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=PFL  PHM Process

DataAcquisition (DA)

Data Manipulation (DM)

State Detection (SD)
|

Health Assessment (HA)
|

Prognostics Assessment(PA)

Advisory Generation(AG)
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=PFL  Signal reconstruction I
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=PFL  NN-Autoencoders

= A type of artificial neural network used to learn efficient representations
of data

= Typically for the purpose of dimensionality reduction or feature learning
= Designed to learn a compressed representation of input data

= By passing the data through a network that first encodes the input into a
lower-dimensional space

= Then reconstructs the output from this representation.

B 29.04.24
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=PFL NN Autoencoders

= A NN autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

= To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

= Example:

reconstruction ‘ 784 units ‘ T
A

100 units decoder
A

code vector 20 units

A

i

100 units encoder
A

input ‘ 784 units ‘ 1

B 29.04.24
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=P7L  Encoder / Decoder

= Encoder: This part of the network compresses the input into a latent-
space representation. It encodes the high-dimensional data into a
lower-dimensional code. This process involves a series of layers that
gradually downsample the input data.

= Decoder: After encoding, the network attempts to reconstruct the input
data from the compressed code, resulting in the output that mirrors the
original data. The decoder essentially reverses the process of the
encoder, up-sampling from the latent space back to the original input
dimension.

B 29.04.24
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=P7L  AE leaming

= The learning process is unsupervised
= Does not require labeled input-output pairs

= |t uses a loss function that measures the difference between the input
and its reconstruction (often using a mean squared error (MSE))

= By minimizing this reconstruction error during training, the autoencoder
learns to preserve as much of the relevant information in the input data
as possible.

B 29.04.24
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=PrL  Autoencoders

- Network is trained to output the input (learn identify function).
- Two parts encoder/decoder

X' = g(f(x)) ;. @@gr @

g - decoder 8

f - encoder L |®@f©
Trivial solution unless: : _|@@ -+ ()

- Constrain number of units in Layer 2 (learn compressed

representation), or
- Constrain Layer 2 to be sparse

Source: J.C. Kao, UCLA

B 29.04.24
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=PFL Basic principles of an autoencoder

If the input is x € R™ an autoencoder will produce a h € R% where d < n, which is designed to contain most of the important features of x
to reconstruct it.

Autoencoder performs the following steps:

@O - -
e Encoder: Perform a dimensionality reduction step on the data, x € R™ to f
obtain features h € R?. g
o Decoder: Map the features h € R? to closely reproduce the input, _| @Z: SG . er S

x e R".
a

Thus, the autoencoder implements the following problem: f
cleEENe)

Decoder

Encoder

Let x € R", f(-) : R" = R% and g(-) : R — R". Let
x = g(f(x))

Define a loss function, £(x,x), and minimize £ with respect to the parameters

of () and g(.).

There are different loss functions that you could consider, but a common one is

the squared loss: Source: J.C. Kao, UCLA

L(x,%) = ||x — x|
Olga Fink 10



=F*LNonlinear dimensionality reduction

In a more general form, f() and g() could be deep neural
networks, learning potentially more nonlinear and expressive
features h.

g =0‘(W*h)t

W (0):  «Cy)

B 29.04.24
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=PFL  Sparse autoencoders gl

A sparse autoencoder is one that is regularized to not only minimize the loss,
but to also incorporate sparse features. If h = f(x) and x = g(h), then the
sparse encoder has the following loss:

L(x,%) + A |k

where h; is the ith element of h. This is intuitive, as we know L1-regularization
introduces sparsity.

Lasso Regression (Least Absolute Shrinkage and Selection Operator)

Source: J.C. Kao, UCLA

B 29.04.24
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=PFL  Denolsing autoencoders e

Say you wanted to obtain an autoencoder that was robust to noise. One could
generate noise, ¢, and add it to the input x, so that x = x + <. Then, the loss
function of the autoencoder would have loss:

L(x,9(f(x)))

and it would learn to denoise x to reproduce x. This can cause your
autoencoder to be robust to certain types of noise.

Source: J.C. Kao, UCLA

B 29.04.24
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=P7LSparse Vs Denoising

* Filter weights, 12x12 patches

INNANZNSER
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R NER RS
HECDNEEEHEE
NENESEYRER
REFREREENE
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AREENENRES

Denoising AE

Sparse AE

Actually meaningless

[Vincent et al.2010]
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=PrL

Decoder —

Encoder —

Stacked autoencoders

B 29.04.24

B , n
F. o0 .j x Decoder<|:[ 1 ] '
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Encoder — [
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Source: L.P. Morency
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=PrL

B 29.04.24

= Can extend this to a denoising model

= Add noise when training each of the layers

= Often with increasing amount of noise per layer
= 0.1 for first, 0.2 for second, 0.3 for third

Stacked denoising autoencoders

Decoder -

Encoder —

—

1

(@ @0 @ «x

Source: L.P. Morency
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=PFL  Leaming features with deep leaming algorithms |

object models

REBETV=NN (combination
~=—@m| of edges)

O
oo Ws
O O O output b ‘—-L'.Q._‘Jr, object parts
O O O ~

O

—0OO0

Compressed
Feature Vector
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Source: A. NG
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=PFL  Examples of learned object parts from
object categories

Elephants Chairs

EERSRCEE
NEEAN=a
BREREY=NN
\ ;-kﬁ.f '
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Source: A. NG
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One-Class Classifiers
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=PrL

B 29.04.24

General Concepts (1/2)

= Designed to identify whether a given instance belongs to a specific
class or not

= Particularly useful in situations where you have a lot of data for one
class, often referred to as the "target" or "positive" class, and very little
to no data for the "outlier" or "negative" class

= The classic use case for a one-class classifier is anomaly detection,
where the goal is to detect rare events.

Olga Fink
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=PFL  General Concepts (2/2)

= Target Class Representation: The one-class classifier learns only from
the target class during the training phase. The model tries to capture
the distribution, patterns, or boundaries of the target class data.

= Anomaly Detection: During inference, the classifier predicts whether
new instances resemble the learned target class. Instances that deviate
significantly from the target class pattern are identified as anomalies or
outliers.

B 29.04.24
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=PrL

B 29.04.24

Examples

= Autoencoders: In the context of one-class classification, autoencoders
can be trained on the target class data and used to reconstruct new
data points. Large reconstruction errors can indicate outliers or
anomalies.

= One-Class SVM: One-class Support Vector Machines (SVM) are a
popular approach. They work by finding the largest margin between the
target class data points and the origin in a transformed feature space,
effectively separating the target data from the origin.

= |solation Forest: This algorithm isolates anomalies instead of profiling
normal data points. It uses random trees to partition the data, and
anomalies are expected to be isolated closer to the root of the tree, with
fewer splits needed than for normal points.

Olga Fink 22



One-Class SYM
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=PrL

B 29.04.24

One-class SYM

= Suppose that a dataset has a probability distribution P in the feature
space.

= Find a “simple” subset S of the feature space such that the probability
that a test point from P lies outside S is bounded by some a priori
specified value v ¢ (0,1)

= The solution for this problem is obtained by estimating a function f
which is positive on S and negative on the complement S.

|+l fxreS
f(‘”){ —1 ifzes

Source: Manevitz, 2001

Olga Fink 24



=PFL  One-class SVM

= The algorithm can be summarized as mapping the data into a feature
space H using an appropriate kernel function, and then trying to
separate the mapped vectors from the origin with maximum margin

Source: Manevitz, 2001

B 29.04.24
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EPFL - One-class SVM

ol o, 1
min —|lw|® + — -

subject to:
(w- o(z;)) Zp — & foralli =1,...,n
& >0 foralli=1,...,n

Source: Manevitz, 2001

B 29.04.24
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=PrL

B 29.04.24

v-parameter

= |n this formula it is the parameter v that characterizes the solution;

= |t sets an upper bound on the fraction of outliers (training examples
regarded out-of-class)

= |t is a lower bound on the number of training examples used as Support
Vector

Source: Manevitz, 2001

Olga Fink 27



=PFL  Declsion function

If w and p solve this problem, then the decision function

F(@) = sgn((w- §(z:)) — p) = sen(> " K (2, ;) — p)
1=1

will be positive for most examples xi contained in the training set.

Source: Manevitz, 2001

B 29.04.24
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=PrL

B 29.04.24

Support Vector Data Description (SVDD)

= Obtains a spherical boundary, in feature space, around the data.

= The volume of this hypersphere is minimized-> minimizes the effect of
incorporating outliers in the solution

Support vector

v v

1’1'111’1 R2 + CZ&@ e ,v Outliers
A
subject to. . |
’ ¢ \ ..
sz - aH2 §R2 + &; foralli =1,...,n r-R\ | . 0 SVDD decision boundry
& >0 forall: =1,...,n o . v

Source: Tax & Duin
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=PrL

B 29.04.24

Support Vector Data Description (SVDD)

= Obtains a spherical boundary, in feature space, around the data.

= The volume of this hypersphere is minimized-> minimizes the effect of
incorporating outliers in the solution

mmR2 +CZ§3

subject to.
|z; —a|* <R*+ & foralli =1,...,n
& >0 foralli =1,...,n

Source: Tax & Duin
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=PrL

B 29.04.24

Support Vector Data Description (SVDD)
according to Tax and Duin

= After solving this by introduction Lagrange multipliers a;, a new data
point z can be tested to be in or out of class.

= |t is considered in-class when the distance to the center is smaller than

or equal to the radius, by using the Gaussian kernel as a distance
function over two data points:

n o 2
||Z—X||2 Zaiexp( HZ 2331” ) 2_122/2_|_C¢R

i—1 g

Source: Tax & Duin
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=PFL  Analysing the reconstruction residuals for fault
isolation

Auto-Encoder

- Reconstructed\
Input Input
Features
\ /
3 O ° Fault Isolation
o | Reconstruction Error
O : O_ : (Residual before\after Fault)
Y/ SO0 ¢
O——0
G J
Detect Anormal Data
One- class classifier (ngh Distance to Training)
r*- N
utput
Distance to
Training Data “Health Indicator”
- Fault Detection
: Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017
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=PFL  Decoder for Failure Isolation

Fe atu res Reconstructed 1o —
Input (x) Input (x) - predict
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=PFL  Generator Health Monitoring

320 monitoring sensors:

@ Partial discharge

. Rotor shaft voltage

=  Rotor flux

=  Stator end winding vibration
. Stator Water Temperature

275 days of recorded operation,

60 000 observations
Can only use Healthy data for training! 1 fault

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017

B 29.04.24
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=PFL  Generator Health Monitoring

Abnormal behavior 100 days before!

B 29.04.24

15}

Normalized distance to the training set

—
o
T

ot
T

- Train
Validate
- Test

Healthy

(i sonBengl

0‘ - -l = (T
Time [days]

(l: : 200

300

Olga Fink

36



] ]
=PFL  Combined Architecture
Auto-Encoder
( Reconstructed\
Input Input

B 29.04.24

; Q ==>QR

Fault Isolation

Reconstruction Error
esidual before\after Fault

=/

)

utput

AN

Detect Anormal Data

| One- class classifier (ngh Distance to Training)

N

Distance to

Training Data

Fault Detection

Olga Fink
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=PFL|ntegrated fault diagnostics: Generator case study ka

Water Temperature Shaft Voltage Rotor Flux ‘ Rotor Flux
60 | o ’
40 | 5l o 1 _
20 | 10 _
1 1 ' e | 0y |
0 100 200 0 100 200 0 100 200

Integrated!

At no additional cost!

Michau, G., T. Palmé, and O. Fink (2017): Deep Feature Learning Network for Fault Detection and Isolation, Annual conference of the PHM society, October 2017
Olga Fink 38
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Isolation Forest
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=PrL

Isolation Forest - overview

- Aim: provide a ranking that reflects the degree of “anomaly” for each data point
» Sort data points according to their path lengths or anomaly scores
» Qutliers are the points with the biggest anomaly scores

- Isolation Tree (iTree): binary tree where each node in the tree has exactly zero or two
daughter nodes

- Isolation Forest (iForest) algorithm: Unsupervised Machine Learning algorithm inspired
by random forests

» Unsupervised: observations in the dataset are unlabeled
* No need to profile normal instances and to calculate point-based distances

* Builds an ensemble of random trees based on a mechanism called “isolation”, an
iterative (random) partitioning process to separate outliers from normal points

» Uses the observation that outliers are more likely to be isolated with fewer steps,
compared to normal points

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining,
pages 413-422. IEEE.

B 29.04.24

Source: Alexandre Boumezoued
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=PrL

B 29.04.24

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
+ More steps are needed to isolate the other points

x(2)
H
o E e
A F
® L]
BQ
Cq *G
[ ]
D
b X(l)
0 30

Source: Alexandre Boumezoued

Olga Fink
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=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step
+ More steps are needed to isolate the other points

x(2)
H
o @
A F
® L ]
B'
29 T
[ ]
D
g > X(l)
50 30

Source: Alexandre Boumezoued
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=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step

« More steps are needed to isolate the other points
x(2)

10
N H
o @
A F
® L ]
B'
29 T
22 .
D
g > X(l)
50 30

Source: Alexandre Boumezoued Olga Fink 43



=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step

« More steps are needed to isolate the other points
x(2)

10
N H
E
A5 o @
A F
® L ]
Be
29 v
22 .
D
g > X(l)
50 17 30

Source: Alexandre Boumezoued Olga Fink m



=PrL

Isolation Forest - example of iTree

- Example of an Isolation Tree, two-dimensional case (d = 2)
- Point H (outlier) is isolated with only 1 step

« More steps are needed to isolate the other points
x(2)

10 18
N H
E
A5 o @
A F
[ ]
B'
29 TG
22 .
D
g > X(l)
50 17 30

Source: Alexandre Boumezoued Olga Fink 45



"= Isolation Forest - from Tree to iForest

 Ensemble method: generates multiple iTrees — iForest
» Path length of an observation obtained as the sum of:
 total number of splits needed to isolate it

» adjustment term to add if observation terminates at an external node. (Accounts for an unbuilt
subtree beyond some tree height limit £ — saves computational time)

« Compute the average path lengths h(X;) for each observation X;

- Calculation of the anomaly scores

= Normalization by the average (universal) path length L in a binary tree
_MF
= Anomaly score:s(X;) =2 ~© €[0,1] = small average path length = high anomaly score

iForest

Anomaly
score iTreeq |Tree2 iTreeg

Outliers
Normal uncommon points

Source: Alexandre Boumezoued

B 29.04.24
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=PrL

Isolation Forest - detalls

Dataset X
- Dataset: X = (X, ...,X,,), withX; = (xl.(l), ...,xl.(d)) € R< where:

* n is the number of instances

v
* d is the number of covariates —Sub-sample X' c X

- Sub-sampling: An iTree jis obtained by selecting a random = Covariate g is selected

subset X' cX, where |X|=y<n X = (Xaj(l)y ---;Xaj(lp)): = Split value x'?’ is selected
andog;: [1,9] — [1,n] is a (random) injective function.

s X=X o |2 < x@
- X' is then divided recursively by randomly selecting a et = Ko, | Xoj0 J

covariate g€ ({1,..,d} and a split value x9 ¢ - X;ight={Xoj(i)|x((,‘jzi)2qu)}
i (@) (q) i
Lmin Xt » [0 X5,y | until
» Either the tree reaches the height Ilimit ¢, which is _ _
approximately the average tree height The process is repeated until

« Or |X'| =1, i.e. there is only one unique point remaining evﬁgg%?il?rtnii? i,sgiea%r?ééhe

B 29.04.24
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=PrL

Isolation Forest - about swamping and masking

Swamping & masking are standard issues in outlier detection problems

« Swamping: wrong identification of normal instances as outliers in the case where many variables
are non informative on the “outlier” nature. (the split based on these variables is not appropriate)

* Masking: when too many outliers coexist in the dataset, the splitting rules are not efficient to isolate
data points since many iterations are needed

Both problems are consequences of too many data for the purpose of outlier detection

Solution of iForest algorithm: Sub-sampling
» Controls data size, which helps to better isolate examples of outliers
» Each iTree can be specialized, each sub-sample including a different set of outliers

It has been shown that iForest's outlier detection ability is superior when sub-sampling is used

B 29.04.24
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=PrL

Isolation Forest - pros and challenges

- Pros

* Unsupervised method: does not require labels of outliers provided by expert judgements
* No model needed (the aim is not to model normal instances)
* Provides a hierarchy by assigning an anomaly score to each observation
* Does not require examples of outliers in the training set
* Requires relatively small samples from large datasets to derive an outlier detection function
* The algorithm can be trained once and reused without computational cost
* Achieves a linear time complexity with low memory requirement
* by using sub-sampling
* by avoiding building trees after reaching a height limit £
* Overcomes the problem of swamping/masking by using sub-sampling

- Challenges

B 29.04.24

* Requires working on the data to provide appropriate format of the covariates
* Tuning parameters need to be set

* To avoid the black-box syndrome, it benefits from a pre-selection of covariates in line with the
problem to be tackled

Source: Alexandre Boumezoued Olga Fink 49



Deep Semi-Supervised
Anomaly Detection
Deep SAD
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=PrL

B 29.04.24

= Extends the the concept of deep SVDD to semi-supervised setups

= Deep SAD combines a few labeled examples (both normal and
anomalous) with a larger pool of unlabeled data during training.

min Y o W) — el?

w n—+m 4
=1

L
7 A
(18G5 ) — )P 2 3 W3-
=1

Ruff, L., Vandermeulen, R. A., Gornitz, N., Binder, A., Muller, E., Mdller, K. R., & Kloft, M. (2019, September).
Deep Semi-Supervised Anomaly Detection. In International Conference on Learning Representations.

Olga Fink
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=PFL  Deep SAD compared to other AD approaches

anomaly score )
low I high

unlabeled
@ normal
#* outlier

(b) Unsupervised AD (OC-SVM) (c) Supervised classifier (SVM)

(d) Semi-supervised classifier (e) Semi-supervised LPUE (f) Semi-supervised AD (ours)

B 29.04.24
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Explainability /
Interpretabllity




=PFL  Most of the time, the algorihtms work reallywell =
but sometimes...

A refrigerator filled with lots of
food and drinks

B 29.04.24
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=PrL

Safety and well being

Tesla hit parked police car 'while using
Autopilot’

© 30 May 2018 f © W [ < Share

LAGUNA BEACH POLICE DEPARTMENT

A number of Tesla vehicles have been involved in crashes.

B 29.04.24

Source: Byron Wallace

Olga Fink 55



=

" BlasIn algorithms

_ Machine Learning can amplify bias.

Wi oy Leamallow Blban N vmgeli (i withonms o | (1 € wapuis: bvad sl i
1 = e

98.7% 68.6% 100% 92.9%

o I I i ﬁ

DARKER DARKER LIGHTER LIGHTER
MALES  FEMALES MALES  FEMALES o\ i o, | s

Amazon Rekognition Performance on Gender Classification

= Algorithm predicts: 84% of people cooking are women

| ROLE [VALUE
iy WAl

oD | FRETA OO0 CRst
€41 BUNE AT

https://medium.com/@Joy.Buolamwini/response- https://www.infog.com/presentations/unconscious-
racial-and-gender-bias-in-amazon-rekognition- bias-machine-learning/
commercial-ai-system-for-analyzing-faces-

a289222eeced

g

)

- Source: Byron Wallace

Olga Fink 56


https://medium.com/%40Joy.Buolamwini/response-
http://www.infoq.com/presentations/unconscious-

=PrL

Adversarial Examples

Original image Perturbations Adversarial example

Temple (97%) Ostrich (98%)

B 29.04.24

Source: Byron Wallace
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=PFL  Current limitations of the ML algorithms

= Interpretability (Explainability, Transparency, Understanding, Trust)
= Physical consistency

= Complex and uncertain data

= Limited labels

= (Computational demand)

B 29.04.24
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=P7L  What s interpretability?

= Ability to explain or to present a model in understandable terms to
humans (Doshi-Velez 2017)

B 29.04.24
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=P7L  Why explainable Al?

Black Box Al Confusion with Today’s Al Black

. Box
Decision,
Black-Box | Al Recommendation )
Data N —5 product | x‘ e \Why did you do that?
e Why did you not do that?

e \When do you succeed or fail?
e How do | correct an error?

Clear & Transparent Predictions

Tainabl lainabl Decision e | understand why
Explainable Explainable
Al Al Product xl e | understand why not _
Explanation e | know why you succeed or fail
e | understand, so | trust you

Source: WWW 2020 Tutorial

B 29.04.24
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EPF

B 29.04.24

- Simple explainability

e In pre-deep learning models, some models are considered
“interpretable”

Tear production rate

i Random
Population glc:)plglatlon Independent Error
Y intercept il Variable term
Coefficient
Dependent \ l
Variable /

\
Y, =B +B:X +¢

, "
Linear component Random Error
component

Source: Byron Wallace
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=P7L  Accuracyvs. Explainability

Learning Interpretability

Explainability
A B
Neural Net
GAN CNN
+ Challenges: ) K coinic iy Non-Linear
. Super\nse‘d ) RNN Method functions
+ Unsupervised learning
XGB —
Random e
 Approach: > Forest Dt:r_:::;un
+ Representation 8 e —
Learnin o
9 : 3] sodsl Polynomial
+ Stochastic selection < - .
raphical Model functions
= OQOutput:
« Correlation
* No causation
Quasi-Linear
functions

Source: WWW 2020 Tutorial

B 29.04.24
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=PrL  Different ways to achieve interpretability

= Build interpretability into the model (e.g. by fusing physical models and
machine learning or learning the underlying physics explicitly)

= Post-hoc approach to interpretability = trying to explain given models
and their output

B 29.04.24
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" Some properties of Interpretations

B 29.04.24

Faithfulness - how to provide explanations that accurately
represent the true reasoning behind the model’s final decision.

Plausibility — |s the explanation correct or something we can
believe is true, given our current knowledge of the problem ?

Understandable — Can | put it in terms that end user without in-
depth knowledge of the system can understand ?

Stability — Do similar instances have similar interpretations ?

Source: Byron Wallace

Olga Fink 64



=PrL  Different ways to achieve interpretability

= Build interpretability into the model (e.g. by fusing physical models and
machine learning or learning the underlying physics explicitly)

= Post-hoc approach to interpretability = trying to explain given models
and their output

B 29.04.24
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" Evaluating Interpretability oo wezon

B 29.04.24

Application level evaluation — Put the model in practice and have the
end users interact with explanations to see if they are useful .

Human evaluation — Set up a Mechanical Turk task and ask
non- experts to judge the explanations

Functional evaluation — Design metrics that directly test
properties of your explanation.
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=PrL

Global vs Local
e Do we explainindividual e Do we explain entire
prediction ? model?
= Example - = Example -
= Heatmaps = Linear Regression
= Rationales = Decision Trees

B 29.04.24

Source: Byron Wallace

Olga Fink 67



=PrL

Inherentvs Post-hoc

e |s the explainability built into e |s the model black-box and
the model ? we use external method to
try to understand it ?

= Examples:
= Examples:

= Linear Regression

- Decision Trees = Heatmaps (Some forms)

B 29.04.24

Source: Byron Wallace
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=PrL

Model based vs Model Agnostic

e Can it explain only few « Can it explain any model ?

classes of models?

= Examples:
= Examples:
o = LIME - Locally Interpretable

* Decision Trees Model Agnostic Explanations
" Attention « SHAP — Shapley Values
= Gradients (Differentiable
Models only)

B 29.04.24

Source: Byron Wallace
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=PFL  Different approaches to explain the behavior of
ML approaches post-hoc

= Explaining with Surrogates

= Explaining with local perturbations

= Propagation-Based Approaches (Leveraging Structure)
= Meta-explanations

W. Samek and K. R. Miller, “Towards Explainable Atrtificial Intelligence,” in Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11700 LNCS, Springer Verlag, 2019, pp. 5-22.

B 29.04.24

Olga Fink



=PrL

Saliency Based Methods

= Heatmap based visualization
= Need differentiable model in most cases
= Normally involve gradient

(dog)

Explanation Method

<
N
<
<
@
N
-

Source: Byron Wallace
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=PFL  Class Activation Mapping

= GAP: Global average pooling

Australian
terrier

= We can identify the importance
of the image regions by
projecting back the weights of

</ Z0O0
<Z200
<Z00D

<200

o

>

o

Class Activation Mapping the OUtpUt Iayer on the
" convolutional feature maps
+ Wy T b obtained from the last
s Convolution Layer.

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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=PrL  Class Activation Mapping: examples

Brushing teeth Cutting trees

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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N
<
<
@
N
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=PFL  Class Activation Mapping s

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

B 29.04.24
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=PrL

Integrated Gradient

Original . Guided Guided Integrated Gradients
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad  Input

} !'“"' Fr
. . S
Junco e 3 . T
Bird Sy |
+ 3 ’ * R
-
._;_ P 8 . -
b Ji; o
L e ?‘ e fi% =
Whea!ten » b . “,,? : ;
Terrier & o

[Adebayo et al 2018]
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e Saliency Example - Gradients

f(x):R* >R
_adf(x)
B = —
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=PrL

Saliency Example - Leave-one-out

f(x):R* > R
E(f)(x)i = f(x) = f(x\D)

How to remove ?

1. Zero out pixels in image
2. Remove word from the text
3. Replace the value with population mean in tabular data

B 29.04.24

Source: Byron Wallace
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=PrL

B 29.04.24

Sanity check:
When prediction changes, do explanations change?

Original Image Salie?‘c:y el
W K™ class g
2?7217
Randomized weights!
Original Image Network now makes garbage predictions.
"v_'iﬁ F
K™ class

Source: Julius Adebayo)

Olga Fink
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=PFL  Local Interpretable Model-Agnostic e
Explanations (LIME): basic idea

sneeze |

headache |

no fatigue

/_ sneeze | FlU Explainer
_‘ weight (LIME)
\ i'_'/ headache

A 4 no fatigue

age

Model Data and Prediction Explanation Human makes decision

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PrL

B 29.04.24

LIME -locallyinterpretable model agnostic

-~

xl,xz’..o,xN Q

N

Black
Box

~

/

xl’ x2, '“,XN | ii

Linear
Model

- 'y’
A A

(e.g. Neural Network)

Q”l 72

)

as close as
possible

N

Can’t do it globally of course, but locally ? Main Idea behind LIME

Source: Hung-Yi Lee
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=PFL  LIME: Toy example of the basic concept

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=P7L  LIME: divide Images into interpretable compo-
nents (contiguous superpixels)

Original Image Interpretable
Components

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PrL

B 29.04.24

LIME — Image

1. Given a data point you want to explain
2. Sample at the nearby - Each image is represented as a set of
superpixels (segments).

= Randomly delete some

= segments.

[ Black | | Black | | Black |

Compute the probability of “frog” by
0.85 0.52 0.01 black box

Source: Hung-Yi Lee
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=PrL

LIME — Image

e 3. Fit with linear (or interpretable) model

’A.{r 2 .4'1
. A% X1

Extract Extract Extract

X :{0 Segment m is deleted.
™ {1 Segment m exists.

M is the number of segments.
0.85 0.52 0.01

B 29.04.24

Source: Hung-Yi Lee
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=PrL

LIME — Image

e 4. Interpret the model you learned

-

-~ " y=wiXy + o+ WXy + 0+ wyxy

_ {O Segment m is deleted.
™ {1  Segment m exists.

Extract M is the number of segments.

f wn, ~ 0 Hp Segment m is not related to “frog”

If w,, is positive » segment m indicates the image is “frog”

If w,, is negative. segment m indicates the image is not “frog”
0.85

B 29.04.24

Source: Hung-Yi Lee
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=PFL LIME: perturbation + local models

-
Locally weighted
’ regrision

0.00001

Original Image
P(tree frog) =0.54

Explanation

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PFL LIME: underlying algorithm

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples N
Require: Instance z, and its interpretable version z’
Require: Similarity kernel 7, Length of explanation K
Z —{}
forie {1,2,3,..., N} do
z; < sample_around(z')
Z — ZU {2, f(2i), ma(20))

end for
w +— K-Lasso(Z, K) > with zj as features, f(z) as target Match interpretable Control
return w model to black box complexity of the
model
§(x) = argmin  L(f, g,m) + Q(g)
geG
2
L(f.g,me) = Y ma(z) (f(2) —9(2))
z,2'€Z

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PFL LIME: Example

v

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PFL  LIME: bringing trust («Husky vs Wolf)

(a) Husky classified as wolf (b) Explanation
Before After
Trusted the bad model 10 out of 27 3 out of 27

Snow as a potential feature 12 out of 27 25 out of 27

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should | trust you?’ Explaining the predictions of any classifier,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 1135-1144.
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=PrL

Detecting defective insulators

= XAl on Power Grid Insulators:

* Fault detection =2 binary classifier
* When faulty, apply XAl to show which part of the image led to the decision,

= highlighting the defect region

Fault localization

B 29.04.24
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""" Evaluation of the prediction results

B 29.04.24

Test Accuracy = 96.4%
FPR=3.6 %

FNR=3.8 %

Defective_Insulators; predicted as: 3.0176452e-07
0

Test Samples Examples
(defective =» 0; Normal =»1)

Normal_Insulators; predicted as: 0.999999
0w =

0 50 100 150 200 250 0 50 100 150 200 250
Normal_Insulators; predicted as: 1.0 Normal_Insulators; predicted as: 0.0005989605
0 0

50

100

150

200

250

Olga Fink
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=PFL  Interpretable Detection of Partial Discharge in Power
Lines with Deep Leaming = Framework

1 - Raw Data 2 - Per Phase: High pass filter 3 - Per Phase: Extract Pulses

T T e M\ N )
= 07 .
0.25- 0| | | , , _V\‘\/\ ‘

\ 4 =»

o) " W
T T T T T 0 Np ol | |
0 5 10 15 20 025 50 2 %

~

Volt (V)

V]

Time (msec) >

\ 0 ° Timel;lr?sec] 15 20/ w /

6 - Pulse Activation Map

4 - Per Phase: Temporal CNN

\ 5 - 3-Phase Threshold

»@00

I

A 4
Input
Np x w
1D Conv
1D Conv
Maxpool
1D Conv
1D Conv
Maxpool
GAP
FC
Q

,J\J\Mww
(Ao~
\_ Block1  Block2 Y,

Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.
.
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=PrL

Pulse activations
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Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.
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=PrL

B 29.04.24

Pulse Activation Maps (PAM)

(FN)
0 —_——— _—
== = =
—e=—— =
= -——
@ ——— =
2 S ——— =
=8 | ———— - =
| ==
= ;;—_i:
200 == = =
0 = —=aamll_ - _cuam
E=—= =
— =
$ = = —
& = —— -
200 : = =
Time 40 0 Time 40 0 Time 40
(TN) (FP)

Michau, Gabriel, Chi-Ching Hsu, and Olga Fink. "Interpretable Detection of Partial Discharge in Power Lines with Deep Learning." Sensors 21.6 (2021): 2154.
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=PFL  Processing explanations gl

Fault Diagnostics
Healthy Class

E> Maintenance

Fault Class B

DL Model Fault Class ..
@ Layer-wise Relevance Propagation (LRP)
Model to generate SHAP
explanations Explainer
& Rate Distortion Explanations
CartoonX

Explanation

Original image

Most relevant part of the input
for the DL model decision on the
classification outcome

B 29.04.24
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=PrL

B 29.04.24

How can explanations be used?

A\

Image

Fault Diagnostics

DL Model

Model to generate
explanations

¥

Model to process
explanations

O\

Coherent Non-coherent
explanation explanation

Healthy Class

Fault Class A l:> Maintenance
Fault Class B

Fault Class ..

Olga Fink
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=P7L - Model Improvement

Fault Diagnostics Healthy Class

Fault Class A E> Maintenance
Fault Class B

DL Model
Imy, Fault Class ..
& Model to generate
Improve model performance by., explanations
« Data augmentation /
+ Loss modification ! explanation

olloi=

T
Model Model to process
Developer explanations
Coherent Non-coherent

explanation explanation

Validation data

B 29.04.24
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=PrL

B 29.04.24

Informed decision making

A\l

Image

Fault Diagnostics

DL Model

Model to generate
explanations

explanation

oo

<
[ Model to process ]

explanations

N

Coherent Non-coherent
explanation explanation

Healthy Class

Fault Class A E> Maintenance
Fault Class B

Fault Class ..

Informed
decision making

Maintenance
Operator

In-field data
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=F7L " Proposed method for automating the evaluation

Fault Diagnostics Healthy Class
°
A\ [ Fault Class B
DL Model

| Fault Class ..
mage
Model to generate
explanations
explanation
Training Set model to process explanatio%
xq:explanation 1 Deep SAD
A .
Correctly Classified .. Non-coherent
y =1 = OO. / explanation
:,' OQQ O o \ Cohererlt
Classification Error v © ; explanation
-1 e |
Y2 = . Q 4
; ® ~-..®
explanation N Label N K Embeading Space/

B 29.04.24
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DL Model ¢

Model to generate
explanations

T

explanation x;

Embedding space definition: loss function

min
W

B 29.04.24

n+m

© Correct classifications:

minimize the distance from the centre

Healthy Class
Fault Class A
Fault Class B
Fault Class ..

I
> oz W) —el?
i=1

v

)
A
)
“
.
-

Intelligent
Maintenance

@
°Qe o
@ coherent

Embe?lding Space
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Healthy Class
Fault Class A
Fault Class B

Intelligent
Maintenance

DL Model

Fault Class ..

Model to generate

explanation
e
explanations
Embedding space definition: loss function + @ Non coherent
. ..
@ Classifications errors: O.
maximize the distance from the centre
(hyperparameter n)
@
- 1 mn ' . 5 n m o N i
- —r L ol ;: — C .
n}]:‘lv‘n n-+m g ”@('r'”w) CH - T—+17 Z (H (IJ'WJ CH } O .
Embezding Space
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=PrL

Proposed method: detecting unusual explanationst

Fault Diagnostics Healthy Class
° )
Fault Class A In.telllgent
\ Maintenance
Fault Class B
DL Model

| Fault Class ..
mage
Model to generate
explanation
<
explanations
Embedding space definition: loss function ' ) °
O.
Regularization term to avoid overfitting ° @
(hyperparameter 1) °® . Non coherent
- P60 0o
. @ :
. m \ OO coherent
N y} b ] . ’/
min HmZHm zi; W) 2 (lé(@;; W) —el?) ZH“ 1% P
Embezlding Space
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=PFL Case study: infrastructure monitoring

Critical Components:

Power Grid Insulators Drones Shells’ images

e.g. swiss power grid:
6700 km long = 12 000 pylons

B 29.04.24
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=PrL  Application of the methodology

B 29.04.24

Ay ]

Image

Fault Diagnostics

Mobilenet V3

Flashover

Broken

B Healthy

Model to generate
explanations

CartoonX

explanation

Training Set

xq:explanation 1

X

x,:explanation 2

explanation N

Correctly Classified

y1=1 :>

Classification Error
Yo =-1

A

A

VGG16 as Deep SAD
@

D
I T
@) i
i OQ.Q ce
i @) ,’,’
° S O @

Label N \

Em beading Space

model to process explanatior%

Non-coherent

/ explanation
\ Coherent

explanation

/

Olga Fink

105



=PrL  Application of the methodology

Fault Diagnostics

B 29.04.24

Model developer is
guided for model
improvement

DL Model

Model to generate
explanations

- e.g. data

m augmentation

short-cut!

explanation

g

Non coherent [

Deep SAD to process
explanations

|

Embeading Space

"= Healthy

Distance from the centre

Validation set

107

10*

10°

107?

1072

Emm Correctly Classified
m Wrongly Classified

Sample

Olga Fink
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m

T
1

B 29.04.24

Examples

Example of one broken shell and its explanation

Olga Fink

107



=PFL  Coherentvs. Non-coherent explanations gl

@ b) small distance (examples)
-~ | O

a) t-SNE representation of Deep SAD embedding space

15 1 @ small distance
*+ medium distance
. A large distance
10 —_— Correct classification
= Wrong classification

DS 1 a & Centre
t 3 *y
0.0 4 t

-0.5 1

A

=10 7 A
-9.00 -8.75 -850 -8.25 -8.00 -7.75 -7.50 -7.25 -7.00
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=PFL - Summary

Training data Validation data

. explanation 1
classifier & £ Label 1
~— i‘ Correctly
- e Class 1 > Classified
» Class 2 explanation 2 Label 2
~J Classification
— Class .. , Errar
y e
Imag;'-_' n explanaiion n Label n

Step 2. Compute explanations and assign
binary label for corrcet/incorrect classifications

Step 1. Train the supervised classifier ¢

explanation 1

Deep SAD W ‘@

explanation 2 _\

L)

-

explanation n

Step 3. Use labelled explanationsto  Step 4. Apply ¥; to test data
train Deep SAD model ¥; for the /- explanations and map them
in the embedding space

th class

7/
*For cach i-thclass

B 29.04.24

- .
i @0@ .
a i a*c @
Y L.
- @

< |

.. ’—v Distance>Th  Distance<Th
by

Distance
—+ from the MNon-coherent

] explanation
: centre P

Coherent
explanation

Embefiding Space Expert revise
classification
output

Step 5. Apply threshold to spot
non-coherent explanations and
ask expert to revise them

Olga Fink
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