

Spring 2025

02 Shuttle system

CML-324 Urban public transport systems

Before we start

- Share this to your family and friends who regularly commute by car

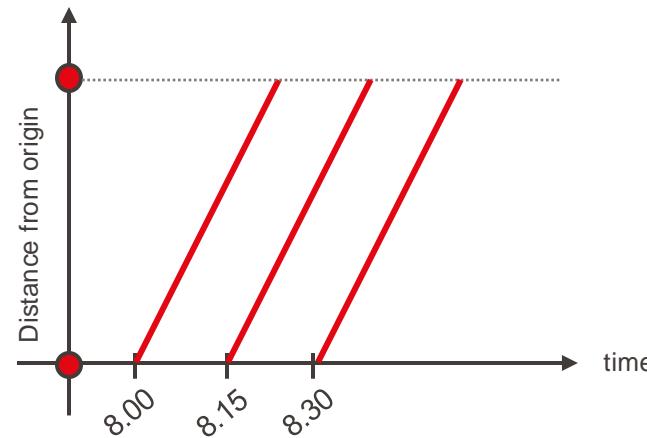
What is a shuttle system?

- The simplest transit system with a single origin and destination

Schedule

id	Departure	Arrival
1	8.00	8.20
2	8.15	8.35
3	8.30	8.50
...

Time-space diagram



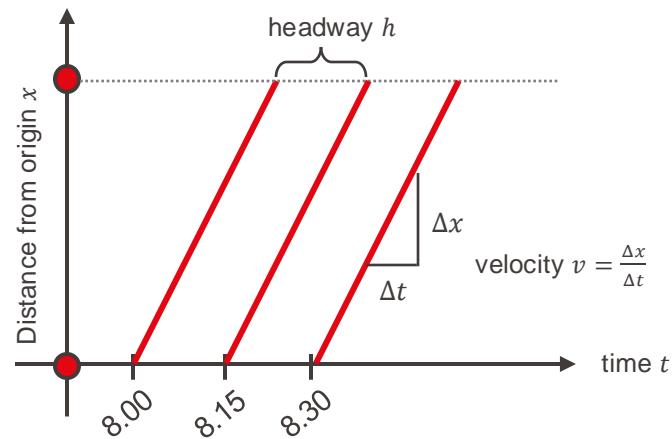
What is a shuttle system?

- The simplest transit system with a single origin and destination

Schedule

id	Departure	Arrival
1	8.00	8.20
2	8.15	8.35
3	8.30	8.50
...

Time-space diagram



How to design a shuttle system?

- Suppose we replace tl1 with an EPFL shuttle
 - Morning: Lausanne Gare → EPFL
 - Evening: EPFL → Lausanne Gare
- **Q: What are the design variables and necessary inputs?**

How to design a shuttle system?

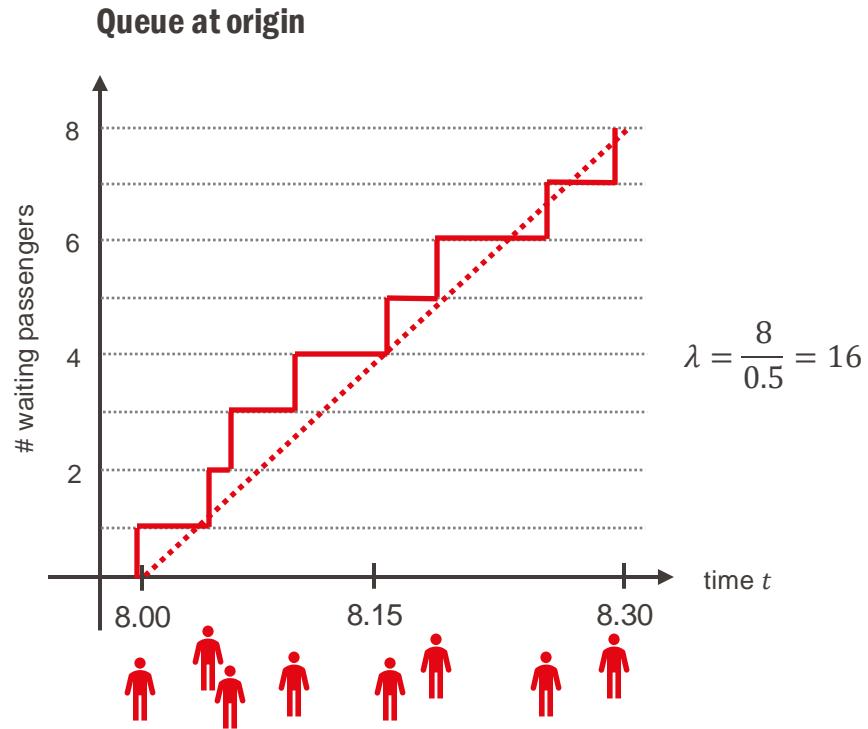
- Suppose we replace tl1 with an EPFL shuttle
 - Morning: Lausanne Gare → EPFL
 - Evening: EPFL → Lausanne Gare
- Design variables
 - Timetable
 - Vehicle size
 - Fare
 - ...
- Design inputs
 - Potential demand
 - Vehicle speed
 - Service sensitivity
 - ...



Base model

- Assumptions

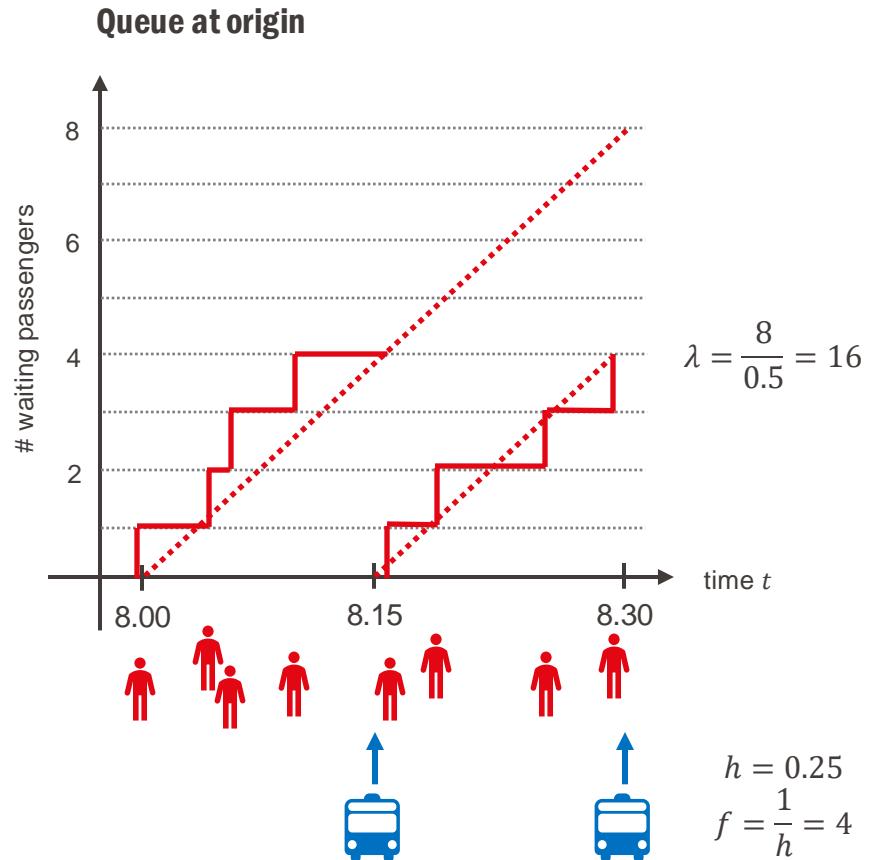
- Travelers randomly arrival at the origin stop
- Approximated by aggregate arrival rate λ (pax/hr)



Base model

- Assumptions

- Travelers randomly arrive at the origin stop
- Approximated by aggregate arrival rate λ (pax/hr)
- Shuttles depart from the origin stop at frequency f (/hr)
 - correspond to headway $h = 1/f$ (hr)
- Shuttles have equal and sufficiently large capacity κ (pax)
 - queue restart after each shuttle

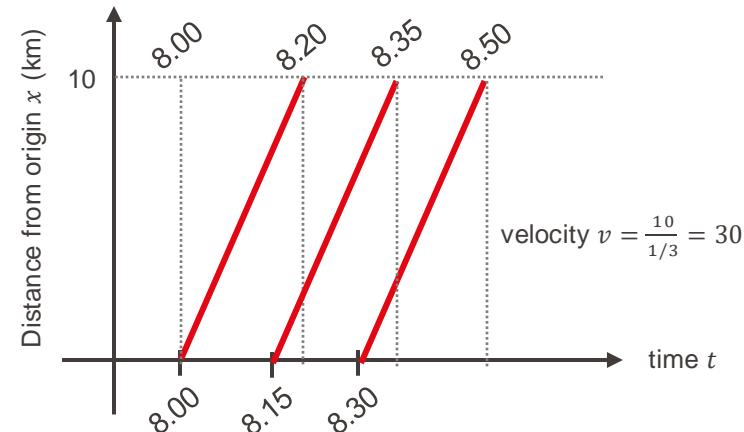


Base model

- Assumptions

- Travelers randomly arrival at the origin stop
- Approximated by aggregate arrival rate λ (pax/hr)
- Shuttles depart from the origin stop at frequency f (/hr)
 - correspond to headway $h = 1/f$ (hr)
- Shuttles have equal and sufficiently large capacity κ (pax)
 - queue restart after each shuttle
- Shuttles run at speed v (km/hr)
 - constant travel time τ (hr)

Time-space diagram



- Design problem
 - Determine the shuttle frequency f to **minimize** the total system cost $TC(f)$

$$\min_f \quad TC(f) = cf + \beta\lambda(w + \tau)$$

- c : operation cost per shuttle (CHF)
- f : shuttle frequency (1/hr)
- β : value of time (CHF/hr)
- λ : demand rate (pax/hr)
- w : average waiting time (hr)
- τ : shuttle travel time (hr)

- **Q: Why shuttle fare is not considered?**

- Design problem
 - Determine the shuttle frequency f to **minimize** the total system cost $TC(f)$?

$$\min_f \quad TC(f) = cf + \beta\lambda(w + \tau)$$

- c : operation cost per shuttle (CHF)
- f : shuttle frequency (1/hr)
- β : value of time (CHF/hr)
- λ : demand rate (pax/hr)
- w : average waiting time (hr)
- τ : shuttle travel time (hr)

- **Q: How to estimate average waiting time w ?**

- Design problem
 - Determine the shuttle frequency f to **minimize** the total system cost $TC(f)$?

$$\min_f \quad TC(f) = cf + \beta\lambda(w + \tau)$$

- c : operation cost per shuttle (CHF)
- f : shuttle frequency (1/hr)
- β : value of time (CHF/hr)
- λ : demand rate (pax/hr)
- w : average waiting time (hr)
- τ : shuttle travel time (hr)

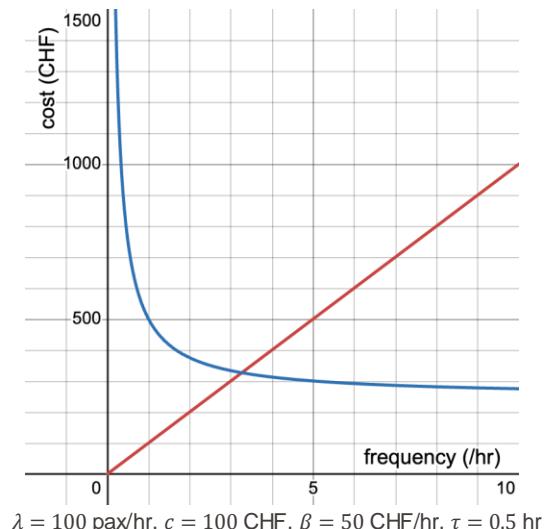
- Assume passengers randomly arrive between two shuttles

$$w = \frac{h}{2} = \frac{1}{2f}$$

- Design problem
 - Determine the shuttle frequency f to **minimize** the total system cost $TC(f)$?

$$\min_f TC(f) = cf + \beta\lambda \left(\frac{1}{2f} + \tau \right)$$

- **Operation cost**
 - linearly increase with frequency
- **User cost**
 - inverse-linearly decrease with frequency
- There is some frequency that $\min TC(f)$



- Design problem
 - Determine the shuttle frequency f to **minimize** the total system cost $TC(f)$?

$$\min_f TC(f) = cf + \beta\lambda \left(\frac{1}{2f} + \tau \right)$$

- First-order condition

$$\frac{\partial TC(f)}{\partial f} = c - \frac{\beta\lambda}{2f^2} = 0$$

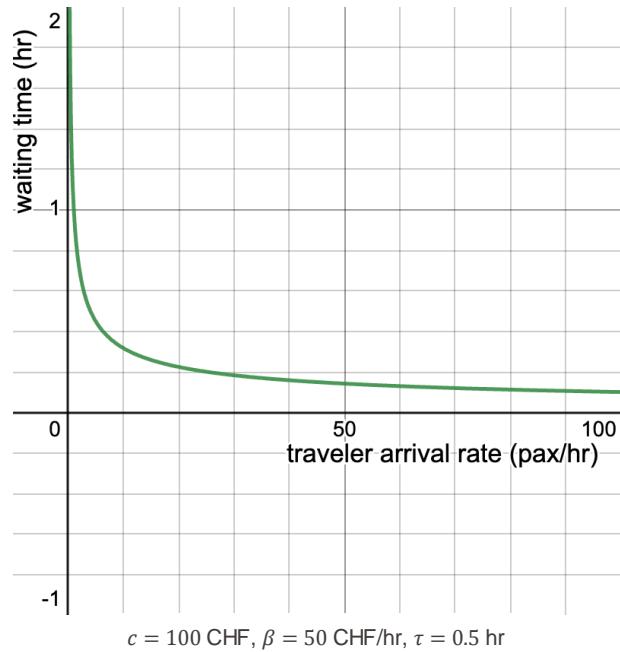
$$\Rightarrow f^* = \sqrt{\frac{\beta\lambda}{2c}}$$

Base model

- Issue of the optimal frequency

$$w^* = \frac{1}{2f^*} = \sqrt{\frac{c}{2\beta \lambda}}$$

- ***Q: How does waiting time change with travel demand?***



Base model

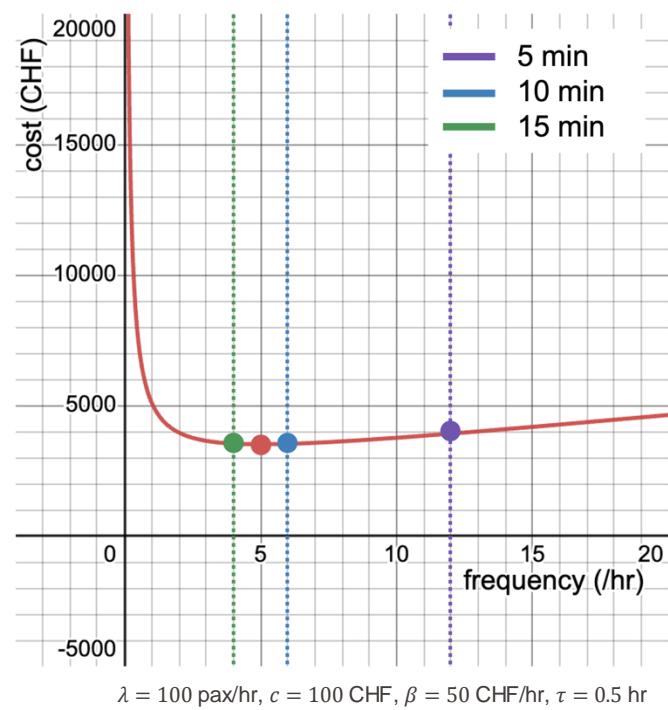
- Issue of the optimal frequency

$$w^* = \frac{1}{2f^*} = \sqrt{\frac{c}{2\beta \lambda}}$$

- Max waiting time w_{\max}
 - correspond to a min frequency $f_{\min} = \frac{1}{2w_{\max}}$

$$\min_f \quad TC(f) = cf + \beta\lambda \left(\frac{1}{2f} + \tau \right)$$

$$s.t. \quad f \geq f_{\min}$$

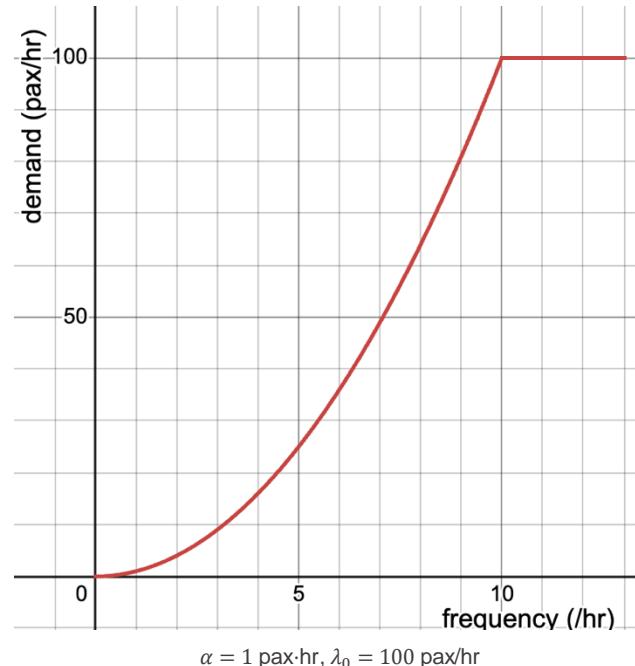


Questions?

Extension I: Service-sensitive demand

- Elastic demand
 - Total travel demand λ_0 (pax/hr)
 - The longer travel time, the fewer passengers
 - if $f \searrow$, then $w \nearrow$ and $\lambda \searrow$
 - Backup option with fixed total travel time τ_0 (hr) and operation cost c_0 (CHF/pax)
 - with demand $\lambda_0 - \lambda$ (pax/hr)
 - Simple demand function

$$\lambda(f) = \begin{cases} \alpha f^2, & 0 \leq f \leq \sqrt{\lambda_0/\alpha} \\ \lambda_0, & \text{otherwise} \end{cases}$$



- Problem I: min shuttle system cost

$$\min_f \quad TC_{\text{shuttle}}(f) = cf + \beta\lambda(f) \left(\frac{1}{2f} + \tau \right)$$

- Problem II: min total system cost

$$\min_f \quad TC_{\text{all}}(f) = TC_{\text{shuttle}}(f) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

- ***Q: What are solutions to these two problems?***

- Problem I: min shuttle system cost

$$\min_f \quad TC_{\text{shuttle}}(f) = cf + \beta\lambda(f) \left(\frac{1}{2f} + \tau \right)$$

$$\frac{\partial TC_{\text{shuttle}}(f)}{\partial f} = c + \frac{\alpha\beta}{2} + 2\alpha\beta\tau f > 0 \Rightarrow f^* = 0$$

- **Q: What is the physical meaning?**

- Problem II: min total system cost

$$\min_f \quad TC_{\text{all}}(f) = TC_{\text{shuttle}}(f) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

- Case 1: all demand is served by shuttles, i.e., $\lambda(f) = \lambda_0 \Rightarrow f \geq \sqrt{\lambda_0/\alpha}$

$$\begin{aligned} \min_f \quad & TC_{\text{all}}(f) = cf + \beta\lambda_0\left(\frac{1}{2f} + \tau\right) \\ \frac{\partial TC_{\text{all}}(f)}{\partial f} = & c - \frac{\beta\lambda_0}{2f^2} = 0 \Rightarrow f = \sqrt{\beta\lambda_0/2c} \end{aligned}$$

- Case 1.1: $\sqrt{\beta\lambda_0/2c} < \sqrt{\lambda_0/\alpha}$
 - possible minimizer $f^* = \sqrt{\lambda_0/\alpha}$
- Case 1.2: $\sqrt{\beta\lambda_0/2c} \geq \sqrt{\lambda_0/\alpha}$
 - possible minimizer $f^* = \sqrt{\beta\lambda_0/2c}$

Extension I: Service-sensitive demand

- Problem II: min total system cost

$$\min_f \quad TC_{\text{all}}(f) = TC_{\text{shuttle}}(f) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

- Case 2: partial demand is served by shuttles, i.e., $f < \sqrt{\lambda_0/\alpha}$, and unserved demand is not costly, i.e., $\beta\tau_0 + c_0 < \beta\tau$

$$\min_f \quad TC_{\text{all}}(f) = cf + \beta\lambda(f)\left(\frac{1}{2f} + \tau\right) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

$$\frac{\partial TC_{\text{all}}(f)}{\partial f} = c + \frac{\alpha\beta}{2} - 2\alpha[\beta(\tau_0 - \tau) + c_0]f > 0$$

- possible minimizer $f^* = 0$

- Problem II: min total system cost

$$\min_f \quad TC_{\text{all}}(f) = TC_{\text{shuttle}}(f) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

- Case 3: partial demand is served by shuttles, i.e., $f < \sqrt{\lambda_0/\alpha}$, and unserved demand is costly, i.e., $\beta\tau_0 + c_0 > \beta\tau$

$$\min_f \quad TC_{\text{all}}(f) = cf + \beta\lambda(f)\left(\frac{1}{2f} + \tau\right) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

$$\frac{\partial TC_{\text{all}}(f)}{\partial f} = c + \frac{\alpha\beta}{2} - 2\alpha[\beta(\tau_0 - \tau) + c_0]f$$

- local maximizer $\frac{\partial TC_{\text{all}}(f)}{\partial f} = 0 \Rightarrow f^+ = \frac{2c + \alpha\beta}{4\alpha[\beta(\tau_0 - \tau) + c_0]} > 0$

- Problem II: min total system cost

$$\min_f \quad TC_{\text{all}}(f) = TC_{\text{shuttle}}(f) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

- Case 3: partial demand is served by shuttles, i.e., $f < \sqrt{\lambda_0/\alpha}$, and unserved demand is costly, i.e., $\beta\tau_0 + c_0 > \beta\tau$

$$\min_f \quad TC_{\text{all}}(f) = cf + \beta\lambda(f)\left(\frac{1}{2f} + \tau\right) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

$$\frac{\partial TC_{\text{all}}(f)}{\partial f} = c + \frac{\alpha\beta}{2} - 2\alpha[\beta(\tau_0 - \tau) + c_0]f$$

- Case 3.1: $f^+ \geq \sqrt{\lambda_0/\alpha}$
 - possible minimizer $f^* = 0$
- Case 3.2: $0 < f^+ < \sqrt{\lambda_0/\alpha}$
 - possible minimizer $f^* = \arg \min\{TC_{\text{all}}(0), TC_{\text{all}}(\sqrt{\lambda_0/\alpha})\}$

Extension I: Service-sensitive demand

- Problem II: min total system cost

$$\min_f \quad TC_{\text{all}}(f) = TC_{\text{shuttle}}(f) + (\lambda_0 - \lambda(f))(\beta\tau_0 + c_0)$$

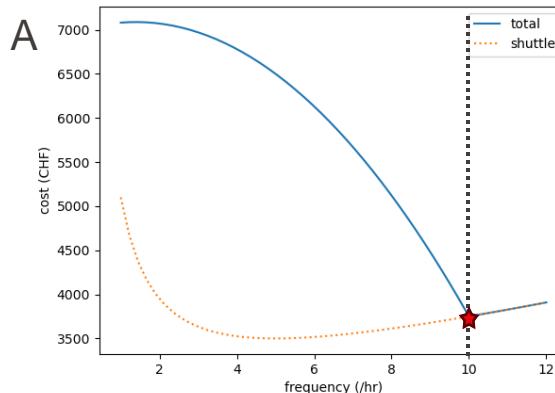
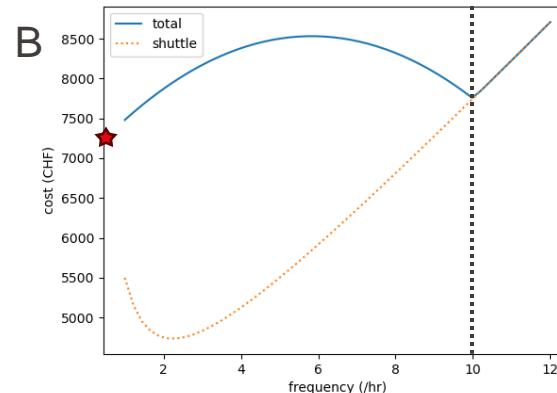
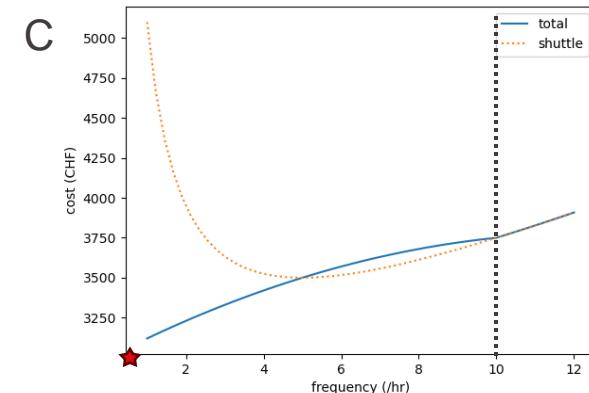
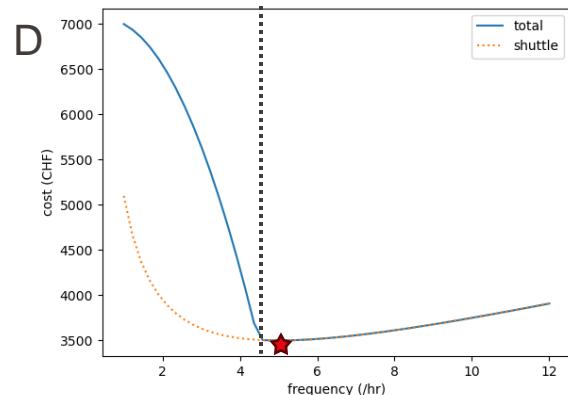
- Summary

Case	Possible f^*
1.1	$\sqrt{\lambda_0/\alpha}$
1.2	$\sqrt{\beta\lambda_0/2c}$
2	0
2.1	0
2.2	0 or $\sqrt{\lambda_0/\alpha}$

- Condition 1 (**C1**): $\sqrt{\beta\lambda_0/2c} < \sqrt{\lambda_0/\alpha}$
 - the optimal frequency of base model with demand λ_0 is lower than the threshold frequency
- Condition 2 (**C2**): $0 < \frac{2c+\alpha\beta}{4\alpha[\beta(\tau_0-\tau)+c_0]} < \sqrt{\lambda_0/\alpha}$
 - the frequency that yields the max cost is smaller than the threshold frequency
- Condition 3 (**C3**): $TC_{\text{all}}(0) < TC_{\text{all}}(\sqrt{\lambda_0/\alpha})$
 - the system cost without the shuttle service is lower than that at the threshold frequency

Extension I: Service-sensitive demand

- Graphical illustration of optimal solution



	C1	C2	C3	f^*
A	Y	Y	N	$\sqrt{\lambda_0/\alpha}$
B	Y	Y	Y	0
C	Y	N	Y	0
D	N			$\sqrt{\beta\lambda_0/2c}$

★ optimal
— TC Ext. 1
— TC Base

Extension II: Limited vehicle capacity

- Unserved demand

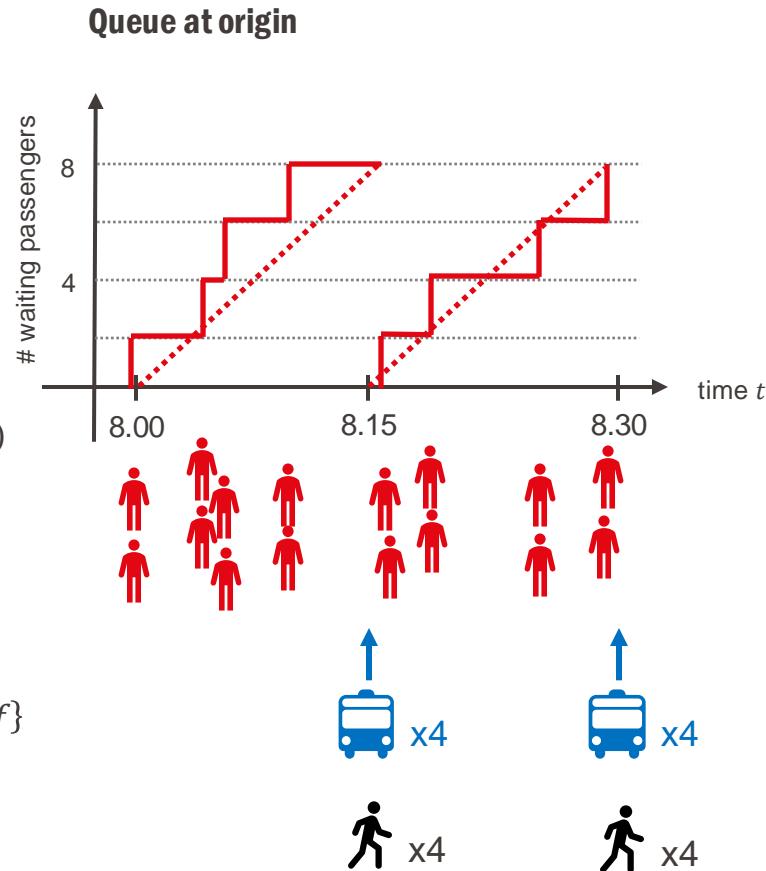
- Passenger abandon queue if not able to board the first shuttle
- Unserved passengers take backup option with travel time τ_0
- Penalty for each unserved traveler

$$\rho = \beta \left(\frac{1}{2f} + \tau_0 \right) - \beta \left(\frac{1}{2f} + \tau \right) = \beta(\tau_0 - \tau)$$

- Penalty of each shuttle and each hour

$$P_{\text{shuttle}}(f, \kappa) = \rho \max \left\{ 0, \frac{\lambda}{f} - \kappa \right\}$$

$$P(f, \kappa) = f P_{\text{shuttle}}(f, \kappa) = \rho \max \{ 0, \lambda - \kappa f \}$$



Extension II: Limited vehicle capacity

- Problem I: fixed vehicle capacity

$$\min_f \quad TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Problem II: jointly design frequency and vehicle capacity

$$\min_{f, \kappa} \quad TC_{\text{cap}}(f, \kappa) = c(\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

$$c(\kappa) = k_0 + k_1\kappa$$

- k_0 : fixed cost (CHF)
- k_1 : variable cost (CHF/veh)

- ***Q: What are solutions to these two problems?***

Extension II: Limited vehicle capacity

- Problem I: fixed vehicle capacity

$$\min_f \quad TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Case 1: capacity is sufficient, i.e., $\kappa f \geq \lambda$

$$\min_f \quad TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right)$$

$$\frac{\partial TC_{\text{cap}}(f)}{\partial f} = c - \frac{\beta\lambda}{2f^2} = 0 \Rightarrow f = \sqrt{\frac{\beta\lambda}{2c}}$$

- Case 1.1: $\sqrt{\beta\lambda/2c} < \lambda/\kappa$
 - possible minimizer $f^* = \lambda/\kappa$
- Case 1.2: $\sqrt{\beta\lambda/2c} \geq \lambda/\kappa$
 - possible minimizer $f^* = \sqrt{\beta\lambda/2c}$

Extension II: Limited vehicle capacity

- Problem I: fixed vehicle capacity

$$\min_f \quad TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Case 2: capacity is insufficient, i.e., $\kappa f < \lambda$, and unserved demand is more costly than unit vehicle capacity, i.e., $\beta(\tau_0 - \tau)\kappa > c$

$$\min_f \quad TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right) + \beta(\tau_0 - \tau)(\lambda - \kappa f)$$

$$\frac{\partial TC_{\text{cap}}(f)}{\partial f} = c - \beta(\tau_0 - \tau)\kappa - \frac{\beta\lambda}{2f^2} < 0$$

- possible minimizer $f^* = \lambda/\kappa$

Extension II: Limited vehicle capacity

- Problem I: fixed vehicle capacity

$$\min_f \quad TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Case 3: capacity is insufficient, i.e., $\kappa f < \lambda$, and unserved demand is less costly than unit vehicle capacity, i.e., $\beta(\tau_0 - \tau)\kappa \leq c$

$$\begin{aligned} \min_f \quad & TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right) + \beta(\tau_0 - \tau)(\lambda - \kappa f) \\ \frac{\partial TC_{\text{cap}}(f)}{\partial f} = & c - \beta(\tau_0 - \tau)\kappa - \frac{\beta\lambda}{2f^2} = 0 \Rightarrow f = \sqrt{\frac{\beta\lambda}{2[c - \beta(\tau_0 - \tau)\kappa]}} \end{aligned}$$

- Case 3.1: $\sqrt{\frac{\beta\lambda}{2[c - \beta(\tau_0 - \tau)\kappa]}} < \lambda/\kappa$
 - possible minimizer $f^* = \sqrt{\frac{\beta\lambda}{2[c - \beta(\tau_0 - \tau)\kappa]}}$
- Case 3.2: $\sqrt{\frac{\beta\lambda}{2[c - \beta(\tau_0 - \tau)\kappa]}} \geq \lambda/\kappa$
 - possible minimizer $f^* = \lambda/\kappa$

Extension II: Limited vehicle capacity

- Problem I: fixed vehicle capacity

$$\min_f \quad TC_{\text{cap}}(f) = cf + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

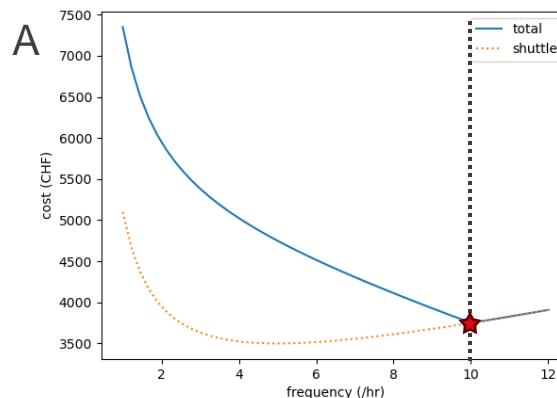
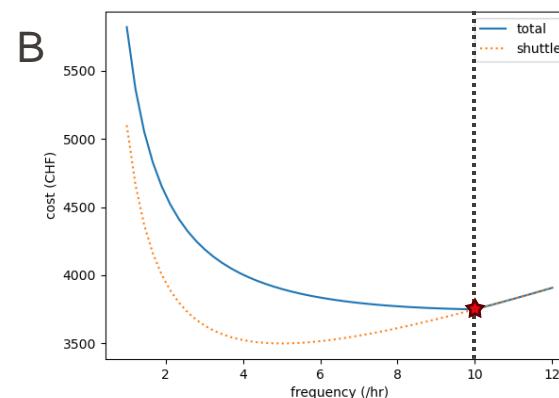
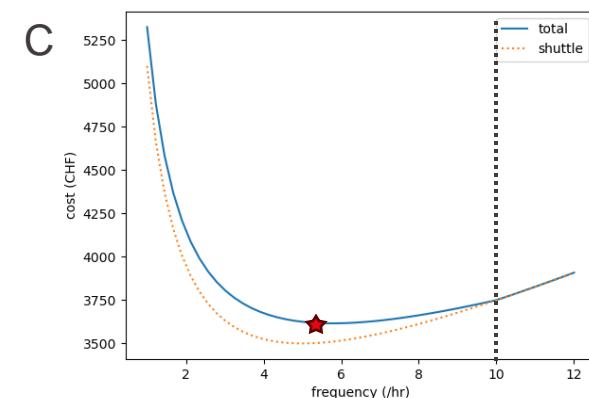
- Summary

Case	Possible f^*
1.1	λ/κ
1.2	$\sqrt{\beta\lambda/2c}$
2	λ/κ
2.1	$\sqrt{\frac{\beta\lambda}{2[c-\beta(\tau_0-\tau)\kappa]}}$
2.2	λ/κ

- Condition 1 (**C1**): $\sqrt{\beta\lambda/2c} < \lambda/\kappa$
 - the optimal frequency of base model is lower than the threshold frequency
- Condition 2 (**C2**): $\beta(\tau_0 - \tau) > c/\kappa$
 - unserved demand is more costly than unit vehicle capacity
- Condition 3 (**C3**): $\sqrt{\frac{\beta\lambda}{2[c-\beta(\tau_0-\tau)\kappa]}} < \lambda/\kappa$
 - the optimal frequency considering unserved model is lower than the threshold frequency

Extension II: Limited vehicle capacity

- Graphical illustration of optimal solution



	C1	C2	C3	f^*
A	Y	N		λ/κ
B	Y	Y	N	λ/κ
C	Y	Y	Y	$\sqrt{\frac{\beta\lambda}{2[c - \beta(\tau_0 - \tau)\kappa]}}$
D	N			$\sqrt{\beta\lambda_0/2c}$

★ optimal
— TC Ext. II
... TC Base

Extension II: Limited vehicle capacity

- Problem II: jointly design frequency and vehicle capacity

$$\min_{f, \kappa} \quad TC_{\text{cap}}(f, \kappa) = c(\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Case 1: capacity is sufficient, i.e., $\kappa f \geq \lambda$

$$\min_{f, \kappa} \quad TC_{\text{cap}}(f, \kappa) = (k_0 + k_1\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right)$$

$$\frac{\partial TC_{\text{cap}}(f, \kappa)}{\partial \kappa} = k_1f > 0 \Rightarrow \kappa^* = \lambda/f \text{ plugging in } TC_{\text{cap}}(f, \kappa)$$

$$\min_f \quad TC_{\text{cap}}(f) = k_0f + k_1\lambda + \beta\lambda\left(\frac{1}{2f} + \tau\right)$$

- Possible minimizer $f^* = \sqrt{\frac{\beta\lambda}{2k_0}}, \kappa^* = \sqrt{\frac{2k_0\lambda}{\beta}}$

Extension II: Limited vehicle capacity

- Problem II: jointly design frequency and vehicle capacity

$$\min_{f, \kappa} \quad TC_{\text{cap}}(f, \kappa) = c(\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Case 2: capacity is insufficient, i.e., $\kappa f < \lambda$, and unserved demand is more costly than unit vehicle capacity, i.e., $\beta(\tau_0 - \tau) \geq k_1$

$$\min_{f, \kappa} \quad TC_{\text{cap}}(f, \kappa) = (k_0 + k_1\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + \beta(\tau_0 - \tau)(\lambda - \kappa f)$$

$$\frac{\partial TC_{\text{cap}}(f, \kappa)}{\partial \kappa} = [k_1 - \beta(\tau_0 - \tau)]f < 0 \Rightarrow \kappa^* = \lambda/f \text{ plugging in } TC_{\text{cap}}(f, \kappa)$$

$$\min_f \quad TC_{\text{cap}}(f) = k_0f + k_1\lambda + \beta\lambda\left(\frac{1}{2f} + \tau\right)$$

- Possible minimizer $f^* = \sqrt{\frac{\beta\lambda}{2k_0}}, \kappa^* = \sqrt{\frac{2k_0\lambda}{\beta}}$

Extension II: Limited vehicle capacity

- Problem II: jointly design frequency and vehicle capacity

$$\min_{f, \kappa} \quad TC_{\text{cap}}(f, \kappa) = c(\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Case 3: capacity is insufficient, i.e., $\kappa f < \lambda$, and unserved demand is less costly than unit vehicle capacity, i.e., $\beta(\tau_0 - \tau) < k_1$

$$\min_{f, \kappa} \quad TC_{\text{cap}}(f, \kappa) = (k_0 + k_1\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + \beta(\tau_0 - \tau)(\lambda - \kappa f)$$

$$\frac{\partial TC_{\text{cap}}(f, \kappa)}{\partial \kappa} = [k_1 - \beta(\tau_0 - \tau)]f > 0 \Rightarrow \kappa^* = 0 \text{ plugging in } TC_{\text{cap}}(f, \kappa)$$

$$\min_f \quad TC_{\text{cap}}(f) = k_0f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + \lambda\beta(\tau_0 - \tau)$$

- Possible minimizer $f^* = \sqrt{\frac{\beta\lambda}{2k_0}}, \kappa^* = 0$

- Q: Is this solution feasible? Why is it mathematically correct?**

Extension II: Limited vehicle capacity

- Problem II: jointly design frequency and vehicle capacity

$$\min_{f,\kappa} \quad TC_{\text{cap}}(f, \kappa) = c(\kappa)f + \beta\lambda\left(\frac{1}{2f} + \tau\right) + P(f, \kappa)$$

- Summary

Case	Possible f^*	Possible κ^*
1	$\sqrt{\beta\lambda/2k_0}$	$\sqrt{2k_0\lambda/\beta}$
2	$\sqrt{\beta\lambda/2k_0}$	$\sqrt{2k_0\lambda/\beta}$
3	0	0

- Condition: $\beta(\tau_0 - \tau) < k_1$
 - unserved demand is more costly than unit vehicle capacity

Questions?