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Correction — Modélisation Numérique des Solides et Structures : partie pratique.

Notes de cours et livre autorisés
2h, 30 points (3 du total)

Exercice 1 : Deux poutres sous charge— 10 points
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FIGURE 1 — Deux poutres sous charge : (a) schéma, (b) discretisation éléments finis

Considérons le systéeme a deux poutres avec une pression appliquée et charge concentrée sur un coté, comme
représenté sur la Figure [I. Modéliser le systeme comme indiqué sur la figure par des éléments poutres sans
déplacement axial.

1. Donner les matrices de rigidité locales pour les élements 1 et 2. (2 pts)

12/  6/L —12/L* 6/L

xe_ EL| 6/L 4 —6/L 2 1)
17| —12/L? —6/L 12/L* —6/L |-
6/L 2 —6/L 4

12/L*  6/L —12/L* 6/L
3EI | 6/L 4 —6/L 2
L | —12/L* —6/L 12/L* —6/L
6/L 2 —6/L 4

2. Calculer les coefficients de la matrice de rigidité globale et le vecteur des forces global. (2 pts)



[ 12/L?  6/L -12/L* 6/L 0 0
6/L 4 —6/L 2 0 0
K — EI | —12/L* —-6/L 48/L* 12/L —36/L* 18/L 3)
L 6/L 2 12/L 16 —18/L 6
0 0 -36/L* —-18/L 36/L®> —18/L
L 0 0 18/L 6 —18/L 12|
[ 12 600 —12 600 0 0
600 40000 —600 20000 0 0
K — —12 —600 48 1200 —36 1800 ()
600 20000 1200 160000 —1800 60000
0 0 —-36  —1800 36 —1800
0 0 1800 60000 —1800 120000 |
P 4
0 0
pL/2 2.5
f= pL?/12 - 41.667 (5)
pL/2 + Ry, 2.5+ Ry,
—pL?/12 + Ry, —41.667 + Ry,
3. Ecrire le systéme d’équation a résoudre et préciser la méthode de résolution. (2 pts)
[ 12 600 —12 600 0 0 7 ( w 4
600 40000 —600 20000 0 0 01 0
—12 —600 48 1200 —36 1800 up | _ 2.5 (6)
600 20000 1200 160000 —1800 60000 ) 41.667
0 0 —-36  —1800 36 —1800 us 2.5 4+ Ry,
0 0 1800 60000 —1800 120000 | 03 —41.667 4 Ry,

Lorsque ug et 03 égales a zéro, quatre premieres lignes sont utilisées. Il s’agit d’un systéme de quatre
équations et quatre inconnues.

. Afin de faciliter les calculs, nous vous donnons le déplacement u; = 4.9306 m et la rotation 6; =
—0.0428 rad. Calculer les valeurs des inconnues en déplacement manquantes. (2 pts)

Utilisant la matrice de rigidité globale et le vecteur des forces global,

2.5 = —12u; — 6006, + 48usy + 12006, (7)
41.67 = 600u; + 200000 + 1200us + 1600006; (8)

— u9 = 1.3194 m et 69 = —0.0228 rad.

. Trouver les forces de réaction au noeud 3. (2 pts)

Utilisant la matrice de rigidité globale le vecteur des forces global (bas deux lignes),

—36uy — 180005 = 2.5 + Ry, (9)
1800us -+ 6000005 = —41.67 + Ry,

Ry = —9 N et Ry, = 1050 N-m.



Exercice 2 : Element plan soumis a une pression latérale — x points

Une structure dont 1’épaisseur ¢ est petite par rapport aux autres dimensions est étudiée a I’aide d’éléments
rectangulaires quadratiques. La figure [2| présente un élément de la structure.
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FIGURE 2 — Elément rectangulaire quadratique a 8 noeuds.

1. Quel état plan permet de représenter cette structure a ’aide d’élément 2D ? Donner la matrice consti-
tutive D relative a cet état plan en fonction du module d’élasticité et du coefficient de poisson.

Pour rappel, la matrice constitutive permet de lier les contraintes aux déformations pour chaque

élément :
Oy I
oy ¢=DZg ¢ (11)
Txy Yy

Comme t est petit par rapport aux autres dimensions, il s’agit d’'un état plan de contrainte pour
lequel la matrice constitutive vaut :

1 v
v 1 0 . (12)
0 0

2. Combien de degrés de liberté possede I’élément de la figure [2] et quels sont-ils ?
Chaque noeud possede deux degrés de liberté u et v correspondant respectivement a un déplacement
dans la direction x et y, soit un total de 16 degrés de liberté.

3. La face supérieure de I’élément de la figure [2| est soumis & une pression inclinée répartie linéairement
entre une valeure p; et pa (en [N/cm]). Calculez la répartition nodale de cette pression et exprimez
le vecteur force f pour cet élément.

Les fonctions d’interpolation quatratiques suivantes sont définies le long de la face 1 —5 — 2 :

N(z) = [N1(z), Ns(z), No(z)] = [<0.52(1 — ), 1 — 22, 0.52(1 4 z)], (13)

tandis que la répartition de la force de pression est décrite par :

p(z) = 0.5(1 — 2)p1 + 0.5(1 + z)pa. (14)

La répartition nodale de la pression est calculée par 'intégrale suivante :



1 1
£roo7% = /_1 N'(2)p(x) dz = 5[p1, 2(P1 + P2), P2l (15)

En projetant p(z) = (—p®, —p¥) sur le systéme d’axe défini & la figure [2, on obtient le vecteur des
forces suivants pour 1’élément :

(16)

NN
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Exercice 3 : Analyse d’une structure composée d’une poutre et d’une barre.

1. Indiquer les degrés de liberté nuls et non nuls a chaque noeud.
The degrees of freedom are indicated in Figure [3} Because the beam structure has rotational degrees

8

FIGURE 3 — degrees of freedom of the structures composed with a beam and bar.

of freedom with the two translational degrees of freedom, it has total 6 components of displacement
(d1, da, ds3, dg, ds and dg). On the other hands, the bar structure has only four displacements (dy, ds,
d7 and dg).

2. Donner la matrice de rigidité locale de ’élément barre, puis la tranformer dans le repere global. De
méme pour 1’élément poutre. The beam structure is not inclined. Therefore, the stiffness matrix of



the beam can be written as :

B0 o 8 0 o
0 12F1 6FE1 0 12E1 6E1
3 2 — 7713 2
local 0 6%1 4%‘[ 0 __6LE1 2%[
ocal __ 2 L 2 L
kbeam - _EA I() 0 EA OL 0 (17)
L L
0 _ 12@;7[ _ GEQI 0 121;)[ _ 6EQI
0 6é7 2[5[ 0 _%EI 4éf
L L2 L L? L i

On the other hands, the bar structures is rotated by 37 /4. We need to consider rotating with rotational
matrix T as follows :

1 0 -1 0 c S 0 0
EA 0O 0 0 O -5 C 0 0
local, unrotated _ 41 . _
Kias =T |-10 1 o|VthT 0 0 C S
L0 0 0 0 0 0 -S C
k{;)acral, rotated _ TTk{;):ral’ unrotatedT (1 8)
/2 —1/2 —-1/2 1/2
_BA| -1/2 1/2 1/2 -1/2| .., 3«m 3
STl -2 12 12 12 WlthC—COSZ andS—st
/2 —1/2 —-1/2 1/2

3. En tenant compte des conditions aux limites, établir le systeme d’équation global traduisant 1’équi-
libre. (Calculer K, u et f.)

The two local stiffness matrices are assembled to the global matrix K8&°P# The K&'°Pa! cosidering
the force and displacement boundary conditions is shown as
[ £4 0 0 —£4 0 0 0 0 ]
0 12€I @ 0 . 12E3'I @21 0 0
o Sk 4Bl 0 _ekr gEI g
_EBA G EAL_EBA _Ea 0 _EA EA
Kslobal — L L 2L 2L 2L 2L
o _12BI 6Bl _EA 1281 'BA 6Bl EA _Ea
3 P 2L L3 2L P 2 2L
0 6ET 2T 0 _6EI AET 0 0
L2 L e L
0 0 0 —_EA EA 0 A _EA
2L 27, 27, 2
0 0 0 £4 ~-£4 0o -zt L4
LY 2L 2L ) EZ 2 (19)
dl 0 0 Rl
d2 0 0 Ry
ds 0 0 R3
d 0 0 0
global _ 4 global _ _ B
u ds and f P+Q+R 0 + | I + 0
dg 0 0 0
dr 0 0 Ry
| ds | | 0 | . 0 ] | Rs |

With these matrix and vectors, the system of equations to solve is Ku = f. In this system, we have
three unknows (d4, ds and dg) and three equations (from fourth to sixth rows and columns).
4. Expliquer comment calculer I’effort normal dans la barre inclinée a partir du systéeme Ku = f.

Once we compute the solutions (translational displacemenets on node z : d4 and ds) from the previous
system, then we evaluate effective displacements on node z in the direction of bar as follows :

s s
de = ds sin i dy cos 1 (20)
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FIGURE 4 — system of tilted bar structure

With the deg, the bar structures can be understood as shown in Figure |§|

The normal force in bar can be computed using the derivatives of shape functions as follows :

dN1 (S) dNQ(S)
ds ds

r_ EA
[0 degt]” = ﬁLdeff (21)

with the Ni(s) = \}TIL(S —V/2L) and Ny(s) = ﬁs within 0 < s < v/2L.
. Dans le cas ou F' = F,y, calculer le déplacement horizontal au noeud 2 et l'effort normal dans la
barre inclinée.

A bar structure does not have resistive force against bending deformations. Therefore, the force F'y
is only loaded by the beam structure meaning that the axial force of bar is zero. By using the beam

deflection equation, we find the horizontal displacmenet of node 2 is d, = gTL;

N(s) = EAe(s) = FA



