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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment(HA)

State Detection(SD)

Data Manipulation(DM)

DataAcquisition (DA)



1. Problem Definition and Understanding
• Clearly articulate the problem you aim to solve.
• Identify the objectives and success criteria.
• Ask the right questions: Identify the questions your data can answer to solve the business problem.
• Understand the data: Learn the context, limitations, and opportunities within the available data.

2. Identify the Value:
• Determine the potential value and impact of solving the problem (both from business and from the scientific 

perspective)
• Assess how the solution will benefit stakeholders and align with business goals.

3. Collect Data:
• Gather relevant data from various sources.
• Make sure that your data is representative for the test data (application data)  be aware of the variability of the 

operating conditions ( domain shift)
• Ensure data quality and completeness.
• Acquire labels for your data if possible (ensure the quality of labels)

4. Explore and Understand the Data:
• Perform exploratory data analysis.
• Visualize data to understand patterns and relationships.
• Understand the data distribution (Explore the statistical properties, distributions, and trends in the data)
• Identify data quality issues (Look for missing values, outliers, and inconsistencies that may affect analysis).
• Generate hypotheses (Form hypotheses based on patterns observed during data exploration).

Typical steps to follow in a machine learning (ML) 
project (1/3)
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5. Prepare Data:
• Clean the data (handle missing values, outliers).
• Feature engineering (create meaningful features, transform existing ones).
• Split data into training, validation, and test sets.
• Scaling and normalization (Prepare the data for modeling by applying appropriate scaling techniques)
• Address class imbalances: If needed, use techniques like oversampling, undersampling, or synthetic data 

generation to balance the dataset.
6. Select and Train Models:

• Select appropriate models (Choose models based on the problem type (regression, classification, clustering, 
etc.) and data characteristics)

• Split the dataset (Use train-test splits (or cross-validation) to ensure your model’s generalization to unseen data)
• Baseline model (Start with a simple model as a baseline to compare more complex models).
• Tune Hyperparameters (Optimize model hyperparameters for better performance).
• Iterate and improve (Experiment with different models and tuning hyperparameters) 
• Avoid overfitting (Implement regularization techniques or apply cross-validation to avoid overfitting the training 

data).
7. Evaluate Models:

• Choose appropriate metrics (Select evaluation metrics that are relevant to the problem (e.g., accuracy, 
precision, recall, F1-score, RMSE))

• Validate on unseen data (Always validate your model on a test set or through cross-validation to assess its 
performance)

• Compare models: Compare different models based on performance metrics and business value.

Typical steps to follow in a machine learning (ML) 
project (2/3)
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8. Model Interpretation
• What do the results mean?
• Explainability (Ensure that you understand how your model works, and use XAI 

techniques such as SHAP values or feature importance to explain the results).
• Check assumptions (Ensure that the model’s assumptions hold and are consistent with 

the problem and data context)
9. Test Model:

• Evaluate the final model on the test dataset to gauge its real-world performance.
10. Deploy Model:

• Integrate the model into a production environment.
11. Monitor and Maintain:

• Continuously monitor model performance.
• Update the model as needed based on new data and changing conditions.
• Monitor how your model is actually used

12. Documentation and Communication
• Document thoroughly (Keep detailed notes on every step, including data sources, preprocessing steps, 

model choices, evaluation, and deployment procedures)
• Communicate results (Present findings to stakeholders in a clear, actionable manner. Tailor 

communication based on the audience (e.g., technical team vs. business executives).)

Typical steps to follow in a machine learning (ML) 
project (3/3)
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 Data in the real world is “dirty”
• incomplete: lacking attribute values, lacking certain attributes of interest, or 

containing only aggregate data
• noisy: containing errors or outliers
• inconsistent: containing discrepancies in codes or names

Why data pre-processing?
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 Data profiling
• examining, analyzing and reviewing data 
• collect statistics about its quality.

 Data cleaning
• Fill in missing values, smooth noisy data,
• identify or remove outliers, and resolve inconsistencies

 Data integration (if needed)
• Integration of multiple databases, data cubes, or files

 Data transformation
• Normalization and aggregation
• Structuring unstructured data 

 Data reduction
• Obtains reduced representation in volume but produces the same or similar analytical results

 Data discretization (if required)
 Data enrichment

• Feature engineering
 Data validation

• Assessing the dataset for quality assurance

Main tasks in data pre-processing
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• Time variant
• Time invariant  (meta 

data such  as asset
ID, system
configuration)

Time dependency

• Temperature
• Pressure
• Current
• Voltage
• Speed
• Acceleration
• ...

Physics nature

• Binary
• Nominal
• Ordinal
• Discrete
• Continuous (real number)

Types of
data

• Transaction/event (push)
• Sensor (pull)

• Evenly sampled
• Unevenly sampledSampling (time  

discretization)

• Scalar
• Vector
• Matrix
• ...

Sample dimension
(not counting time)

• Stationary
• Cyclic (non periodic)
• Waveform (periodic)
• Stochastic (noncyclic)

Dynamics (relative  
to sampling)

Data properties
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Source: Wang, 2012

Data modality

• Types of data: 
• Images
• Text
• Time series



Data Sampling
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 Transaction/event (data are “pushed” by data originator)
• Data records occur only at the specified event / transaction / time stamp
• Data between the time stamps / events are undefined.

 Sensor (data are “pulled” from data originator)
• Data samples are acquired only at the specified time stamp
• Data between the time stamps are just not observed.
• Sampling rate

 Evenly sampled – controlled (e.g. 100 Hz)
 Unevenly sampled - triggered

Source: Wang, 2012



Categorical vs. Numerical Data
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Data

Categorical
Data

Nominal Ordinal

Numerical
Data

Discrete Continuous

Examples: Operating mode, 
Event code, asset ID

Performance 
level; severity 
level; friction level 
(Low-Medium-High 
ranked levels)

Number of 
occurring 
diagnostic events, 
number of 
occurring faults / 
interruptions

Temperature, 
pressure, 
acceleration ( most 
sensors)



 A type of categorical data in which there are only two categories 
 Binary data can either be nominal or ordinal

 Examples: event status, on/off sensor

Binary data
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Numerical Data:
Discrete vs. Continuous
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Categorical Data:
Representations
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Frequency Tables Pie Charts Bar Charts



 Replacing values
• Freely assign numbers to the categories according to the use case / expert 

knowledge
 Encoding labels

• convert each categorical value in a column to a number between 0 and 
n_categories-1

 One-hot encoding
• convert each category value into a new column and assign a 1 or 0 

(True/False) value to the column
 Binary encoding

• first the categories are encoded as ordinal, then those integers are 
converted into binary code, then the digits from that binary string are split into 
separate columns

 …

Handling of categorical data
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Example of one-hot encoding
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Why Use Binary Encoding for Categorical Variables?
 When working with categorical data in machine learning, raw 

categorical values (e.g., country names, product types) need to be 
transformed into numerical representations for models to process them. 
Binary encoding is one such method that is particularly useful when:

• The number of unique categories is large.
• One-hot encoding would result in high-dimensional data.
• You want a compressed and less redundant representation.

How Binary Encoding Works
1. Convert each category label into a unique integer (ordinal encoding).
2. Convert each integer into its binary representation.
3. Store the binary digits in separate columns.

Binary Encoding in Machine Learning
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Binary Encoding
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Reduces Dimensionality: Compared to one-hot encoding, fewer 
columns are needed, making it useful for large categorical datasets.
Avoids Dummy Variable Trap: Unlike one-hot encoding, binary 
encoding does not introduce perfect multicollinearity.
Handles High Cardinality Efficiently: Works well when the number of 
unique categories is large, as it scales logarithmically.
Preserves Some Ordinal Information: Since binary encoding is based 
on integer representations, it retains some level of similarity between 
categories.

− Interpretability: Unlike one-hot encoding, binary-encoded features are 
less interpretable.

− Assumes Ordinal Relationships: Though it preserves some ordinal 
information, this assumption may not always be correct.

Advantages / Disadvantages of Binary Encoding
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 Some categorical indicators can be used to split the problem in sub-
problems (e.g. indicator of the operating conditions for base and part
load developing two models for the two types of operating
conditions) 

Handling of categorical data
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Signal dynamics (relative to  sampling)
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Stationary (constant + white noise)
• Power, speed, temperature in steady state

Stochastic (non-cyclic)
• Power, torque, speed

Cyclic (consider each period individually)
• Power, speed, one switching cycle of a railway

switch, one passage of a truck / a railway wheel

Waveform (consider multiple periods together)
• Vibration sensors, acoustic sensors
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Missing Data Problem
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• Times series observed with 15% missing data



 Missing data
• Data imputation approaches (next slide)

 Noisy data
• Binning
• Filtering
• Clustering 
• Remove manually
• Apply denoising algorithms

 Inconsistent data
• External references
• Knowledge engineering tools

Missing, noisy, inconsistent data
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 Complete case analysis: Delete any record that has missing values from the 
data set.

 Nearest neighbors: to impute variable x average the value x of the k closest 
data points with no missing values.

 Average method: Average the value of x for the non-missing values.
 Hot deck: pick a “similar” record at random and use its value of x.
 Predictive: Fit a model to the data with variable x as the target and use it to 

predict the value (e.g. kernel regression)
 Single imputation: Draw a value at random from the conditional distribution of 

x given the other variables 
 Multiple imputation: Repeatedly draw values at random from the conditional 

distribution of x given the other variables (e.g. as above), creating new data 
sets. Make the predictions with these now complete datasets and average the 
predictions.

Data imputation
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 Complete case analysis: can result in a bias 
 Nearest neighbors: The definition of the “close points” and the value of 

k required
 Average method: Easy to implement but crude 
 Hot deck: A definition of “similar” is required
 Predictive: Better suitable but understates the uncertainty in the 

imputation process. 
 Single imputation: Better suitable, respects the uncertainty. However, 

just a single value is sampled. 
 Multiple imputation: generally regarded as the best method (a sample is 

better than a single observation) 

Caution with the different imputation
approaches
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 Machine learning models, especially distance-based models (e.g., k-
NN, SVM, PCA, clustering) and gradient-based models (e.g., neural 
networks, linear regression), can be affected by differences in scale
among features. If features have vastly different ranges, models may:

• Be biased toward higher-magnitude features.
• Take longer to converge during training.
• Exhibit poor generalization due to inconsistencies in input scales.

Why Do We Need Normalization or 
Standardization?
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Data normalization / Standardization
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 Feature scaling
( also referred to as min-max
Nomalization)

 Standard score
(particularly suitable for normally

distributed data)
( also referred to as Z-Score 
Standardization)



 Quantile Transformation

 Power Transformation (non-linear transformation)

Alternatives (particularly for data with outliers)
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 When features have different scales and do not follow a normal 
distribution.
 When working with bounded data (e.g., pixel intensities in images [0, 

255]).
 When using distance-based models like k-NN, k-Means clustering.
 When the data has outliers, normalization compresses their impact. 

When to Use Normalization?
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 When data follows or approximately follows a normal distribution.
 Algorithms that assume the input features are normally distributed with 

zero mean and unit variance, such as Support Vector Machines, 
Logistic Regression, etc.
 When using PCA or models where feature variance impacts 

performance.
 Standardization can be a better choice if your data contains many 

outliers as it scales the data based on the standard deviation.

When to Use Standardization?
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 Create bins (e.g. equal depth, equal size)  e.g. different categories of
part-load conditions of a gas turbine
 Additional smoothing possible replace the values in a bin by their

mean

Data Discretization
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 Transform raw signals into more informative signatures (or fingerprints) 
of a system
 Reduce size / complexity of the dataset
 Provide a physical description / representation
 Reduce resources necessary for further processing
 Achieve intended objectives

What are Features and Why do we need them?
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 Features are known to be the most crucial point in machine learning
 “At the end of the day, some machine learning projects succeed and 

some fail. What makes the difference? Easily the most important factor 
is the features used.”

- Pedro Domingos, in “A Few Useful Things to Know about Machine Learning”

Why are features important
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Univariate versus multivariate feature engineering
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Example of feature engineering
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Option 1: good feature engineering

⇒ 𝑿𝑿𝟏𝟏𝑿𝑿𝟐𝟐

Features

Input Data

Feature 
Engineering

Traditional 
Learning 

Algorithm

Output model

𝒀𝒀 = 𝒈𝒈(𝑿𝑿𝑿) 𝒈𝒈(𝑿𝑿𝑿)



Deep Learning: go deeper and learn the features 
automatically
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Source: https://playground.tensorflow.org

https://playground.tensorflow.org/


Example feature extraction in images
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Condition 
monitoring 

data

Feature 
extraction

ML algorithm 
(e.g. classifier)

Prediction 
(label  e.g. 
class, or RUL)

Prediction
(label)



Example high frequency data

FT Transform

Features: Magnitude of 3 carefully chosen frequency bands

In the future, we can compare these features for any measurements
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 Raw Data: Can be of different type and
nature and size
 Generation: exhaustive, ad-hoc,

 prior knowledge (domain,
physics), modify variable type
(cat. to numeric)

 Feature Set:
 Various representation and
size (dimensionality change)

 Dimensionality reduction:
 select best subset
 transform in space of lower

dimensions

Feature Extraction Process:

Raw Data

Feature Generation 
(e.g. FT frequency)

Feature Set

Feature Selection / 
Transformation

Relevant 
Feature Set
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 Kind of data
 available type of features

 Aim of the application and domain
 (e.g. monitoring, detecting, predicting)
 (vibration, images, torque,…)

 Kind of methods that will be used
 To extract feature,
 To use the features for the application

What matters for the process
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 Explainability
 Parsimony
 Robustness (e.g. to missing data)
 Uncertainty handling
 Link to knowledge and physics…

In fact, many features come from domain know-how
 Domain: Mechanical, structural, thermal, electrical,…
 Kind of system: railway tracks, bridge…
 Components: motor, switching mechanism…

Aims and properties of features

Olga Fink 56
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Feature Variability

Factors of variability

undesired

known

Uncontrolable

Desired
target category

Controlable
experiment design

Observable
calibration

Unobservable
normalisation

unknown 
nuisance
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 Feature extraction is the process of transforming raw data into a set of 
meaningful features that can improve the performance of machine 
learning models. It reduces the dimensionality of data while preserving 
essential information, making it easier for algorithms to recognize 
patterns and make accurate predictions.

 Reduces Dimensionality: Helps remove irrelevant or redundant
information, improving model efficiency.
 Enhances Interpretability: Extracted features are often more 

meaningful and easier to understand.
 Improves Model Performance: Helps machine learning models

generalize better by removing noise.
 Reduces Computational Cost: Smaller feature sets require less

storage and processing power.

What is Feature Extraction?
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Feature extraction
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 For failure detection:
• Features should be dependent on the failure (and failure type)

 Feature tuned to operating conditions
• feature relevance depends on the OC

 Feature designed based on knowledge:
• Known relationships
• known behavior of components



 Descriptive statistical features:
• For regularly sampled data: moments, correlation, RMS, …
• For event based data: count, rate, duration, delay, …

 Descriptive models:
• Distribution/histogram
• Information based (mutual information)
• Regression models, curve fitting
• Classification, clustering (class label as a feature), sequence matching

 Mathematical Transformation:
• derivative, cumulative sum, power, log, ….(e.g. log if noise depends on amplitude, log 

normal)
 Time-Series Specific Features

• Rolling Mean/Variance: Captures local trends.
• Autocorrelation: Measures how a time-series correlates with its past values.
• Peak-to-Peak Distance: Identifies signal periodicity.

 Domain-Specific Features
• Structural Health Monitoring: Modal frequencies, damping ratios.
• IoT/Industrial Sensors: RMS (Root Mean Square), Zero Crossing Rate.

Some feature extraction Approaches

Olga Fink 60
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Statistical features examples (1/3)
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Category Feature Formula Interpretation Use Case
Central 
Tendency

Mean (μ) μ = (1/N) ∑ xᵢ Average value, represents 
dataset’s central tendency.

Detecting overall bridge 
vibration levels.

Median Middle value in 
sorted data

Robust to outliers, better 
for skewed data.

Measuring typical 
structural response.

Mode Most frequent value Identifies the most 
common occurrence.

Identifying repeating load 
patterns.

Dispersion 
(Variability)

Variance (σ²) σ² = (1/N) ∑ (xᵢ - μ)² Measures spread; high 
variance means high 
variability.

Analyzing variations in 
structural response.

Standard 
Deviation (σ)

σ = √σ² Measures how much 
values deviate from the 
mean.

Detecting abnormal bridge 
vibrations.

Range max(x) - min(x) Difference between max 
and min values.

Checking extreme 
deflections.

Interquartile 
Range (IQR)

Q3 - Q1 Spread of the middle 50% 
of data, robust to outliers.

Identifying variations in 
load distribution.



Statistical features examples (2/3)
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Category Feature Formula Interpretation Use Case
Shape (Higher 
Moments)

Skewness 
(μ₃)

μ₃ = (1/N) ∑ [(xᵢ -
μ)/σ]³

Measures asymmetry; >0 
(right-skewed), <0 (left-
skewed).

Detecting imbalance in 
vibrations.

Kurtosis (μ₄) μ₄ = (1/N) ∑ [(xᵢ -
μ)/σ]⁴

Measures peakness; >3 
(leptokurtic), <3 
(platykurtic).

Identifying sudden 
impacts or shocks.

Signal 
Strength

Root Mean 
Square 
(RMS)

√(1/N) ∑ xᵢ² Measures signal energy, 
useful for power analysis.

Identifying increasing 
load stress.

Peak-to-
Peak (P2P)

max(x) - min(x) Measures the total 
amplitude range.

Monitoring bridge 
movement limits.

Crest Factor max(|x|) / RMS Identifies impulsive 
signals. Higher values 
suggest faults.

Detecting sudden 
structural damage.



Statistical features examples (3/3)
24

.0
2.

25

Olga Fink 63

Category Feature Formula Interpretation Use Case
Frequency-
Domain

Dominant 
Frequency

f_max in FFT Frequency with the 
highest power in the 
spectrum.

Identifying resonance 
frequencies.

Spectral 
Entropy

-∑ P(f) log P(f) Measures randomness in 
frequency content.

Detecting irregular 
load distributions.

Bandwidth f_high - f_low Spread of dominant 
frequency components.

Checking vibration 
stability.

Time-Series 
Specific

Autocorrelati
on

R(τ) = ∑ x_t x_{t+τ} Measures how similar a 
signal is to itself at 
different times.

Identifying fatigue in 
bridges.

Entropy 
(Shannon)

-∑ P(x) log P(x) Measures signal 
randomness; higher 
entropy means more 
disorder.

Detecting unexpected 
structural changes.



 c = 0 : raw moment
 c =average(X): central moment

 Normalized (central) moment:

Statistical Features: Moments
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Skewness and Kurtosis

positive skew

negative skew

Kurtosis
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Example: Feature extraction for vibration analysis
24

.0
2.

25

Olga Fink 66

feature engineering is a research field



Some feature extraction approaches
domain know-how

Olga Fink 67

 Physics based :
• expected input-output relations, etc.
• comparison to expected output (model)

 Special procedures for data processing:
• operational regime segmentations, envelop analysis, etc…
• Time synchronous averaging
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 Procedure:
• feature extraction + dimension reduction

 What to extract:
• data property vs. application domain vs. algorithm requirements

 Feature extraction vs. signal processing
 Feature goodness:

• Relevance and redundancy
 Feature selection:

• wrapper approach vs. filter approach vs. embedding
 Feature consistency and sensitivity issues

Take away

Olga Fink 68
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Feature Engineering vs. Feature Learning

Aspect Feature Engineering Feature Learning

Definition Manually designing features 
based on domain knowledge.

Automatically extracting 
features using deep learning.

Approach Requires human expertise and 
predefined rules.

Learns representations directly 
from raw data.

Example Selecting statistical features in 
SHM (mean, variance).

Using CNNs to automatically 
learn patterns in images.



Possible problem here?
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 The time may not be directly relevant to the internal dynamics of many
real-life systems, observations may be shifted, also missing or imprecise 
synchronization possible
 Transform curves by transforming their arguments (aligning the curves) 
 curve registration

Curve registration
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 We can align curves by fixing the location of a feature, such as the 
starting time of the process for example
 This works provided the location of this feature is easy to determine in 

each curve
 We can also align curves by using the entire curve.
 This is always possible, but needs an explicit criterion for alignment

Shift registration
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 First we estimate a mean function µ̂ (t) for t in T . If the individual
functional observations xi are smooth, we  can estimate µ̂  by the 
sample average x̄ .
 Then we can minimize this criterion with respect to δi.

 We then iterate this process, by re-computing the mean µ̂ (t) from the 
registered curves x∗i(t), and re-computing a new  set of shifts δi.
 These iterations usually converge in a few cycles

Least squares criterion for shift  alignment
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