or perturbed)
* Noise sensitivity analysis (injecting realistic noise into sensor data)
 Qutlier detection and performance under anomalous inputs
Computational Efficiency (How resource-efficient is the model in terms of time and
memory?)
 Training time
« Inference time (important for real-time monitoring)
* Memory/CPU/GPU requirements

Scalability (Can the model handle larger datasets or growing system complexity?)
 Increase number of sensors/inputs (high-dimensional data)
* Increase number of monitored structures

Interpretability / Explainability (Can stakeholders understand and trust the model?)
Robustness to Data Imbalance

Olga Fink 23
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=F7L  Logistic regression

= Logistic regression is a statistical model used to predict the probability
of a binary outcome (i.e., a "yes" or "no" answer) based on one or more
predictor variables. It is a type of regression analysis commonly used in
machine learning and statistics to model the relationship between the
input features and the binary target variable.

B 17.03.25
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=F*L  Linear regression vs. Logistic regression

Linear Regression Logistic Regression

y=1 Y=1
@
E: ©
- &
o
Y=0 Y=01 >

X-Axis

Source: www.towardsdatascience.com
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=Pl Logistic regression
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=PFL  Logistic Regression

Visualisation
. Activation

Input Weight function Output

X

1 "
" W\‘
Wy, b y
xn

B 17.03.25

1) Linear Regression:
z® =wlx® +p

2) Activation Function:
y0 = 6

3) Classification:

ify® > 05 = labell
ify® <05 = label0
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=P7L  Logistic Regression

Loss function

How to learn w?

Binary cross-entropy loss

1 =B YyOlog(huG®)) + (1 - yO)log(1 — hy(x))

Active wheny =1 Active wheny =0
Penalize when h,, (x) - 0 Penalize when h,,(x) = 1

B 17.03.25
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=PFL  Gradient descent s

Initial Weight

Incremental Step \

Gradient

Cost
a.J(60
(v — /(6)

old —* _
86'}

9?.’.(:11-‘ =0

Minimum Cost

>

Weight

Source: www.towardsdatascience.com
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=PFL  Logistic Regression

Softmax regression

Softmax function
After applying softmax, each component will be in

exp(%i) e {1 K the interval (0,1) and the component will add up to
7 ,1E{L,...,K}
Zj=19Xp (Zj) 1, so that they can be interpreted as probabilities

o(z); =

Softmax regression is a generalization of logistic regression to multi-class
problems.

Note: For softmax regression, Z is obtained as follows:
ez=W'x+b

® 7, = wa + bj, where Wy, is the k-th column of the D x K weight matrix W.

B 17.03.25
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=PFL  Logistic Regression

Categorical cross-entropy

Categorical Cross-Entropy Loss

( exp(wrx® + by) )

K_1exp(wjx® + b))

N K ,
Jw,b) = =% ¥ 1{y® = k}log

i=1k=1

where 1{y’ = k} is “indicator function”, it works as:
1{ True statement} = 1 and 1{False statement} = 0

B 17.03.25
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=P'L  Problem Definition: detect open windows

Input:

*  Room Temperature

* Outside Temperature

+ Past Room Temperature (T.q, Ti,)

* Room Temperature difference (AT, ; AT, ,)

« Presence Sensor

Timestep=1min.

Output

For each time t:

* vy, =1if no opening attimet
« y,=0ifan opening attime t

B 17.03.25
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=PFL  Results for different office rooms (AUC) s

B+RT_t-1 B+diff B+ C+presen | D+presen
RT t-1+ presence ce ce
diff RT _t-

2=D

01_01_07 0.60 0.60 0.61 0.62 0.87 0.87 0.87
01 01 27 0.67 0.67 0.67 0.67 0.78 0.78 0.78
01 01 56 0.58 0.58 0.59 0.59 0.71 0.71 0.71
01 01 57 0.80 0.78 0.76 0.71 0.81 0.80 0.79

03_02_26 0.69 0.69 0.69 0.69 0.79 0.79 0.79

B 17.03.25
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=PFL  Examples of ROC curves s

Raum 01 01 07 OT+RT

1.0~

0.8 1

0.6 4

0.4 1

0.2

True Positive Rate (Positive label: 1.0)

0.0 - —— LogisticRegression (AUC = 0.60)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1.0)
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=PFL  Examples of ROC curves s

Raum 01 01 07 OT+RT+past RT2 diff+presence

0.8 1

0.6 1

0.4 1

0.2 1

True Positive Rate (Positive label: 1.0)

0.0 - —— LogisticRegression (AUC = 0.87)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1.0)
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=PrL
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Instance based leaming

= Approximating real valued or discrete-valued target functions
= Learning in this algorithm consists of storing the presented training data

= When a new query instance is encountered, a set of similar related
instances is retrieved from memory and used to classify the new query
instance

= Construct only local approximation to the target function that applies in
the neighborhood of the new query instance

= |Instance-based methods can use vector or symbolic representation
= Appropriate definition of ,neighboring” instances

= Disadvantage of instance-based methods is that the costs of classifying
new instances can be high

= Nearly all computation takes place at inference time rather than learning
time
Source: Fenix, 2015
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k-Nearest Neighbor algorithm

= Most basic instance-based method
= Data are represented in a vector space
= Supervised learning algorithm

= Distance measure required

Olga Fink

42



=L Why k-NN?

= Used to classify objects based on closest
training examples in the feature space

« Feature space: raw data transformed into
sample vectors of fixed length using
feature extraction (Training Data)

= Among the simplest classification algorithms

= Implementation of lazy learner

 All computation deferred until
classification

B 17.03.25

Source: Connor, 2006
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=P L k-NN Requirements

= Requires 3 things: /
» Feature Space (Training Data)

 Distance metric
* to compute distance between records

* The value of k

= the number of nearest neighbors to retrieve from
which to get majority class

= To classify an unknown record:
« Compute distance to other training records \

* ldentify k nearest neighbors

» Use class labels of nearest neighbors to
determine the class label of unknown
record

B 17.03.25

Source: Connor, 2006

Olga Fink
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=FL kNN Distance measures

= Common Distance Metrics:
 Euclidean distance (continuous distribution)

) YO

- Cosine similarity Futdear cosine remmne
Sim(A,B) = cos(@) = —-B__ ) o A|1€1?O|0|
T A Bl \ [ ) B [1]1]1]o]o]o]
- Hamming distance (overlap metric) o % -
bat (distance = 1) toned (distance = 3)
cat roses

 Discrete Metric(boolean metric)
if x =y then d(x,y) = 0. Otherwise, d(x,y) =1

= Determine the class from K nearest neighbor list
« Take the majority vote of class labels among the k-nearest neighbors Source: Connor, 2006
« Weighted factor: w =1/d (generalized linear interpolation) or 1/d?

B 17.03.25
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Curse of Dimensionality

= Imagine instances described by 20 features (attributes) but only 3 are relevant to
target function

= Curse of dimensionality: nearest neighbor is easily misled when instance space is
high-dimensional

= Dominated by large number of irrelevant features

Possible solutions

= Stretch j-th axis by weight z,, where z,,...,z,, chosen to minimize prediction error
(weight different features diﬁerently)

= Use cross-validation to automatically choose weights z,,...,z,
= Feature subset selection if z; set zero
= Dimensionality reduction

Source: Fenix, 2015
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k-NN for Regression (similar to classification) k=lS

= Requires same things as classification:
* Feature Space
« Distance Measure
* The value of k

= Regression Prediction: Unlike classification, where the most common
class of the 'k' neighbors is typically returned, k-NN regression
averages the target values of these neighbors to determine the
prediction. The average can be a simple arithmetic mean or a weighted
mean if some neighbors are closer than others.
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When to Consider Nearest Neighbors

= [nstances map to points in Rd

= | ess than 20 features per instance, typically normalized
= Sufficient training data

Advantages:

= Training is very fast

= L earn complex target functions

= Do not loose information

Disadvantages:

= Slow at query time
* Presorting and indexing training samples into search trees reduces time

= Easily fooled by irrelevant features (attributes)

Source: Fenix, 2015
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How unserupervised k-NN can work for anomaly
detection

= Data Collection & Preprocessing
» Collect sensor data (e.g., vibration, strain, displacement).
« Extract meaningful features (RMS, peak amplitude, frequencies).

= Build a Reference Dataset
« Use data from normal (healthy) operating conditions.
= Apply k-NN Algorithm

» For each new data point, find its K nearest neighbors from the reference
dataset.

 Calculate the distance (Euclidean or other) to its neighbors.

= Anomaly Detection Rule
« If the average distance is greater than a threshold, classify it as anomalous.
* Threshold selection: Based on validation data or statistical methods.

Olga Fink 49
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EPFL - QUM

Optimal hyperplane separation

Classification Algorithm

Based on maximizing margin

Margin : Defined as the width that the boundary
could increase by before hitting a datapoint

L 4
Olga Fink 52
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Pl SUM s

Optimal hyperplane separation

We obtain our constraints

BNegative example : -1

@®rositive example : 1

wix+bh=-1

The margin on either side of the

hyperplane satisfies
w/x+bh=+1

B 17.03.25
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=PrL SVM

Optimal hyperplane separation

We obtain an optimization problem:

2
|l w i

min Objective
w,b

wix® + b >1when y® = +1 l O wTx® 1 b > 1 R .
. . wix\W + > 1when i =1,2,...,
wix® + b < —1when y® = —1Jy ( ) onstraints

This is hard-margin SVM, and it work only for separable data

B 17.03.25
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SVM

Optimal hyperplane separation

The margin between two classes is at least i

We obtain our objective criteria

: e : Iwli
Maximizing this condition is equivalent to minimizing -

. w2
Better to minimize a square form : E

Olga Fink
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SVM

Dealing with non-separable data

What should we do ?

Constraints relaxed by
slack variables ¢;
yOwTx® + b) > 1—§s.t&; =
ovi=12,...,N

M : number of examples in the margin
or misclassified

We need to add a penalty for
too large slack variable

RAR
2

C > 0 weight the influence of the penalty term

N
nv’g,lgt( N iglfi)

Find trade off between maximizing margin and minimizing the classification errors
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=PrL SVM

Dealing with non-separable data

Control size of the margin

2
Iwl® C N

> Niglfi)

Control number of misclassification

min
w,b (

wix® +p>1-¢& when y® = +1] ot
. . wxW+hb)y>1—-&wheni=1,2,..., M
wTx® + b < —1+ & when y® = —1|” )2 1-gw

Note that : yO(wWTx® +bh)>1-§ o & >1—yDwTx® + b)

Because &; = 0 Note that : §; = max (0,1 — y®Ow'x® + b))

B 17.03.25
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=PrL SVM

Dealing with non-separable data

Control size of the margin

I wII? A C N
7

Control number of misclassification

min
w,b (

We can reformulate into a form more adapted for learning as :

Hinge loss
N T A
min( Y max(0,1 — y™xMW w) + = || w ||?)
w n=1 2

Regularization term

B 17.03.25
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SVM

Optimal hyperplane separation

Link with the Hinge function

Hinge Loss

The margin




=PrL SVM

Dealing with non-separable data
N T
min( Y max(0,1 — y™Wx™ w)
U e

Leads to :
1. A separating hypeplane

2. A scaling of w so that no point of the data is in the margin
A ;

min(= Il w [|9)
w 2

Guarantee that separating hyperplane and scaling for which
the margin is the largest

B 17.03.25
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=PrL SVM

Dealing with non-separable data

N A
min( ) max(0,1 — y(")x(”)TW) + > |l w %)
w

n=1
Note that this function is convex

So we can use SGD to optimize it efficiently

B 17.03.25
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EPFL - QUM

Dealing with non-separable data

max mm( Z a, (1 —y@WxMWTw) + A
a€{0,1} w p=1

The a,, are the support vectors !

The support vectors are the nearest
samples from the hyperplane

B 17.03.25
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EPFL - QUM

Dealing with non-separable data

A
max min( Z a, (1 — y™xMTyw) + — Il wll?)
ac{0,1} w

a, =0when 1 — yMxMWTw < 0

Examples that lie on the correct side
and outside of the margin

B 17.03.25
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=PrL SVM E‘E

Dealing with non-separable data

max min( IEV: a,[1— y™xMWTw] +% I wlI1%)
a€{01} W poq L)

a, = 1when1—yMWxMWTw > 0

Examples that lie strictly inside the
margin, or on the wrong side

B 17.03.25
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=PrL
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The “Kemel Trick”

= The linear classifier relies on dot product between vectors K(x;,X)=x;"x;

= |f every data point is mapped into high-dimensional space via some
transformation @: x — @(x), the dot product becomes:

K(X;,x)= @(x) "®(x;)

= A kernel function is some function that corresponds to an inner product
In some expanded feature space.

f(x)=>" iy K(xi,x)+ b

Olga Fink
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SVM

Dealing with non-linear classification

© o
o ° o
©¢c ° mmg® o
o - ..I
oo E"E gmH®E kernel
o " mm ©
O " m g m o —_—
o ®"mm m
© "ogEg_® 04
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0® 2
o © o0
o

i

Decision surface
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=PrL SVM

Dealing with non-linear classification

1
max a’l ——alYXXTYa
aef0,1]N 21

We saw that in this alternative formulation the data only enters in the
form of a “kernel” K = XXT

X:|N X D] with N the number of samples and D the number of features
By definition, a “kernel” K = XX is equivalent to an inner product

There exists an infinity of inner products dependent to the geometry of
spaces where we use it

B 17.03.25
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SVM - Kemels

Dealing with non-linear classification

1]

Kernel Equation
Linear K(x,y) =xy
Sigmoid K(x,y) = tanh(axy + b)
Polynomial K(x,y) = (1+xy)?¢

— y —_—
RBF K(x,y) = a[eXp(”x EpWTEN Sl.gmaz)
KMOD K(x,y) = exp(—al|x — y||*)

Exponential RBF

K(x,y) = exp(—allx — y|])
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=PFL  Constructing the Decision Function bl

Once the optimal «; values are found, the decision function for a new point x can be constructed

without explicitly computing w. Instead, we use:

f(x) = sign (3.7 aiyiK (x;,x) + b)

The bias b can be computed using the support vectors, and conditions derived from the KKT

conditions.

B 17.03.25
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Properties of SVM

= Flexibility in choosing a similarity function
= Sparseness of solution when dealing with large data sets
- only support vectors are used to specify the separating hyperplane
= Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the feature space
= Qverfitting can be controlled by soft margin approach

= Nice math property: a simple convex optimization problem which is guaranteed to
converge to a single global solution

» Feature Selection

Olga Fink 70



=PFL SVM for multi-class classification

= Support Vector Machine (SVM) is fundamentally a binary classifier, which
means that it's naturally suited for distinguishing between two classes.
However, it can be extended for use in multi-class classification through
several strategies:

= One-vs-Rest (OvR): Also known as one-vs-all, this strategy involves
training a single SVM for each class, with the samples of that class as
positive samples and all other samples as negatives. This results in as
many classifiers as there are classes. For prediction, the classifier with the
highest output function (distance from the decision boundary) is typically
chosen as the class label.

= One-vs-One (OvO): This approach trains an SVM for every pair of classes.

If there are N classes, this means tralnlng Delassifiers. For a new input

instance, each SVM votes for a class, and the class with the most votes
determines the instance's label. AIthough OvO requires training more
classifiers than OvR, each classifier only needs to be trained on the part of
the training set for the two classes that it needs to separate.
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Support Vector Regression (SVR)

= Support Vector Regression (SVR) applies the principles of Support
Vector Machines (SVM) to regression problems. While SVM is used for
classification tasks, SVR is designed to predict continuous values.

= The main idea behind SVR is similar to SVM, which is to find a function
that has at most € deviation from the actual target values of the training
data and at the same time is as flat as possible.
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. Fittin_(fq the Best Line: In SVR, instead of looking for a separating hyperplane as in SVM
classification, the algorithm tries to fit the best line (in 2D2 or hyperplane (in higher _
dimensions) within a threshold value, €, which defines a tube around the estimated function.

= Epsilon Tube (e-Tube): This tube is the acceptable error margin; points inside this tube are
not penalized, as their predicted values fall within a tolerable range of the actual values.

= Objective: The goal is to find the flattest tube so that for the training points outside this ¢-
tube, the distances to the tube boundaries are minimized. This is achieved by minimizing a
fun(t:tlon that represents the flatness of the tube, which is often the norm of the weights
vector ww.

» Loss Function: SVR uses a special type of loss function called the e-insensitive loss
function which qnores errors that are within the distance ¢ of the true value. It only penalizes
data points that tall outside of the ¢-tube.

= Support Vectors: The data points that lie at the boundarx of the e-tube or outside it are the
Support Vectors. They are the only points that influence the shape of the regression function.

= Dual Form and Kernel Trick: As with SVM, SVR can be formulated in a dual form which
allows it to take advantage of the kernel trick for_deallnc(]; with nonlinear data. This means that
the linear regression function is mapped into a higher-dimensional space using a kernel
function (like the radial basis function, polynomial, or sigmoid), where it is assumed that the
data can be fitted with a linear function.

= Optimization: The fitting process involves a constrained optimization problem where you
maximize the margin while penalizing points that fall outside the e-tube.
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