

Spring 2025

09 Taxi & Ride-hailing

CML-324 Urban public transport systems

Collective vs individual transport

Individual

Private driving

On-demand
mobility service

Out of the scope

Collective

Flexible transit

Mass transit

Topic of last
lecture

First half of
this course

Ride-hailing service

Passenger-vehicle matching

Physical

taxi stand

street-hailing

Virtual

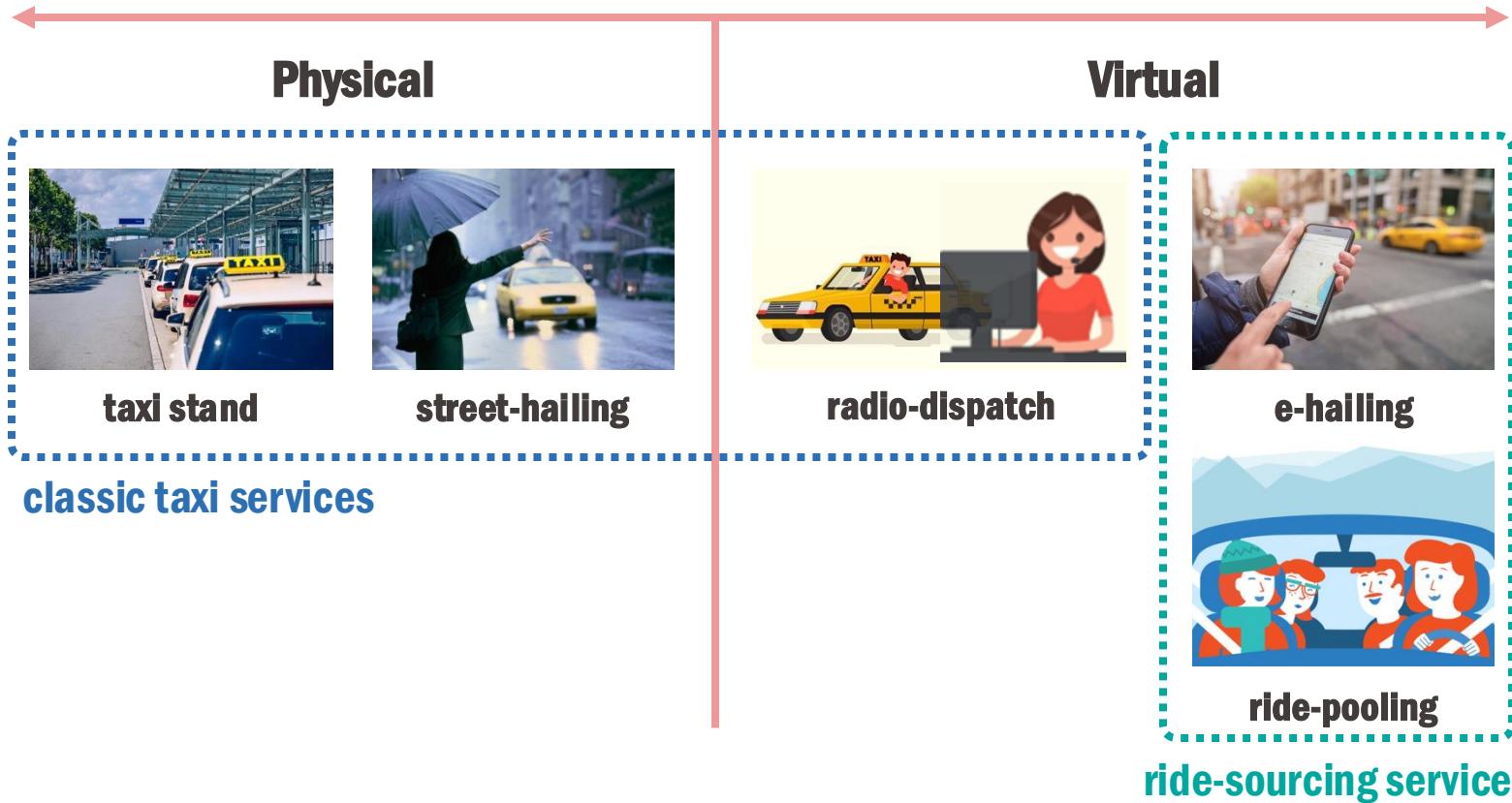
radio-dispatch



e-hailing

Ride-hailing service

Passenger-vehicle matching



Matching in ride-hailing

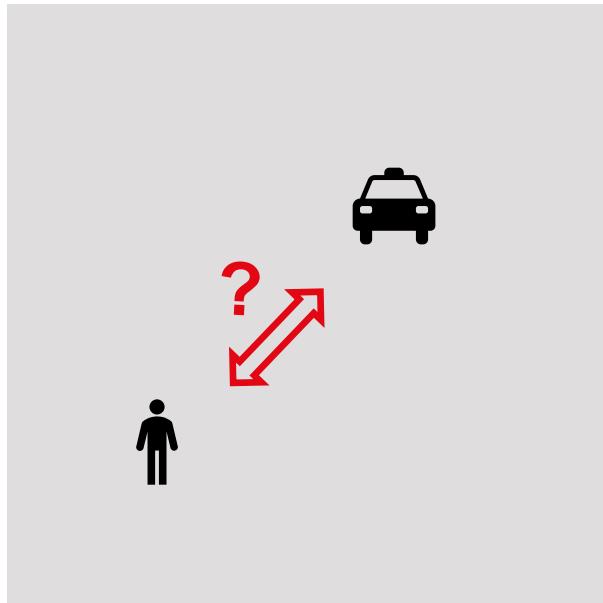
- Total travel time of each passenger trip

$$t = \tau_a + w^c + \tau_b + \delta$$

- Access time $\tau_a = 0$
 - ride-hailing services usually provide door-to-door trips
- Waiting time w^c
 - determined by the passenger-vehicle matching
- Riding time $\tau_b = \ell/v_b$
 - estimated by average trip distance ℓ and vehicle speed v_b
 - independent of the service type
- Stopping time $\delta \approx 0$
 - Pickup and dropoff times are almost zero
- ***Q: What are the main factors of waiting time?***

Matching in ride-hailing

- General service region of area A (km^2)
- Homogeneous travel demand
 - trip origins and destinations are uniformly distributed in the region
 - travelers arrive randomly at rate λ^c (pax/hr)
- Homogeneous vehicle supply
 - a fleet of N vehicles
 - serve door-to-door trips
 - average vehicle speed v_b (km/hr)
 - zero pickup and dropoff times



Matching in ride-hailing

- Vehicle time conservation

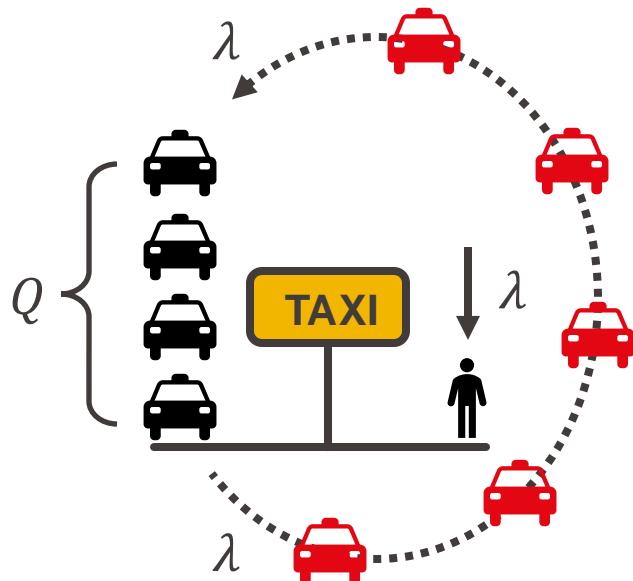
$$N = N^\nu + \lambda(t_p + \tau_b + t_d)$$

- N : fleet size (total vehicle time)
- N^ν : vacant vehicles (vacant vehicle time)
- λ : pickup rate
- t_p, t_d : time before pickup and dropoff

- Little's law in queuing theory

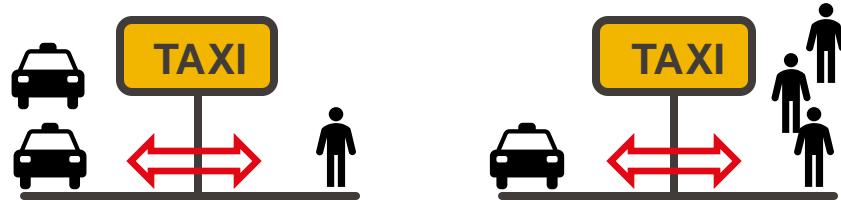
$$Q = \lambda w$$

- Q : long-term average queue length
- λ : long-term effective arrival rate λ
- w : average waiting time



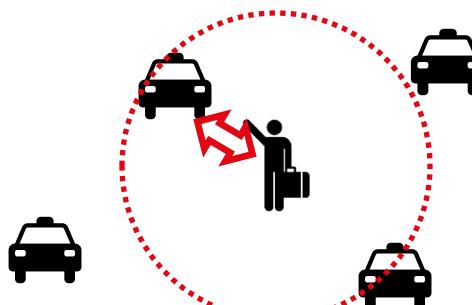
Matching in ride-hailing

- Taxi stand
 - Matching a at point



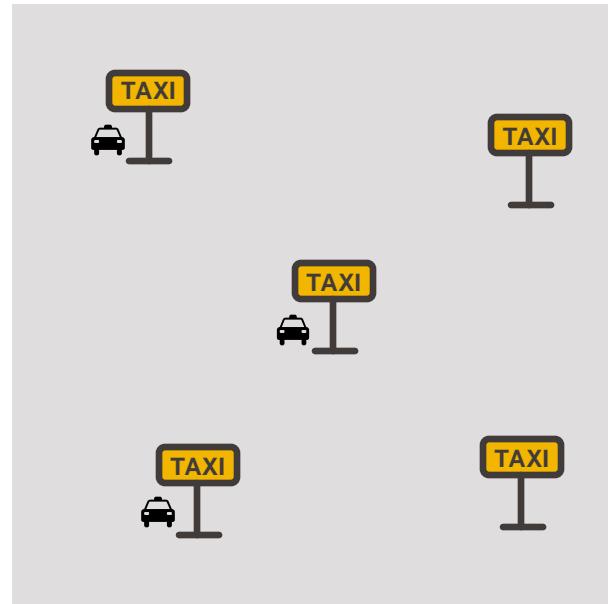
- Street-hailing
 - Matching along a line

- Radio-dispatch/e-hailing
 - Matching over space



Matching at taxi stand

- General service region of area A (km^2)
 - K stands uniformly distributed with unlimited capacity
- Homogeneous travel demand
 - trip origins and destinations are uniformly distributed in the region
 - travelers arrive randomly at each stand at rate λ^c/K (pax/hr)
- Homogeneous vehicle supply
 - a fleet of N vehicles
 - serve door-to-door trips and return to the closest stand after each trip
 - average vehicle speed v_b (km/hr)
 - zero pickup and dropoff times



Matching at taxi stand

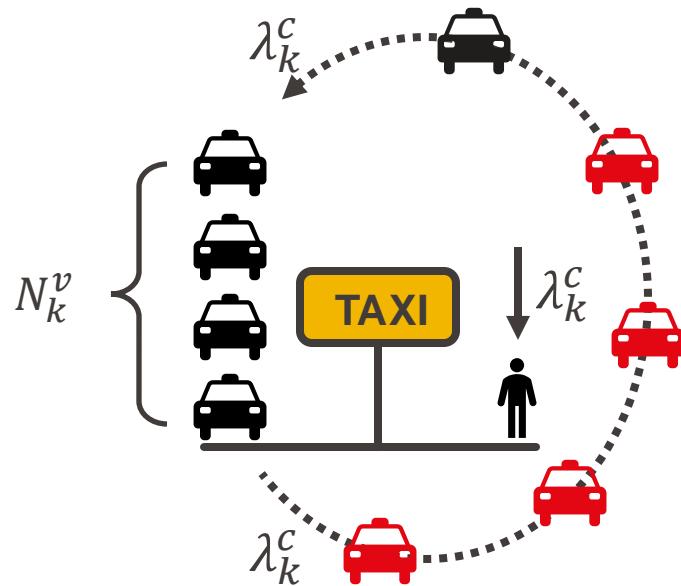
- Scenario I: Vehicles form a queue N_k^v at each stand $k = 1, \dots, K$
 - Vehicle waiting time

$$w_k^v = \frac{N_k^v}{\lambda_k^c}$$

- λ_k^c : passenger arrival rate
- Travel time from dropoff location to the closest stand¹

$$t_d = \frac{\delta}{v_b} \sqrt{A/K}$$

- A : area of service region
- δ : parameter related to the region shape
(e.g., $\delta = 0.5$ for circular region)



[1] Daganzo (1978) An approximate analytic model of many-to-many demand responsive transportation systems.

Matching at taxi stand

- Scenario I: Vehicles form a queue N_k^v at each stand $k = 1, \dots, K$
 - Vehicle time conservation

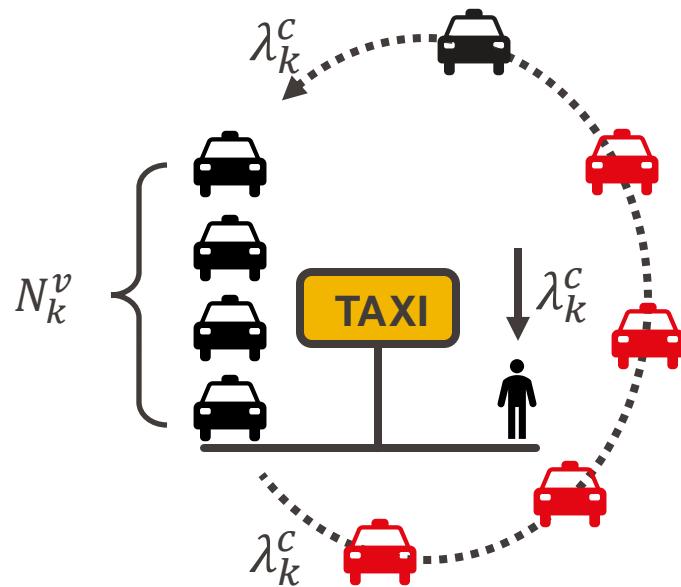
$$N = K[N_k^v + \lambda_k^c(\tau_b + t_d)]$$

- Little's law

$$\lambda_k^c = \frac{\lambda^c}{K} = \frac{N_k^v}{w_k^v}$$

- Stationary condition

$$\frac{\lambda^c}{K} = \frac{N_k^v}{w_k^v} = \frac{N/K - N_k^v}{\tau_b + t_d}$$



Matching at taxi stand

- Scenario I: Vehicles form a queue N_k^v at each stand $k = 1, \dots, K$
 - Queue length and waiting time at stationary state

- passenger

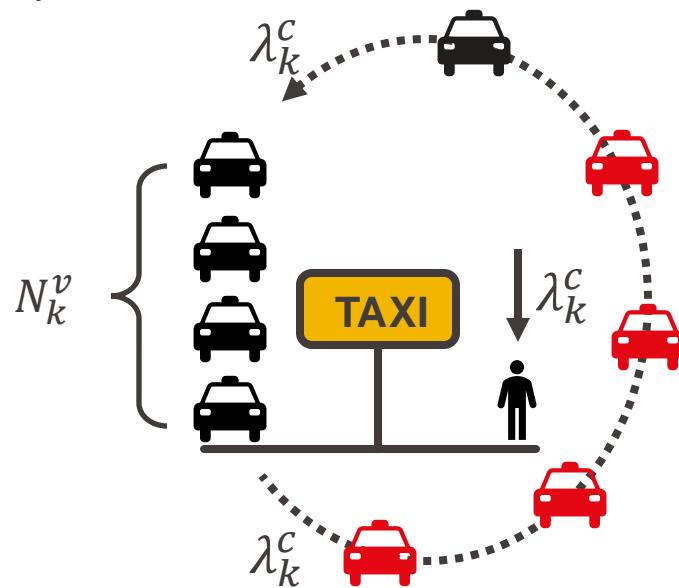
$$N_k^c = 0$$

$$w_k^c = 0$$

- vehicle

$$N_k^v = \frac{N - \lambda^c(\tau_b + \frac{\delta}{v_b}\sqrt{A/K})}{K}$$

$$w_k^v = \frac{N}{\lambda^c} - \left(\tau_b + \frac{\delta}{v_p} \sqrt{A/K} \right)$$



Matching at taxi stand

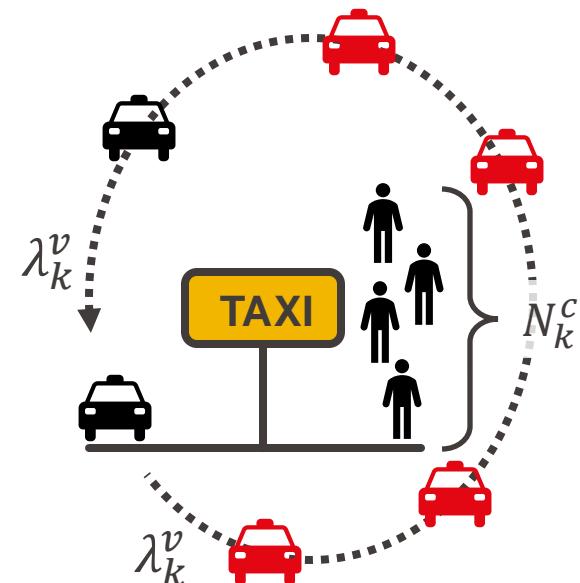
- Scenario II: Passengers form a queue N_k^c at each stand $k = 1, \dots, K$
 - Passenger waiting time

$$w_k^c = \frac{N_k^c}{\lambda_k^v}$$

- λ_k^v : vehicle arrival rate
- Travel time from dropoff location to the closest stand¹

$$t_d = \frac{\delta}{v_b} \sqrt{A/K}$$

- A : area of service region
- δ : parameter related to the region shape
(e.g., $\delta = 0.5$ for circular region)



[1] Daganzo (1978) An approximate analytic model of many-to-many demand responsive transportation systems.

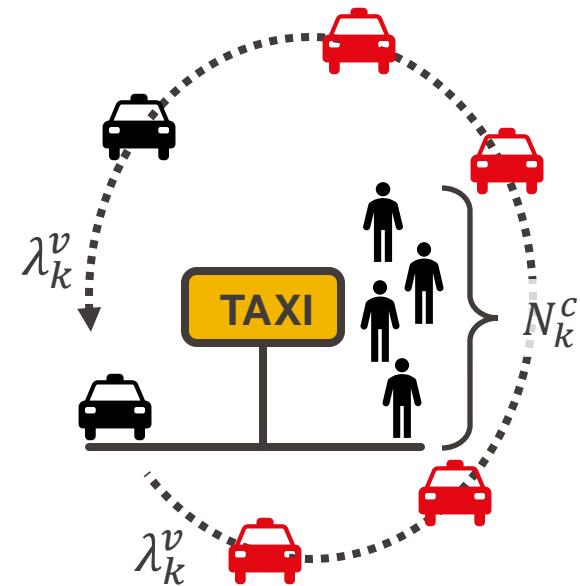
Matching at taxi stand

- Scenario II: Passengers form a queue N_k^c at each stand $k = 1, \dots, K$
 - Vehicle time conservation

$$N = K\lambda_k^v(\tau_b + t_d)$$

- Little's law

$$\lambda_k^v = \frac{N_k^c}{w_k^c}$$



- **Q: How to construct the stationary condition?**

Matching at taxi stand

- Scenario II: Passengers form a queue N_k^c at each stand $k = 1, \dots, K$
 - M/M/1 queue:
 - both passenger and vehicle arrivals follow Poisson process

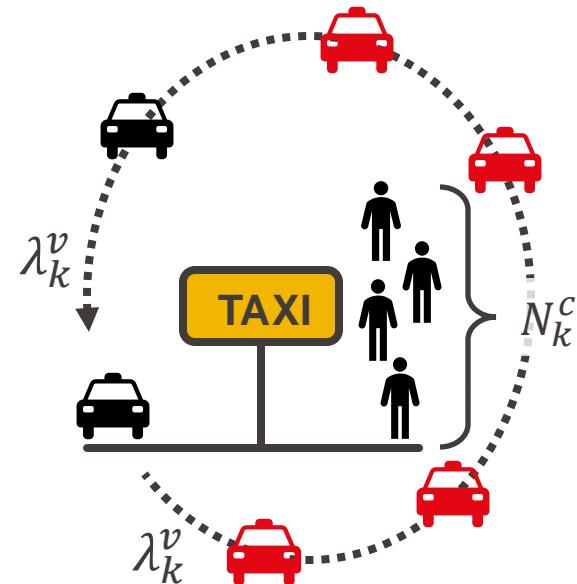
$$w_k^c = \frac{1}{\lambda_k^v - \lambda_k^c} - \frac{1}{\lambda_k^v}$$

- Vehicle time conservation

$$N = K \lambda_k^v (\tau_b + t_d)$$

- Little's law

$$\lambda_k^v = \frac{N_k^c}{w_k^c}$$



Matching at taxi stand

- Scenario II: Passengers form a queue N_k^c at each stand $k = 1, \dots, K$
 - Queue length and waiting time at stationary state
 - passenger

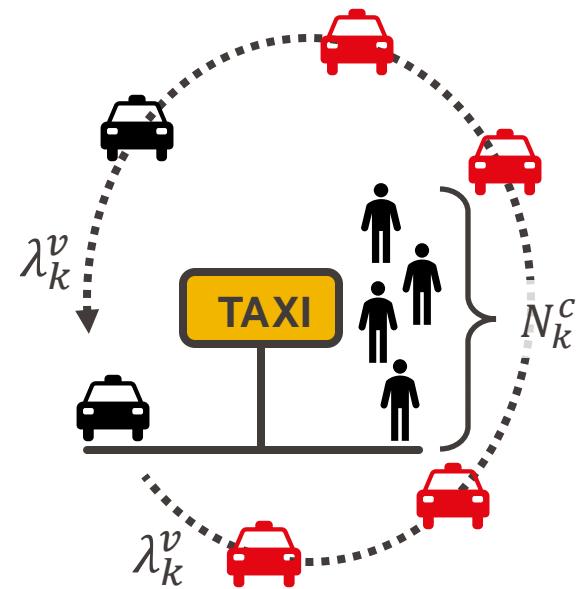
$$N_k^c = \frac{\lambda^c \left(\tau_b + \frac{\delta}{v_b} \sqrt{A/K} \right)}{N - \lambda^c \left(\tau_b + \frac{\delta}{v_b} \sqrt{A/K} \right)}$$

$$w_k^c = \frac{K \lambda^c \left(\tau_b + \frac{\delta}{v_b} \sqrt{A/K} \right)^2}{N \left[N - \lambda^c \left(\tau_b + \frac{\delta}{v_b} \sqrt{A/K} \right) \right]}$$

- vehicle

$$N_k^v = 0$$

$$w_k^v = 0$$



Questions?

Matching in ride-hailing

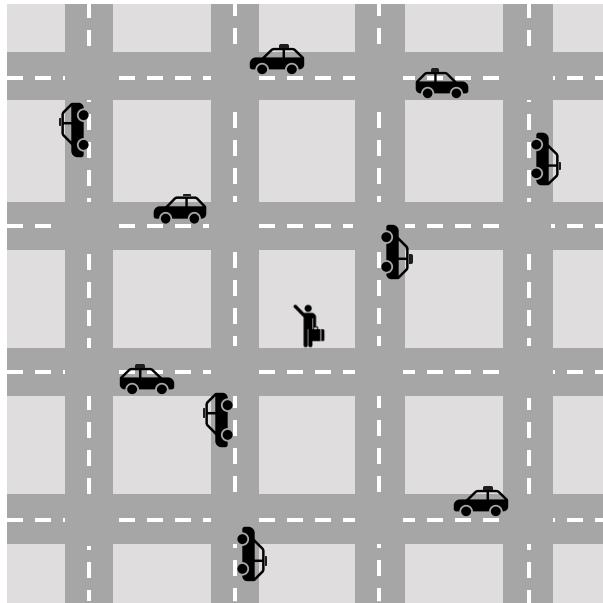
- Taxi stand
 - Matching a at point

- Street-hailing
 - Matching along a line

- Radio-dispatch/e-hailing
 - Matching over space

Matching in street-hailing

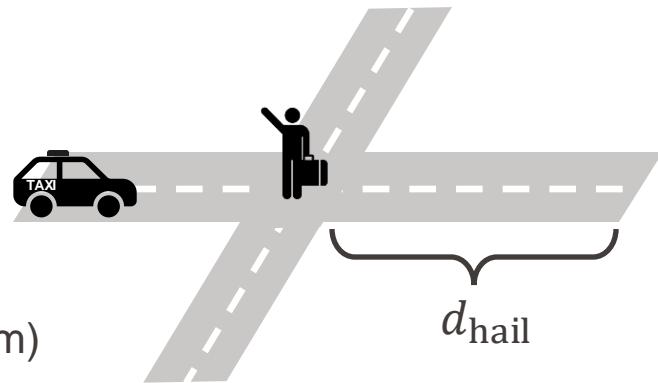
- General service region of area A (km^2)
 - road density ρ (km/km^2)
- Homogeneous travel demand
 - trip origins and destinations are uniformly distributed in the region
 - travelers arrive randomly **on streets at rate $\lambda^c / (\rho A)$ (pax/hr/km)**
- Homogeneous vehicle supply
 - a fleet of N vehicles
 - **randomly cruise on streets**
 - serve door-to-door trips
 - average vehicle speed v_b (km/hr)
 - zero pickup and dropoff times



Matching in street-hailing

- Waiting passenger and cruising vehicle coexist
 - passenger queue and waiting time $N^c, w^c > 0$
 - vehicle queue and waiting time $N^v, w^v > 0$

- Assume passengers wait at intersections
 - maximum hail distance d_{hail} (km) along each direction, which yields a hail region of $4d_{\text{hail}}$ (km)



Matching in street-hailing

- Cruising vehicles distribute on streets at density

$$\Lambda^\nu = \frac{N^\nu}{\rho A}$$

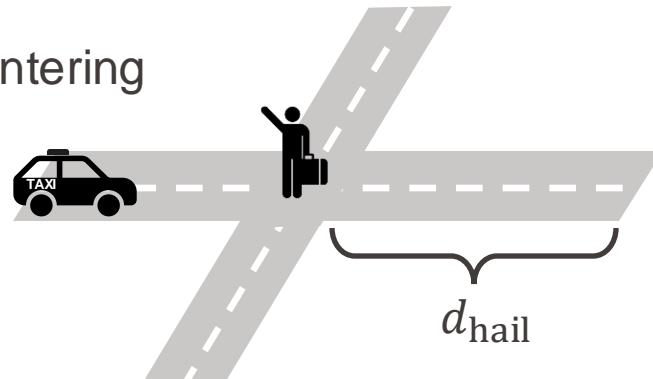
- Let $V(t)$ be the number of cruising vehicles entering the hail region up to time t

- $V(t)$ follows a Poisson process with rate

$$\lambda^\nu = (4d_{\text{hail}})\Lambda^\nu$$

- probability that n vehicles enter the hail region

$$\mathbb{P}[V(t) = n] = \frac{(\lambda^\nu t)^n}{n!} \exp(-\lambda^\nu t)$$



Matching in street-hailing

- Cruising vehicles distribute on streets at density

$$\Lambda^\nu = \frac{N^\nu}{\rho A}$$

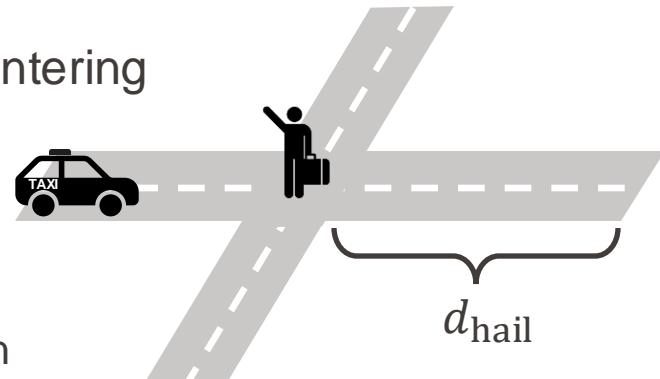
- Let $V(t)$ be the number of cruising vehicles entering the hail region up to time t

- $V(t)$ follows a Poisson process with rate

$$\lambda^\nu = (4d_{\text{hail}})\Lambda^\nu$$

- probability that **no vehicle** enters the hail region

$$\mathbb{P}[V(t) = 0] = \exp(-\lambda^\nu t)$$



- **Q: What is the probability of waiting time $w^c = t$?**

Matching in street-hailing

- Cruising vehicles distribute on streets at density

$$\Lambda^\nu = \frac{N^\nu}{\rho A}$$

- Let $V(t)$ be the number of cruising vehicles entering the hail region up to time t

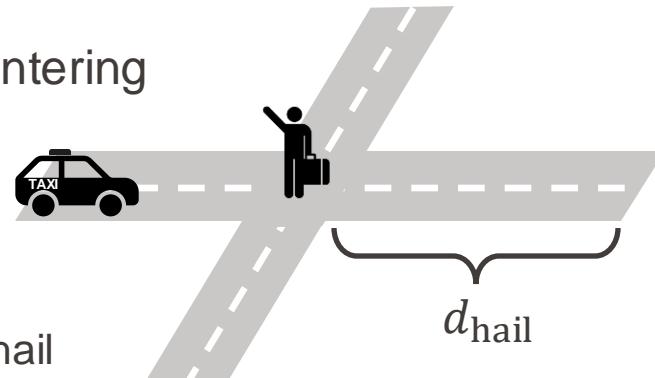
- $V(t)$ follows a Poisson process with rate

$$\lambda^\nu = (4d_{\text{hail}})\Lambda^\nu$$

- probability that **at least one vehicle** enters the hail region

$$\begin{aligned}1 - \mathbb{P}[V(t) = 0] &= 1 - \exp(-\lambda^\nu t) \\&= \mathbb{P}[w^c = t]\end{aligned}$$

- **Q: What is the expected waiting time $\mathbb{E}[w^c]$?**



Matching in street-hailing

- Cruising vehicles distribute on streets at density

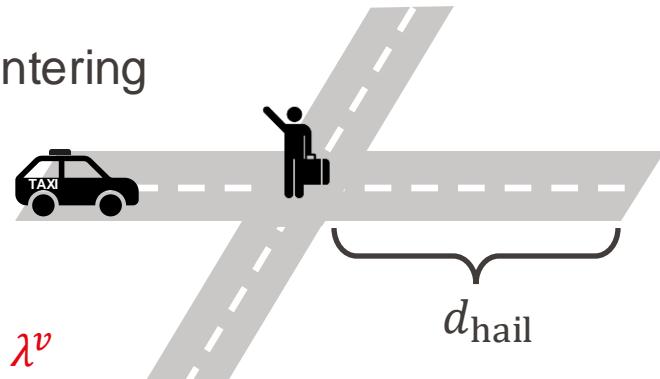
$$\Lambda^\nu = \frac{N^\nu}{\rho A}$$

- Let $V(t)$ be the number of cruising vehicles entering the hail region up to time t
 - $V(t)$ follows a Poisson process with rate

$$\lambda^\nu = (4d_{\text{hail}})\Lambda^\nu$$

- w^c follows an exponential distribution with rate λ^ν

$$\mathbb{E}[w^c] = \frac{1}{\lambda^\nu} = \frac{1}{4d_{\text{hail}}\Lambda^\nu} = \frac{\rho A}{4d_{\text{hail}}N^\nu}$$



Matching in street-hailing

- Stationary condition
 - Vehicle time conservation

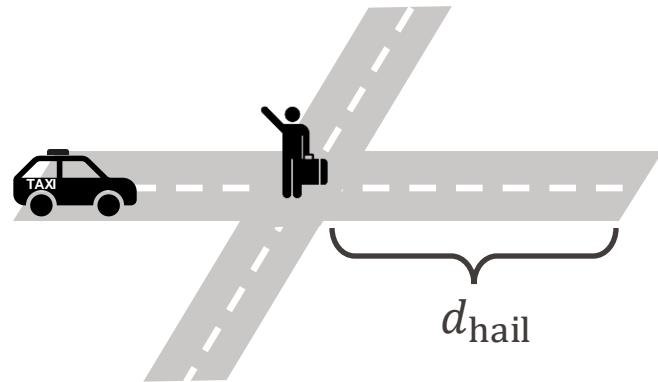
$$N = N^v + \lambda^c \tau_b$$

- Little's law
 - pickup rate = demand rate

$$\lambda^c = \frac{N^v}{w^v} = \frac{N^c}{w^c}$$

- Expected waiting time

$$w^c = \frac{\rho A}{4d_{\text{hail}} N^v}$$



Matching in street-hailing

- Queue length and waiting time at stationary state
 - Passenger

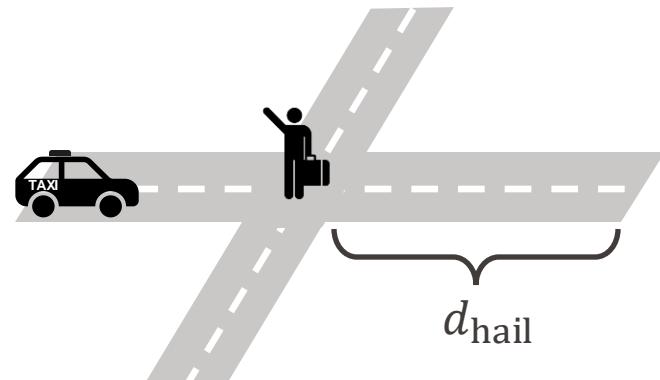
$$N^c = \frac{\lambda^c \rho A}{4d_{\text{hail}}(N - \lambda^c \tau_b)}$$

$$w^c = \frac{\rho A}{4d_{\text{hail}}(N - \lambda^c \tau_b)}$$

- Vehicle

$$N^v = N - \lambda^c \tau_b$$

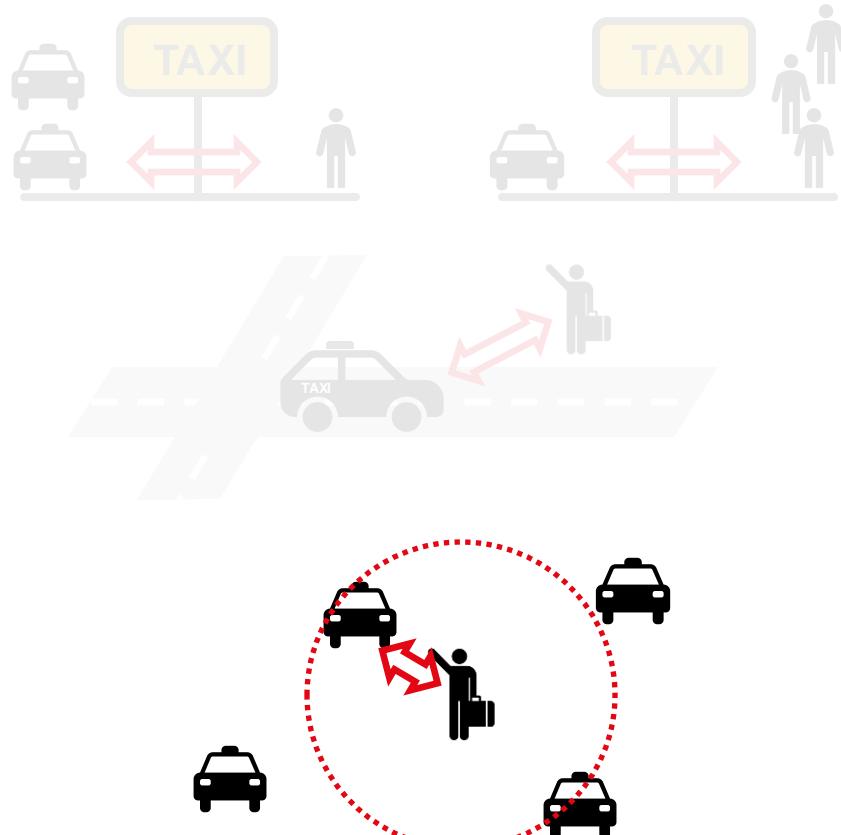
$$w^v = \frac{N}{\lambda^c} - \tau_b$$



Questions?

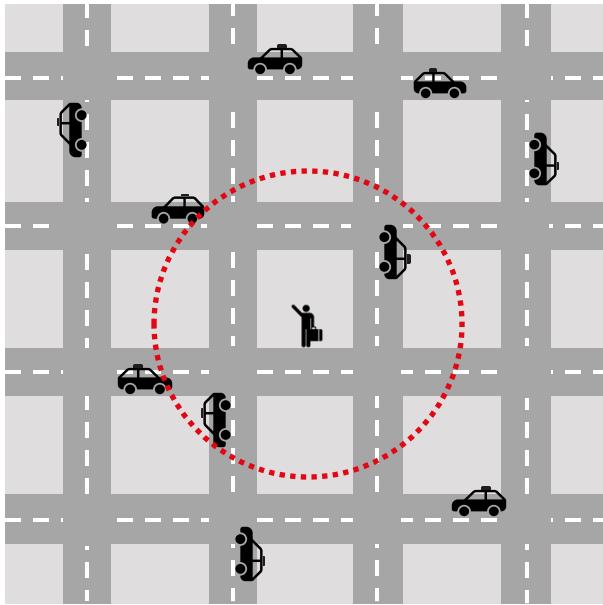
Matching in ride-hailing

- Taxi stand
 - Matching a at point
- Street-hailing
 - Matching along a line
- Radio-dispatch/e-hailing
 - Matching over space
 - Low-demand (radio dispatch)



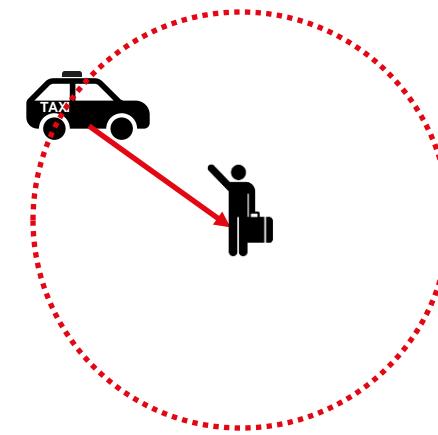
Matching in radio-dispatch

- General service region of area A (km^2)
- Homogeneous travel demand
 - trip origins and destinations are uniformly distributed in the region
 - travelers arrive randomly at λ^c (pax/hr)
 - **picked up by the closest vehicle**
 - zero trip dispatch time
- Homogeneous vehicle supply
 - a fleet of N vehicles **uniformly distribute when waiting for trip requests**
 - serve door-to-door trips
 - average vehicle speed v_b (km/hr)
 - zero pickup and dropoff times



Matching in radio-dispatch

- Waiting passenger and cruising vehicle coexist
 - Passenger queue and waiting time $N^c, w^c > 0$
 - Vehicle queue and waiting time $N^v, w^v > 0$
- Assume passengers do not have waiting time threshold
 - infinite hail distance $d_{\text{hail}} = \infty$ (km)



Matching in radio-dispatch

- Idle vehicles distribute on streets at density

$$\Lambda^\nu = \frac{N^\nu}{A}$$

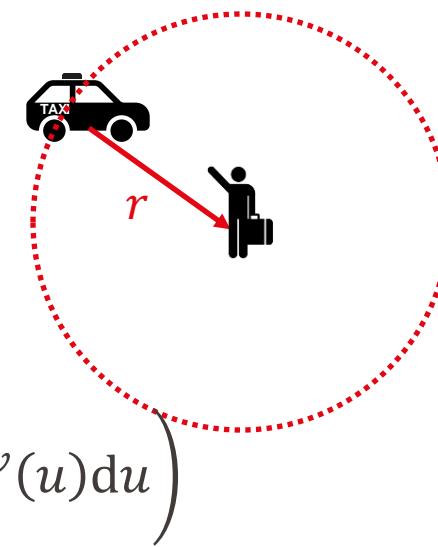
- Let $V(r)$ be the number of cruising vehicles within distance r

- $V(r)$ follows a Poisson process at rate

$$\lambda^\nu(r) = 2\pi r \Lambda^\nu$$

- probability that n vehicles are within distance r

$$\mathbb{P}[V(r) = n] = \frac{\left(\int_0^r \lambda^\nu(u) du\right)^n}{n!} \exp\left(-\int_0^r \lambda^\nu(u) du\right)$$



Matching in radio-dispatch

- Idle vehicles distribute on streets at density

$$\Lambda^\nu = \frac{N^\nu}{A}$$

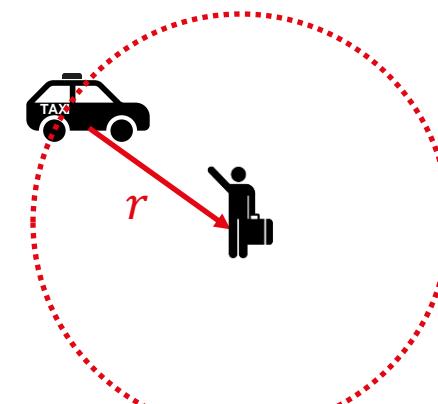
- Let $V(r)$ be the number of cruising vehicles within distance r

- $V(r)$ follows a Poisson process at rate

$$\lambda^\nu(r) = 2\pi r \Lambda^\nu$$

- probability that **no vehicle** is within distance r

$$\begin{aligned}\mathbb{P}[V(r) = 0] &= \exp\left(-\int_0^r \lambda^\nu(u) du\right) \\ &= \exp(-\pi \Lambda^\nu r^2)\end{aligned}$$



Matching in radio-dispatch

- Idle vehicles distribute on streets at density

$$\Lambda^v = \frac{N^v}{A}$$

- Let $V(r)$ be the number of cruising vehicles within distance r

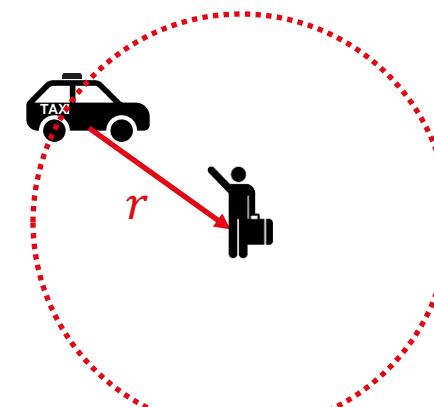
- $V(r)$ follows a Poisson process at rate

$$\lambda^v(r) = 2\pi r \Lambda^v$$

- probability that **at least one vehicle** is within distance r

$$1 - \mathbb{P}[V(r) = 0] = 1 - \exp(-\pi \Lambda^v r^2)$$

$$= \mathbb{P}[w^c v_b = r]$$



Matching in radio-dispatch

- Idle vehicles distribute on streets at density

$$\Lambda^\nu = \frac{N^\nu}{A}$$

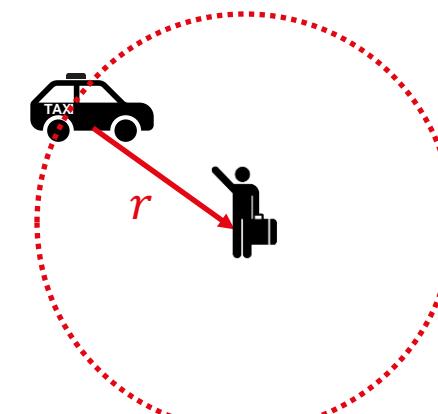
- Let $V(r)$ be the number of cruising vehicles within distance r

- $V(r)$ follows a Poisson process at rate

$$\lambda^\nu(r) = 2\pi r \Lambda^\nu$$

- Pickup distance $w^c v_b$ follows a Weibull with shape parameter $k = 2$ and rate $\lambda^\nu(r)$

$$\mathbb{E}[w^c] = \frac{1}{2v_b \sqrt{\Lambda^\nu}}$$



Matching in radio-dispatch

- Stationary condition
 - Vehicle time conservation

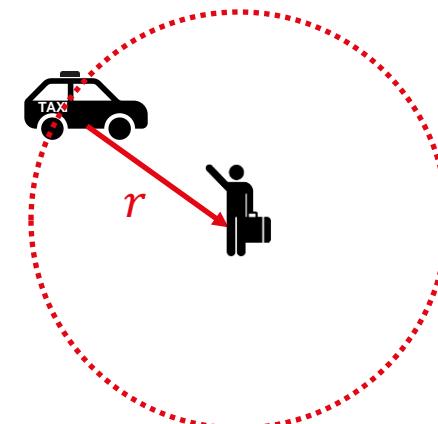
$$N = N^v + \lambda^c(\tau_b + w^c)$$

- Little's law
 - pickup rate = demand rate

$$\lambda^c = \frac{N^v}{w^v} = \frac{N^c}{w^c}$$

- Expected waiting time

$$w^c = \frac{1}{2v_b} \sqrt{A/N^v}$$



Matching in radio-dispatch

- Queue length and waiting time at stationary state
 - Passenger

$$N^c = \frac{\lambda^c}{2v_b} \sqrt{\frac{A}{N - \lambda^c(\tau_b + w^c)}} \approx \frac{\lambda^c}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}}$$

* assume $N^v \approx N - \lambda^c \tau_b$

$$w^c = \frac{1}{2v_b} \sqrt{\frac{A}{N - \lambda^c(\tau_b + w^c)}} \approx \frac{1}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}}$$

- Vehicle

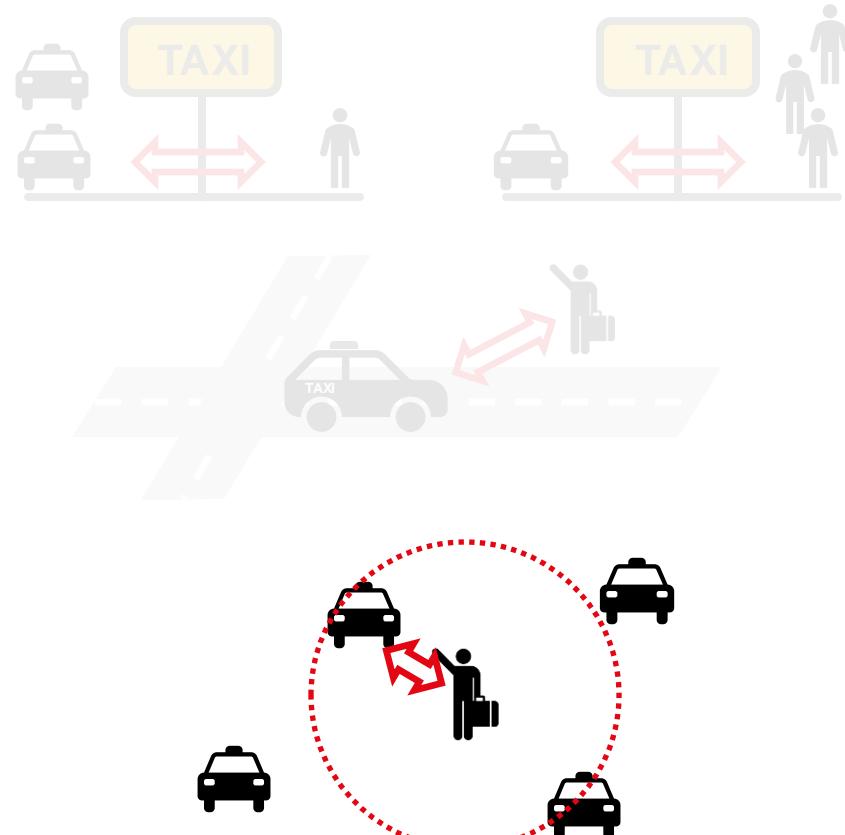
$$N^v = N - \lambda^c(\tau_b + w^c) \approx N - \lambda^c \left(\tau_b + \frac{1}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}} \right)$$

$$w^v = \frac{N}{\lambda^c} - (\tau_b + w^c) \approx \frac{N}{\lambda^c} - \left(\tau_b + \frac{1}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}} \right)$$

Questions?

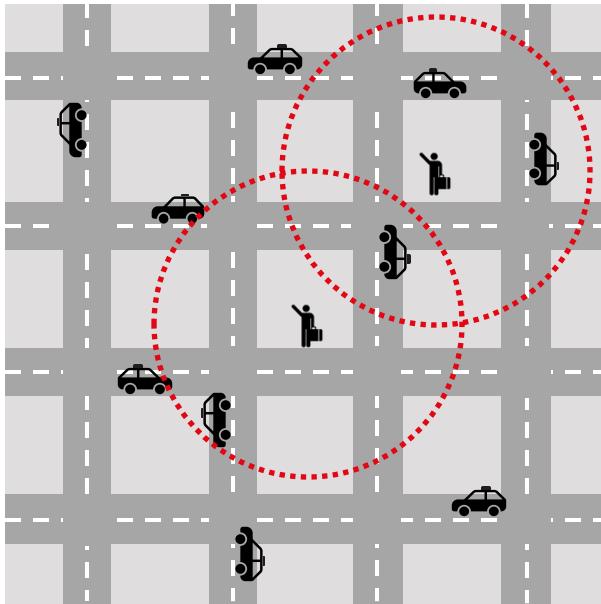
Matching in ride-hailing

- Taxi stand
 - Matching a at point
- Street-hailing
 - Matching along a line
- Radio-dispatch/e-hailing
 - Matching over space
 - High-demand (e-hailing)



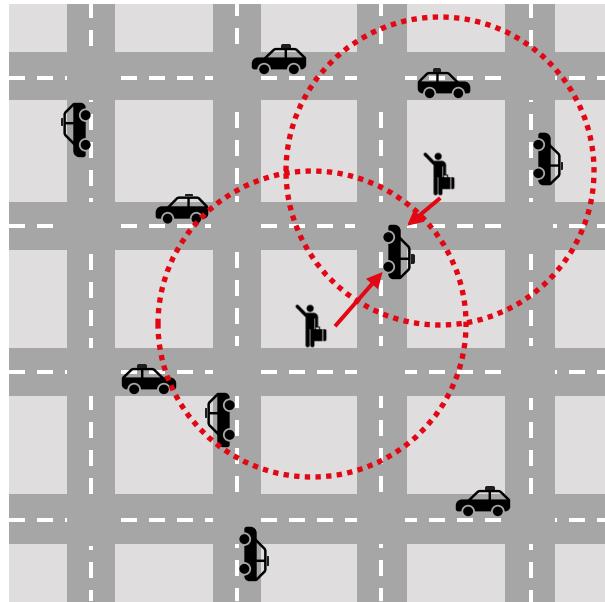
Matching in e-hailing

- General service region of area A (km^2)
- Homogeneous travel demand
 - trip origins and destinations are uniformly distributed in the region
 - travelers arrive randomly at λ^c [pax/hr]
 - picked up by the closest “**matchable**” vehicle
 - zero dispatch time
- Homogeneous vehicle supply
 - a fleet of N vehicles uniformly distributed when waiting for trip requests
 - serve door-to-door trips
 - average vehicle speed v_b (km/hr)
 - zero pickup and dropoff times



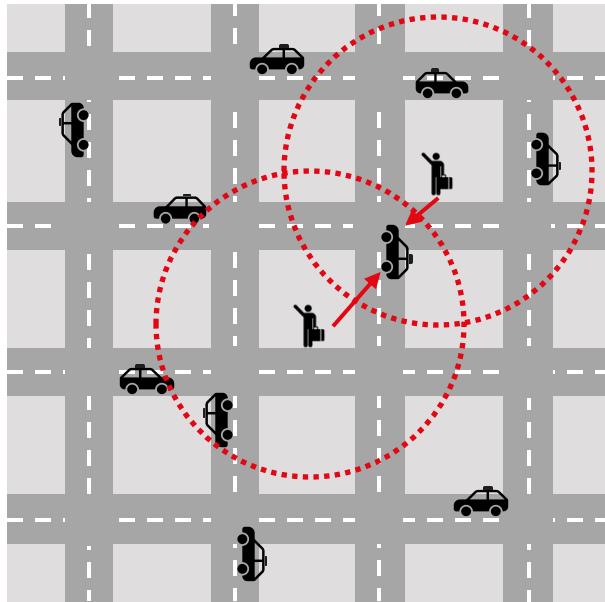
Matching in e-hailing

- E-hailing vs radio-dispatch
 - e-hailing is an advanced version of radio-dispatch
 - matching outcomes remain the same when demand rate is low
 - passenger competition emerges when demand rate is high



Matching in e-hailing

- E-hailing vs radio-dispatch
 - e-hailing is an advanced version of radio-dispatch
 - matching outcomes remain the same when demand rate is low
 - passenger competition emerges when demand rate is high
- Influence of passenger competition
 - Density of “matchable” vehicles $\Lambda^m(N^v, N^c)$
 - N^v : number of vacant vehicles
 - N^c : number of waiting passengers
- **Q: How should Λ^m change with N^v, N^c ?**



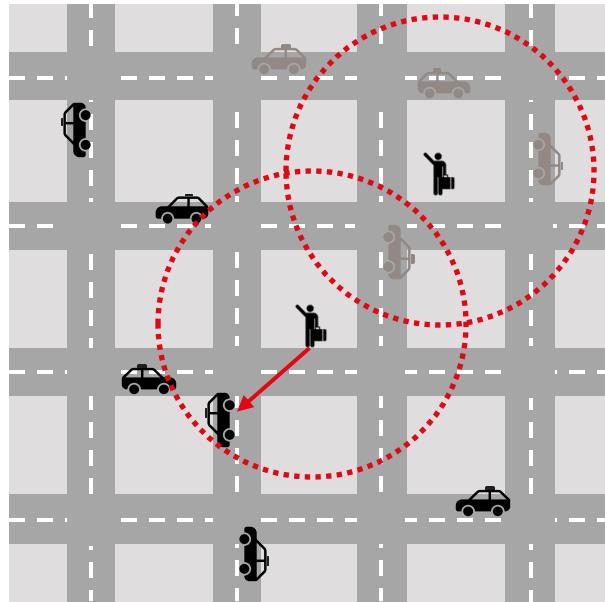
Matching in e-hailing

- Simple estimate of “matchable” vehicles
 - Assume vacant vehicles are uniformly distributed among waiting passengers

$$\Lambda^m(N^v, N^c) = \frac{N^v}{AN^c}$$

- Expected waiting time

$$\mathbb{E}[w^c] = \frac{1}{2v_b} \sqrt{\frac{AN^c}{N^v}}$$



Matching in e-hailing

- Queue length and waiting time at stationary state
 - Passenger

$$N^c = \frac{\lambda^c}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c(\tau_b + w^c)}} \approx \frac{\lambda^c}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c \tau_b}}$$

$$w^c = \frac{1}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c(\tau_b + w^c)}} \approx \frac{1}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c \tau_b}}$$

- Vehicle

$$N^v = N - \lambda^c(\tau_b + w^c)$$

$$w^v = \frac{N}{\lambda^c} - (\tau_b + w^c)$$

* assume $N^v \approx N - \lambda^c \tau_b$

Matching in e-hailing

- Queue length and waiting time at stationary state
 - Passenger

$$N^c = \frac{\lambda^c}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c(\tau_b + w^c)}} \approx \frac{\lambda^c}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c \tau_b}}$$

$$N^c = \left(\frac{\lambda^c}{2v_b} \right)^2 \frac{A}{N - \lambda^c \tau_b}$$

$$w^c = \frac{1}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c(\tau_b + w^c)}} \approx \frac{1}{2v_b} \sqrt{\frac{AN^c}{N - \lambda^c \tau_b}}$$

$$w^c = \frac{\lambda^c A}{4v_b^2(N - \lambda^c \tau_b)}$$

- Vehicle

$$N^v = N - \lambda^c(\tau_b + w^c) \approx N - \lambda^c \left(\tau_b + \frac{\lambda^c A}{4v_b^2(N - \lambda^c \tau_b)} \right)$$

$$w^v = \frac{N}{\lambda^c} - (\tau_b + w^c) \approx \frac{N}{\lambda^c} - \left(\tau_b + \frac{\lambda^c A}{4v_b^2(N - \lambda^c \tau_b)} \right)$$

Questions?

- Scenario I: One-sided market
 - Design variables
 - Trip fare p (CHF/pax)
 - Fleet size N (veh)

$$\max_{p,N} \Pi(p, N) = \lambda^c p - cN$$

$$s.t. \quad \lambda^c = g_\lambda(p, w^c) \quad \text{demand sensitivity}$$

$$w^c = g_w(\lambda^c, N) \quad \text{matching outcome}$$

- c : unit operation cost c (CHF/veh/hr)

	N^c	w^c	N^v	w^v
Taxi stand I	0	0	$N - \lambda^c(\tau_b + \frac{\delta}{v_b} \sqrt{A/K})$	$\frac{N}{\lambda^c} - (\tau_b + \frac{\delta}{v_b} \sqrt{A/K})$
Taxi stand II*	$\frac{\lambda^c K \left(\tau_b + \frac{\delta}{v_b} \sqrt{\frac{A}{K}} \right)}{N - \lambda^c \left(\tau_b + \frac{\delta}{v_b} \sqrt{\frac{A}{K}} \right)}$	$\frac{\lambda^c K \left(\tau_b + \frac{\delta}{v_b} \sqrt{\frac{A}{K}} \right)^2}{N \left[N - \lambda^c \left(\tau_b + \frac{\delta}{v_b} \sqrt{\frac{A}{K}} \right) \right]}$	0	0
Street-hailing	$\frac{\lambda^c \rho A}{4d_{hail}(N - \lambda^c \tau_b)}$	$\frac{\rho A}{4d_{hail}(N - \lambda^c \tau_b)}$	$N - \lambda^c \tau_b$	$\frac{N}{\lambda^c} - \tau_b$
Radio-dispatch [#]	$\frac{\lambda^c}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}}$	$\frac{1}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}}$	$N - \lambda^c \left(\tau_b + \frac{1}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}} \right)$	$\frac{N}{\lambda^c} - \left(\tau_b + \frac{1}{2v_b} \sqrt{\frac{A}{N - \lambda^c \tau_b}} \right)$
E-hailing [#]	$\left(\frac{\lambda^c}{2v_b} \right)^2 \frac{A}{N - \lambda^c \tau_b}$	$\frac{\lambda^c A}{4v_b^2 (N - \lambda^c \tau_b)}$	$N - \lambda^c \left[\tau_b + \left(\frac{\lambda^c}{2v_b} \right)^2 \frac{A}{N - \lambda^c \tau_b} \right]$	$\frac{N}{\lambda^c} - \left[\tau_b + \frac{\lambda^c A}{4v_b^2 (N - \lambda^c \tau_b)} \right]$

* Assume M/M/1 queue

Drop w^c in the right-hand-side of formula of w^c

- Scenario II: Two-sided market
 - Design variables
 - Trip fare p (CHF/pax)
 - Commission rate η (%)

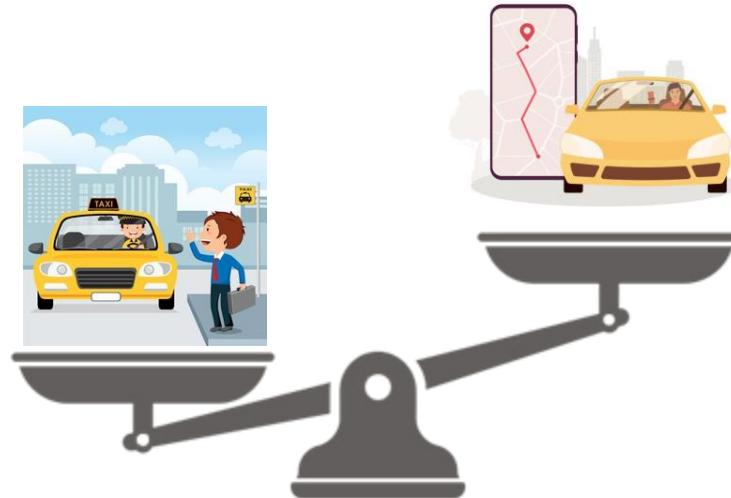
$$\max_{p, \eta} \Pi(p, \eta) = \eta \lambda^c p$$

$$s.t. \quad \boxed{\lambda^c = g_\lambda(p, w^c)} \quad \text{demand sensitivity}$$

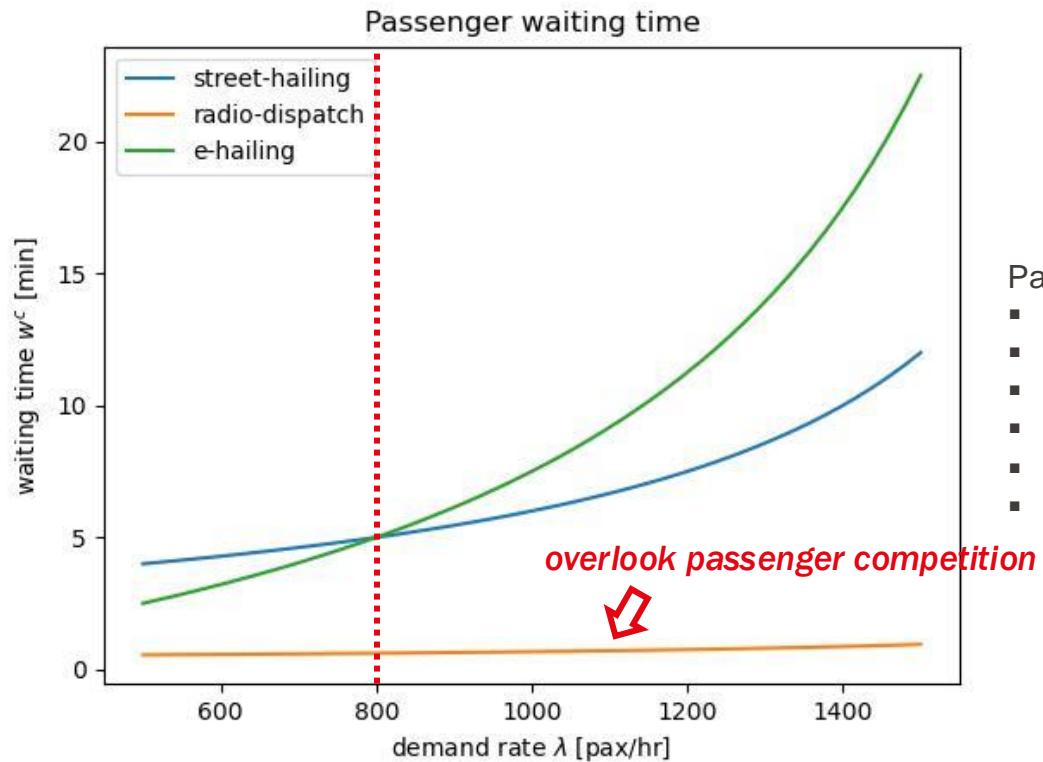
$$\boxed{N = g_N \left(\frac{(1 - \eta) \lambda^c p}{N} \right)} \quad \text{supply sensitivity}$$

$$\boxed{w^c = g_w(\lambda^c, N)} \quad \text{matching outcome}$$

- Street-hailing vs e-hailing
 - Suppose a ride-hailing company wish to launch its service in a city
 - when does e-hailing provide better service?
 - does passenger competition cause a significant impact?



Case study



Parameters

- service area $A = 50 \text{ [km}^2]$
- road density $\rho = 0.1 \text{ [km/ km}^2]$
- fleet size $N = 500 \text{ [veh]}$
- vehicle speed $v_b = 20 \text{ [km/hr]}$
- average trip duration $\tau_b = 15 \text{ [min]}$
- hail distance $d_{\text{hail}} = 50 \text{ [m]}$