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2h, 30 points (2
3 du total)

Exercice 1 : Deux poutres sous charge– 10 points
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Figure 1 – Deux poutres sous charge : (a) schéma, (b) discretisation éléments finis

Considérons le système à deux poutres avec une pression appliquée et charge concentrée sur un côté, comme
représenté sur la Figure 1. Modéliser le système comme indiqué sur la figure par des éléments poutres sans
déplacement axial.

1. Donner les matrices de rigidité locales pour les élements 1 et 2. (2 pts)

Ke
1 = EI

L


12/L2 6/L −12/L2 6/L
6/L 4 −6/L 2
−12/L2 −6/L 12/L2 −6/L

6/L 2 −6/L 4

 . (1)

Ke
2 = 3EI

L


12/L2 6/L −12/L2 6/L
6/L 4 −6/L 2
−12/L2 −6/L 12/L2 −6/L

6/L 2 −6/L 4

 . (2)

2. Calculer les coefficients de la matrice de rigidité globale et le vecteur des forces global. (2 pts)



K = EI

L



12/L2 6/L −12/L2 6/L 0 0
6/L 4 −6/L 2 0 0
−12/L2 −6/L 48/L2 12/L −36/L2 18/L

6/L 2 12/L 16 −18/L 6
0 0 −36/L2 −18/L 36/L2 −18/L
0 0 18/L 6 −18/L 12


. (3)

K =



12 600 −12 600 0 0
600 40000 −600 20000 0 0
−12 −600 48 1200 −36 1800
600 20000 1200 160000 −1800 60000
0 0 −36 −1800 36 −1800
0 0 1800 60000 −1800 120000


. (4)

f =



P
0

pL/2
pL2/12

pL/2 +Ru3

−pL2/12 +Rθ3


=



4
0

2.5
41.667

2.5 +Ru3

−41.667 +Rθ3


. (5)

3. Ecrire le système d’équation à résoudre et préciser la méthode de résolution. (2 pts)


12 600 −12 600 0 0
600 40000 −600 20000 0 0
−12 −600 48 1200 −36 1800
600 20000 1200 160000 −1800 60000
0 0 −36 −1800 36 −1800
0 0 1800 60000 −1800 120000





u1
θ1
u2
θ2
u3
θ3


=



4
0

2.5
41.667

2.5 +Ru3

−41.667 +Rθ3


. (6)

Lorsque u3 et θ3 égales à zéro, quatre premières lignes sont utilisées. Il s’agit d’un système de quatre
équations et quatre inconnues.

4. Afin de faciliter les calculs, nous vous donnons le déplacement u1 = 4.9306 m et la rotation θ1 =
−0.0428 rad. Calculer les valeurs des inconnues en déplacement manquantes. (2 pts)
Utilisant la matrice de rigidité globale et le vecteur des forces global,

2.5 = −12u1 − 600θ1 + 48u2 + 1200θ2 (7)
41.67 = 600u1 + 20000θ1 + 1200u2 + 160000θ2 (8)

→ u2 = 1.3194 m et θ2 = −0.0228 rad.
5. Trouver les forces de réaction au noeud 3. (2 pts)

Utilisant la matrice de rigidité globale le vecteur des forces global (bas deux lignes),

−36u2 − 1800θ2 = 2.5 +Ru3 (9)
1800u2 + 60000θ2 = −41.67 +Rθ3 (10)

Ru3 = −9 N et Rθ3 = 1050 N·m.

2



Exercice 2 : Element plan soumis à une pression latérale – x points

Une structure dont l’épaisseur t est petite par rapport aux autres dimensions est étudiée à l’aide d’éléments
rectangulaires quadratiques. La figure 2 présente un élément de la structure.

Figure 2 – Elément rectangulaire quadratique à 8 noeuds.

1. Quel état plan permet de représenter cette structure à l’aide d’élément 2D ? Donner la matrice consti-
tutive D relative à cet état plan en fonction du module d’élasticité et du coefficient de poisson.

Pour rappel, la matrice constitutive permet de lier les contraintes aux déformations pour chaque
élément : 

σx
σy
τxy

 = D


εx
εy
γxy

 (11)

Comme t est petit par rapport aux autres dimensions, il s’agit d’un état plan de contrainte pour
lequel la matrice constitutive vaut :

D = E

1− ν2

 1 ν 0
ν 1 0
0 0 (1− ν)/2

 . (12)

2. Combien de degrés de liberté possède l’élément de la figure 2 et quels sont-ils ?
Chaque noeud possède deux degrés de liberté u et v correspondant respectivement à un déplacement
dans la direction x et y, soit un total de 16 degrés de liberté.

3. La face supérieure de l’élément de la figure 2 est soumis à une pression inclinée répartie linéairement
entre une valeure p1 et p2 (en [N/cm]). Calculez la répartition nodale de cette pression et exprimez
le vecteur force f pour cet élément.

Les fonctions d’interpolation quatratiques suivantes sont définies le long de la face 1− 5− 2 :

N(x) = [N1(x), N5(x), N2(x)] = [−0.5x(1− x), 1− x2, 0.5x(1 + x)], (13)

tandis que la répartition de la force de pression est décrite par :

p(x) = 0.5(1− x)p1 + 0.5(1 + x)p2. (14)

La répartition nodale de la pression est calculée par l’intégrale suivante :
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f1−5−2 =
∫ 1

−1
NT (x)p(x) dx = 1

3[p1, 2(p1 + p2), p2]T (15)

En projetant p(x) = (−px, −py) sur le système d’axe défini à la figure 2, on obtient le vecteur des
forces suivants pour l’élément :

f = −1
3



px1
py1
px2
py2
0
0
0
0

2(px1 + px2)
2(py1 + py2)

0
0
0
0
0
0



. (16)

Exercice 3 : Analyse d’une structure composée d’une poutre et d’une barre.

1. Indiquer les degrés de liberté nuls et non nuls à chaque noeud.
The degrees of freedom are indicated in Figure 3. Because the beam structure has rotational degrees

~x

~y
~z

~F = −F~zL

L

E, I, A, L
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4
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Figure 3 – degrees of freedom of the structures composed with a beam and bar.

of freedom with the two translational degrees of freedom, it has total 6 components of displacement
(d1, d2, d3, d4, d5 and d6). On the other hands, the bar structure has only four displacements (d4, d5,
d7 and d8).

2. Donner la matrice de rigidité locale de l’élément barre, puis la tranformer dans le repère global. De
même pour l’élément poutre. The beam structure is not inclined. Therefore, the stiffness matrix of
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the beam can be written as :

klocal
beam =



EA
L 0 0 −EA

L 0 0
0 12EI

L3
6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L2
2EI
L

−EA
L 0 0 EA

L 0 0
0 −12EI

L3 −6EI
L2 0 12EI

L3 −6EI
L2

0 6EI
L2

2EI
L 0 −6EI

L2
4EI
L


. (17)

On the other hands, the bar structures is rotated by 3π/4. We need to consider rotating with rotational
matrix T as follows :

klocal, unrotated
bar = EA

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 with T =


C S 0 0
−S C 0 0
0 0 C S
0 0 −S C


klocal, rotated
bar = T Tklocal, unrotated

bar T

= EA

L


1/2 −1/2 −1/2 1/2
−1/2 1/2 1/2 −1/2
−1/2 1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2

 with C = cos 3π
4 and S = sin 3π

4

(18)

3. En tenant compte des conditions aux limites, établir le systeme d’équation global traduisant l’équi-
libre. (Calculer K, u et f .)
The two local stiffness matrices are assembled to the global matrix Kglobal. The Kglobal cosidering
the force and displacement boundary conditions is shown as

Kglobal =



EA
L 0 0 −EA

L 0 0 0 0
0 12EI

L3
6EI
L2 0 −12EI

L3
6EI
L2 0 0

0 6EI
L2

4EI
L 0 −6EI

L2
2EI
L 0 0

−EA
L 0 0 EA

L + EA
2L −EA

2L 0 −EA
2L

EA
2L

0 −12EI
L3 −6EI

L2 −EA
2L

12EI
L3 + EA

2L −6EI
L2

EA
2L −EA

2L
0 6EI

L2
2EI
L 0 −6EI

L2
4EI
L 0 0

0 0 0 −EA
2L

EA
2L 0 EA

2L −EA
2L

0 0 0 EA
2L −EA

2L 0 −EA
2L

EA
2L



uglobal =



d1
d2
d3
d4
d5
d6
d7
d8


and fglobal = P + Q + R =



0
0
0
0
0
0
0
0


+



0
0
0
0
−F̄
0
0
0


+



R1
R2
R3
0
0
0
R7
R8



(19)

With these matrix and vectors, the system of equations to solve is Ku = f . In this system, we have
three unknows (d4, d5 and d6) and three equations (from fourth to sixth rows and columns).

4. Expliquer comment calculer l’effort normal dans la barre inclinée à partir du système Ku = f .
Once we compute the solutions (translational displacemenets on node z : d4 and d5) from the previous
system, then we evaluate effective displacements on node z in the direction of bar as follows :

deff = d5 sin π4 − d4 cos π4 (20)
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u=0 ueff

N2N1

0
√
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Figure 4 – system of tilted bar structure

With the deff, the bar structures can be understood as shown in Figure 4
The normal force in bar can be computed using the derivatives of shape functions as follows :

N(s) = EAε(s) = EA

[
dN1(s)
ds

dN2(s)
ds

]
[0 deff]T = EA√

2L
deff (21)

with the N1(s) = −1√
2L(s−

√
2L) and N2(s) = 1√

2Ls within 0 ≤ s ≤
√

2L.
5. Dans le cas où F = Fyy, calculer le déplacement horizontal au noeud 2 et l’effort normal dans la

barre inclinée.
A bar structure does not have resistive force against bending deformations. Therefore, the force Fy
is only loaded by the beam structure meaning that the axial force of bar is zero. By using the beam
deflection equation, we find the horizontal displacmenet of node 2 is dy = FL3

3EI .
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