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=PFL  PHM Process

DataAcquisition (DA)
Data Manipulation(DM)
|
State Detection(SD)

Health Assessment(HA)

Prognostics Assessment(PA)

Advisory Generation(AG)

Olga Fink 9



£PFL  Typical steps to follow in a machine leaming (ML)
project(1/3)

1. Problem Definition and Understanding
+ Clearly articulate the problem you aim to solve.
+ Identify the objectives and success criteria.
» Ask the right questions: Identify the questions your data can answer to solve the business problem.
» Understand the data: Learn the context, limitations, and opportunities within the available data.

2. ldentify the Value:

» Determine the potential value and impact of solving the problem (both from business and from the scientific
perspective)

» Assess how the solution will benefit stakeholders and align with business goals.

3. Collect Data:
« Gather relevant data from various sources.

* Make sure that your data is representative for the test data (application data) > be aware of the variability of the
operating conditions (= domain shift)

» Ensure data quality and completeness.
* Acquire labels for your data if possible (ensure the quality of labels)

4. Explore and Understand the Data:
» Perform exploratory data analysis.
* Visualize data to understand patterns and relationships.
» Understand the data distribution (Explore the statistical properties, distributions, and trends in the data)
 |dentify data quality issues (Look for missing values, outliers, and inconsistencies that may affect analysis).
* Generate hypotheses (Form hypotheses based on patterns observed during data exploration).

B 24.02.25
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=PrL

B 24.02.25

Typical steps to follow in a machine leaming (ML)

P
5.

roject(2/3)

Prepare Data:

Clean the data (handle missing values, outliers).

Feature engineering (create meaningful features, transform existing ones).

Split data into training, validation, and test sets.

Scaling and normalization (Prepare the data for modeling by applying appropriate scaling techniques)

Address class imbalances: If needed, use techniques like oversampling, undersampling, or synthetic data
generation to balance the dataset.

Select and Train Models:

Select appropriate models (Choose models based on the problem type (regression, classification, clustering,
etc.) and data characteristics)

Split the dataset (Use train-test splits (or cross-validation) to ensure your model’s generalization to unseen data)

Baseline model (Start with a simple model as a baseline to compare more complex models).

Tune Hyperparameters (Optimize model hyperparameters for better performance).

Iterate and improve (Experiment with different models and tuning hyperparameters)

Av?isj overfitting (Implement regularization techniques or apply cross-validation to avoid overfitting the training
ata).

Evaluate Models:

Choose appropriate metrics (]aelect evaluation metrics that are relevant to the problem (e.g., accuracy,
precision, recall, F1-score, RMSE))

Validate on unseen data (Always validate your model on a test set or through cross-validation to assess its
performance)

Compare models: Compare different models based on performance metrics and business value.

Olga Fink
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=PrL

B 24.02.25

Typical steps to follow in a machine leaming (ML)

project (3/3)

10.

11.

12.

Model Interpretation
* What do the results mean?

» Explainability (Ensure that you understand how your model works, and use XAl
techniques such as SHAP values or feature importance to explain the results).

» Check assumptions (Ensure that the model's assumptions hold and are consistent with
the problem and data context)

Test Model:

 Evaluate the final model on the test dataset to gauge its real-world performance.

Deploy Model:
* Integrate the model into a production environment.

Monitor and Maintain:

 Continuously monitor model performance.

« Update the model as needed based on new data and changing conditions.
* Monitor how your model is actually used

Documentation and Communication

+ Document thoroughly &Keep detailed notes on every step, including data sources, preprocessing steps,
model choices, evaluation, and deployment procedures)

« Communicate results (Present findings to stakeholders in a clear, actionable manner. Tailor
communication based on the audience (e.g., technical team vs. business executives).)

Olga Fink 14



=P7L  Why data pre-processing?

= Data in the real world is “dirty”

« incomplete: lacking attribute values, lacking certain attributes of interest, or
containing only aggregate data

* noisy: containing errors or outliers
* inconsistent: containing discrepancies in codes or names

B 24.02.25
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=PFL  Main tasks In data pre-processing

Data profiling
* examining, analyzing and reviewing data
 collect statistics about its quality.

= Data cleaning
+ Fill in missing values, smooth noisy data,
* identify or remove outliers, and resolve inconsistencies

= Data integration (if needed)
* Integration of multiple databases, data cubes, or files

= Data transformation
* Normalization and aggregation
+ Structuring unstructured data

= Data reduction
» Obtains reduced representation in volume but produces the same or similar analytical results

= Data discretization (if required)

» Data enrichment
* Feature engineering

= Data validation
» Assessing the dataset for quality assurance

B 24.02.25
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=PFL  Data properties

* Transaction/event (push)
» Sensor (pull)

« Evenly sampled

* Unevenly sampled

* Time variant

* Time invariant (meta
datasuch as asset
ID, system
configuration)

Sampling (time
discretization)

Time dependency

*» Types of data:
* Images
* Text
* Time series

Data modality

» Temperature

* Pressure

* Current Physics nature

* Voltage * Scalar
* Speed Sample dimension) ¢ Vector

* Matrix

 Acceleration (not counting time)

» Stationary * Binary

» Cyclic (non periodic) Dynamics (relative Types of * Nominal
» Waveform (periodic) to sampling) data * Ordinal
« Stochastic (noncyclic) * Discrete

* Continuous (real number)

Source: Wang, 2012

B 24.02.25
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=P7L  Data Sampling

= Transaction/event (data are “pushed” by data originator)
» Data records occur only at the specified event / transaction / time stamp
» Data between the time stamps / events are undefined.

= Sensor (data are “pulled” from data originator)
» Data samples are acquired only at the specified time stamp
« Data between the time stamps are just not observed.
« Sampling rate
= Evenly sampled — controlled (e.g. 100 Hz)
= Unevenly sampled - triggered

Source: Wang, 2012

B 24.02.25
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=PrL

Examples:

B 24.02.25

Categorical vs. Numerical Data

[

Categorical
Data

[

\

Numerical
Data
[
[ |

Nominal Ordinal Discrete Continuous
Operating mode, :Deﬁlc?rmangf Numbgr of Temperature,
Event code, asset ID  €Vel; severity occurring pressure,

level; friction level  diagnostic events, acceleration ( most
(Low-Medium-High > number of sensors)

ranked levels)

occurring faults /
interruptions OlgaFink 19



=L Binary data

= A type of categorical data in which there are only two categories
= Binary data can either be nominal or ordinal

= Examples: event status, on/off sensor

B 24.02.25
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=PFL Numerical Data:
Discrete vs. Continuous

Discrete Data Continuous Data

Number of operations vs time
Power vs. Time
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=PrL  Categorical Data:
Representations

Frequency Tables Pie Charts Bar Charts

Failure by Categories

40
Cause of Error Number of Occurence Percentage Low
Temperature 35
Friction 28 25.2% Friction
30
Obstacle 7 6.3%
25
Screws Loose 27 24.3% 20
. High
High Temperature 37 33.3% Temperature Obstacle 15
Low Temperature 12 10.8% 10
5
Screws Loose
0
Friction Obstacle Screws Loose High Low
Temperature Temperature
0
N
o
<
<
~N
]
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=PrL

B 24.02.25

Handling of categorical data

= Replacing values
* Freely assign numbers to the categories according to the use case / expert
knowledge
= Encoding labels
» convert each categorical value in a column to a number between 0 and
n_categories-1
= One-hot encoding
» convert each category value into a new column and assigna 1 or 0
(True/False) value to the column
= Binary encoding
« first the categories are encoded as ordinal, then those integers are

converted into binary code, then the digits from that binary string are split into
separate columns

Olga Fink 23



=PFL Example of one-hot encoding

Red

. :> 1 0 0
Yellow ! ° ’
Green 0 1 ’
Yellow 0 0 1

B 24.02.25
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=PrL

B 24.02.25

Binary Encoding in Machine Leaming

Why Use Binary Encoding for Categorical Variables?

= WWhen working with categorical data in machine learning, raw
categorical values (e.g., country names, product types) need to be
transformed into numerical representations for models to process them.
Binary encoding is one such method that is particularly useful when:

« The number of unique categories is large.
» One-hot encoding would result in high-dimensional data.
* You want a compressed and less redundant representation.

How Binary Encoding Works

1. Convert each category label into a unique integer (ordinal encoding).
2. Convert each integer into its binary representation.

3. Store the binary digits in separate columns.

Olga Fink
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=P7L  Binary Encoding

"

Temperature Order W- Temperature_0 [Temperature_1 [femperature_2
Hot 1 001 0 o 1
Cold 2 010 0 1 0

Very Hot 3 011 0 1 1
Warm 4 100 1 0 0
Hot 1 001 0 0 1
Warm 4 100 1 0 0
Warm 4 100 1 0 0
Hot 1 001 0 0 1
Hot 1 001 0 0 1
Cold 2 T{//O 1 ! 0

B 24.02.25
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=PrL

B 24.02.25

Advantages / Disadvantages of Binary Encoding

+ Reduces Dimensionality: Compared to one-hot encoding, fewer
columns are needed, making it useful for large categorical datasets.

+ Avoids Dummy Variable Trap: Unlike one-hot encoding, binary
encoding does not introduce perfect multicollinearity.

+ Handles High Cardinality Efficiently: Works well when the number of
unique categories is large, as it scales logarithmically.

+ Preserves Some Ordinal Information: Since binary encoding is based

on integer representations, it retains some level of similarity between
categories.

- Interpretability: Unlike one-hot encoding, binary-encoded features are
less interpretable.

- Assumes Ordinal Relationships: Though it preserves some ordinal
information, this assumption may not always be correct.

Olga Fink 27



=PrL

B 24.02.25

Handling of categorical data

= Some categorical indicators can be used to split the problem in sub-
problems (e.g. indicator of the operating conditions for base and part
load - developing two models for the two types of operating
conditions)

Olga Fink 28



=PrL

Signal dynamics (relative to sampling)

Stationary (constant + white noise)

 Power, speed, temperature in steady state

Stochastic (non-cyclic) ?
«  Power, torque, speed :

Cyclic (consider each period individually)
« Power, speed, one switching cycle of a railway :

switch, one passage of a truck / a railway wheel

) w0 w00 w0 400 sm

Waveform (consider multiple periods together)

Vibration sensors, acoustic sensors

A e B B i Source: Wang, 2012

B 240225 e
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=P7L  Missing Data Problem

« Times series observed with 15% missing data

100 100 1 W‘ﬂl (]l
A A o

[¥] 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Samples Samples

B 24022
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=PFL Missing, noisy, inconsistent data

= Missing data
« Data imputation approaches (next slide)

= Noisy data
* Binning
* Filtering
 Clustering
 Remove manually
* Apply denoising algorithms

» |[nconsistent data
» External references
« Knowledge engineering tools

B 24.02.25
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=PrL

B 24.02.25

Data imputation

= Complete case analysis: Delete any record that has missing values from the
data set.

= Nearest neighbors: to impute variable x average the value x of the k closest
data points with no missing values.

= Average method: Average the value of x for the non-missing values.
= Hot deck: pick a “similar” record at random and use its value of x.

= Predictive: Fit a model to the data with variable x as the target and use it to
predict the value (e.g. kernel regression)

= Single imputation: Draw a value at random from the conditional distribution of
X given the other variables

= Multiple imputation: Repeatedly draw values at random from the conditional
distribution of x given the other variables (e.g. as above), creating new data
sets. Make the predictions with these now complete datasets and average the
predictions.

Olga Fink 32



=PrL

B 24.02.25

Caution with the different imputation
approaches

= Complete case analysis: can result in a bias

= Nearest neighbors: The definition of the “close points” and the value of
k required

= Average method: Easy to implement but crude
= Hot deck: A definition of “similar” is required

= Predictive: Better suitable but understates the uncertainty in the
imputation process.

= Single imputation: Better suitable, respects the uncertainty. However,
just a single value is sampled.

= Multiple imputation: generally regarded as the best method (a sample is
better than a single observation)

Olga Fink 33



=P7L Why Do We Need Normalization or
Standardization?

= Machine learning models, especially distance-based models (e.qg., k-
NN, SVM, PCA, clustering) and gradient-based models (e.g., neural
networks, linear regression), can be affected by differences in scale
among features. If features have vastly different ranges, models may:

- Be biased toward higher-magnitude features.
» Take longer to converge during training.
« Exhibit poor generalization due to inconsistencies in input scales.

B 24.02.25
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=PFL  Data normalization / Standardization

= Feature scaling e X — Xouin
(= also referred to as min-max  Xonaz — Xonin

Nomalization)

= Standard score

(particularly suitable for normally
distributed data) . )

(- also referred to as Z-Score o
Standardization)

B 24.02.25

Olga Fink 42



=PFL  Altematives (particularly for data with outliers)

= Quantile Transformation

= Power Transformation (non-linear transformation)

B 24.02.25
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=PrL

B 24.02.25

When to Use Normalization?

= \WWhen features have different scales and do not follow a normal
distribution.

= When working with bounded data (e.g., pixel intensities in images [0,
255])).

= When using distance-based models like k-NN, k-Means clustering.
= When the data has outliers, normalization compresses their impact.

Olga Fink 44



=PrL

B 24.02.25

When to Use Standardization?

= \When data follows or approximately follows a normal distribution.

= Algorithms that assume the input features are normally distributed with
zero mean and unit variance, such as Support Vector Machines,
Logistic Regression, etc.

= When using PCA or models where feature variance impacts
performance.

= Standardization can be a better choice if your data contains many
outliers as it scales the data based on the standard deviation.

Olga Fink 45



=PFL  Data Discretization

= Create bins (e.g. equal depth, equal size) - e.g. different categories of
part-load conditions of a gas turbine

= Additional smoothing possible = replace the values in a bin by their
mean

B 24.02.25
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=PrL

What are Features and Why do we need them?

= Transform raw signals into more informative signatures (or fingerprints)
of a system

= Reduce size / complexity of the dataset

= Provide a physical description / representation

= Reduce resources necessary for further processing
= Achieve intended objectives

B 24.02.25
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=PFL  Why are features important

= Features are known to be the most crucial point in machine learning

= “At the end of the day, some machine learning projects succeed and
some fail. What makes the difference? Easily the most important factor
is the features used.”

- Pedro Domingos, in “A Few Useful Things to Know about Machine Learning”

B 24.02.25
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=PrL

Univariate versus multivariate featu
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=PFL  Example of feature engineering

Option 1: good feature engineering

F t s Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
eatures 000,000 0.03 -~ Tam -~ None — - Classffication =

. v.'
Batch size: 10 .
= -« 8 -
o

REGENERATE

V sin(X,)

Output model sin(¥,)

Colors shows
.

data, neuronand ! !
weight values

Traditional
Learning
- m
Algorithm |:| DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.507
Input Data X D youwani o uso? youwant o feedin? m o aa S
1 neuron 1 neuron
| =
Feature X
o : = X1X2 0
Engineering x it 0%
L,
X X; Noise: 0 2 !
Y =g(X) — L} . : gX")

[ Show testdata  [] Discretize output

B 24.02.25
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=L Deep Leaming: go deeper and learn the features
automatically

b Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000,000 0.03 -~ Tanh -~ None - 0 - Classification =
DATA FEATURES + — 3 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.506
you want to use? you want to feed in? ini 0.510
;) & Y — Y = Training loss 0.51

3 neurons 3 neurons 3 neurons

Ratio of training to D D
test data: 50% D D

Noise: 0
%2 ying
® - weights, n
by s of
the i

Batch size: 10

. ‘
REGENERATE el
Colors shows
o data, neuron and ! |
=R weight values o !

[ showtestdata [] Discretize output

Source: https://playground.tensorflow.org

B 24.02.25
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=PFL  Example feature extraction in images

ML algorithm Prediction

(e.g. classifier) (label)

B 24.02.25
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=PrL

Example high frequency data

007
006

- FT Transform
RN Euna
"o ) ;oo
-10 ooz
b 0ol
| 0.0 _l' b -

0 100 200 00 00 500

Time [5] Frequency [Hz]

Features: Magnitude of 3 carefully chosen frequency bands

In the future, we can compare these features for any measurements

B 24.02.25
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=PrL

Feature Extraction Process:

= Raw Data: Can be of different type and

Raw Data nature and size
= Generation: exhaustive, ad-hoc,

Feature Generation : _
[ (e.q. FT frequency) ] = prior knowledge (domain,

‘ physics), modify variable type
[ Feature Set ]

(cat. to numeric)
= Feature Set:

Transformation

[ Feature Selection / ]
= Various representation and

Relevant size (dimensionality change)
Feature Set . . - )
= Dimensionality reduction:

= select best subset

B 24.02.25

= transform in space of lower
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=PrL

What matters for the process

t |

| K|nd Of data (B 'mﬁ‘ereﬂt Technologies leferent PHM uppllcutlous

gtuhsltthl analysis : ¥:_|br[-:3::l;1c; Z;If:
—> available type of features - Imoge procesing. . Eecticlsystems
| e T o |l
+ Information theory *  SHM .
= Aim of the application and domain et 9 -
- (e.g. monitoring, detecting, predicting) ?‘g{r&?&tﬁ:“t“ types Time dependency
H H H » Categorica + Time dependent (non-stationa
—> (vibration, images, torque,...) ! anay INEdeperde IS ,,,:
= Kind of methods that will be used | univariate vs. | Different data

multivariate sampling rate

- To extract feature,
—> To use the features for the application

B 24.02.25
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™" Alms and properties of features

= Explainability

= Parsimony

= Robustness (e.g. to missing data)
= Uncertainty handling

= Link to knowledge and physics...

In fact, many features come from domain know-how

= Domain: Mechanical, structural, thermal, electrical, ...
= Kind of system: railway tracks, bridge...

= Components: motor, switching mechanism...

B 24.02.25
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=PrL

Feature Variability

Factors of variability

/ A

Desired undesired
target category \
known unknown
nuisance
Controlable Uncontrolable
experiment design
Observable Unobservable

calibration normalisation

B 24.02.25
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=PrL

B 24.02.25

What is Feature Extraction?

= Feature extraction is the process of transforming raw data into a set of
meaningful features that can improve the performance of machine
learning models. It reduces the dimensionality of data while preserving
essential information, making it easier for algorithms to recognize
patterns and make accurate predictions.

= Reduces Dimensionality: Helps remove irrelevant or redundant
information, improving model efficiency.

= Enhances Interpretability: Extracted features are often more
meaningful and easier to understand.

= Improves Model Performance: Helps machine learning models
generalize better by removing noise.

= Reduces Computational Cost: Smaller feature sets require less
storage and processing power.

Olga Fink 58



=PrL

Feature extraction

= For failure detection:
» Features should be dependent on the failure (and failure type)

= Feature tuned to operating conditions
« feature relevance depends on the OC

= Feature designed based on knowledge:
* Known relationships
* known behavior of components

B 24.02.25
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=PrL

Some feature extraction Approaches

Descriptive statistical features:
» For regularly sampled data: moments, correlation, RMS, ...
* For event based data: count, rate, duration, delay, ...

Descriptive models:
« Distribution/histogram
+ Information based (mutual information)
» Regression models, curve fitting
« Classification, clustering (class label as a feature), sequence matching

Mathematical Transformation:
. derivatli)ve, cumulative sum, power, log, ....(e.g. log if noise depends on amplitude, log
norma
Time-Series Specific Features
* Rolling Mean/Variance: Captures local trends.
 Autocorrelation: Measures how a time-series correlates with its past values.
» Peak-to-Peak Distance: Identifies signal periodicity.

Domain-Specific Features
« Structural Health Monitoring: Modal frequencies, damping ratios.
 loT/Industrial Sensors: RMS (Root Mean Square), Zero Crossing Rate.

B 24.02.25
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=PrL

B 24.02.25

Central
Tendency

Dispersion
(Variability)

Mean (u)

Median

Mode

Variance (0?)

Standard
Deviation (o)

Range

Interquartile
Range (IQR)

Statistical features examples (1/3)

M= (1/N)> xi
Middle value in

sorted data

Most frequent value

0% =(1/N) 3 (xi - u)*

o = \o?

max(x) - min(x)

Q3 - Q1

Average value, represents
dataset’s central tendency.

Robust to outliers, better
for skewed data.

Identifies the most
common occurrence.

Measures spread; high
variance means high
variability.

Measures how much
values deviate from the
mean.

Difference between max
and min values.

Spread of the middle 50%
of data, robust to outliers.

Detecting overall bridge
vibration levels.

Measuring typical
structural response.

|dentifying repeating load
patterns.

Analyzing variations in
structural response.

Detecting abnormal bridge
vibrations.

Checking extreme
deflections.

|dentifying variations in
load distribution.
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=PrL

B 24.02.25

Statistical features examples (2/ 3)
mm

= (1/N) 2 [(xi -

Shape (Higher
Moments)

Signal
Strength

Skewness

(Ms3)

Kurtosis (J4)

Root Mean
Square
(RMS)

Peak-to-
Peak (P2P)

Crest Factor

H)/Cf]3

Ma = (1/N) 2 [(xi
) ef

V(1/IN) 5 x

max(x) - min(x)

max(|x|) / RMS

Measures asymmetry; >0
(right-skewed), <0 (left-
skewed).

Measures peakness; >3
(leptokurtic), <3
(platykurtic).

Measures signal energy,
useful for power analysis.

Measures the total
amplitude range.

Identifies impulsive
signals. Higher values
suggest faults.

Detecting imbalance in
vibrations.

|dentifying sudden
impacts or shocks.

|dentifying increasing
load stress.

Monitoring bridge
movement limits.

Detecting sudden
structural damage.
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=PrL
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Statistical features examples (3/3)
Category | Feature | Formula | Interpretation | UseCase

Frequency- Dominant f maxin FFT
Domain Frequency
Spectral -> P(f) log P(f)
Entropy

Bandwidth f _high-f_low

Time-Series Autocorrelati  R(1) = > x_t x {t+71}
Specific on

Entropy -> P(x) log P(x)
(Shannon)

Frequency with the
highest power in the
spectrum.

Measures randomness in
frequency content.

Spread of dominant
frequency components.

Measures how similar a
signal is to itself at
different times.

Measures signal
randomness; higher
entropy means more
disorder.

|dentifying resonance
frequencies.

Detecting irregular
load distributions.

Checking vibration
stability.

|dentifying fatigue in
bridges.

Detecting unexpected
structural changes.
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=PrL

= [ @0 fwyao= [
“B[(X ~¢)"]

= ¢ =0 : raw moment
= ¢ =average(X): central moment

= Normalized (central) moment:

pn _ E[(X —p)"]

B 24.02.25

Statistical Features: Moments

(x —c)"dF(x)

n Raw Moment Central M Normalised M

Mean 0

Variance

0

1

Skewness
kurtosis
Hyperskewness

Hypertailedness

Olga Fink 64



=PrL

B 24.02.25

4

Y

Skewness and Kurtosis

negative skew

positive skew

Kurtosis

asNZErng

N

\

f
/)

Olga Fink
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=PrL

B 24.02.25

Example: Feature extraction for vibration analysi

Stationary signals

|
y

.

Non-stationary signals

;

.

Time domain

Frequency domain

Time-frequency

Wavelets

= Statistical-based
-RMS

- Variation
- Skewness

- Kurtosis
- crest factor
* Model-based
- AR model
- HMM model
« Signal processing
-TSA
- Correlation
- Convolution
- Fractal analysis

- Correlation dimension

s Spectral analysis

* Envelope analysis

s Cepstrum analysis

« Higher order spectrum

+ Short-time Fourier
Transform (STFT)

e Wigner-Ville
distribution (WVD)

¢ Empirical mode
decomposition (EMD)

« Basis pursuit
e Spectral kurtosis

 Cyclostationary
analysis

feature engineering is a research field

* Continuous wavelet
transform (CWT)

¢ Discrete wavelet
transform (DWT)

s Wavelet packet
transform

¢ Morlet wavelet

» Hilbert-Huang
transform

Yan, W. et al, 2008
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=PrL

Some feature extraction approaches

domain know-how

= Physics based :
» expected input-output relations, etc.
« comparison to expected output (model)

= Special procedures for data processing:
« operational regime segmentations, envelop analysis, etc...
« Time synchronous averaging

B 24.02.25
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""" Take away

= Procedure:
» feature extraction + dimension reduction

= What to extract:
 data property vs. application domain vs. algorithm requirements

= Feature extraction vs. signal processing

= Feature goodness:
» Relevance and redundancy

= Feature selection:
« wrapper approach vs. filter approach vs. embedding

= Feature consistency and sensitivity issues

B 24.02.25
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=P7L  Feature Engineeringvs. Feature Leaming

“ Feature Engineering Feature Learning

Definition Manually designing features Automatically extracting
based on domain knowledge. features using deep learning.

Approach Requires human expertise and Learns representations directly
predefined rules. from raw data.
Example Selecting statistical features in  Using CNNs to automatically

SHM (mean, variance). learn patterns in images.



=PFL  Possible problem here? )
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=PrL

B 24.02.25

Curve registration

= The time may not be directly relevant to the internal dynamics of many
real-life systems, observations may be shifted, also missing or imprecise
synchronization possible

—> Transform curves by transforming their arguments (aligning the curves)
-> curve registration
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=PrL

B 24.02.25

Shift registration

= WWe can align curves by fixing the location of a feature, such as the
starting time of the process for example

= This works provided the location of this feature is easy to determine in
each curve

= We can also align curves by using the entire curve.
= This is always possible, but needs an explicit criterion for alignment

Olga Fink
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=PrL

B 24.02.25

Least squares criterion for shift alignment

« First we estimate a mean function 1 (%) for tin T .If the individual
functional observations X; are smooth, we can estimate ,UA by the
sample average X .

= Then we can minimize this criterion with respect to ;.

R = Z/le(s — fi(t)]Pds =) /[r ()] ds

= \WWe then iterate this process, by re-computing the mean u (¢) from the
registered curves x* (), and re-computing a new set of shifts &;.

= These iterations usually converge in a few cycles
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