
Méthode des éléments �nis :

les pièges à éviter

Jérémy Bleyer

Modélisation numérique des solides et structures
25 mai 2016

Jérémy Bleyer Les pièges de la MEF 25 mai 2016 1 / 30



Le problème de Girkmann : attention à la "boîte noire"
Benchmark numérique proposé aux ingénieurs pour tester leurs méthodes

Résultat Q [N/m ] M [Nm/m]
1 940.9 -36.63
2 593.8 -140.12
3 1140.0 -205.00
4 16660.0 17976.6
5 963.2 -33.73
6 1015.7 86.30
7 989.1 -89.11

15 résultats obtenus avec di�érentes
hyothèses de modélisation
Qex ≈ 944 N/m, Mex ≈ −37 Nm/m
amplitude des erreurs
erreurs de signe
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Prendre en main un nouveau logiciel

di�érentes interfaces, di�érents types d'éléments �nis, de loi de comportement, de
technique de résolution, etc...

lire la documentation

lancer les exemples fournis avec le logiciel (tutoriels)

tester sur des cas simples + comparaison avec solutions analytiques
I traction/compression simple 2D/3D
I cylindre sous pression
I poutre console...

on peut trouver des bugs !
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Généralités

Généralités

Quelques étourderies/erreurs fréquentes

propriétés matérielles non a�ectées

division entière 1/2 = 0

mauvaises valeurs numériques : choix des unités

conditions aux limites insu�santes ⇒ mécanisme

ν = 0.5 ⇒ matrice de rigidité singulière

Quelques conseils

véri�er que la solution en déplacement satisfait les CL en déplacement

véri�er que la solution en contrainte est cohérente avec les CL en
contraintes (bords libres, e�orts surfaciques) : les champs de contrainte
calculés ne sont pas nécessairement SA

tirer parti des symétries du problème (avec les CL appropriées)

travailler en unités SI
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Pièges liés à la modélisation du problème

Sommaire

1 Généralités

2 Pièges liés à la modélisation du problème

3 Pièges liés à la discrétisation du problème

4 Pièges liés à la résolution du problème

5 Pièges liés à l'interprétation des résultats

6 Conclusion

Jérémy Bleyer Les pièges de la MEF 25 mai 2016 4 / 30



Pièges liés à la modélisation du problème

Choix de modélisation

Résolution d'un problème passe tout d'abord par un choix de modélisation
Ex. du problème de Girkmann :

modèle axisymétrique ou modèle 3D complet ?

modèle de coque ou milieu continu ?

modèle de poutre ou milieu continu ?

dans un second temps, quel type d'élément �ni (linéaire, quadratique,...) pour le
modèle choisi ?
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Pièges liés à la modélisation du problème

Traction d'une plaque mince

épaisseur faible : modèle 2D en contraintes planes
plaque 1 x 0.4, épaisseur 0.1, force volumique uniforme suivant x

Energie élastique :
E3D − E2D

E3D

≈ 1.3%
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Pièges liés à la modélisation du problème

Traction plaque mince

domaine de validité des modèles mécaniques
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Pièges liés à la modélisation du problème

Plaque mince en �exion

plaques minces en 3D :
1 élément dans l'épaisseur ?

plaque 1 x 0.4, épaisseur 0.1, force
volumique uniforme suivant z ,
1 élément dans l'épaisseur
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Pièges liés à la modélisation du problème

Plaque mince en �exion

Eléments linéaires (Tet4) Eléments quadratiques (Tet10)

Flexion en élasticité : les contraintes axiales varient linéairement dans l'épaisseur

degré d'interpolation : augmenter le degré d'interpolation = "p-re�nement"
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Pièges liés à la modélisation du problème

Validation poutre console

On cherche à valider un code EF 3D sur le problème d'une poutre console sous
charge volumique uniforme : L = 10, h = b = 1, E = 104, ν = 0, f = 1

wtheo =
qL4

8EI
=

12fL4

8Eh2
= 1.5

10N × N × N él. Tet. linéaires
N wnum Erreur
1 0.374 75.1%
5 1.33125 11.25%
10 1.46177 2.55%
20 1.49905 0.06%
40 1.50871 -0.58%

Théorie de poutre de Timoshenko (κ = 5/6) :

wTim =
qL4

8EI

(
1+

4EI

κµAL2

)
= wEB

(
1+ 0.8

(
h

L

)2
)

= 1.512

domaine de validité des modèles mécaniques
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Pièges liés à la discrétisation du problème
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Pièges liés à la discrétisation du problème

Génération de maillage

Générer un maillage peut être une étape relativement complexe : il se peut que
cette étape soit elle-même source d'erreur

dé�nition de la géométrie

qualité des éléments

conversion de format

Suivant l'algorithme choisi pour la génération de maillage, un maillage 3D peut
contenir : des tétraèdres, des hexaèdres, des pyramides, des prismes...
certains codes EF n'acceptent pas toutes les formes...
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Pièges liés à la discrétisation du problème

Qualité du maillage
Pour augmenter la précision de la solution, une bonne pratique consiste à ra�ner
le maillage dans les zones sources de potentielles singularités :

coins

e�orts concentrés

interfaces, discontinuités de propriétés matérielles

Convergence de la solution par rapport à la taille de maille, en termes de :
déplacement, contraintes, énergie
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Pièges liés à la discrétisation du problème

Qualité du maillage

La forme des éléments importe également sur la qualité de l'approximation :

les éléments ne doivent pas être trop allongés (si solution ≈ isotrope)

Mesure du rapport d'aspect, par ex. :

R =
rayon cercle circonscrit

2× rayon cercle inscrit
=

rcir

2rins

(Requilateral = 1)
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Pièges liés à la discrétisation du problème

Qualité du maillage

Suivant la provenance du maillage, il peut présenter des défauts :

n÷uds non connectés

éléments se superposant

maillage non conforme

il se peut que le calcul élément �ni soit possible même avec ces défauts, mais la
solution EF sera di�érente de celle attendue
certains mailleurs peuvent détecter et résoudre automatiquement ces problèmes
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Pièges liés à la résolution du problème
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Pièges liés à la résolution du problème

Résolution de systèmes linéaires

La solution EF (en élasticité linéaire, HPP) revient à résoudre un système
linéaire de la forme :

[K]{d} = {F} (1)

en pratique, on ne calcule jamais [K]−1 mais on trouve {d∗} qui véri�e (1)

Di�érentes techniques

solveurs directs : on construit une factorisation de [K] (LU, Cholesky,...)
dont l'"inversion" est immédiate

solveurs itératifs : on construit de manière itérative (gradient conjugué,
Gauss-Seidel,...) une suite de candidats {dk} qui va converger vers la solution
{dk} → {d∗}

Il existe toujours un résidu numérique (souvent très faible devant l'erreur EF) :

‖[K]{dcalculé} − {F}‖ = ε > 0

arrondis numériques (méthodes directes), tolérance de la convergence
(méthodes itératives)
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Gauss-Seidel,...) une suite de candidats {dk} qui va converger vers la solution
{dk} → {d∗}

Il existe toujours un résidu numérique (souvent très faible devant l'erreur EF) :

‖[K]{dcalculé} − {F}‖ = ε > 0

arrondis numériques (méthodes directes), tolérance de la convergence
(méthodes itératives)
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Pièges liés à la résolution du problème

Conditionnement de la matrice de raideur

il se peut que le système (1) soit mal résolu : mauvais choix de méthode, mauvais
choix de paramètres du solveur,... ⇒ calculer le résidu numérique

La solution est sensible au conditionnement de la matrice [K] :

cond ([K]) =
plus grande valeur propre

plus petite valeur propre
=
λmax

λmin

plus cond ([K]) est grand, plus la solution sera sensible aux perturbations

erreur max. solution = cond ([K]) · (erreur max. données)

Exemple : système à 2 ressorts avec k1 � k2[
k1 + k2 −k2
−k2 k2

]{
d1
d2

}
=

{
0
F

}
=⇒ d∗1 =

F

k1
, d∗2 =

(
1

k1
+

1

k2

)
F ∼ F

k1

cond ([K]) ∼ k2

k1
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Pièges liés à la résolution du problème

Conditionnement de la matrice de raideur

Exemple : système à 2 ressorts avec k1 � k2[
k1 + k2 −k2
−k2 k2

]{
d1
d2

}
=

{
0
F

}
=⇒ d∗1 =

F

k1
, d∗2 =

(
1

k1
+

1

k2

)
F ∼ F

k1

cond ([K]) ∼ k2

k1

perturbation dans [K] : [Kpert ] =

[
k1 + k2 + ε −k2
−k2 k2

]
Ex. k2 = 108, k1 = 0.75, F = 1, format de données en simple précision (8 chi�res
signi�catifs) : k1 + k2 ≈ k1 + k2 + ε = 108 + 1

d
pert
1

= 1, d
pert
2
≈ 1

d∗1 = 4/3 = 1.3333333..., d∗2 ≈ 1.333333

Attention donc au conditionnement de la matrice : en double précision (15
chi�res signi�catifs), on peut aller jusqu'à des conditionnements de l'ordre de 1012
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Pièges liés à la résolution du problème

Conditionnement de la matrice de raideur

Quelques sources de mauvais conditionnement :

di�érences importantes de raideurs entre matériaux : ex. précédent, zones
rigides modélisées comme des milieux élastiques de très grande raideur,
pénalisation de la raideur pour le traitement des conditions aux limites

éléments de tailles très di�érentes : ex. 2 éléments barre :

[K] = EA

[
1/L1 + 1/L2 −1/L2
−1/L2 1/L2

]
éléments de poutres très élancées : I � AL2 si h� L

[Kel ] =

EA/L 0 . . .
0 12EI/L3 . . .
. . . . . . . . .


ex. poutre L = 10m, h = 10cm, L/h = 103, cond ([K]) ≈ L2/h2 = 106.

�nesse de la discrétisation : cond ([K]) ≈ 1/(taille de maille)2

existence de modes rigides : cond ([K]) =∞
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Pièges liés à la résolution du problème

Phénomènes de verrouillage

Le verrouillage ("locking") traduit l'incapacité de certains éléments �nis à
représenter certains modes de déformation particuliers.
A maillage �xé, la qualité de la solution peut fortement se détériorer lorsque l'on
fait varier certaines caractéristiques mécaniques.

verrouillage volumique : la qualité de la solution se déteriore lorsque le
c÷�cient de Poisson ν → 1/2 (matériau incompressible)
En 2D, le problème apparaît pour une interpolation linéaire (triangles T3) :
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Pièges liés à la résolution du problème

Phénomènes de verrouillage

Le verrouillage ("locking") traduit l'incapacité de certains éléments �nis à
représenter certains modes de déformation particuliers.
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Pièges liés à la résolution du problème

Phénomènes de verrouillage

Le verrouillage ("locking") traduit l'incapacité de certains éléments �nis à
représenter certains modes de déformation particuliers.
A maillage �xé, la qualité de la solution peut fortement se détériorer lorsque l'on
fait varier certaines caractéristiques mécaniques.

verrouillage volumique : la qualité de la solution se déteriore lorsque le
c÷�cient de Poisson ν → 1/2 (matériau incompressible)
En 2D, le problème apparaît pour une interpolation linéaire (triangles T3) :

ν = 0.49
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Pièges liés à la résolution du problème

Phénomènes de verrouillage

Le verrouillage ("locking") traduit l'incapacité de certains éléments �nis à
représenter certains modes de déformation particuliers.
A maillage �xé, la qualité de la solution peut fortement se détériorer lorsque l'on
fait varier certaines caractéristiques mécaniques.

verrouillage volumique : la qualité de la solution se déteriore lorsque le
c÷�cient de Poisson ν → 1/2 (matériau incompressible)
En 2D, le problème apparaît pour une interpolation linéaire (triangles T3) :

ν = 0.499
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Pièges liés à la résolution du problème

Phénomènes de verrouillage : verrouillage volumique
Solution en déplacement semble OK mais pas celle en contraintes ! (ν = 0.499)

Le problème semble résolu avec des triangles quadratiques (T6) (ν = 0.499)

interpolation quadratique pas su�sante en général (3D notamment)
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Pièges liés à la résolution du problème

Phénomènes de verrouillage : verrouillage en cisaillement

verrouillage en cisaillement : les éléments quadrilatères linéaires (Q4) ne
représentent pas correctement la �exion simple

ux = −αxy , uy = 0 =⇒ εxy = −αx 6= 0
en �exion, Q4 présente des déformations de cisaillement parasites qui
contribuent à l'énergie de déformation lorsque l'élancement devient grand
la solution se déteriore lorsque h/L→ 0
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Pièges liés à la résolution du problème

Phénomènes de verrouillage

il existe d'autre phénomènes liés au verrouillage :

I en cisaillement pour les poutres de Timoshenko/plaques de Reissner
I en membrane pour les éléments de coque

apparaîssent lorsque les équations changent de nature : div u = 0 lorsque
ν → 1/2, θ = v ′ lorsque h/L→ 0,...
il existe des méthodes sophistiquées pour éviter le verrouillage :
intégration réduite, approches mixtes, éléments incompatibles, ...
empêcher le verrouillage peut provoquer l'apparition de modes rigides : par
ex. mode dits "hourglass" pour le Q4

=⇒ l'utilisation de ces approches requiert une certaine expérience, attention aux
choix par défaut, lire la documentation
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ex. mode dits "hourglass" pour le Q4

=⇒ l'utilisation de ces approches requiert une certaine expérience, attention aux
choix par défaut, lire la documentation
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Pièges liés à l'interprétation des résultats
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Pièges liés à l'interprétation des résultats

Représentation d'un champ mécanique

Une fois connue la solution EF discrète {u} = {ui}i=1,...,Nno
, l'interpolation

permet de remonter à un champ dé�ni sur toute la structure :

u(x) =
Nno∑
i=1

Ni (x)ui

On cherche, en général, à représenter ce champ de manière visuelle : on entre
dans la phase de post-traitement/visualisation des résultats

Certains logiciels EF utilisent des outils de post-traitement intégrés, on peut
également utiliser des logiciels dédiés à la visualisation de données (par ex.
Paraview)

cette étape peut être également à l'origine d'erreurs d'interprétation des
résultats
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Pièges liés à l'interprétation des résultats

Représentation d'un champ mécanique

Di�érents modes de représentation d'un champ de déplacement (en 2D) :

iso-surfaces iso-contours déformée vecteurs

en 3D, possibilité de faire des coupes, des projections sur des plans, etc...

Représentation d'un champ de tenseur (contraintes) :

par un scalaire : composante particulière, norme (plusieurs dé�nitions)

par des vecteurs : contraintes et directions principales
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Pièges liés à l'interprétation des résultats

Représentation d'un champ mécanique

Attention au choix de la palette de couleurs !

Déplacement suivant Z ?
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Pièges liés à l'interprétation des résultats

Représentation d'un champ mécanique

Attention au choix de la palette de couleurs !

Déplacement suivant Z ?
Jérémy Bleyer Les pièges de la MEF 25 mai 2016 25 / 30



Pièges liés à l'interprétation des résultats

Représentation d'un champ mécanique

Attention au choix de la palette de couleurs !

Déplacement suivant Z ⇒ toujours représenter l'échelle de couleurs
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Pièges liés à l'interprétation des résultats

Calcul/représentation des contraintes

Les contraintes sont, en général, calculées aux points de Gauss de l'élément
(stockage des matrices [B])

Pour pouvoir les représenter sous formes d'isovaleurs par ex., il convient
d'extrapoler ces valeurs sur toute la structure. Il y a plusieurs façons de faire :

dans un élément, on cherche un champ polynomial (par ex. d'ordre égal à
celui des déformations) qui soit le plus proche des valeurs aux points de
Gauss ⇒ le champ obtenu est discontinu d'un élément à l'autre

I pour un T3, 1 point de Gauss, déformations constantes ⇒ σ = σ(x
g
) constant

par élément

à chaque n÷ud, on calcule un champ de contrainte sous la forme d'une
moyenne des valeurs aux points de Gauss les plus proches ⇒ le champ est
continu

La MEF traditionnelle est une approche par les déplacements ! Les champs de
contraintes que l'on calcule ne sont pas en équilibre (statiquement admissibles).
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Pièges liés à l'interprétation des résultats

Contrainte maximale

Premier maillage Contrainte maximale : 1.49

Milieu continu : les contraintes divergent au niveau d'un coin rentrant/d'une
�ssure
EF : les contraintes restent �nies à maillage �xé, mais ne convergent pas en
ra�nant le maillage
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Pièges liés à l'interprétation des résultats
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Maillage 2x plus �n Contrainte maximale : 2.11
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Pièges liés à l'interprétation des résultats

Contrainte maximale

Maillage 5x plus �n Contrainte maximale : 2.69

Milieu continu : les contraintes divergent au niveau d'un coin rentrant/d'une
�ssure
EF : les contraintes restent �nies à maillage �xé, mais ne convergent pas en
ra�nant le maillage
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Pièges liés à l'interprétation des résultats

Contrainte maximale

Maillage 10x plus �n Contrainte maximale : 4.2

Milieu continu : les contraintes divergent au niveau d'un coin rentrant/d'une
�ssure
EF : les contraintes restent �nies à maillage �xé, mais ne convergent pas en
ra�nant le maillage
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Conclusion

Les résultats d'un calcul EF semblent étranges

Di�érentes sources d'erreur possibles

problème dans les données ?

problème de modélisation ?

problème de maillage ?

problème de discrétisation EF ?

problème de résolution ?

problème d'interprétation ?

Comment trouver le couplable ?

simpli�er petit à petit le problème

éliminer les suspects potentiels

faire varier les paramètres

se ramener à des cas où la solution est connue
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Conclusion

Garder un esprit critique

les calculs EF ne délivrent pas une vérité absolue

les sources d'erreurs sont nombreuses

la représentation visuelle peut fausser l'interprétation

il est bon de douter méthodiquement de ses propres calculs et de ceux des
autres

� Je pensais qu'il fallait [...] que je rejetasse comme absolument faux tout ce en quoi je pourrais
imaginer le moindre doute �, R. Descartes, Discours de la méthode, 1637
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