

Spring 2025

06 Transit Network III: Operations

CML-324 Urban public transport systems

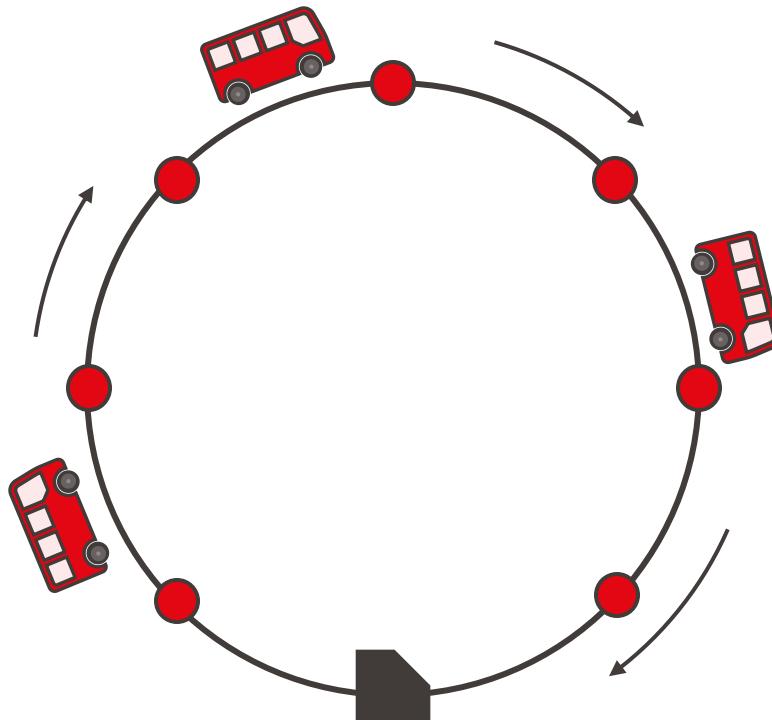
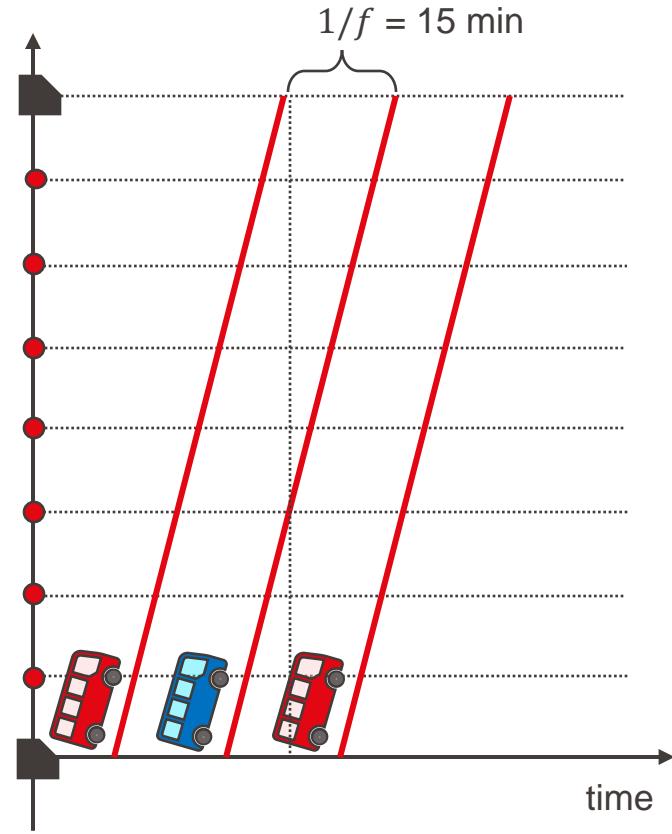
- Transit network design problems discussed in this course
 - Stop location and line planning
 - where to put transit stations and how to connect them into transit lines?
 - Scheduling and pricing
 - how to design the timetable and coordinate multiple transit lines?
 - how to price transit trips under different operational objectives?
 - **Operations**
 - how to design the vehicle schedules given the transit time table?
 - how to manage the potential delay during the operations?

- Operations

- How to design the vehicle schedules given the transit time table?
 - min fleet size
 - vehicle scheduling: heuristics and optimization method
 - How to manage the potential delay during the operations?
 - delay management

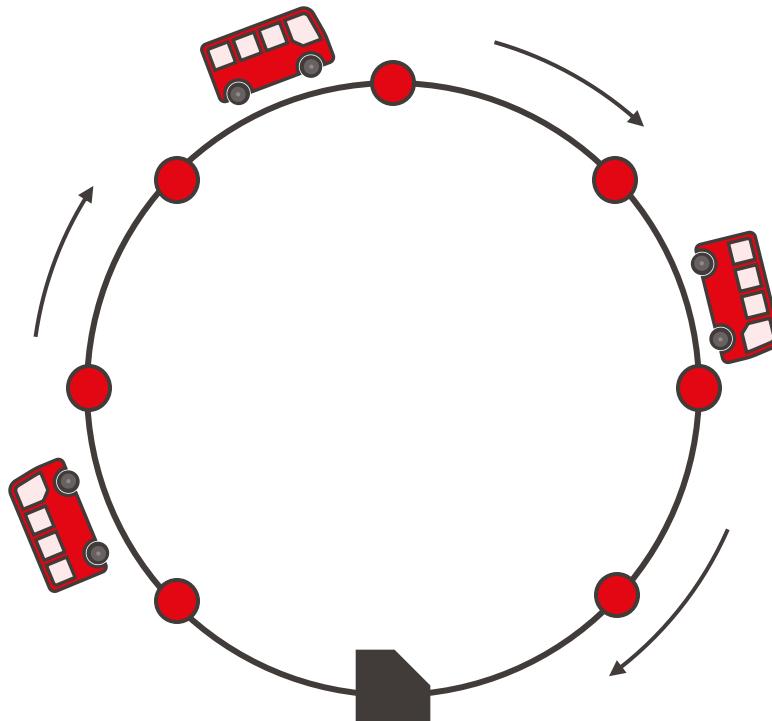
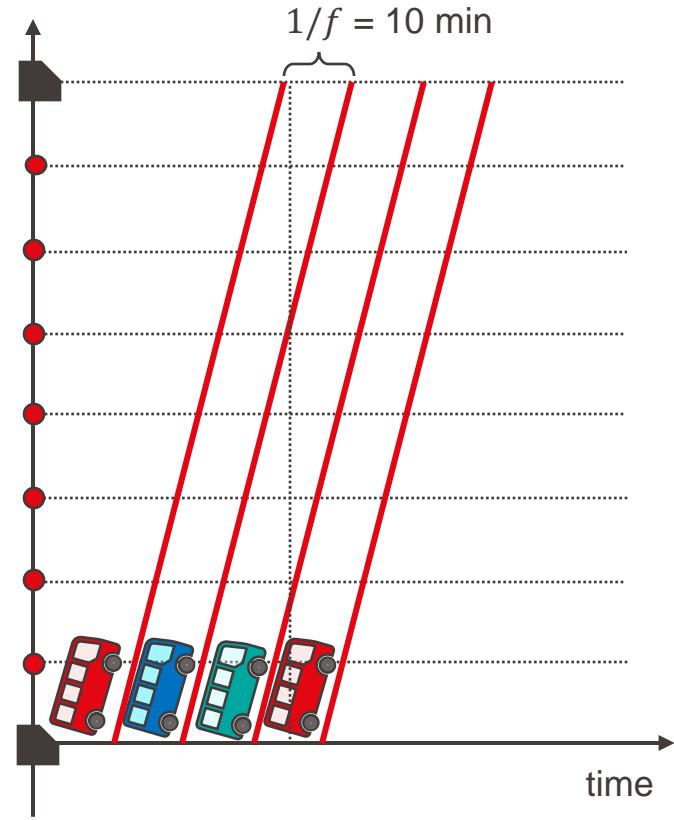
Vehicle scheduling

- Single transit line with single terminal



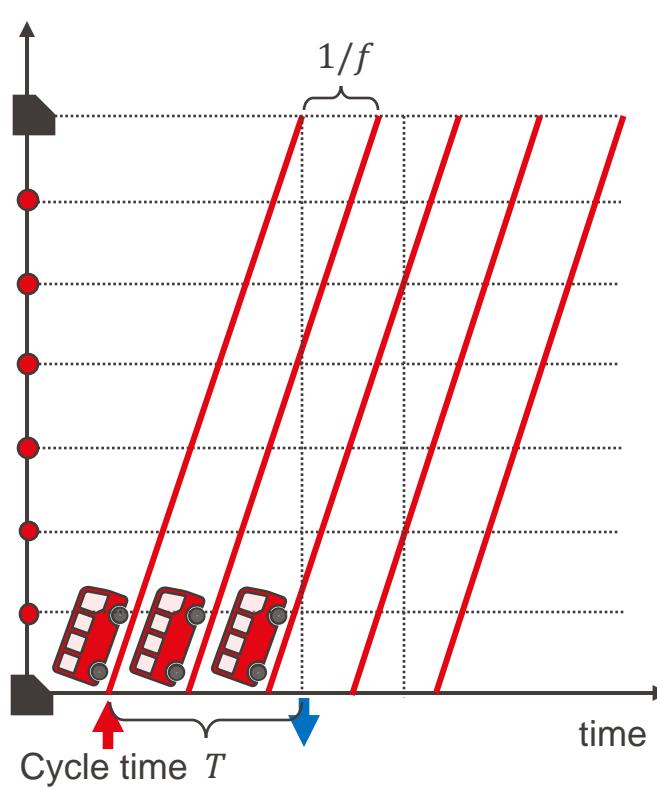
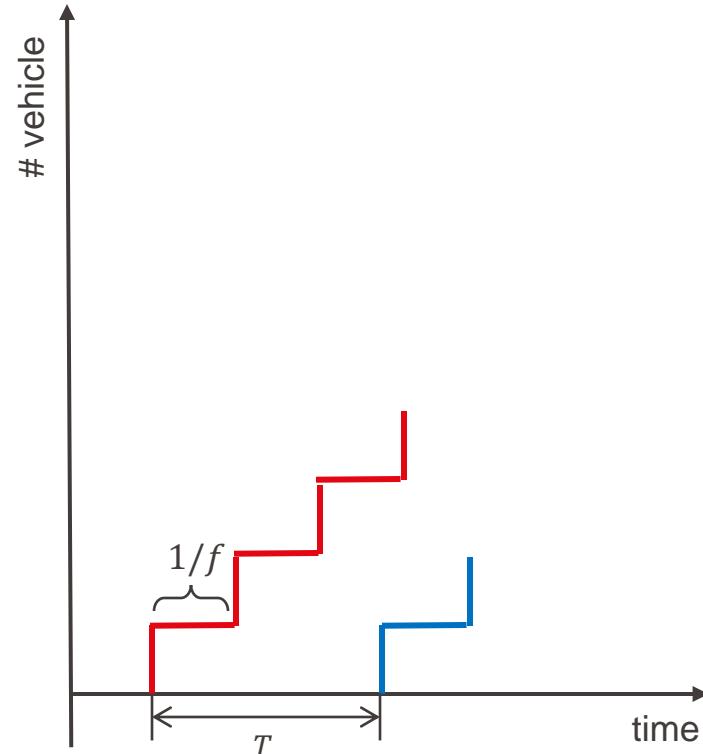
Vehicle scheduling

- Single transit line with single terminal



Vehicle scheduling

- Single transit line with single terminal
 - How many vehicles are needed to service transit line given its timetable?

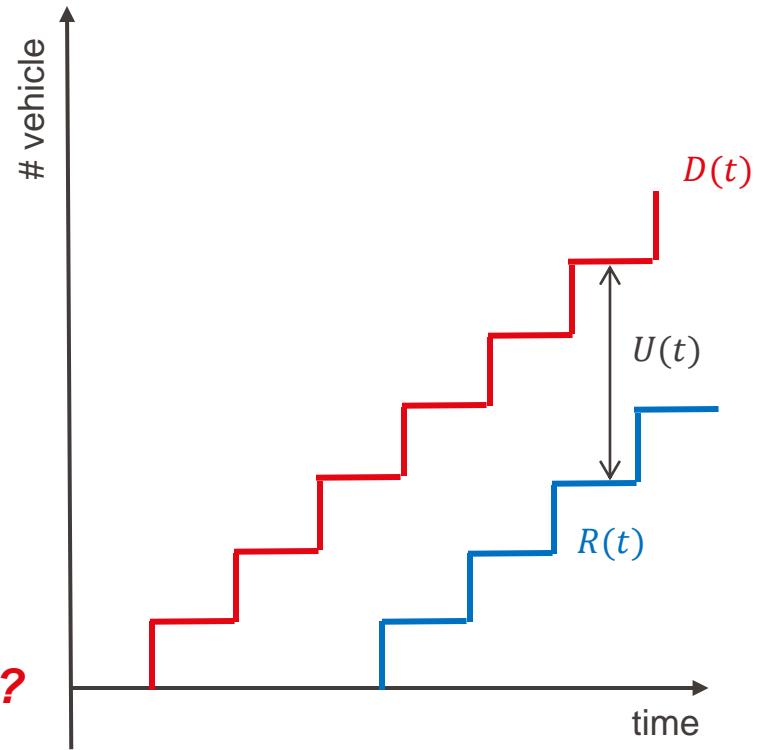


Vehicle scheduling

- Single transit line with single terminal
 - # departures $D(t)$
 - # returns $R(t)$
 - # in-service $U(t) = D(t) - R(t)$

Min fleet size
 $M = \max U(t) = 3$

- **Q: How to approximate $U(t)$ and M ?**



Vehicle scheduling

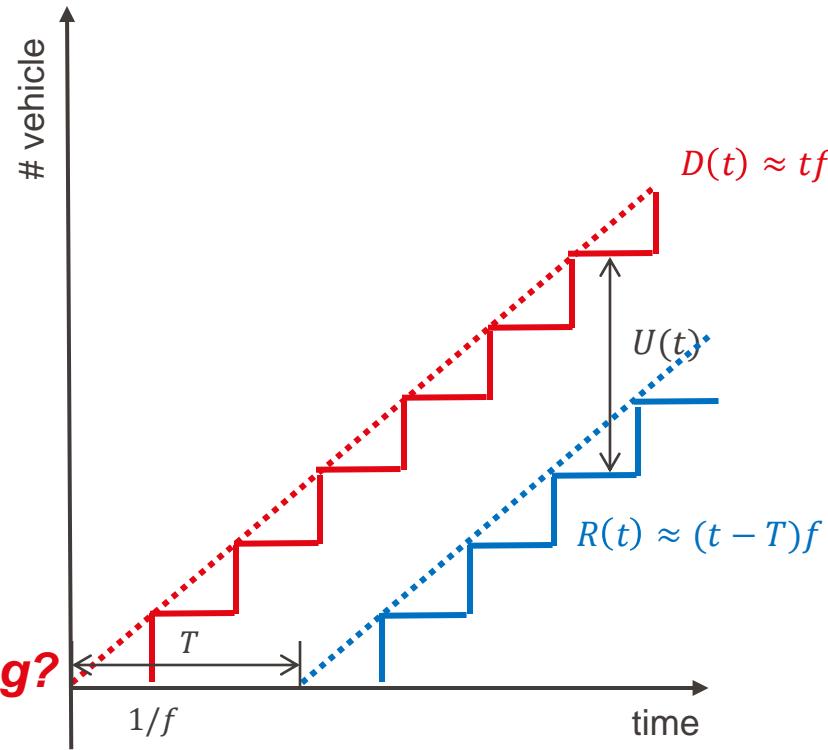
- Single transit line with single terminal

- # departures $D(t)$
 - # returns $R(t)$
 - # in-service $U(t) = D(t) - R(t)$
 - Frequency f
 - Cycle time T

Min fleet size

$$\begin{aligned} M &= \max U(t) = \max\{D(t) - R(t)\} \\ &= \max\{tf - (t - T)f\} \\ &= Tf \end{aligned}$$

- **Q: What if frequency is time-varying?**



Vehicle scheduling

- Single transit line with single terminal

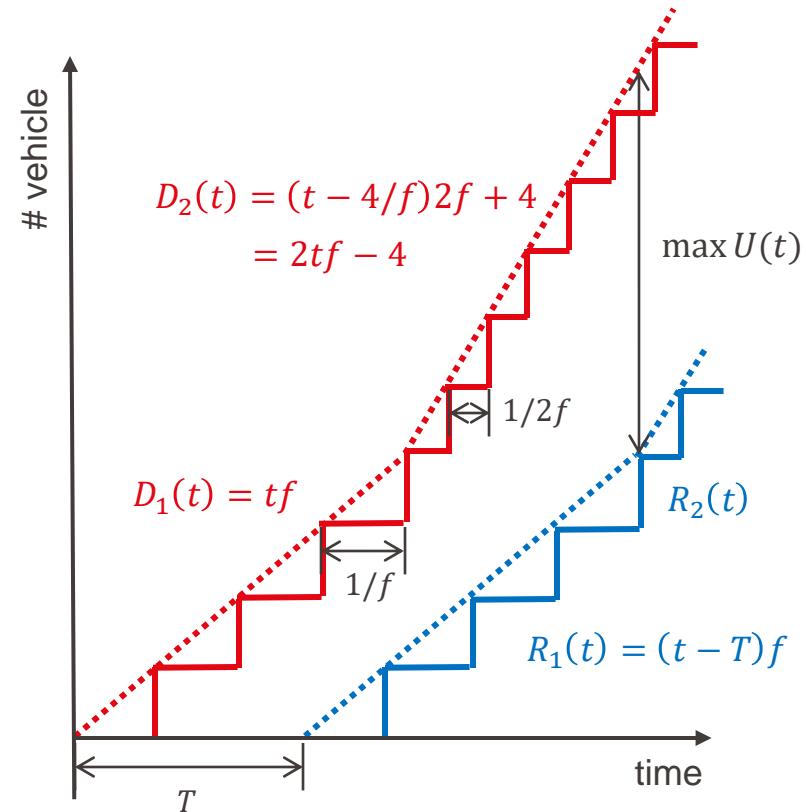
- # departures $D(t)$
- # returns $R(t)$
- # in-service $U(t) = D(t) - R(t)$
- Frequency f
- Cycle time T

Min fleet size

$$M = \max U(t)$$

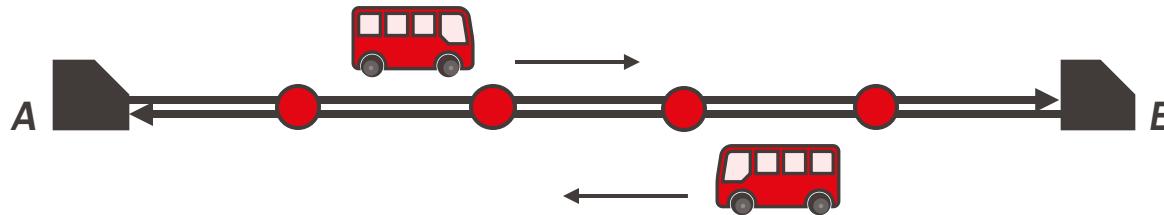
$$= \max_{i \geq j} \{D_i(t) - R_j(t)\}$$

$$= 2Tf$$

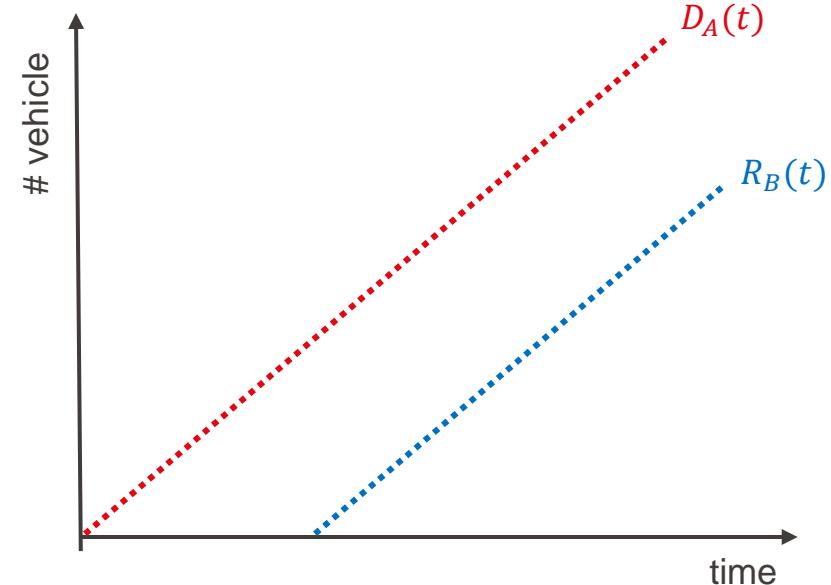


Vehicle scheduling

- Single transit line with two terminals

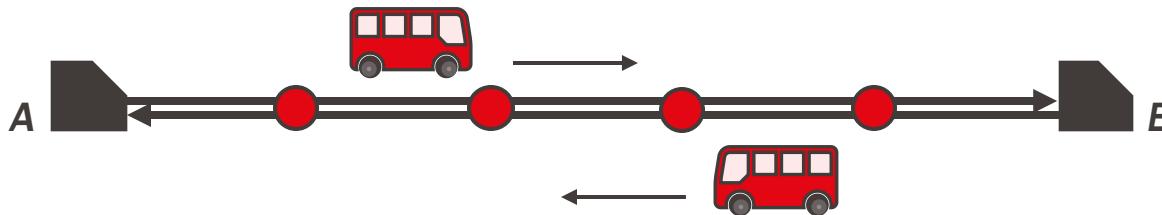


- # departures from A $D_A(t)$
- # returns to B $R_B(t)$



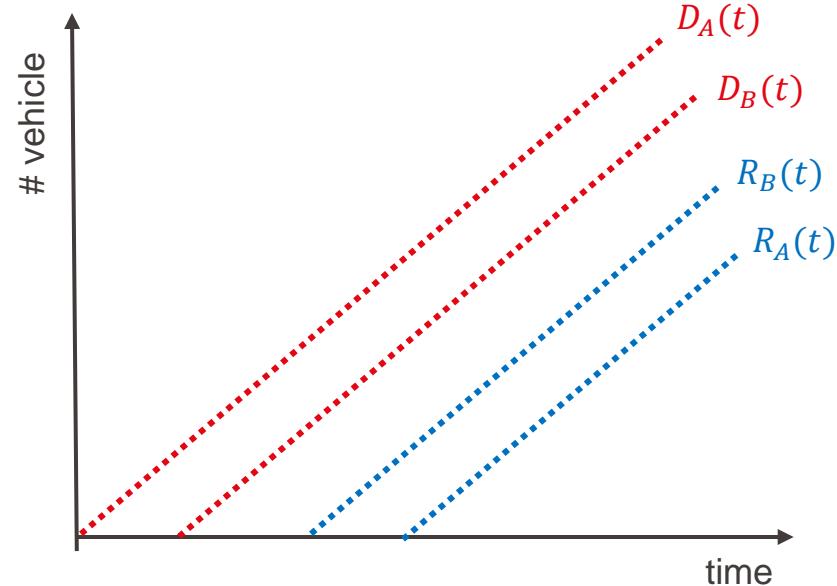
Vehicle scheduling

- Single transit line with two terminals



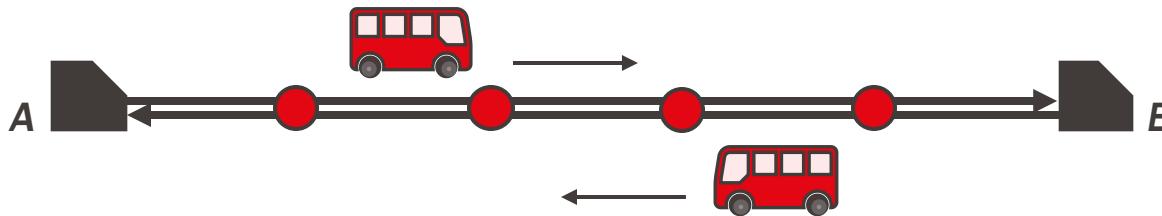
- # departures from A $D_A(t)$
- # returns to B $R_B(t)$
- # departures from B $D_B(t)$
- # returns to A $R_A(t)$

- **Q: How to compute # in-service?**



Vehicle scheduling

- Single transit line with two terminals



- # departures from A/B $D_A(t)/D_B(t)$

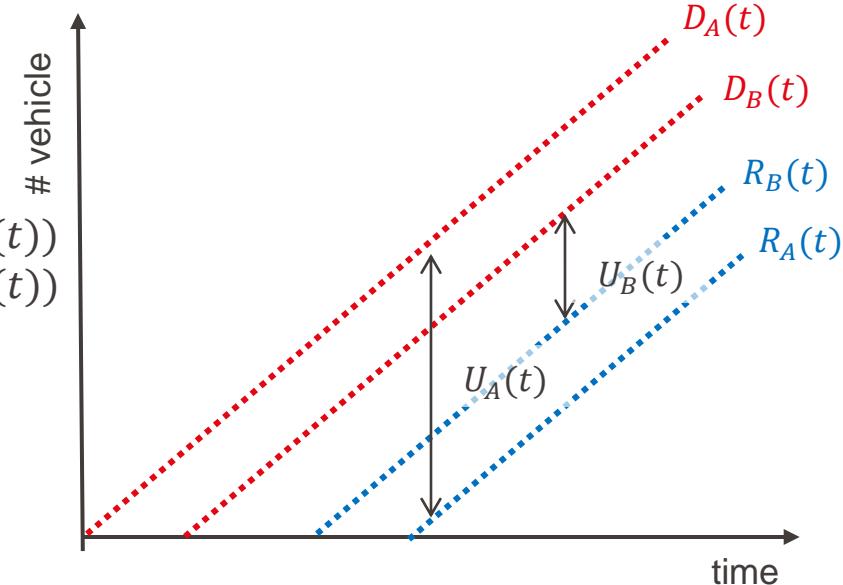
- # returns to A/B $R_A(t)/R_B(t)$

- # in-service

$$\begin{aligned}
 U(t) &= (D_A(t) - R_B(t)) + (D_B(t) - R_A(t)) \\
 &= (D_A(t) - R_A(t)) + (D_B(t) - R_B(t)) \\
 &= U_A(t) + U_B(t)
 \end{aligned}$$

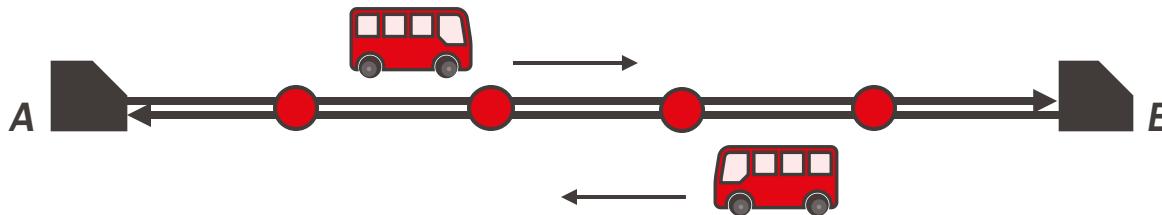
- Min fleet $M = \max U(t)$

- **Q: What if vehicles returning to B directly go back to A?**



Vehicle scheduling

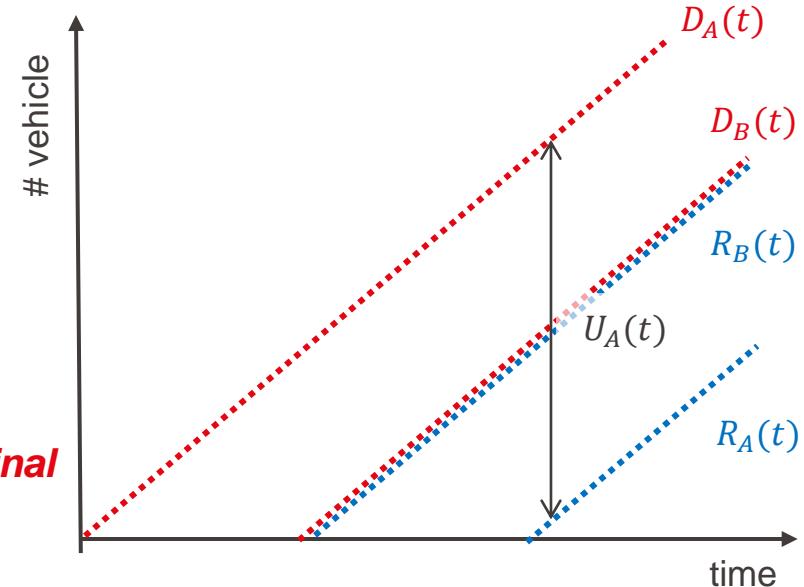
- Single transit line with two terminals



- # departures from A/B $D_A(t)/D_B(t)$
- # returns to A/B $R_A(t)/R_B(t)$
- # in-service

$$\begin{aligned} U(t) &= U_A(t) + U_B(t) \\ &= (D_A(t) - R_A(t)) + 0 \end{aligned}$$

- Min fleet $M = \max U(t)$
 - **reduce to the case of single terminal**



Vehicle scheduling

- Multiple transit line with single terminal (Hub-spoke network)

- # departures of line l $D_l(t)$
- # returns line l $R_l(t)$
- # in-service

$$U(t) = \sum_l D_l(t) - \sum_l R_l(t) = \sum_l U_l(t)$$

- Min fleet size

$$M = \max U(t) = \max \sum_l U_l(t)$$

$$\leq \sum_l \max U_l(t)$$

sum of single-line fleets

Vehicle scheduling

- Multiple transit line with single terminal

(Hub-spoke network)

- # departures of line l $D_l(t)$
- # returns line l $R_l(t)$
- # in-service

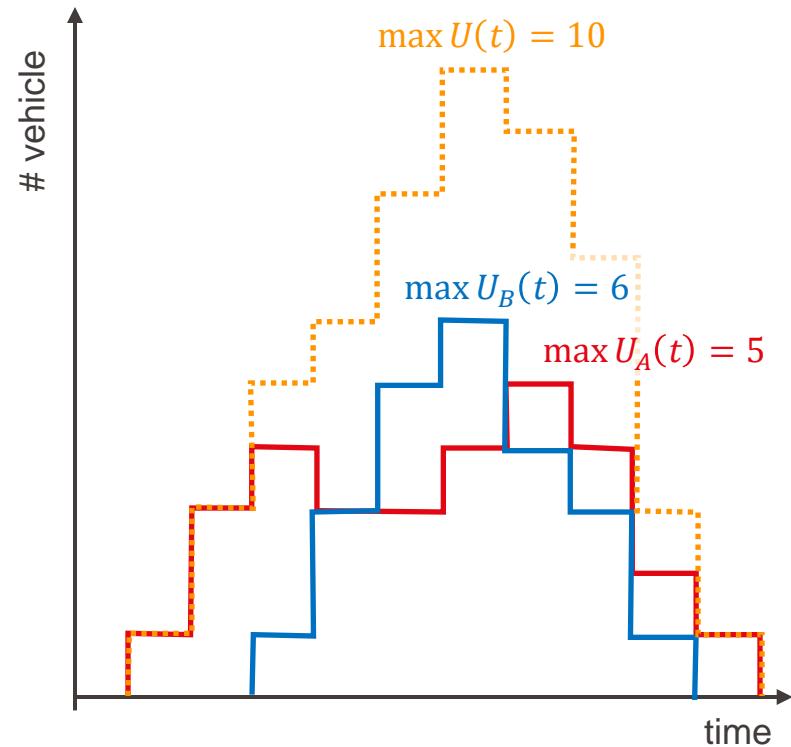
$$U(t) = \sum_l D_l(t) - \sum_l R_l(t) = \sum_l U_l(t)$$

- Min fleet size

$$M = \max U(t) = \max \sum_l U_l(t)$$

$$\leq \sum_l \max U_l(t)$$

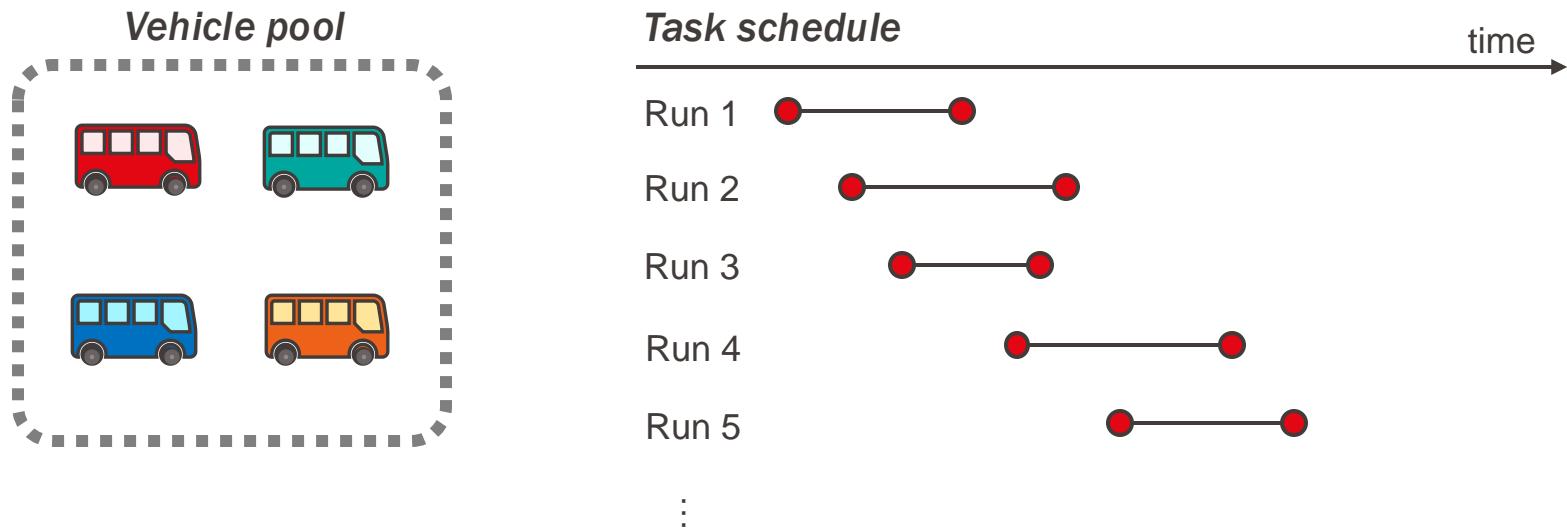
sum of single-line fleets



Questions?

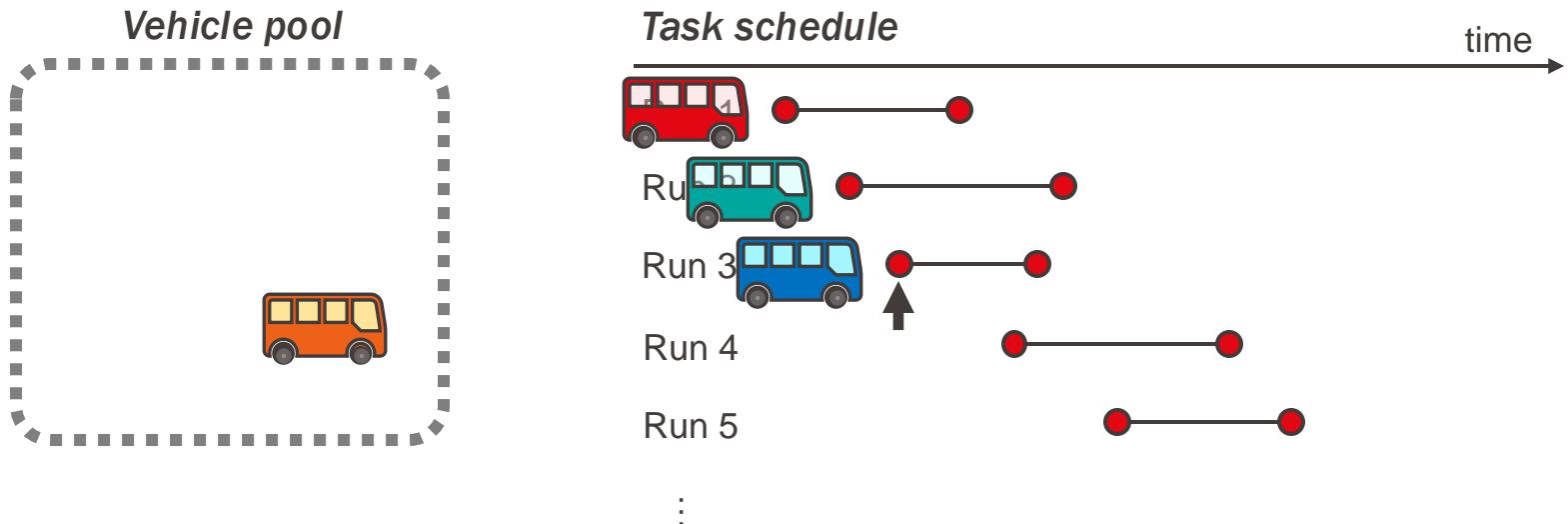
Vehicle scheduling

- Heuristic I: Last-in-first-out (LIFO)
 - Assign each run to the last idle vehicle



Vehicle scheduling

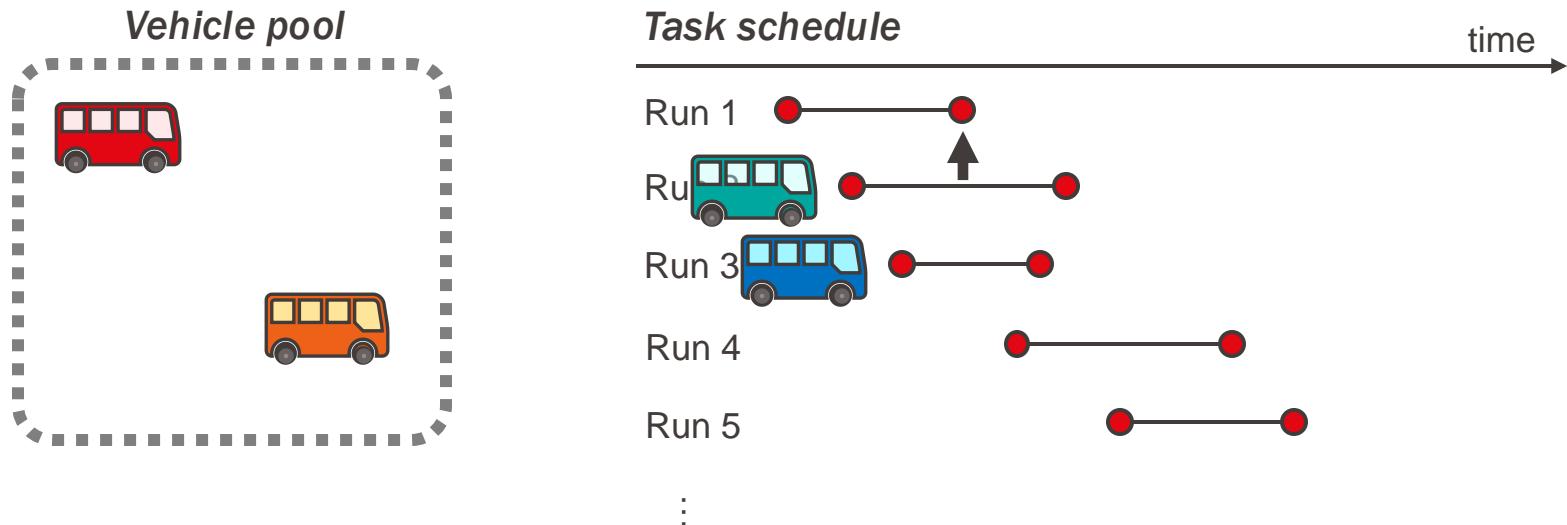
- Heuristic I: Last-in-first-out (LIFO)
 - Assign each run to the last idle vehicle



- **Q: What is the next vehicle movement?**

Vehicle scheduling

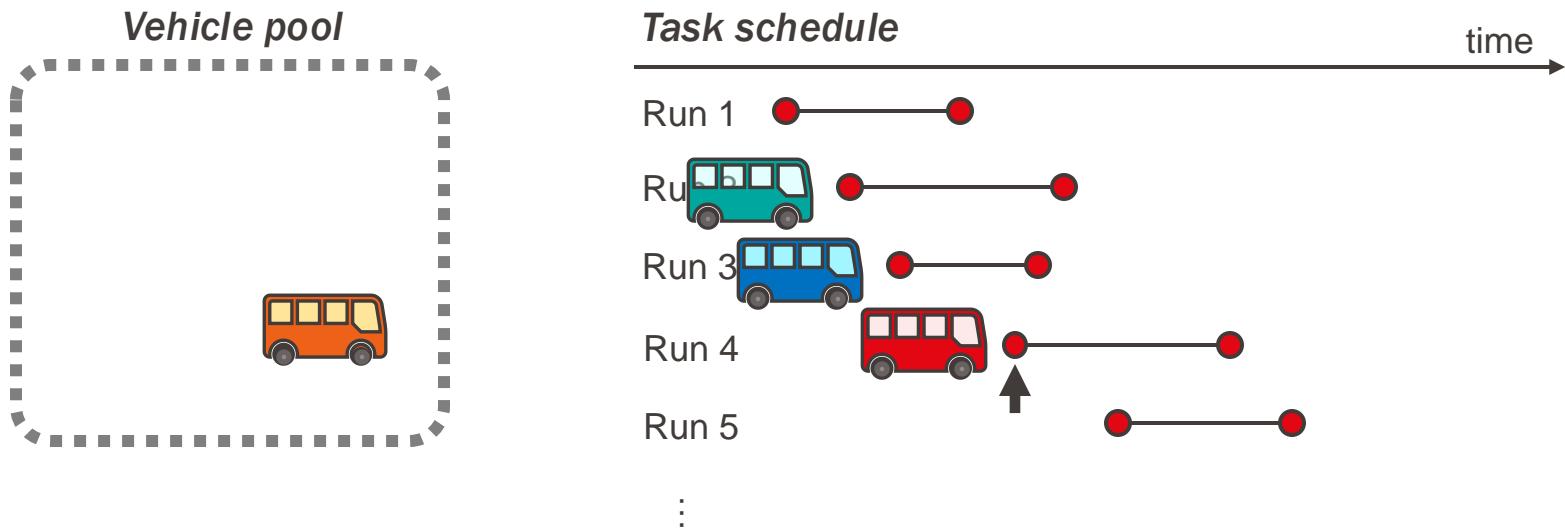
- Heuristic I: Last-in-first-out (LIFO)
 - Assign each run to the last idle vehicle



- ***Q: How to assign the next vehicle based on LIFO?***

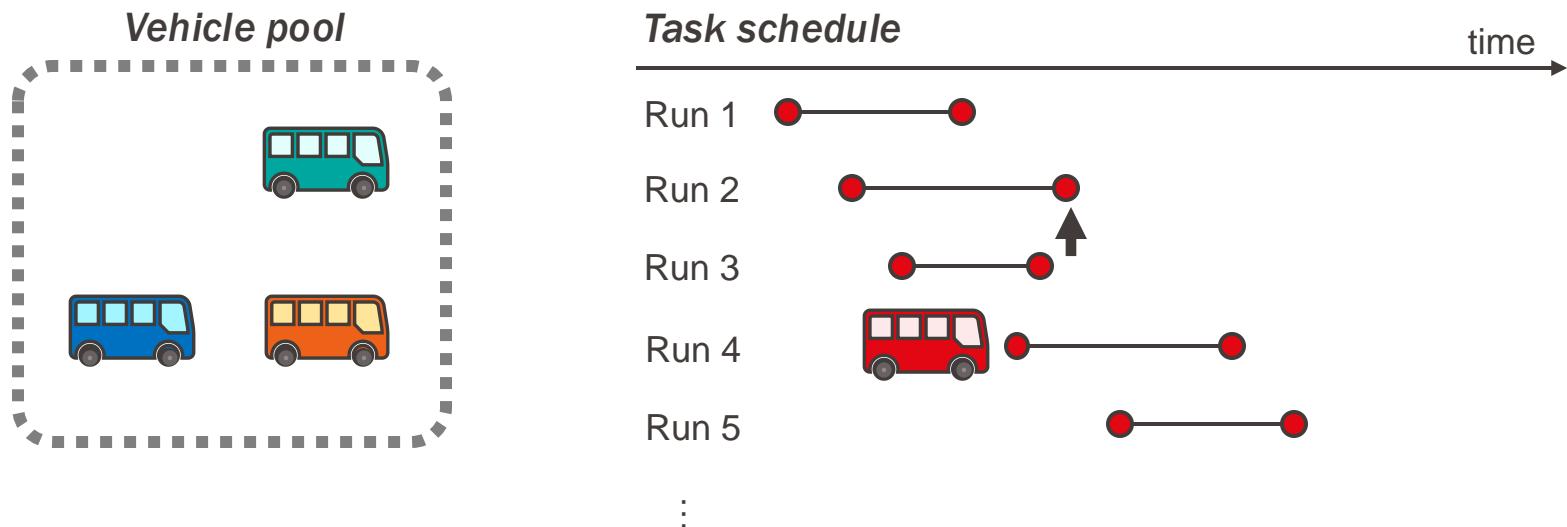
Vehicle scheduling

- Heuristic I: Last-in-first-out (LIFO)
 - Assign each run to the last idle vehicle



Vehicle scheduling

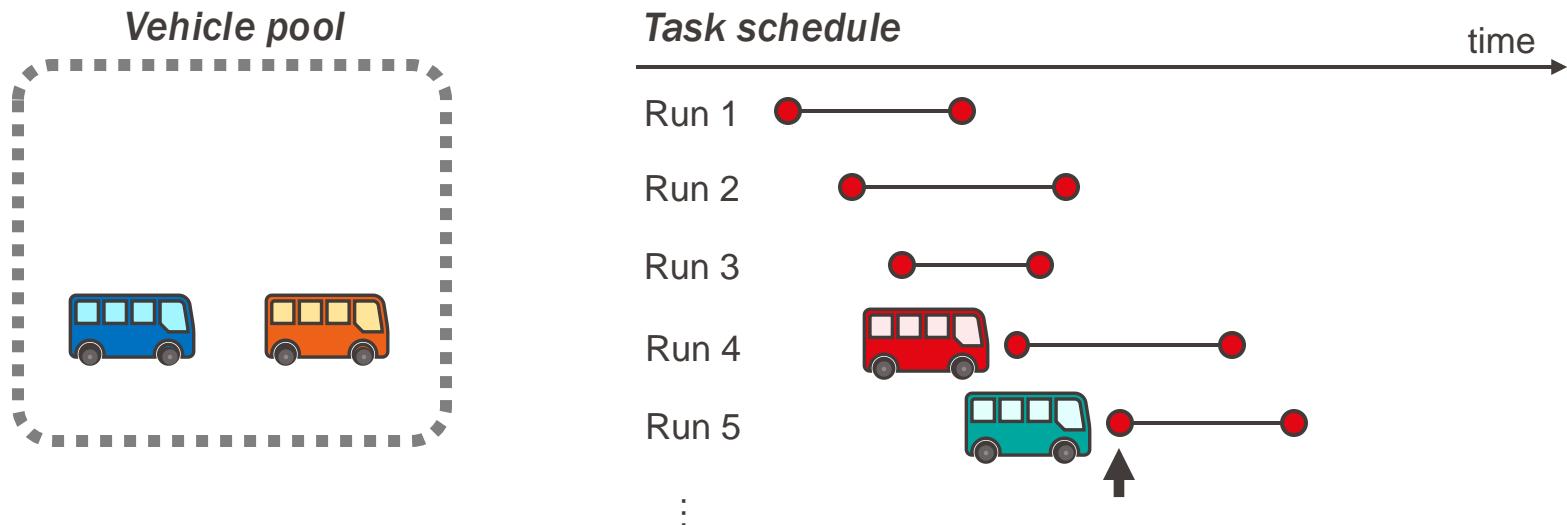
- Heuristic I: Last-in-first-out (LIFO)
 - Assign each run to the last idle vehicle



- **Q: How to assign the next vehicle based on LIFO?**

Vehicle scheduling

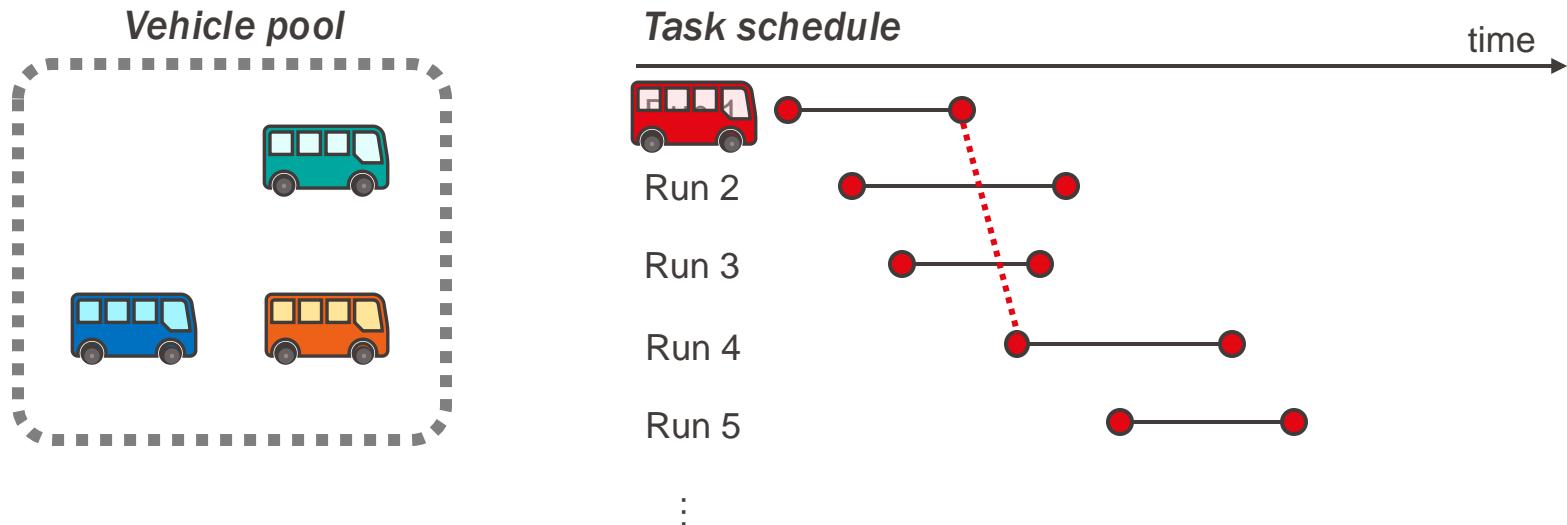
- Heuristic I: Last-in-first-out (LIFO)
 - Assign each run to the last idle vehicle



- **Q: How many vehicles are used to fulfill the five tasks?**

Vehicle scheduling

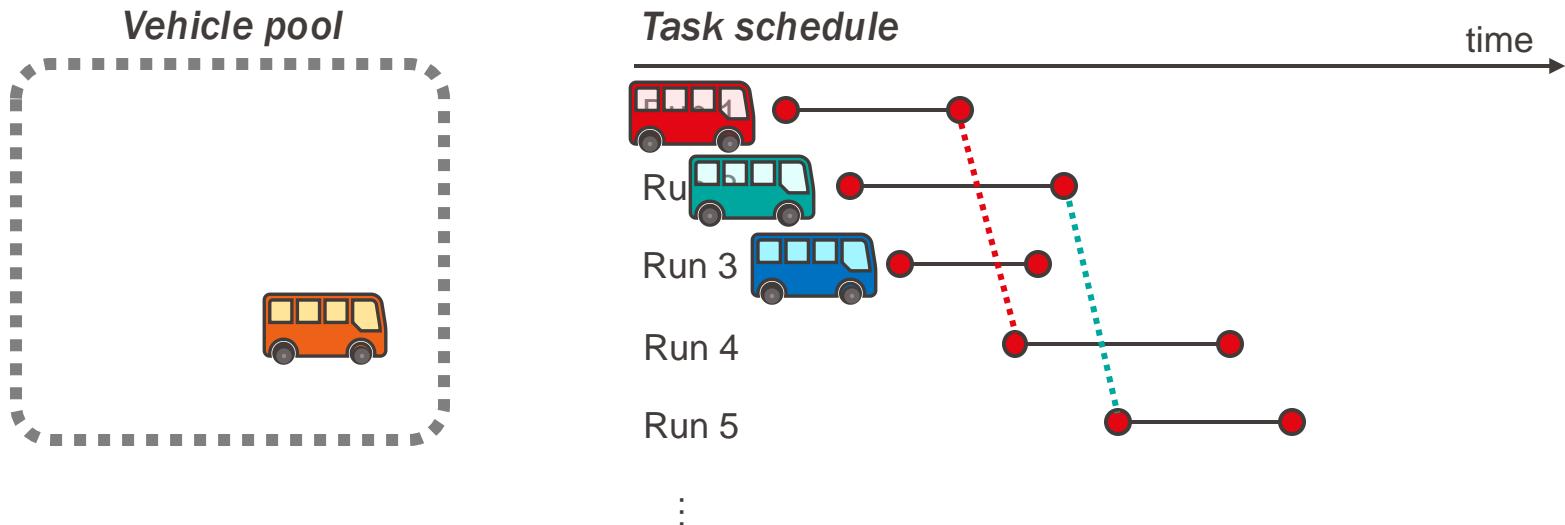
- Heuristic II: Greedy
 - Sequentially assign each vehicle's schedule
 - Min connection between tasks



- **Q: How to assign other vehicles based on the greedy principle?**

Vehicle scheduling

- Heuristic II: Greedy
 - Sequentially assign each vehicle's schedule
 - Min connection between tasks

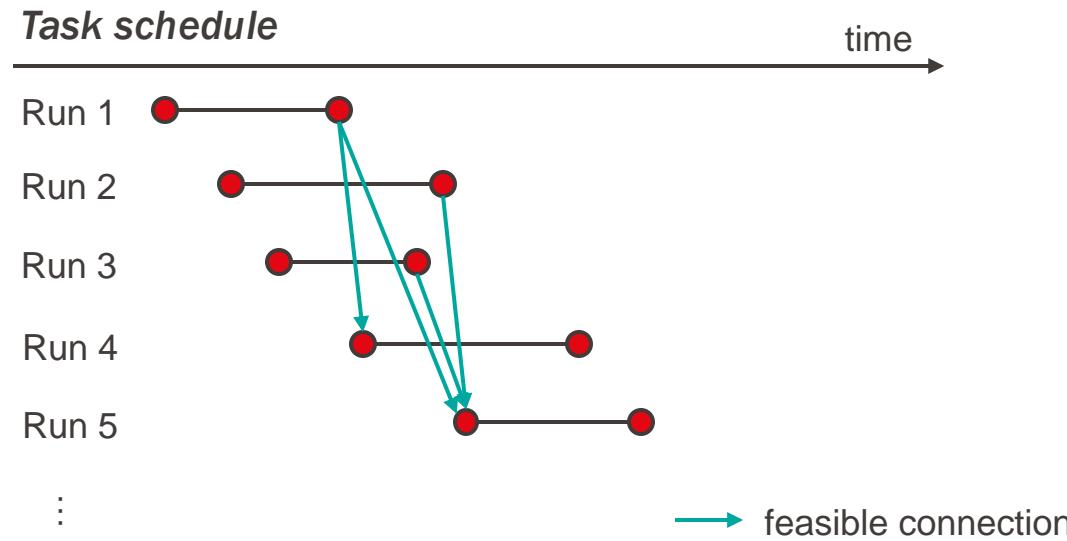


- **Q: How many vehicles are used to fulfill the five tasks?**

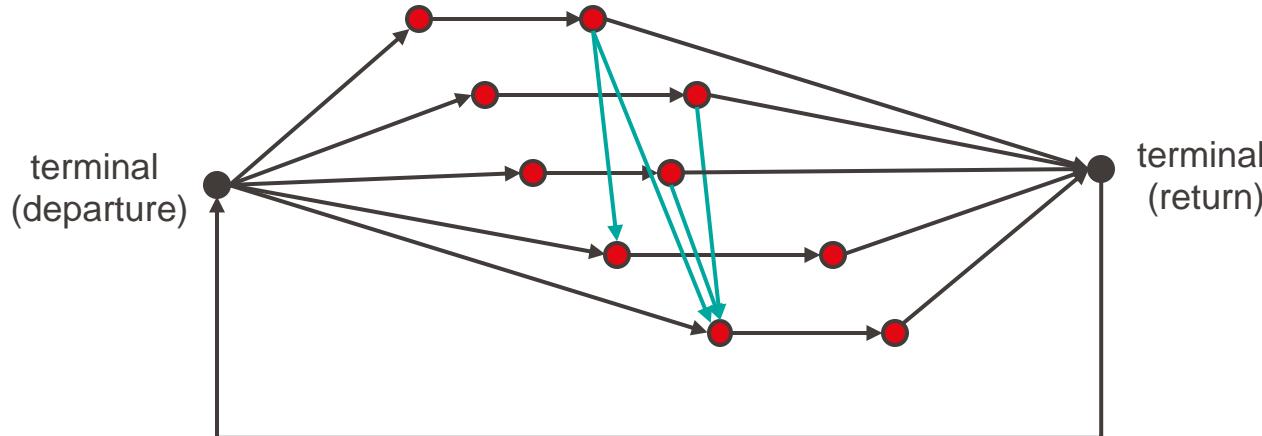
- Heuristic I: Last-in-first-out (LIFO)
 - Assign each run to the last idle vehicle
- Heuristic II: Greedy
 - Sequentially assign each vehicle's schedule
 - Min connection between tasks
- Both end up using the min fleet we derived before

Vehicle scheduling

- Optimization method
 - Construct a circulation network
 - Step 1: link all feasible connections



- Optimization method
 - Construct a circulation network
 - Step 1: link all feasible connections
 - Step 2: link tasks to terminals and connect two terminals



- Optimization method

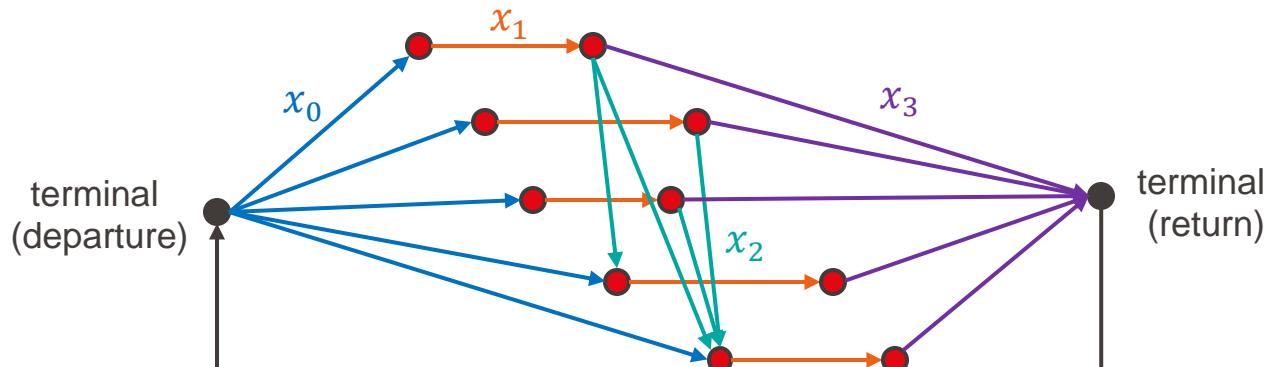
- Construct a circulation network
 - Step 1: link all feasible connections
 - Step 2: link tasks to terminals and connect two terminals
 - Step 3: assign link costs



Vehicle scheduling

- Optimization method

- Construct a circulation network
 - Step 1: link all feasible connections
 - Step 2: link tasks to terminals and connect two terminals
 - Step 3: assign link costs
 - Step 4: define link and node constraints



$0 \leq x_0 \leq 1$: each run is served by either a new vehicle or a previously dispatched vehicle

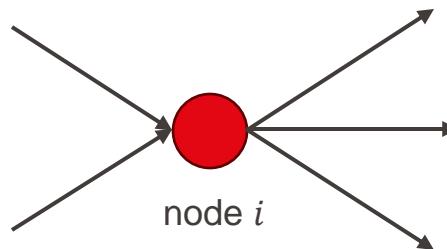
$x_1 = 1$: each run must be served by a vehicle

$0 \leq x_2 \leq 1$: each feasible connection is taken by at most one vehicle

$0 \leq x_3 \leq 1$: at most one vehicle returns after each run

- Optimization method

- Construct a circulation network
 - Step 1: link all feasible connections
 - Step 2: link tasks to terminals and connect two terminals
 - Step 3: assign link costs
 - Step 4: define link and node constraints



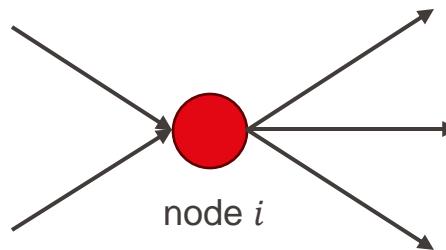
$$\sum_{a \in A_i^-} x_a = \sum_{a \in A_i^+} x_a$$

- A_i^- : set of links ending at node i
- A_i^+ : set of links starting from node i

- **Q: What does this constraint mean?**

- Optimization method

- Construct a circulation network
 - Step 1: link all feasible connections
 - Step 2: link tasks to terminals and connect two terminals
 - Step 3: assign link costs
 - Step 4: define link and node constraints



total inflow

$$\sum_{a \in A_i^-} x_a$$

total outflow

$$\sum_{a \in A_i^+} x_a$$

- A_i^- : set of links ending at node i
- A_i^+ : set of links starting from node i

- **Q: How to express constraints in a more compact way?**

- Optimization method

- Construct a circulation network
 - Step 1: link all feasible connections
 - Step 2: link tasks to terminals and connect two terminals
 - Step 3: assign link costs
 - Step 4: define link and node constraints

$$Mx = 0$$

$$L \leq x \leq U$$

- M : node-link incidence matrix
- $M_{ia} = \begin{cases} 1, & \text{if link } a \text{ starts from node } i \\ -1, & \text{if link } a \text{ ends at node } i \\ 0, & \text{otherwise} \end{cases}$
- L, U : lower and upper bounds of link flows

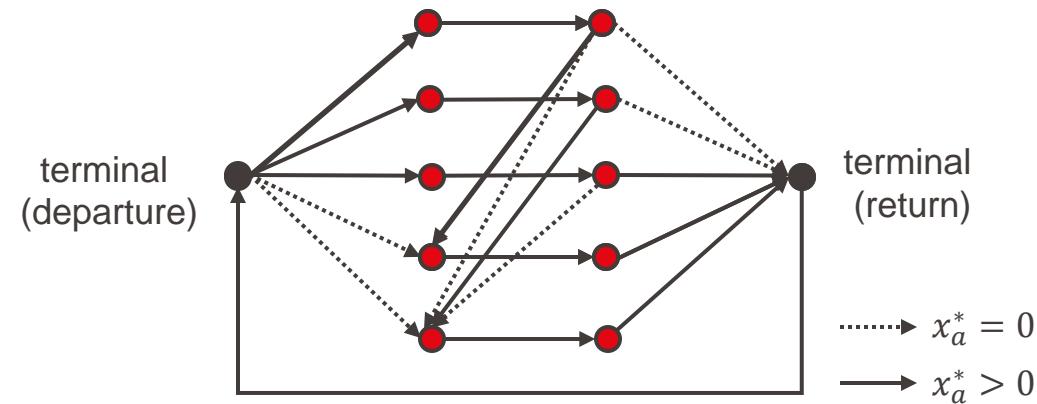
- ***Q: How to solve vehicle schedules using the circulation network?***

- Optimization method
 - Construct a circulation network
 - Solve the circulation problem
 - min total cost, including vehicle dispatches and connection layovers
 - subject to schedule feasibility constraint

$$\min_x c^T x$$

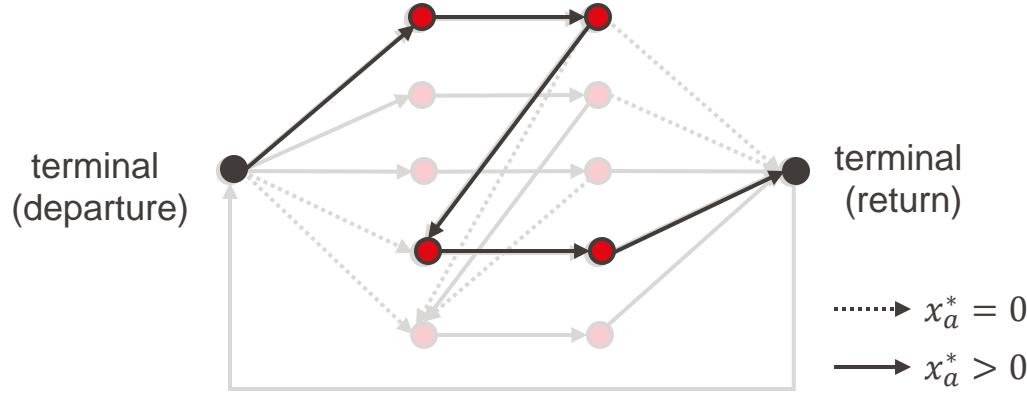
$$s.t. Mx = 0$$

$$L \leq x \leq U$$



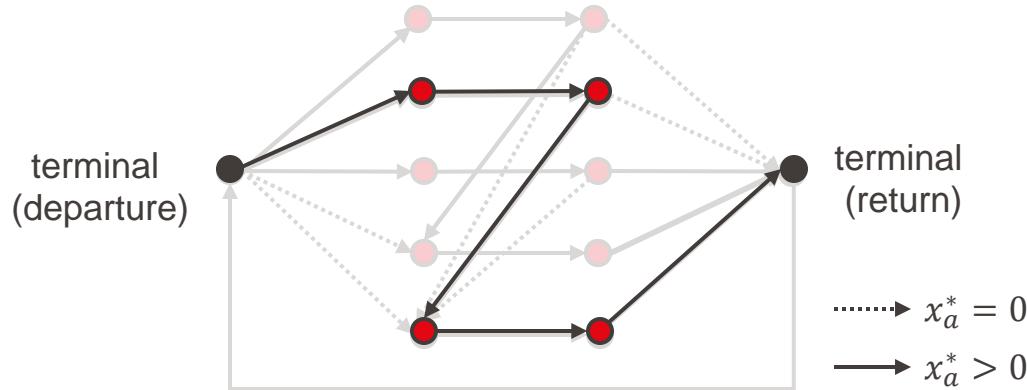
- **Q: How to interpret the optimal solution x^* ?**

- Optimization method
 - Construct a circulation network
 - Solve the circulation problem
 - min total cost, including vehicle dispatches and connection layovers
 - subject to schedule feasibility constraint



- Vehicle 1 serve 1st and 4th runs, then return

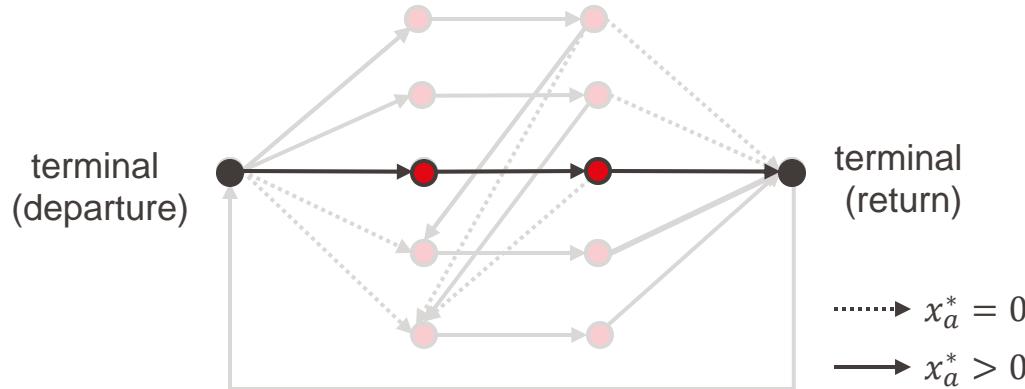
- Optimization method
 - Construct a circulation network
 - Solve the circulation problem
 - min total cost, including vehicle dispatches and connection layovers
 - subject to schedule feasibility constraint



- Vehicle 1 serve 1st and 4th runs, then return
- Vehicle 2 serve 2nd and 5th runs, then return

Vehicle scheduling

- Optimization method
 - Construct a circulation network
 - Solve the circulation problem
 - min total cost, including vehicle dispatches and connection layovers
 - subject to schedule feasibility constraint



- Vehicle 1 serve 1st and 4th runs, then return
- Vehicle 2 serve 2nd and 5th runs, then return
- Vehicle 3 serve 3rd run, then return

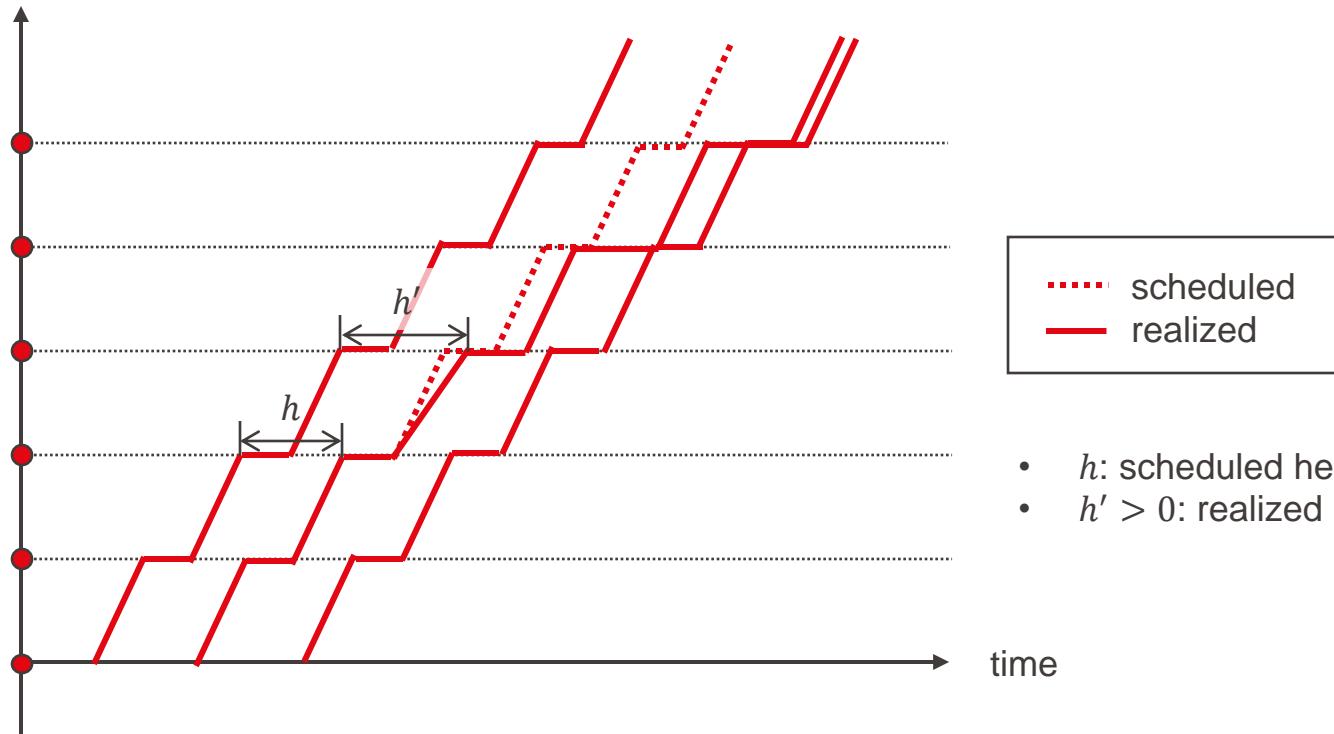
Questions?

- “Bus bunching” phenomenon
 - Multiple buses arrive at the stop at the same time
 - How does it happen?
 - when a bus runs late, its headway increases.
 - more travelers arrive at the next stop, causing longer stops.
 - the next bus has shorter headway and shorter stops

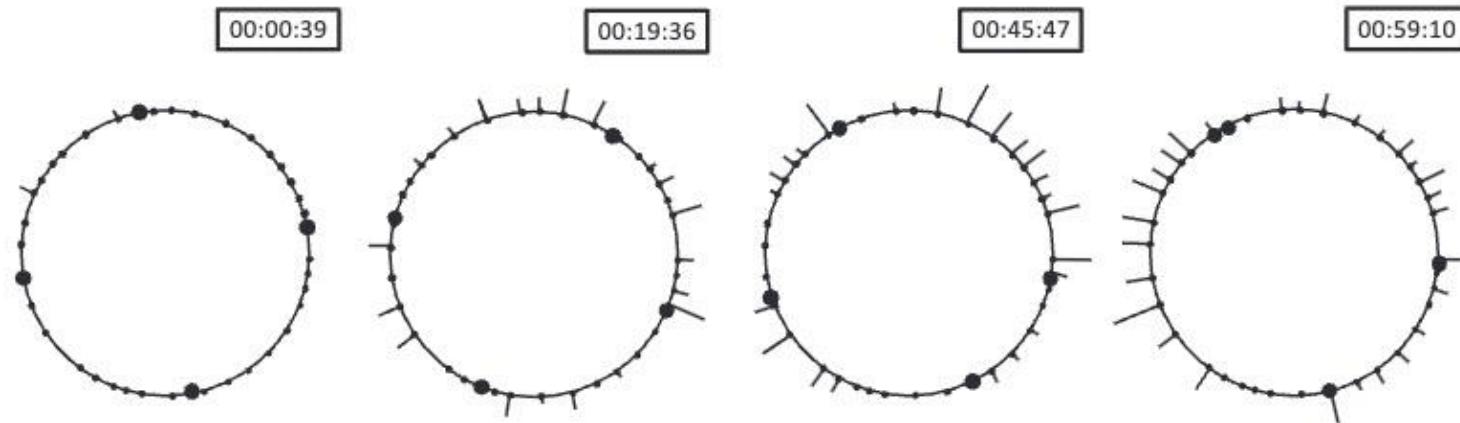
“Once a bus gets behind schedule, it’s nearly impossible to get back on track.”

--- Gayah and Guler

- “Bus bunching” phenomenon
 - Multiple buses arrive at the stop at the same time



- “Bus bunching” phenomenon
 - Multiple buses arrive at the stop at the same time

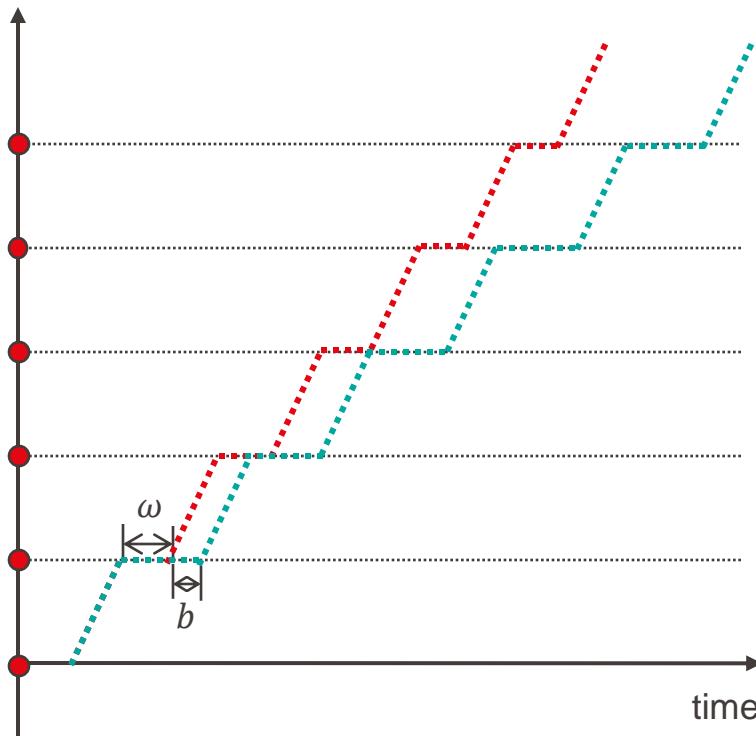


A simulation of bus bunching

<https://www.youtube.com/shorts/V9vjfbM7ko>

- Solutions to bus-bunching
 - Schedule-based method
 - simple and static
 - Dynamic delay method
 - more robust but require real-time info
 - Bus-splitting method
 - enabled by modular vehicle technologies

- Schedule-based method
 - Add buffer time at some stops

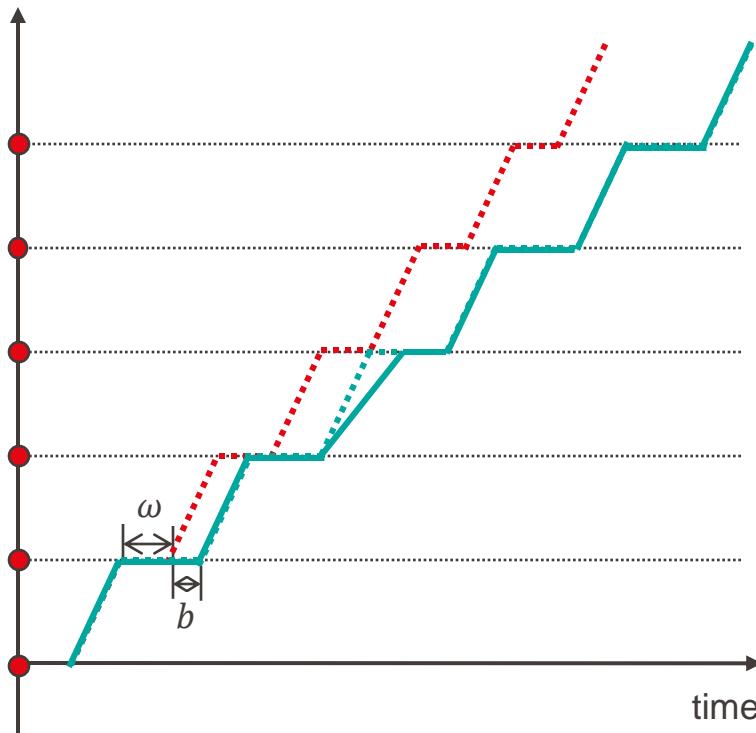


Strategy 1: add buffer b to every stop

- essentially extend stop time from ω to $\omega + b$

- scheduled w/o buffer
- scheduled w/ buffer
- realized

- Schedule-based method
 - Add buffer time at some stops

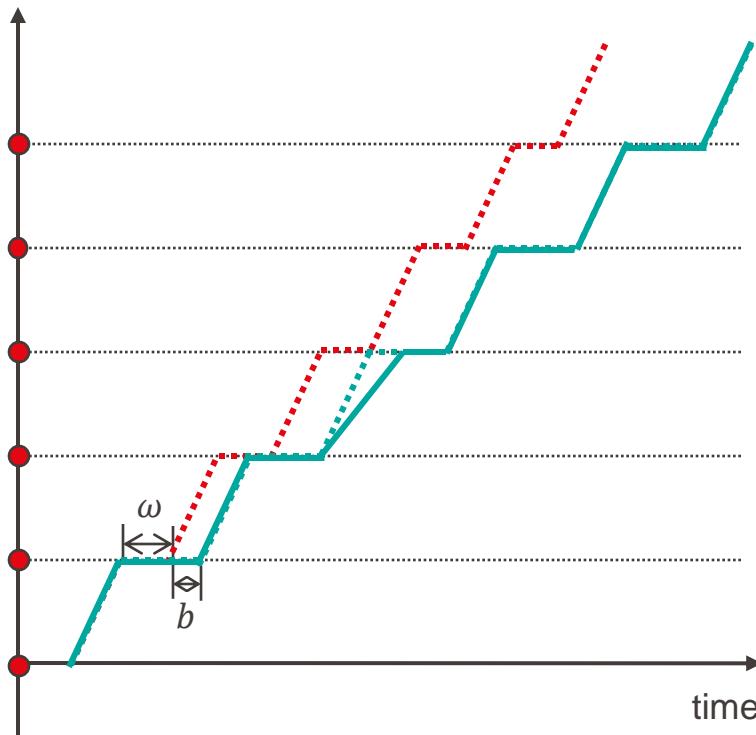


Strategy 1: add buffer b to every stop

- essentially extend stop time from ω to $\omega + b$
- schedule is not much affected as long as delay is shorter than $\omega + b$
- **Q: What is the disadvantage?**

- --- scheduled w/o buffer
- ---- scheduled w/ buffer
- — realized

- Schedule-based method
 - Add buffer time at some stops

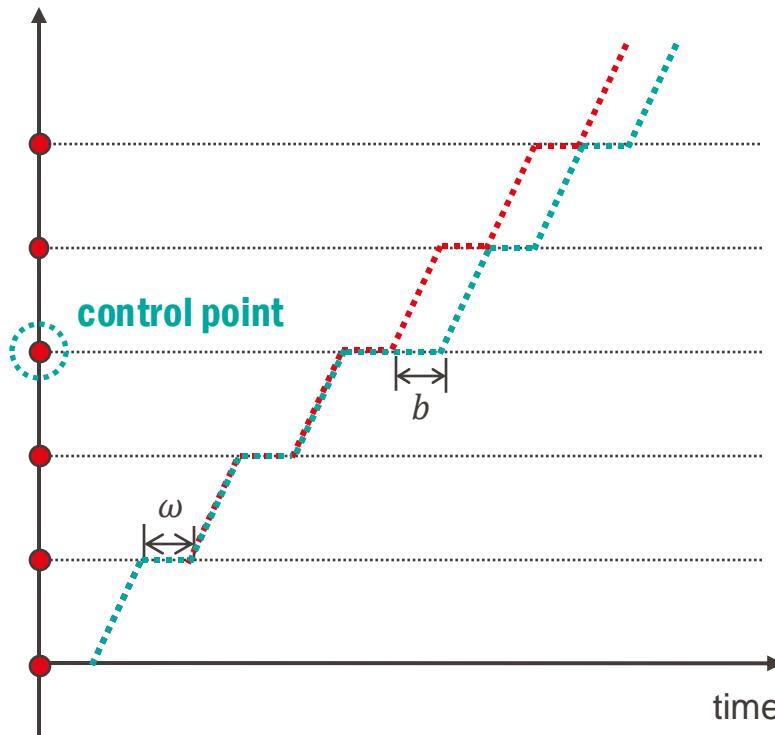


Strategy 1: add buffer b to every stop

- essentially extend stop time from ω to $\omega + b$
- schedule is not much affected as long as delay is shorter than $\omega + b$
- too conservative with much longer schedule

- scheduled w/o buffer
- scheduled w/ buffer
- realized

- Schedule-based method
 - Add buffer time at some stops

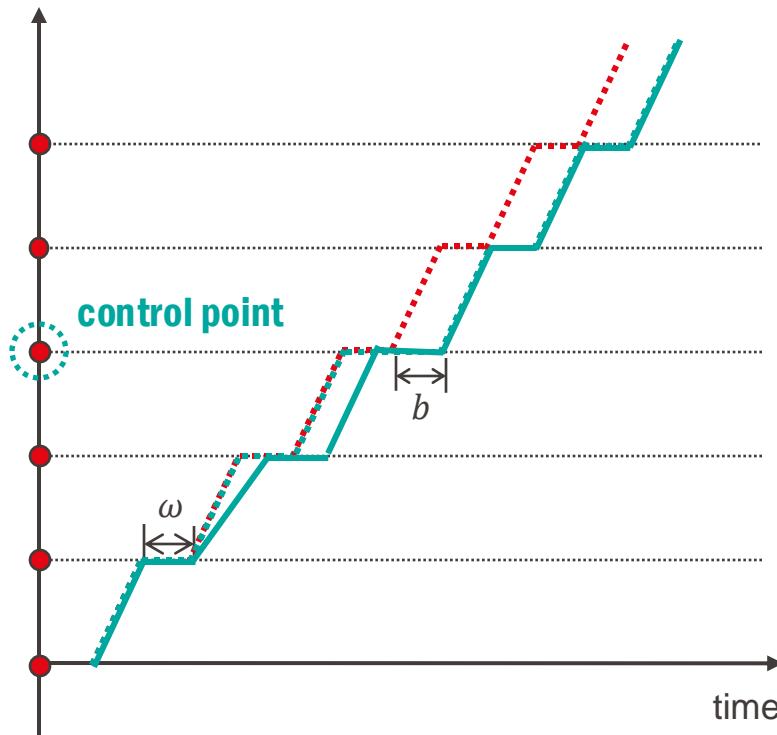


Strategy 2: add buffer b at control points

- stop time remains ω except for the control points

- scheduled w/o buffer
- scheduled w/ buffer
- realized

- Schedule-based method
 - Add buffer time at some stops



Strategy 2: add buffer b at control points

- stop time remains ω except for the control points
- balance between schedule robustness and efficiency
- both control point and buffer time can be optimized

- --- scheduled w/o buffer
- --- scheduled w/ buffer
- — realized

Questions?

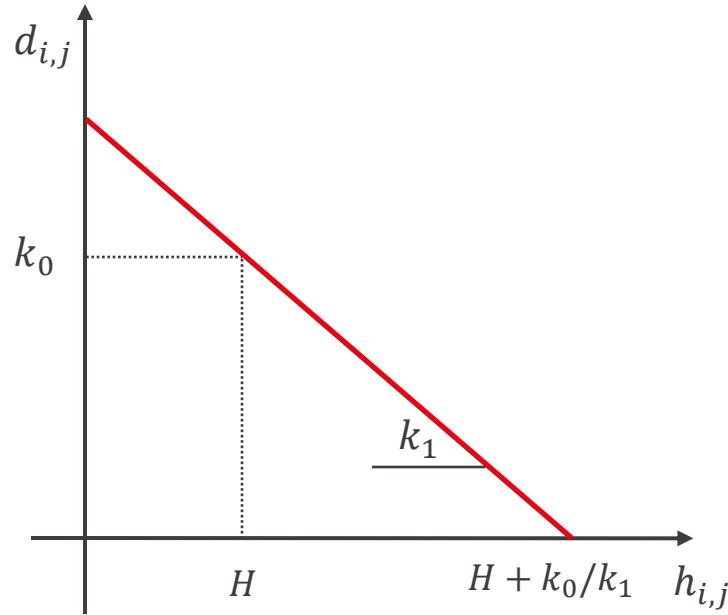
Delay management

- Dynamic delay method
 - Instead of a constant buffer time, add a dynamic delay $d_{i,j}$ for bus i at stop j

$$d_{i,j} = [k_0 - k_1(h_{i,j} - H)]_+$$

where

- k_0, k_1 : constant parameters
- $h_{i,j}$: realized headway
- H : schedule headway
- $[x]_+ = \max\{0, x\}$



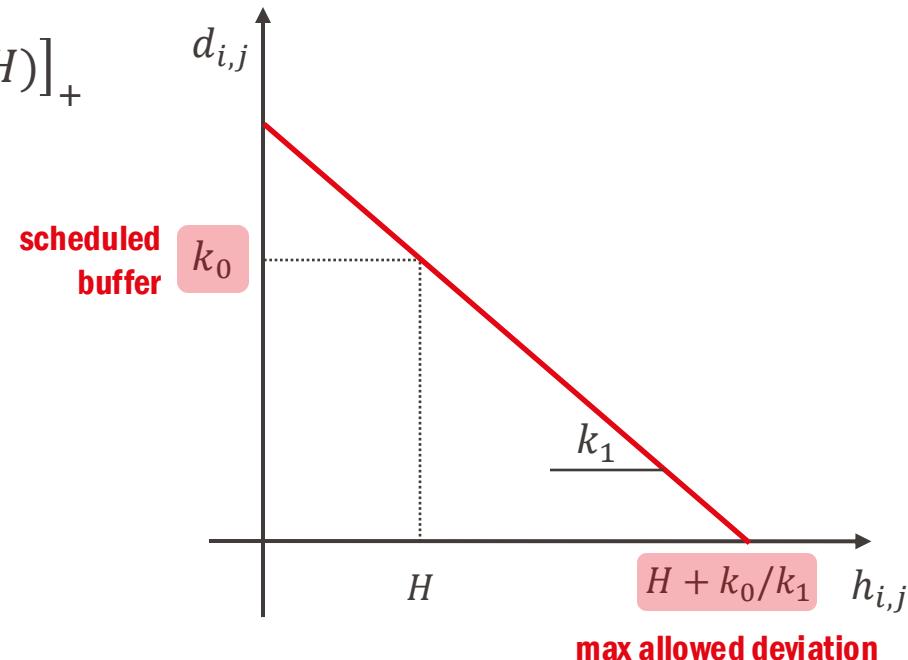
- **Q: How to interpret the delay as function of realized headway?**

- Dynamic delay method
 - Instead of a constant buffer time, add a dynamic delay $d_{i,j}$ for bus i at stop j

$$d_{i,j} = [k_0 - k_1(h_{i,j} - H)]_+$$

where

- k_0, k_1 : constant parameters
- $h_{i,j}$: realized headway
- H : schedule headway
- $[x]_+ = \max\{0, x\}$



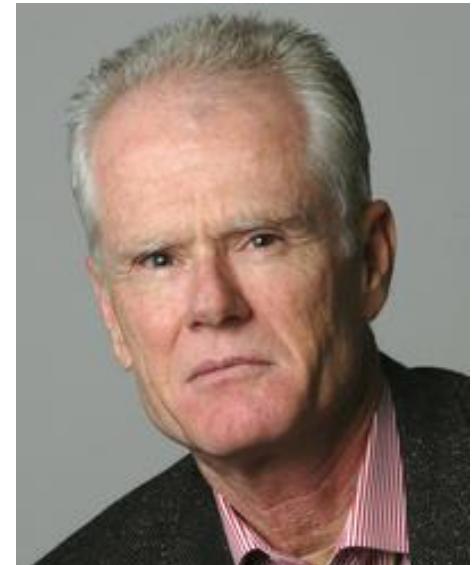
- Dynamic delay method

- Instead of a constant buffer time, add a dynamic delay $d_{i,j}$ for bus i at stop j
 - strategy proposed by Prof. Carlos Daganzo

$$d_{i,j} = [b - (\alpha + \beta)(h_{i,j} - H)]_+$$

where

- b : stop-wise buffer time
- α : ratio of average inter-stop travel time to scheduled headway
- β : extra inter-stop time per unit headway difference
- $h_{i,j}$: realized headway
- H : schedule headway
- $[x]_+ = \max\{0, x\}$



- Dynamic delay method
 - Instead of a constant buffer time, add a dynamic delay $d_{i,j}$ for bus i at stop j
 - an extension considering the real-time coordination

$$d_{i,j} = [k_0 + k_1(h_{i,j} - h) + k_2(h_{i+1,j} - h)]_+$$

- add more delay to bus i at stop j if bus $i + 1$ comes late
- **Q: Is $h_{i+1,j}$ available when computing $d_{i,j}$?**

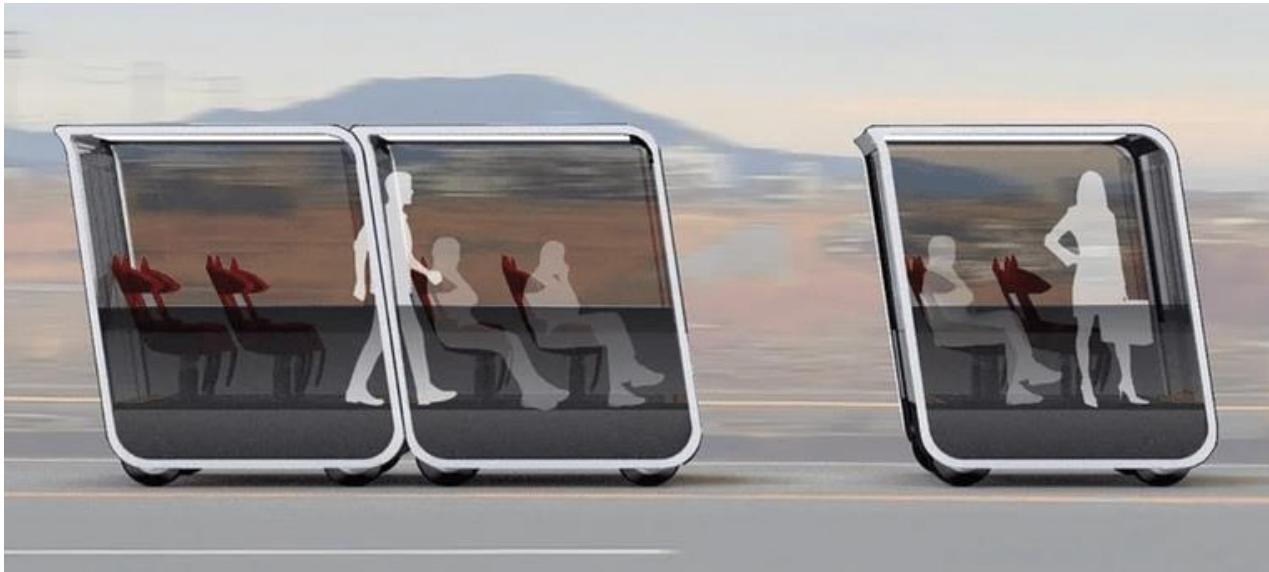
- Dynamic delay method
 - Instead of a constant buffer time, add a dynamic delay $d_{i,j}$ for bus i at stop j
 - an extension considering the real-time coordination

$$d_{i,j} = [k_0 + k_1(h_{i,j} - h) + k_2(\tilde{h}_{i+1,j} - h)]_+$$

- add more delay to bus i at stop j if bus $i + 1$ comes late
- approximate $h_{i+1,j}$ by upstream headway of bus $i + 1$, e.g., $h_{i+1,j-1}$

Questions?

- Autonomous modular vehicle (AMV)

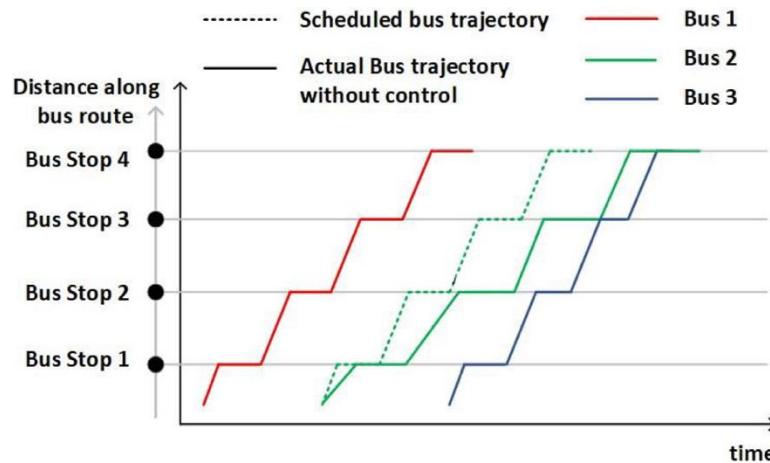


Autonomous modular vehicle (NEXT Future Transportation)

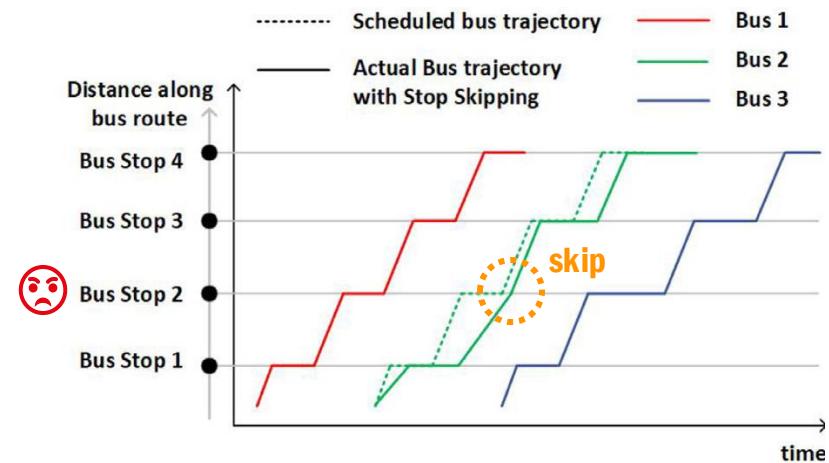
<https://youtu.be/kJlQaCIUHTI?si=WikiUsa1SBREugy6>

- Bus-splitting method

- Baseline method: stop skipping
 - skip some stops to catch up the schedule
 - passengers at the skipped stop suffer from a doubled headway



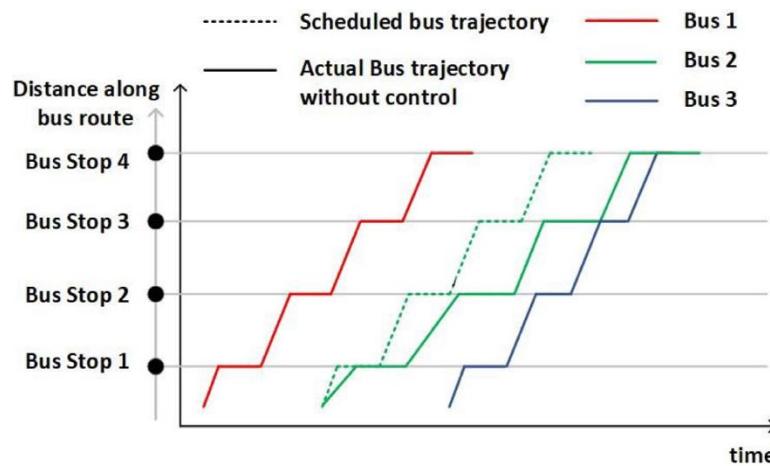
(a) No control



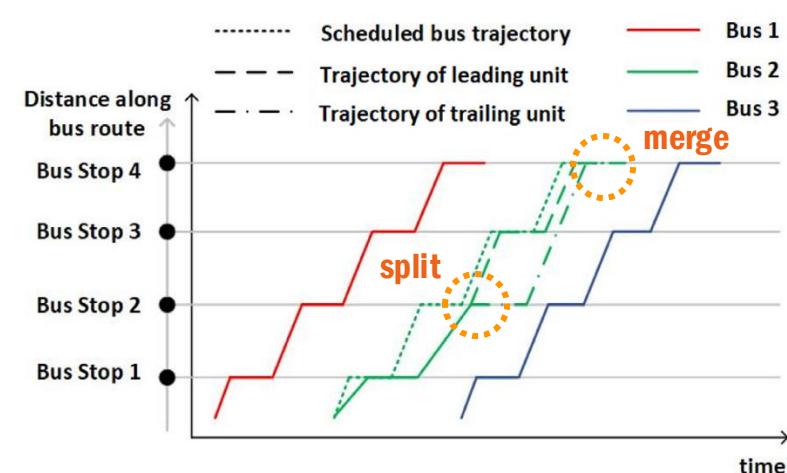
(b) Stop-Skipping

- Bus-splitting method

- Vehicle split into modules when a delay occurs
- Each module only serves some stops but skips the others
- Modules merge once catching up the schedule



(a) No control



(c) Bus-Splitting

Questions?