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Advisory Generation(AG)

Prognostics Assessment(PA) 

Health Assessment (HA)

State Detection (SD)

Data Manipulation (DM)

DataAcquisition (DA)
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 A type of artificial neural network used to learn efficient representations 
of data
 Typically for the purpose of dimensionality reduction or feature learning
 Designed to learn a compressed representation of input data 
 By passing the data through a network that first encodes the input into a 

lower-dimensional space 
 Then reconstructs the output from this representation.

NN-Autoencoders
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 A NN autoencoder is a feed-forward neural net whose job it is to take an 
input x and predict �𝑥𝑥.
 To make this non-trivial, we need to add a bottleneck layer whose 

dimension is much smaller than the input.
 Example:

NN Autoencoders
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 Encoder: This part of the network compresses the input into a latent-
space representation. It encodes the high-dimensional data into a 
lower-dimensional code. This process involves a series of layers that 
gradually downsample the input data.
 Decoder: After encoding, the network attempts to reconstruct the input 

data from the compressed code, resulting in the output that mirrors the 
original data. The decoder essentially reverses the process of the 
encoder, up-sampling from the latent space back to the original input 
dimension.

Encoder / Decoder
29

.0
4.

24

Olga Fink 7



 The learning process is unsupervised
 Does not require labeled input-output pairs
 It uses a loss function that measures the difference between the input 

and its reconstruction (often using a mean squared error (MSE))
 By minimizing this reconstruction error during training, the autoencoder 

learns to preserve as much of the relevant information in the input data 
as possible.

AE learning
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Autoencoders
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▪ Network is trained to output the input (learn identify function). 
▪ Two parts encoder/decoder

▪ x′ = g(f(x))
▪ g - decoder
▪ 𝑓𝑓 - encoder

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

ℎ1 ℎ2 ℎ𝑘𝑘

𝑥𝑥′2𝑥𝑥′1 𝑥𝑥′𝑛𝑛

𝑓𝑓

𝑔𝑔
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Trivial solution unless:
- Constrain number of units in Layer 2 (learn compressed 
representation), or
- Constrain Layer 2 to be sparse

Source: J.C. Kao, UCLA



Basic principles of an autoencoder
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If the input is 𝑥𝑥 ∈ ℝ𝑛𝑛 an autoencoder will produce a ℎ ∈ ℝ𝑑𝑑 where d < n, which is designed to contain most of the important features of x
to reconstruct it.

Autoencoder performs the following steps:

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑛𝑛

ℎ1 ℎ2 ℎ𝑘𝑘

𝑥𝑥′2𝑥𝑥′1 𝑥𝑥′𝑛𝑛

𝑓𝑓

𝑔𝑔
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Source: J.C. Kao, UCLA



▪ In a more general form, f() and g() could be deep neural 
networks, learning potentially more nonlinear and expressive 
features h.

Nonlinear dimensionality reduction
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Sparse autoencoders
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Source: J.C. Kao, UCLA

Lasso Regression (Least Absolute Shrinkage and Selection Operator)



Denoising autoencoders
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Source: J.C. Kao, UCLA



Sparse Vs Denoising
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● Filter weights, 12x12 patches

[Vincent e t  al. 2010 ]

Sparse AE  
Actually meaningless

Denoising AE



Stacked autoencoders
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Source: L.P. Morency



Stacked denoising autoencoders
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 Can extend this to a denoising model
 Add noise when training each of the layers
 Often with increasing amount of noise per layer
 0.1 for first, 0.2 for second, 0.3 for third

Source: L.P. Morency



Learning features with deep learning algorithms
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Source: A. NG



Examples of learned object parts from 
object categories
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Faces Cars Elephants Chairs
Trained on 4 classes

Source: A. NG
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 Designed to identify whether a given instance belongs to a specific 
class or not
 Particularly useful in situations where you have a lot of data for one 

class, often referred to as the "target" or "positive" class, and very little 
to no data for the "outlier" or "negative" class
 The classic use case for a one-class classifier is anomaly detection, 

where the goal is to detect rare events.

General Concepts (1/2)
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 Target Class Representation: The one-class classifier learns only from 
the target class during the training phase. The model tries to capture 
the distribution, patterns, or boundaries of the target class data.
 Anomaly Detection: During inference, the classifier predicts whether 

new instances resemble the learned target class. Instances that deviate 
significantly from the target class pattern are identified as anomalies or 
outliers.

General Concepts (2/2)
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 Autoencoders: In the context of one-class classification, autoencoders 
can be trained on the target class data and used to reconstruct new 
data points. Large reconstruction errors can indicate outliers or 
anomalies.
 One-Class SVM: One-class Support Vector Machines (SVM) are a 

popular approach. They work by finding the largest margin between the 
target class data points and the origin in a transformed feature space, 
effectively separating the target data from the origin.
 Isolation Forest: This algorithm isolates anomalies instead of profiling 

normal data points. It uses random trees to partition the data, and 
anomalies are expected to be isolated closer to the root of the tree, with 
fewer splits needed than for normal points.

Examples
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One-Class SVM
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 Suppose that a dataset has a probability distribution P in the feature 
space. 
 Find a “simple” subset S of the feature space such that the probability 

that a test point from P lies outside S is bounded by some a priori 
specified value                  
 The solution for this problem is obtained by estimating a function f 

which is positive on S and negative on the complement ̅𝑆𝑆.

One-class SVM
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Source: Manevitz, 2001



 The algorithm can be summarized as mapping the data into a feature 
space H using an appropriate kernel function, and then trying to 
separate the mapped vectors from the origin with maximum margin

One-class SVM
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Source: Manevitz, 2001



One-class SVM
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Source: Manevitz, 2001



 In this formula it is the parameter 𝜈𝜈 that characterizes the solution;

 It sets an upper bound on the fraction of outliers (training examples 
regarded out-of-class)

 It is a lower bound on the number of training examples used as Support 
Vector

𝜈𝜈-parameter
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Source: Manevitz, 2001



If w and ρ solve this problem, then the decision function

will be positive for most examples xi contained in the training set.

Decision function
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Source: Manevitz, 2001



 Obtains a spherical boundary, in feature space, around the data. 
 The volume of this hypersphere is minimized minimizes the effect of 

incorporating outliers in the solution

Support Vector Data Description (SVDD)
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Source: Tax & Duin



 Obtains a spherical boundary, in feature space, around the data. 
 The volume of this hypersphere is minimized minimizes the effect of 

incorporating outliers in the solution

Support Vector Data Description (SVDD)
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Source: Tax & Duin



 After solving this by introduction Lagrange multipliers αi, a new data 
point z can be tested to be in or out of class. 
 It is considered in-class when the distance to the center is smaller than 

or equal to the radius, by using the Gaussian kernel as a distance 
function over two data points:

Support Vector Data Description (SVDD)
according to Tax and Duin
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Source: Tax & Duin



Combining AE + One-
Class-Classifiers
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Analysing the reconstruction residuals for fault 
isolation
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Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

“Health Indicator”



Decoder for Failure Isolation
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Training

Test

Validation

Reconstructed
Input (�𝒙𝒙)Input (x)

1

3

Residual = 𝐚𝐚𝐚𝐚𝐚𝐚(𝐱𝐱𝐢𝐢 − �𝒙𝒙𝒊𝒊)~ 𝟎𝟎

If  𝐚𝐚𝐚𝐚𝐚𝐚(𝐱𝐱𝐢𝐢 − �𝒙𝒙𝒊𝒊) ≫ 𝟎𝟎 then signal 𝒊𝒊 faulty

Residual threshold defined with 
healthy data

2

Residual =  𝐱𝐱 − �𝒙𝒙

Threshold



Generator Health Monitoring
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320 monitoring sensors:
 Partial discharge
 Rotor shaft voltage
 Rotor flux
 Stator end winding vibration
 Stator Water Temperature

275 days of recorded operation, 
60 000 observations
1 faultCan only use Healthy data for training!

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017



Generator Health Monitoring
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HealthyAbnormal behavior 100 days before!
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Combined Architecture
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Water Temperature Shaft Voltage Rotor Flux Rotor Flux

Integrated fault diagnostics: Generator case study
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At no additional cost!

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

Integrated!



Isolation Forest
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Isolation Forest – overview

• Aim: provide a ranking that reflects the degree of “anomaly” for each data point
• Sort data points according to their path lengths or anomaly scores
• Outliers are the points with the biggest anomaly scores

• Isolation Tree (iTree): binary tree where each node in the tree has exactly zero or two 
daughter nodes

• Isolation Forest (iForest) algorithm: Unsupervised Machine Learning algorithm inspired 
by random forests

• Unsupervised: observations in the dataset are unlabeled
• No need to profile normal instances and to calculate point-based distances
• Builds an ensemble of random trees based on a mechanism called “isolation”, an 

iterative (random) partitioning process to separate outliers from normal points
• Uses the observation that outliers are more likely to be isolated with fewer steps, 

compared to normal points

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, 
pages 413-422. IEEE.

Source: Alexandre Boumezoued Olga Fink 40



• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

𝑥𝑥(2)

Isolation Forest – example of iTree

𝑥𝑥 1

𝐻𝐻

𝐴𝐴

𝐷𝐷

𝐶𝐶

𝐵𝐵

𝐸𝐸
𝐹𝐹

𝐺𝐺

300

𝑥𝑥 1 > 30

𝐻𝐻

𝐹𝐹 𝑇𝑇

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

𝑥𝑥(2)

Isolation Forest – example of iTree

𝑥𝑥 1

𝐻𝐻

𝐴𝐴

𝐷𝐷

𝐶𝐶

𝐵𝐵

𝐸𝐸
𝐹𝐹

𝐺𝐺

30

29

0

𝑥𝑥 1 > 30

𝑥𝑥 2 > 29 𝐻𝐻

𝐹𝐹 𝑇𝑇

𝑇𝑇𝐹𝐹

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

Isolation Forest – example of iTree

𝑥𝑥 1

𝑥𝑥(2)

𝐻𝐻

𝐴𝐴

𝐶𝐶

𝐵𝐵

𝐸𝐸
𝐹𝐹

𝐺𝐺
22

𝐷𝐷

30

29

0

𝑥𝑥 1 > 30

𝑥𝑥 2 > 29

𝑥𝑥 2 > 22 𝑥𝑥 1 > 10

𝐻𝐻

𝐴𝐴𝐷𝐷

𝐹𝐹 𝑇𝑇

𝑇𝑇𝐹𝐹

𝐹𝐹
𝐹𝐹 𝑇𝑇𝑇𝑇

10

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

Isolation Forest – example of iTree

𝑥𝑥 1

𝑥𝑥(2)

𝐻𝐻

𝐴𝐴

𝐸𝐸
𝐹𝐹

𝐵𝐵

𝐶𝐶 𝐺𝐺

𝐷𝐷

30

22

29

45

0

𝑥𝑥 1 > 30

𝑥𝑥 2 > 29

𝑥𝑥 2 > 22 𝑥𝑥 1 > 10

𝐻𝐻

𝑥𝑥 2 > 45𝐴𝐴

𝐸𝐸

𝑥𝑥 1 > 17𝐷𝐷

𝐶𝐶 𝐺𝐺

𝐹𝐹 𝑇𝑇

𝑇𝑇𝐹𝐹

𝐹𝐹

𝐹𝐹

𝐹𝐹

𝑇𝑇 𝑇𝑇

𝑇𝑇

𝐹𝐹

𝑇𝑇

17

10

Source: Alexandre Boumezoued
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• Example of an Isolation Tree, two-dimensional case (𝑑𝑑 = 2)
• Point 𝐻𝐻 (outlier) is isolated with only 1 step
• More steps are needed to isolate the other points

Isolation Forest – example of iTree

𝑥𝑥 1

𝑥𝑥(2)

𝐻𝐻

𝐴𝐴

𝐷𝐷

𝐶𝐶

𝐵𝐵

𝐸𝐸
𝐹𝐹

𝐺𝐺

30

22

29

45

10

0

𝑥𝑥 1 > 30

𝑥𝑥 2 > 29

𝑥𝑥 2 > 22 𝑥𝑥 1 > 10

𝐻𝐻

𝑥𝑥 2 > 45𝐴𝐴

𝐸𝐸

𝑥𝑥 1 > 17𝐷𝐷

𝐶𝐶 𝐺𝐺

𝐹𝐹 𝑇𝑇

𝑇𝑇𝐹𝐹

𝐹𝐹

𝐹𝐹

𝐹𝐹

𝑇𝑇 𝑇𝑇

𝑇𝑇

𝐹𝐹

17

𝑇𝑇

𝑥𝑥 1 > 18

𝐹𝐹𝐵𝐵

𝑇𝑇𝐹𝐹

18

Source: Alexandre Boumezoued
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• Ensemble method: generates multiple iTrees → iForest
• Path length of an observation obtained as the sum of:

• total number of splits needed to isolate it
• adjustment term to add if observation terminates at an external node. (Accounts for an unbuilt 

subtree beyond some tree height limit ℓ → saves computational time)
• Compute the average path lengths ℎ 𝑋𝑋𝑖𝑖 for each observation 𝑋𝑋𝑖𝑖

• Calculation of the anomaly scores
 Normalization by the average (universal) path length 𝐿𝐿 in a binary tree

ℎ 𝑋𝑋𝑖𝑖−
𝐿𝐿 Anomaly score: 𝑠𝑠 𝑋𝑋𝑖𝑖 = 2 ∈ 0, 1 ⇒ small average path length = high anomaly score

𝐢𝐢𝐅𝐅𝐨𝐨𝐫𝐫𝐞𝐞𝐬𝐬𝐭𝐭

Isolation Forest – from iTree to iForest

i𝐓𝐓𝐫𝐫𝐞𝐞𝐞𝐞𝟏𝟏 i𝐓𝐓𝐫𝐫𝐞𝐞𝐞𝐞𝟐𝟐 i𝐓𝐓𝐫𝐫𝐞𝐞𝐞𝐞𝑲𝑲

…

Anomaly 
score

Outliers

Normal uncommon points

Normal common points

0.5

0

1

Source: Alexandre Boumezoued
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1 𝑛𝑛 𝑖𝑖 𝑖𝑖 𝑖𝑖• Dataset: 𝑋𝑋 = 𝑋𝑋 , … , 𝑋𝑋 , with 𝑋𝑋 = 𝑥𝑥 1 , … , 𝑥𝑥 𝑑𝑑 ∈ ℝ𝑑𝑑 where:
• 𝑛𝑛 is the number of instances
• 𝑑𝑑 is the number of covariates

• Sub-sampling: An iTree 𝑗𝑗 is obtained by selecting a random
𝑋𝑋′

𝑗𝑗 𝑗𝑗 𝜓𝜓subset 𝑋𝑋′ ⊂ 𝑋𝑋, where = 𝜓𝜓 < 𝑛𝑛, 𝑋𝑋′ = 𝑋𝑋𝜎𝜎 1 , … , 𝑋𝑋𝜎𝜎 ,
and 𝜎𝜎𝑗𝑗 ∶ 1, 𝜓𝜓 → 1, 𝑛𝑛 is a (random) injective function.

• 𝑋𝑋′ is then
covariate 𝑞𝑞 ∈ {1, … , 𝑑𝑑} and a split value ∗𝑥𝑥 𝑞𝑞

divided recursively by randomly selecting a
∈

1≤𝑖𝑖≤𝜓𝜓 1≤𝑖𝑖≤𝜓𝜓𝜎𝜎𝑗𝑗(𝑖𝑖) 𝜎𝜎𝑗𝑗(𝑖𝑖)[ min 𝑥𝑥(𝑞𝑞) , max 𝑥𝑥(𝑞𝑞) ] until:

• Either the tree reaches the height limit ℓ , which is 
approximately the average tree height

• Or 𝑋𝑋′ = 1, i.e. there is only one unique point remaining

Isolation Forest – details
Dataset 𝑋𝑋

Sub-sample 𝑋𝑋′ ⊂ 𝑋𝑋

∗

 Covariate 𝑞𝑞 is selected
 Split value 𝑥𝑥 𝑞𝑞 is selected

𝑙𝑙𝑒𝑒𝑓𝑓𝑡𝑡𝑋𝑋′



= {𝑋𝑋𝜎𝜎 𝑗𝑗 𝑖𝑖 𝜎𝜎𝑗𝑗 𝑖𝑖 ∗| 𝑥𝑥 𝑞𝑞 < 𝑥𝑥 𝑞𝑞 }

𝑟𝑟𝑖𝑖𝑔𝑔ℎ𝑡𝑡𝑋𝑋′ = {𝑋𝑋𝜎𝜎 𝑗𝑗 𝑖𝑖 𝜎𝜎𝑗𝑗 𝑖𝑖 ∗| 𝑥𝑥 𝑞𝑞 ≥ 𝑥𝑥 𝑞𝑞 }

The process is repeated until 
every point is isolated or the 

height limit ℓ is reached
Source: Alexandre Boumezoued
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• Swamping & masking are standard issues in outlier detection problems
• Swamping: wrong identification of normal instances as outliers in the case where many variables 

are non informative on the “outlier” nature. (the split based on these variables is not appropriate)
• Masking: when too many outliers coexist in the dataset, the splitting rules are not efficient to isolate 

data points since many iterations are needed
• Both problems are consequences of too many data for the purpose of outlier detection
• Solution of iForest algorithm: Sub-sampling

• Controls data size, which helps to better isolate examples of outliers
• Each iTree can be specialized, each sub-sample including a different set of outliers

• It has been shown that iForest's outlier detection ability is superior when sub-sampling is used

Isolation Forest – about swamping and masking

Source: Alexandre Boumezoued
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Isolation Forest – pros and challenges
• Pros

• Unsupervised method: does not require labels of outliers provided by expert judgements
• No model needed (the aim is not to model normal instances)
• Provides a hierarchy by assigning an anomaly score to each observation
• Does not require examples of outliers in the training set
• Requires relatively small samples from large datasets to derive an outlier detection function
• The algorithm can be trained once and reused without computational cost
• Achieves a linear time complexity with low memory requirement

• by using sub-sampling
• by avoiding building trees after reaching a height limit ℓ

• Overcomes the problem of swamping/masking by using sub-sampling
• Challenges

• Requires working on the data to provide appropriate format of the covariates
• Tuning parameters need to be set
• To avoid the black-box syndrome, it benefits from a pre-selection of covariates in line with the 

problem to be tackled

Source: Alexandre Boumezoued
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Deep Semi-Supervised 
Anomaly Detection 
Deep SAD
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 Extends the the concept of deep SVDD to semi-supervised setups

 Deep SAD combines a few labeled examples (both normal and 
anomalous) with a larger pool of unlabeled data during training.
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Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K. R., & Kloft, M. (2019, September). 
Deep Semi-Supervised Anomaly Detection. In International Conference on Learning Representations.



Deep SAD compared to other AD approaches
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Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K. R., & Kloft, M. (2019, September). 
Deep Semi-Supervised Anomaly Detection. In International Conference on Learning Representations.



Explainability / 
Interpretability
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Most of the time, the algorihtms work really well
but sometimes…
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A refrigerator filled with lots of
food and drinks



Safety and well being

Source: Byron Wallace29
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Bias in algorithms

https://medium.com/@Joy.Buolamwini/response-
racial-and-gender-bias-in-amazon-rekognition-
commercial-ai-system-for-analyzing-faces-
a289222eeced

https://www.infoq.com/presentations/unconscious-
bias-machine-learning/

Source: Byron Wallace29
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https://medium.com/%40Joy.Buolamwini/response-
http://www.infoq.com/presentations/unconscious-


Adversarial Examples

Source: Byron Wallace29
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 Interpretability (Explainability, Transparency, Understanding, Trust)
 Physical consistency
 Complex and uncertain data
 Limited labels
 (Computational demand)

Current limitations of the ML algorithms
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 Ability to explain or to present a model in understandable terms to 
humans (Doshi-Velez 2017)

What is interpretability?
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Why explainable AI?
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Source: WWW 2020 Tutorial



Simple explainability

● In pre-deep learning models, some models are considered
“interpretable”

Source: Byron Wallace29
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Accuracy vs. Explainability
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Source: WWW 2020 Tutorial



 Build interpretability into the model (e.g. by fusing physical models and 
machine learning or learning the underlying physics explicitly)
 Post-hoc approach to interpretability  trying to explain given models 

and their output

Different ways to achieve interpretability
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● Faithfulness - how to provide explanations that accurately
represent the true reasoning behind the model’s final decision.

● Plausibility – Is the explanation correct or something we can
believe is true, given our current knowledge of the problem ?

● Understandable – Can I put it in terms that end user without in-
depth knowledge of the system can understand ?

● Stability – Do similar instances have similar interpretations ?

Some properties of Interpretations

Source: Byron Wallace29
.0
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 Build interpretability into the model (e.g. by fusing physical models and 
machine learning or learning the underlying physics explicitly)
 Post-hoc approach to interpretability  trying to explain given models 

and their output

Different ways to achieve interpretability
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● Application level evaluation – Put the model in practice and have the 
end users interact with explanations to see if they are useful .

● Human evaluation – Set up a Mechanical Turk task and ask
non- experts to judge the explanations

● Functional evaluation – Design metrics that directly test
properties of your explanation.

Evaluating Interpretability [Doshi-Velez 2017]
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● Do we explain individual 
prediction ?

 Example –

 Heatmaps
 Rationales

● Do we explain entire
model?

 Example –

 Linear Regression
 Decision Trees

Global vs Local

Source: Byron Wallace29
.0
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● Is the explainability built into
the model ?

 Examples:

 Linear Regression
 Decision Trees

● Is the model black-box and 
we use external method to 
try to understand it ?

 Examples:

 Heatmaps (Some forms) 

Inherent vs Post-hoc

Source: Byron Wallace29
.0
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● Can it explain only few 
classes of models?

 Examples:

 Decision Trees
 Attention
 Gradients (Differentiable
Models only)

● Can it explain any model ?

 Examples:

 LIME – Locally Interpretable
Model Agnostic Explanations
 SHAP – Shapley Values

Model based vs Model Agnostic

Source: Byron Wallace29
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 Explaining with Surrogates 
 Explaining with local perturbations 
 Propagation-Based Approaches (Leveraging Structure) 
 Meta-explanations

Different approaches to explain the behavior of 
ML approaches post-hoc
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W. Samek and K. R. Müller, “Towards Explainable Artificial Intelligence,” in Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11700 LNCS, Springer Verlag, 2019, pp. 5–22.



 Heatmap based visualization
 Need differentiable model in most cases
 Normally involve gradient

Saliency Based Methods
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Model (dog)

Explanation Method

Model

Source: Byron Wallace



Class Activation Mapping
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 GAP: Global average pooling
 We can identify the importance 

of the image regions by 
projecting back the weights of 
the output layer on the 
convolutional feature maps 
obtained from the last 
Convolution Layer. 

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Class Activation Mapping: examples
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Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



Class Activation Mapping
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Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



[Adebayo et al 2018]

29
.0

4.
24

Olga Fink 75



Saliency Example - Gradients

𝐸𝐸 𝑓𝑓 𝑥𝑥 =
𝑑𝑑𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑥𝑥

𝑓𝑓(𝑥𝑥): 𝑅𝑅𝑑𝑑 → 𝑅𝑅

Source: Byron Wallace29
.0
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Saliency Example – Leave-one-out

𝑓𝑓 𝑥𝑥 : 𝑅𝑅𝑑𝑑 → 𝑅𝑅

𝐸𝐸(𝑓𝑓)(𝑥𝑥)𝑖𝑖 = 𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑥𝑥\i)

How to remove ?

1. Zero out pixels in image
2. Remove word from the text
3. Replace the value with population mean in tabular data Source: Byron Wallace29
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Source: Julius Adebayo)29
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Local Interpretable Model-Agnostic
Explanations (LIME): basic idea
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME – locally interpretable model agnostic

Black
Box

(e.g. Neural Network)

𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝑁𝑁 𝑦𝑦1, 𝑦𝑦2, ⋯ , 𝑦𝑦𝑁𝑁

𝑥𝑥1, 𝑥𝑥2, ⋯ , 𝑥𝑥𝑁𝑁

as close as
possible⋯ ⋯

Linear
Model

Can’t do it globally of course, but locally ? Main Idea behind LIME
Source: Hung-Yi Lee
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LIME: Toy example of the basic concept
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME: divide images into interpretable compo-
nents (contiguous superpixels)
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME － Image

1. Given a data point you want to explain
2. Sample at the nearby - Each image is represented as a set of

superpixels (segments).

 Randomly delete some
 segments.

0.85 0.52 0.01
Compute the probability of “frog” by 
black box

Black Black Black

Source: Hung-Yi Lee

29
.0

4.
24

Olga Fink 83



LIME － Image

● 3. Fit with linear (or interpretable) model

0.85 0.010.52

Linear Linear Linear

Extract Extract Extract

𝑀𝑀 is the number of segments.

Segment m is deleted.
Segment m exists.

𝑥𝑥1 𝑥𝑥𝑀𝑀𝑥𝑥𝑚𝑚⋯ ⋯ ⋯ ⋯

Source: Hung-Yi Lee

29
.0

4.
24

Olga Fink 84



LIME － Image

0.85

Linear

Extract

● 4. Interpret the model you learned

𝑦𝑦 = 𝑤𝑤1𝑥𝑥1 + ⋯ + 𝑤𝑤𝑚𝑚𝑥𝑥𝑚𝑚 + ⋯ + 𝑤𝑤𝑀𝑀𝑥𝑥𝑀𝑀

𝑀𝑀 is the number of segments.

Segment m is deleted. 
Segment m exists.

If 𝑤𝑤𝑚𝑚 ≈ 0

If 𝑤𝑤𝑚𝑚 is positive

If 𝑤𝑤𝑚𝑚 is negative

segment m is not related to “frog”

segment m indicates the image is “frog”

segment m indicates the image is not “frog”

Source: Hung-Yi Lee
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LIME: perturbation + local models
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME: underlying algorithm
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME: Example
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



LIME: bringing trust («Husky vs Wolf)
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M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135–1144.



Examples
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 XAI on Power Grid Insulators:
• Fault detection binary classifier
• When faulty, apply XAI to show which part of the image led to the decision,
 highlighting the defect region

Detecting defective insulators

Olga Fink

Healthy

Faulty

Fault localization

CNN

Interpretability
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Evaluation of the prediction results

Olga Fink

Test Accuracy = 96.4% 
FPR = 3.6 % 
FNR= 3.8 %

Test Samples Examples 
(defective0; Normal1)
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Interpretable Detection of Partial Discharge in Power 
Lines with Deep Learning  Framework
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Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.



Pulse activations
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Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.



Pulse Activation Maps (PAM)
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Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.



Processing explanations
29

.0
4.

24

Olga Fink 96

Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



How can explanations be used?
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Model improvement
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Informed decision making
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Proposed method for automating the evaluation
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Proposed method: detecting unusual explanations
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation
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Proposed method: detecting unusual explanations

Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation
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Proposed method: detecting unusual explanations

Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Case study: infrastructure monitoring
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Application of the methodology
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Application of the methodology
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Examples
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Coherent vs. Non-coherent explanations
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Examples
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation



Summary
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Floreale, G., P. Baraldi, E. Zio, O. Fink: Processing Explanations to Improve Performance and Enhance Trustworthiness of DL 
Models for Fault Diagnostics in Large Infrastructures, in preparation
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