
Kurs Datenbanken

Arno Schmidhauser Seite 1Juni 2006

Relationale DatenbankenRelationale Datenbanken

© Dr. Arno Schmidhauser
Letzte Revision: Dezember 2006
Email: arno.schmidhauser@sws.bfh.ch
Webseite: http://www.sws.bfh.ch/db

Kurs Datenbanken

Arno Schmidhauser Seite 2Juni 2006

Kurs Datenbanken

Arno Schmidhauser Seite 3Juni 2006

InhaltInhalt

Einleitung 5

Datenmodellierung 13

Das Relationenmodell 19

SQL I 37

JDBC 61

SQL II 79

Transaktionsmodell 100

Concurrency Control 106

Lange Transaktionen 122

Recovery-System 132

Zugriffsoptimierung 146

Kurs Datenbanken

Arno Schmidhauser Seite 4Juni 2006

Kurs Datenbanken

Arno Schmidhauser Seite 5Juni 2006

EinleitungEinleitung

Kurs Datenbanken

Arno Schmidhauser Seite 6Juni 2006

LiteraturLiteratur
[1] "Einstieg in SQL"; Markus Troll, Oliver Bartosch; Galileo Computing,

2004.
[2]"Relationale Datenbanken und SQL"; Günter Matthiessen, Michael

Unterstein; Addison-Wesley, 3. Auflage, 2003.
[3] "Database Design for Smarties"; R. J. Muller; Morgan Kaufmann,

1999.
[4] "Datenbanksysteme, Konzepte und Techniken der Implementation";

T. Härder, E. Rahm; Springer 1999.
[5] "Database Systems"; Paolo Atzeni et. al; McGraw-Hill, 2000.
[6] "SQL-3 Complete, Really"; Peter Gulutzan, Trudy Pelzer; Miller

Freeman, 1999.
[7] "SQL Performance Tuning"; Peter Gulutzan, Trudy Pelzer; Addison-

Wesley, 2003.
[8] "A Guide to the SQL Standard"; C.J. Date; Addison-Wesley 2000.
[9] "Database Administration"; Craig S. Mullins; Addison-Wesley, 2002.

Zu [6] gibt es ein vollständig SQL-99 konformes Datenbanksystem namens OCELOT
(www.ocelot.ca). Es eignet sich sehr gut für das Studium von SQL als
Datenbanksprache.

Die Websites der verschiedenen DB-Hersteller können sehr informativ sein und bieten
besonders bezüglich technologischer Fragen oft gute Hilfe.

Die Originalstandards zu SQL erhält man von ANSI:

http://www.ansi.org

Kurs Datenbanken

Arno Schmidhauser Seite 7Juni 2006

Ziele des KursesZiele des Kurses

Jeder Teilnehmer ...

• kennt das Relationenmodell.

• kennt die Sprache SQL und kann sie interaktiv oder in
Applikationen eingebettet anwenden.

• kann aus einer praktischen Problemstellung ein
Datenmodell in UML ableiten.

• versteht den Begriff der Transaktion und kann ihn
anwenden.

• hat eine Vorstellung über die innere Organisation eines
Datenbanksystems.

Kurs Datenbanken

Arno Schmidhauser Seite 8Juni 2006

Eigenschaften einer DatenbankEigenschaften einer Datenbank

• Verwaltung kleiner bis grösster Datenbestände

• Einfacher, standardisierter Zugriff auf Daten mit SQL

• Weit verbreitete Programmier API's (ODBC, JDBC)

• ausgefeilte und hocheffiziente Zugriffsmechanismen

• Wiederherstellung nach Server- oder Client-Crash

• Integritätsregeln stellen Korrektheit der Daten sicher

• Replikations- und Verteilungsmechanismen

• Zugriffskoordination

• Benutzerauthorisierung

Aufgeführt sind hier hauptsächlich technologische Gründe für den Einsatz eines
Datenbanksystems. Daneben - oder sogar schwergewichtig - gibt es auch
organisatorische und modellorientierte Gründe. Für relationale Datenbanken
existiert beispielsweise eine enorme Vielfalt an Drittprodukten, welche die
Implementation einer Anwendung unterstützen. Auch die Werkzeuge für das
Tuning des Zugriffs und das Monitoring von zugreifenden Applikationen sind von
enormer Bedeutung beim Betrieb.

Die Relationale Datenbank ist eines der erfolgreichsten Konzepte in der Informatik. Auf
der Basis eines einfachen und sauberen theoretischen Modells aus den 70er
Jahren, des Relationenmodelles und der Relationenalgebra, wurde die Sprache SQL
entwickelt (Strucured Query Language). SQL dient sowohl der Strukturdefinition
einer Datenbank (hauptsächlich in Form von Tabellen) wie auch der Abfrage und
Manipulation der Daten darin. SQL definiert damit faktisch die äussere Sicht auf die
Datenbank und die funktionalen Möglichkeiten für den Entwickler oder den
Benützer. SQL hat seit seiner Entstehung in den 80er Jahre drei grössere
Standardisierungen durch ANSI und ISO durchlaufen (SQL-1 von 1989, SQL-2 von
1992, SQL-3 von 1999) und ist weitestgehend von der Software-Industrie
anerkannt. Die Produkthersteller bemühen sich klar um eine Annäherung an den
Standard.

Relationale Datenbank beherrschen gegenüber anderen Datenbankmodellen
volumenmässig den Markt. Die 5 grössten Produkte sind Oracle, DB2, SQL
Server, Informix und Sybase. Wichtig ist auch Interbase (Borland) und MySQL
(sehr populäres Open Source Produkt). Eine Vielzahl weiterer Systeme mit
speziellen Eigenschaften stehen zur Verfügung. Beispielsweise reine Java-
Datenbanken wie PointBase.

Die relationalen Systeme werden in verschiedene Richtungen weiterentwickelt.
Beispielsweise wird versucht, mit dem Einbau von Java als Programmiersprache
und Java-Klassen als Datentypen eine Vereinheitlichung zwischen dem Typsystem
einer populären Programmiersprache und demjenigen von SQL zu erreichen.
Andere Hersteller haben sich um sprachneutrale, objektorientierte Erweiterungen
bemüht, z.B. Oracle. Man spricht von objektrelationalen Datenbanken.

Neben der Familie der relationalen Datenbanken und ihrer Ausläufer gibt es auch rein
objektorientierte Datenbanken und XML-basierte Produkte.

Kurs Datenbanken

Arno Schmidhauser Seite 9Juni 2006

ClientClient--Server ArchitekturServer Architektur

Eine Datenbank ist ein Server-Programm, welches von seinen Client-Anwendungen
SQL-Befehle entgegennimmt. Der Datenbank-Server läuft meist auf einem dafür
vorgesehen Rechner. Das Server-Programm kontrolliert und verwaltet die zu ihm
gehörigen Datenbanken.

Die Kommunikation zwischen Client und Server findet meist über eine TCP/IP
Verbindung statt, über welche die Datenbank SQL-Befehle entgegennimmt und
Abfrageresultate ausliefert.

Der Server überwacht die Verbindung zu jedem Client und kann bei dessen Absturz
einen Rollback unfertiger Arbeiten (Transaktionen) durchführen.

Der Server steuert den Zugriff mehrerer Clients auf dieselben Daten, indem er
während einer SQL-Operation die betroffenen Daten zuhanden eines Client sperrt.

Kurs Datenbanken

Arno Schmidhauser Seite 10Juni 2006

ProgrammProgramm--BeispielBeispiel
...
try {
Connection con = DriverManager.getConnection(...);
Statement stmt = con.createStatement();
String q1 = "SELECT saldo FROM Konto WHERE idKonto = 4711";
ResultSet rs = stmt.executeQuery(q1);
if (rs.next()) {
kontostand = rs.getInt("saldo");
kontostand = kontostand – 1000000;

}
String q2 = "UPDATE Konto SET saldo = ? WHERE idKonto = 4711";
PreparedStatment pstmt = con.prepareStatement(q2)";
pstmt.setInt(1, kontostand);
pstmt.executeUpdate();
con.commit();

}
catch (SQLException e) { con.rollback(); }
...

Gegeben sei folgende SQL-Tabelle

create table Konto (

idKonto varchar(32),

saldo numeric (10,2),

primary key (idKonto),

check (saldo > 0) initially deferred

)

Das Durchführen des select-Befehls beinhaltet für die Datenbank folgende Aufgaben:

1. Transaktion öffnen ('Begin Transaction'-Eintrag im Logfile)

2. Syntax parsen

3. Ausführungsrecht für 'select' auf die Tabelle 'Konto' prüfen

4. Ausführungsplan (Algorithmus) für die Abfrage ermitteln

5. Lese-Sperren auf die gelesenen Datenelemente setzen

6. Daten ausliefern

Kurs Datenbanken

Arno Schmidhauser Seite 11Juni 2006

Das Durchführen des update-Befehls beinhaltet für die Datenbank folgende Aufgaben:

1. Syntax parsen

2. Ausführungsrecht für 'update' auf die Tabelle 'Konto' prüfen

3. Schreibsperre auf die zu ändernden Datenelemente setzen (genauer: Lesesperre in
Schreibsperre umwandeln)

4. Alte und neue Datenwerte im Logfile protokollieren

5. Änderung durchführen

Das Durchführen des commit-Befehls beinhaltet für die Datenbank folgende
Aufgaben:

1. check-Bedingung prüfen, im Fehlerfall Rollback durchführen

2. 'End Transaction'-Eintrag im Logfile festhalten

3. Sperren und damit die Daten für andere Benutzer freigeben

Kurs Datenbanken

Arno Schmidhauser Seite 12Juni 2006

Kurs Datenbanken

Arno Schmidhauser Seite 13Juni 2006

DatenmodellierungDatenmodellierung

• 3-stufige Modellierung
• Konzeptionelles Modell

Das Relationmodell ist ein formales Datenmodell.

Kurs Datenbanken

Arno Schmidhauser Seite 14Juni 2006

33--stufige Modellierungstufige Modellierung

Konzeptionelles Modell
Benötigte Informationen und Zusammenhänge darstellen. Wichtig:
Übersichtlichkeit, informell. Werkzeug: Grafische Notation nach UML

Formales Modell
Festlegung eines bestimmten Datenbanktyps (Relationale DB) und

Befriedigung von dessen Ansprüchen (Normalisierung).
Darstellung mit UML oder tabellarisch.

Physisches Modell
Implementation des Datenmodelles (Tabellen mit SQL-Befehlen

erzeugen, Hilfsstrukturen aufbauen)

Das Formale Modell heisst auch Logisches Modell

Kurs Datenbanken

Arno Schmidhauser Seite 15Juni 2006

Konzeptionelles Modell mit UMLKonzeptionelles Modell mit UML

• Das konzeptionelle Modell dient der Darstellung
– der benötigten Information
– von Zusammenhängen

• Beispiel: Datenmodell zur Erfassung von Luftschadstoffen an
verschiedenen Standorten.

stationsNr {key}
stationsName

«Entity»
Station

C
SO2

«Entity»
Messung

1 0..*
messnetzNr {key}
messnetzName

«Entity»
Messnetz

1 0..*

bewölkung
datum

«Entity»
Wetter

1

0..*

Vorgaben für dieses Datenmodell:

1. Messungen und Messstationen sind die zentralen und wichtigen Elemente für
dieses Datenmodell.

2. Jede Messung ist einer Station zugeordnet, resp. wurde dort durchgeführt.

3. Jede Messung bezieht sich auf bestimmte Wetterangaben.

4. Jede Station ist einem bestimmten Messnetz (Beispielsweise das Netz des Kantons,
das Netz der Uni, das Netz des VCS usw.) zugeordnet.

Bemerkungen:

1. Im Rahmen von UML kann die Eindeutigkeit eines Attributes ganz allgemein als
Zusicherung ausgedrückt werden. Zusicherungen werden in geschweiften
Klammern dargestellt, hier mit {key}.

2. Im Rahmen des UML-Modelles ist nicht spezifiziert, wie Assoziationen
implementiert werden. Bei einer Programmiersprache würde man mit Referenzen
oder Pointern arbeiten, bei relationalen Datenbanken mit Fremdschlüsseln welche
sich auf Primärschlüssel beziehen.

Kurs Datenbanken

Arno Schmidhauser Seite 16Juni 2006

UMLUML--ElementeElemente ffüür r
das konzeptionelle Datenmodelldas konzeptionelle Datenmodell

• Für die Datenmodellierung sind folgende Elemente
wichtig:

– Klasse: Definiert Name und Attribute von physischen
oder konzeptionellen Dingen.

– Assoziation: Statuiert einen Zusammenhang (eine
Abhängigkeit) zwischen zwei Klassen.

– Multiplizität: Definiert, wieviele Objekte der einen
Klasse mit wievielen Objekten der anderen Klasse in
Zusammenhang stehen.

Im Kurs über UML wurde ebenfalls bereits von Klassen und einem Klassenmodell
gesprochen. Im Rahmen der Datenmodellierung interessieren ausschliesslich die
sog. Entity-Klassen, d.h. solche, die langfristige Informationen tragen. Im Rahmen
der Applikationentwicklung kommen auch noch viele Klassen zum Zug, die
Funktionalität tragen, beispielsweise um bestimmte Informationen für eine
Darstellung im Browser aufzubereiten, über ein Netzwerk zu transportieren usw.

Kurs Datenbanken

Arno Schmidhauser Seite 17Juni 2006

Prinzipien fPrinzipien füür das r das
konzeptionelle Modellkonzeptionelle Modell

1. Eine Klasse beschreibt ein einzelnes Objekt

2. Bezeichnungen sind anwendungs-, nicht software-bezogen

3. Eine Klasse hat mehr als ein darstellungswürdiges Attribut

4. Attribute einer Klasse haben denselben Lebenszyklus

5. Eine Klasse sammelt eng zusammengehörende Attribute

6. Jedes Attribut hat nur eine Bedeutung

1. Eine Klasse muss einen Namen haben, der ein einzelnes Objekt der Klasse
beschreibt. In der Regel ist das ein Substantiv in Einzahl. Die Klasse darf nicht die
Menge aller Objekte bezeichnen. Substantive dürfen nicht in Mehrzahl geschrieben
sein. Wenn die Menge der Objekte als Ganzes wichtig ist, sollte dafür eine eigene
Klasse definiert werden (Beispiel: Klasse 'Katalog' und Klasse 'Buch', statt nur
Tabelle 'Buchkatalog' mit Buch-Datensätzen darin). Eine guter Ansatz für die
Syntax von Namen ist Java: Klassennamen mit Grossbuchstabe, Attributnamen mit
Kleinbuchstaben beginnen. Einzelne Worte in Wortkombinationen mit
Grossbuchstaben abtrennen (Beispiel Klasse 'KursUmfrage' mit Attribut
'startDatum').

2. Namen von Klassen und Attributen müssen für die Anwendung der Software von
Bedeutung sein und sollten keine software-technischen Ergänzungen haben (
Gutes Beispiel: Bücherkatalog, schlechtes Beispiel: BuchCollection)

3. Eine Klasse sollte mehr als ein Attribut haben. Wenn nicht, kann das Attribut
wahrscheinlich einer anderen Klasse zugeordnet werden. Ausnahme: Wenn zu
erwarten ist, dass die Anzahl Attribute in nächster Zeit zunimmt.

4. Die Attribute einer Klasse sollen denselben Lebenszyklus wie die ganzen Objekte
der Klasse haben. Attribute einer Klasse, die zeitweilig gar keinen Sinn machen,
sind anderen Klassen zuzuordnen (Beispiel: Attribut 'Diagnose' für ein Patienten-
Objekt ist schlecht, weil der Patient in der Patientenverwaltungs-Software
wahrscheinlich mehrere Jahre lebt, die meiste Zeit aber gar nicht krank ist. Zwei
Klassen erstellen: 'Patient' und 'Fall').

5. Nur eng zusammengehörende Attribute in einer Klasse sammeln (Schlechtes
Beispiel: 'EntleiherName' in der Klasse 'Buch' in einer Bibliothekssoftware).

6. Jedem Attribut nur eine Bedeutung geben. Beispiel: Die Klasse 'Artikel' habe das
Attribut 'Lagerbestand'. Eine Zahl zwischen 0 und ∞ bedeute den tatsächlichen
Lagerbestand, die Zahl -1, dass der Artikel nicht mehr verfügbar ist. Die Software
zur Ermittlung der gesamten Anzahl Artikel in einem Lager muss nun mit
schwerfälligen Konstrukten immer zwei Fälle unterscheiden. Besser: Neues Attribut
'Status' für Klasse 'Artikel einführen.

Kurs Datenbanken

Arno Schmidhauser Seite 18Juni 2006

Kurs Datenbanken

Arno Schmidhauser Seite 19Juni 2006

Das Das RelationenmodellRelationenmodell

• Was ist eine Relation
• Normalisierung

Das Relationmodell ist ein formales Datenmodell.

Kurs Datenbanken

Arno Schmidhauser Seite 20Juni 2006

Woher kommt der Begriff Relation?Woher kommt der Begriff Relation?

• Mathematische Basis: Mengenlehre.

• Domäne D = Wertemenge [~Datentyp]

• Relationenschema = Menge von Attributen Ai mit
zugehörigen Domänen Di [~Tabellendefinition]

• Tupel = Wertekombination aus D1 x D2 x D3.... Di
[~Datensatz]

• Relation = Menge von Tupeln aus einem
Relationenschema [~Tabelleninhalt]

• Relationenmodell = Menge aller Relationenschemas
[~Datenmodell]

• Die Relationenalgebra definiert Operationen auf
Relationen wie Projektion, Selektion, Vereinigung,
Differenz, Durchschnitt, Verbund und Produkt [~SQL]

Das Hauptstrukturelement einer relationalen Datenbank ist die Relation. In der Praxis
des Entwicklers kann man die Begriffe Relation und Tabelle als identisch
behandeln.

SQL ist eine, wenn auch die wichtigste Implementation des Relationenmodelles und
der Relationenalgebra.

In SQL-Datenbanken sind sowohl die eigentlichen Daten, wie auch Hilfs- und
Metadaten (z.B. Tabelle aller Benutzer, Tabelle aller Attributnamen, Tabellen aller
Datentypen, Tabelle aller Tabellen usw.) in Tabellen organisiert.

Letzlich hat sich die Einfachheit von Tabellen als Vorteil für das Aufkommen und die
Anwendung der relationalen Datenbanken erwiesen. Die Sprache SQL ist damit
relativ einfach und überschaubar geblieben.

Die Relationenalgebra und ihre Operation haben folgende Eigenschaften

deskriptiv
Alle Operationen sind mengen- und bedingungsorientiert. Es gibt keine
Ablaufkonstrukte, wie Verzweigungen und Schlaufen.

abgeschlossen
Jede Operation ergibt wieder eine Relation.

optimierbar
Durch algebraische Umformung eines Ausdrucks mit Operationen können
ausführungsmässig performantere Ausdrücke erzeugt werden. Beispielsweise ist
der Ausdruck (R1 ∪ R2) ∩ R3 unter Umständen besser bearbeitbar durch den
äquivalenten Ausdruck (R1 ∩ R3) ∪ (R2 ∩ R3)

effizient

Die Komplexität einer Operation wächst höchstens proportional zum Produkt der
Anzahl Tupel in den beteiligten Relationen.

sicher
Jede Operation ist von endlicher Dauer, wenn der Datenbestand endlich ist.

orthogonal

Alle Operationen können frei und ohne Einschränkungen miteinander kombiniert
werden. Die Orthogonalität ist bei SQL nicht vollumfänglich gewährleistet, weil
etwa verschachtelte Abfragen (select ... from (select ... from)) nicht möglich
sind.

Kurs Datenbanken

Arno Schmidhauser Seite 21Juni 2006

Eigenschaften einer relationalen Eigenschaften einer relationalen
DatenbankDatenbank

• Die Domäne [Datentyp] jedes Attributes [Feldes] ist atomar.

• Elemente [Datensätze] der Relation müssen
unterscheidbar, das heisst eindeutig identifizierbar sein.

• Relationen [Tabellen] sind Mengen, die Elemente daher nicht
geordnet.

Die Bedingung, dass die Domäne eines Attributes atomar sein muss, ist ein
entscheidendes Charakteristikum für relationale Datenbanken. Sie bedeutet, dass
einzelne Attributwerte in sich nicht wieder ein Tupel oder eine Menge von Tupeln
sein dürfen. Dies steht ganz im Gegensatz zur objektorientierten Programmierung,
wo Attribute (Member) von Objekten selbst wieder einfache oder komplexe
Objekte, Listen, Mengen oder Arrays von Objekten sein dürfen. In der
objektorientierten Programmierung können Objekte also eine umfangreiche und
komplexe Substruktur haben. In einer relationalen Datenbank ist das nicht
möglich. Dies bewirkt einerseits eine sehr einfache Struktur der einzelnen
Relationen (Tabellen), führt andererseits aber zu einer grossen Anzahl von
Relationen, welche miteinander in Beziehung stehen.

Eine Relation rsp. eine Tabelle stellt im mathematischen Sinn immer eine Menge dar.
Die Elemente einer Menge müssen unterscheidbar sein. Dies führt zur
Notwendigkeit von Relationen- oder Primärschlüsseln. Enthält eine Tabelle zwei
völlig identische Datensätze, repräsentieren sie dasselbe Element und können über
SQL-Befehle nicht mehr unterschiedlich behandelt werden.

Die Elemente einer Menge haben nicht von sich aus eine Ordnung, d.h. es gibt keine
vorbestimmte Reihenfolge der Elemente. Das Datenbanksystem verwaltet Einträge
in einer Tabelle ohne Garantie für eine bestimmte Reihenfolge. Diese kann
allenfalls durch Sortieren bei der Ausgabe realisiert werden. Dazu muss aber ein
geeignetes Attribut vorhanden sein, oder ein solches geschaffen werden. Beispiel:
Die Vornamen einer Person haben im Pass eine definierte Reihenfolge, nämlich die,
wie die Namen geschrieben stehen. Die Reihenfolge ist nicht alfabetisch. Um die
Reihenfolge in einer Datenbank-Tabelle sicherzustellen, muss eine explizite
Nummerierung vorgenommen werden, zum Beispiel mit einem Attribut
'VornameNummer'.

Kurs Datenbanken

Arno Schmidhauser Seite 22Juni 2006

Relation, BegriffeRelation, Begriffe

Primärschlüssel Sekundärschlüssel

Relationenschema
Person

Werte aus der
Domäne von persnr

Tupel

Tupel

Tupel

Grad 6

Person persNr name vorname gebDatum ahvNr abtNr

 1

 2

 3

Relationenschlüssel: persNr, name+vorname+gebDatum, ahvNr

Gewählter Primärschlüssel: persNr

Kardinalität 3

Fremdschlüssel

Relationenschema
Menge der Attribute einer Relation, "Relation ohne Inhalt".

Relation
Menge von Tupeln. Die Komponenten der Tupel sind definiert durch das
Relationenschema. Jede Komponente eines Tupels ist ein Wert aus der Domäne
des entsprechenden Attributes. Weil Relationen Mengen sind, ist es per Definition
nicht möglich, dass zwei identische Tupel vorkommen. Jedes Element kann in einer
Menge nur einmal vorkommen. Um die Einzigartigkeit jedes Tupels sicherzustellen,
definiert man Relationenschlüsse und daraus wiederum einen speziellen, den
Primärschlüssel. Eine Menge ist nicht geordnet und folglich liegen die Tupel einer
Tabelle nicht in einer bestimmten Reihenfolge vor. Anwendungsprogramme dürfen
nicht von einer bestimmten Reihenfolge der Tupel ausgehen.

Attribut
Name einer Eigenschaft, für die jedem Element der Relation ein Wert zugeordnet
werden kann. Jedes Attribut hat eine zugeordnete Wertemenge (Domäne).

Relationenschlüssel
Eine minimale Menge von Attributen, deren Werte jedes Tupel in der Relation
eindeutig identifizieren, heisst Relationenschlüssel. Minimal heisst: Wenn man
eines der Attribute des Relationenschlüssels entfernt, bilden die übrigen keinen
Schlüssel mehr. Es kann mehrere Relationenschlüssel geben, aber immer gibt es
mindestens einen (sonst liegt keine Relation vor), nämlich die Menge aller Attribute
der Relation. Ein Relationenschlüssel heisst manchmal auch Candidate Key.
Ob ein bestimmtes Attribut oder eine Attributkombination einen Relationen-
schlüssel darstellt ist nicht naturgegeben, sondern eine Definitionsfrage. Eine
Telefonnummer könnte beispielsweise je nach Annahmen ein Personelement
eindeutig identifizieren oder aber von mehreren Personen benutzt werden.

Kurs Datenbanken

Arno Schmidhauser Seite 23Juni 2006

Primärschlüssel
Die Wahl des Primärschlüssels ist ein Designentscheid. Aus den
Relationenschlüsseln wird einer ausgewählt und als Primärschlüssel bezeichnet. Die
übrigen Relationenschlüssel sind dann Sekundärschlüssel. Sehr häufig wird die
Relation um ein künstliches Schlüsselattribut ergänzt und dieses zum
Primärschlüssel erklärt. Der Primärschlüssel sollte aus möglichst wenigen
Attributen mit konstanten Werten zusammengesetzt sein. In der Regel bervorzugt
man einzelne Attribute. Primärschlüssel müssen zu jeder Zeit definiert sein. Sie
dürfen keine Nullwerte (siehe unten) enthalten.
Schlüssel definieren in keiner Weise eine Speicherreihenfolge oder eine bestimmte
Zugriffsmethode auf die Daten. Dies ist Sache der Systemoptimierung der
Datenbank bei der Durchführung einer Abfrage.
Ein Primärschlüssel kann grundsätzlich ein einzelnes Attribut oder eine
Kombinationen von Attributen sein. In der Regel bervorzugt man einzelne
Attribute.

Fremdschlüssel
Der Fremdschlüssel identifiziert nicht ein Tupel innerhalb der Relation, wie der
Primär- oder ein Sekundärschlüssel. Der Fremdschlüssel bezieht sich auf den Wert
eines Primärschlüssel in einer anderen Relation. Ein Fremdschlüssel setzt somit
Tupel (Datensätze) aus zwei verschiedenen Relationen in Beziehung miteinander.
Das Pendant zum Fremdschlüssel in der Programmierung ist der Pointer.

Domäne
Menge der möglichen Werte für ein Attribut, auch Wertemenge genannt. Mehrere
Attribute können diesselbe Domäne haben. Domänen sind atomar, das heisst,
einzelne Attributwerte dürfen in sich nicht wieder ein Tupel oder eine Menge sein.
Dies steht ganz im Gegensatz zur objektorientierten Programmierung, wo Attribute
(Member) von Klassen selbst wieder einfache oder komplexe Objekte, Listen,
Mengen oder Arrays von Objekten sein dürfen. In der objektorientierten
Programmierung können Objekte also eine umfangreiche und komplexe
Substruktur haben. In einer relationalen Datenbank ist das nicht möglich. Dies
bewirkt einerseits eine sehr einfache Struktur der einzelnen Relationen (Tabellen),
führt andererseits aber zu einer grossen Anzahl von Relationen, welche
miteinander in Beziehung stehen.
Anmerkung: Es ist sehr gefährlich, eine Pseudostrukturierung vorzunehmen, z.B.
ein Attribut 'adresse' als komma-separierte Liste von 'strasse', 'plz' und 'ort' in
einer Relation zu definieren. Die Abfrage- und Verwaltungs-möglichkeiten der
Sprache SQL versagen meist ihre Dienste in solchen Fällen. Definitiv schlecht wird
die Performance, wenn in pseudostrukturierten Feldern nach Information gesucht
werden muss.
In der Praxis gibt es zwei Arten Domänen für ein Attribut. Einerseits kann ein
vorgegebener Basistyp (Zahl, String, Datum, Zeit) gewählt werden, andererseits
kann ein Basistyp genommen werden, und dieser mit zusätzlichen Bedingungen
eingeschränkt werden. Beispielsweise kann eine Zahl auf einen Wert zwischen 1
und 10 eingeschränkt werden, oder ein Ortsname (String) muss in einer Liste
vorgegebener Namen vorkommen.

Relationenmodell
Das Relationenmodell im Sinne aller verwendeten Relationenschemas heisst häufig
auch Datenbankschema. Ein Datenbankschema ist häufig gleichbedeutend mit
einer effektiv erzeugten Datenbank (create database-Befehl) oder allen Tabellen
eines bestimmten Benutzers.

Datenbank-Slang
Relation = Tabelle = Entität
Relationenschema = Tabellendefinition
Attribut = Spalte = Feld
Tupel =Zeile = Record = Datensatz
Domäne = Wertemenge = Feldtyp
Sehr verpönt, weil Missverständnisse entstehen können: Datenbank = Tabelle

Kurs Datenbanken

Arno Schmidhauser Seite 24Juni 2006

Normalisierung

Ableitung des Ableitung des RelationenmodellesRelationenmodelles

• Das Relationenmodell kann aus dem konzeptionellen
Modell wie folgt abgeleitet werden:

1. Für jede UML-Klasse eine Tabelle erstellen,
Primärschlüssel und Fremdschlüssel festlegen/wählen.

2. Tabellen mit atomaren Domänen erstellen
(Erste Normalform).

3. Vermeidung unterwünschter Abhängigkeiten durch
Normalisieren in die zweite und dritte Normalform.

Kurs Datenbanken

Arno Schmidhauser Seite 25Juni 2006

Ableitung des Ableitung des RelationenmodellesRelationenmodelles, ,
AusgangspunktAusgangspunkt

• Für das folgende Beispiel soll von einem ganz einfachen,
konzeptionellen UML-Modell für das Schadstoff-Messystem
ausgegangen werden, um den Ableitungsprozess zu illustrieren

stationsNr {key}
stationsName
messnetzNr
messnetzName
datum
bewölkung
SO2
C

«Entity»
Station

Dies ist ein reines Schulbuchbeispiel. Ein geübter Designer wird sicherlich keine so mit
Information überladene Klasse definieren.

Kurs Datenbanken

Arno Schmidhauser Seite 26Juni 2006

Eine Tabelle pro Eine Tabelle pro UMLUML--KlasseKlasse

Primärschlüssel

Station stations
Nr

stations
Name

messnetz
Nr

messnetz
Name

datum bewölkung oC SO2

 1 Aare 1 Uni 1.6.01 stark 21.3 10
 2.6.01 mittel 18.2 12
 3.6.01 schwach 12.8 14
 2 Rathaus 2 Kanton 1.6.01 stark 21.8 21
 2.6.01 mittel 18.9 20
 3.6.01 schwach 13.8 22
 3 Loeb 2 Kanton 1.6.01 stark 21.0 23
 2.6.01 mittel 17.2 26
 3.6.01 schwach 14.8 28

«PK» stationsNr
stationsName
messnetzNr
messnetzName
messzeit
bewölkung
SO2
C

«Table»
Station

Bemerkungen:

• Die Primärschlüssel wurden unterstrichen. In der tabellarischen Darstellung ist dies
meistens so anzutreffen. In der klassenorientierten Darstellung nach UML werden
die Primärschlüssel meist mit «PK» gekennzeichnet.

Folgende Annahmen gelten hier und für die folgende Normalisierung:

• pro Tag (oder pro 'datum') liegt ein Wetterbericht mit Bewölkungsangabe vor.

• Temperatur und SO2-Konzentration werden pro Station und Tag einmal erfasst.

• Das Wetter ('bewölkung') ist für alle Stationen dasselbe, es wird durch einen
zentralen meteorlogischen Dienst zur Verfügung gestellt.

Probleme / Unschönheiten:

• Das Einfügen eines neuen Messnetzes ohne mindestens eine Station ist nicht
möglich.

• Sehr viele Daten sind mehrfach erwähnt, z.B. der Zusammenhang zwischen Datum
und Bewölkung, zwischen Messnetznummer und Messnetzname etc.

• Das Löschen der Station 1 ist nicht möglich, wenn man die Information über das
Messnetz behalten will.

Kurs Datenbanken

Arno Schmidhauser Seite 27Juni 2006

NormalisierungNormalisierung

• Vermeidet ...
• Redundanzen und damit potentielle Widersprüche.

• unerwünschte Seiteneffekte (Anomalien) beim Einfügen, Ändern oder
Löschen von Daten.

• Ermöglicht ...
• das "one fact in one place"-Prinzip.

• ein Datenmodell, das von jedem Entwickler verstanden wird und
interpretierbar ist.

• dass alle vorhandenen Informationen auch tatsächlich abgefragt
werden können.

Ein sauberes UML-Modell, korrekt in Tabellen überführt, ergibt meistens ein
weitgehend normalisiertes Datenmodell. Die eigentliche Schwierigkeit liegt auch
nicht im Durchführen der Normalisierung, sondern im Erkennen und Definieren der
ihr zugrundeliegenden Abhängigkeiten zwischen Attributen ("Gehört ein Mitarbeiter
zu einer oder zu mehreren Abteilungen oder manchmal auch zu keiner?"). Die
meisten entsprechenden Überlegungen werden aber direkt oder indirekt beim
Erstellen des UML-Modelles angestellt, weshalb die Normalisierung vorallem auch
ein Werkzeug zur Verifikation des Datenmodells ist.

Auch wenn der Ausgangspunkt eines Datenmodells beispielsweise ein bestehendes,
unnormalisiertes Papierformular oder Excel-Sheet ist, welches bereits eine
tabellenartige Struktur aufweist, geht ein sinnvoller Entwurfsweg zuerst über ein
UML-Modell und danach über eine Normalisierung der daraus gewonnen Tabellen.

Kurs Datenbanken

Arno Schmidhauser Seite 28Juni 2006

Die NormalformenDie Normalformen

0NF Jede Tabelle hat einen Primärschlüssel.

1NF Die Domänen aller Attribute sind atomar.

2NF Bei Tabellen mit mehreren Primärschlüsselattributen
muss jedes Attribut, das nicht zum Schlüssel gehört,
von allen Attributen des Schlüssel abhängig sein. Es
darf also keine partiellen Schlüsselabhängigkeiten
geben.

3NF Zwischen zwei Attributen, die nicht zum Schlüssel
gehören, darf keine Abhängigkeit bestehen. Es darf also
keine transitiven Abhängigkeiten geben.

Die nullte Normalform (0NF) ist inoffiziell. Es soll aber nochmals festgehalten werden,
dass die Definition eines Primärschlüssels eine zwingende Voraussetzung für die
Normalisierung ist.

Diese Definitionen sind nur Daumenregeln. Eine exaktere Definition ist unter dem
Kapitel 'Funktionale Abhängigkeiten' zu finden.

Es gibt viele weitere Normalformen, mit denen man unter praktischen Umständen
jedoch nie in Konflikt gerät oder deren Auflösung zu umständlich wäre.
Gelegentlich gibt es Probleme mit der Boyce-Codd Normalform. Diese ist deshalb
am Schluss des Kapitels noch aufgeführt.

Kurs Datenbanken

Arno Schmidhauser Seite 29Juni 2006

1. Normalform (1NF)1. Normalform (1NF)

Messung stations
Nr

stations
Name

mess-
netzNr

messnetz
Name

datum bewölkung oC SO2

 1 Aare 1 Uni 1.6.01 stark 21.3 10
 1 Aare 1 Uni 2.6.01 mittel 18.2 12
 1 Aare 1 Uni 3.6.01 schwach 12.8 14
 2 Rathaus 2 Kanton 1.6.01 stark 21.8 21
 2 Rathaus 2 Kanton 2.6.01 mittel 18.9 20
 2 Rathaus 2 Kanton 3.6.01 schwach 13.8 22
 3 Loeb 2 Kanton 1.6.01 stark 21.0 23
 3 Loeb 2 Kanton 2.6.01 mittel 17.2 26
 3 Loeb 2 Kanton 3.6.01 schwach 14.8 28

Atomare Domänen sicherstellen.

Primärschlüssel

Vorgehen für die Überführung von unnormalisierten Tabellen in 1NF

Das Relationenschema wird beibehalten. Weil allerdings nur noch ein Wert für
jedes Attribut in einem Tupel zugelassen ist, wird jedes Tupel aus der
unnormalisierten Tabelle in ein oder mehrere Tupel der 1NF-Tabelle abgebildet,
entsprechend dem durch die Problemstellung gegebenen Zusammenhang (z.B.
unabhängige Elemente der mengenwertigen Attribute oder eins zu eins
Entsprechungen). Durch die Vervielfältigung der Tupel wird natürlich auch der
bisherige Primärschlüssel ungültig und es muss ein neuer definiert werden. In
diesem Fall besteht der neue Primärschlüssel aus den Attributen 'stationsNr' und
datum'.

Alle vorhandene Information kann über SQL-Abfragen der Datenbank entnommen
werden. Beispielsweise ist eine Abfrage nach dem maximalen SO2-Wert oder
der vollständigen Menge aller Wetterberichte (Datum mit Bewölkungsangabe) jetzt
möglich.

Tabellen in erster Normalform enthalten enorm viel Redundanz. Ein Update-Befehl
betrifft sehr viele Einträge.

In obigem Beispiel bestehen immer noch unerwünschte Abhängigkeiten: Alle Daten
müssen immer noch einer Station und neu sogar einem Datum zugeordnet werden.
Das Einfügen neuer Messnetze oder Wetterberichte (Bewölkungsdaten) ist nur in
Zusammenhang mit einer Station möglich.

Kurs Datenbanken

Arno Schmidhauser Seite 30Juni 2006

2. und 3. Normalform, funktionale 2. und 3. Normalform, funktionale
AbhAbhäängigkeiten feststellenngigkeiten feststellen

P
T

V

P

P

P
T

V

Problemfälle

Messung stations
Nr

stations
Name

mess-
netzNr

messnetz
Name

datum bewölkung oC SO2

 1 Aare 1 Uni 1.6.01 stark 21.3 10
 1 Aare 1 Uni 2.6.01 mittel 18.2 12
 1 Aare 1 Uni 3.6.01 schwach 12.8 14
 2 Rathaus 2 Kanton 1.6.01 stark 21.8 21
 2 Rathaus 2 Kanton 2.6.01 mittel 18.9 20
 2 Rathaus 2 Kanton 3.6.01 schwach 13.8 22
 3 Loeb 2 Kanton 1.6.01 stark 21.0 23
 3 Loeb 2 Kanton 2.6.01 mittel 17.2 26
 3 Loeb 2 Kanton 3.6.01 schwach 14.8 28

Ok

Legende
P = Partielle funktionale Abhängigkeit
T = Transitive funktionale Abhängigkeit
V = Volle funktionale Abhängigkeit

Eine funktionale Abhängkeit drückt aus: Ein Attributwert ist eine (diskrete) Funktion
von einem oder mehreren anderen Attributwerten. Bezogen auf ein x,y,z
Koordinationsystem entspricht eine partielle funktionale Abhängigkeit
beispielsweise z = f(x) oder z = f(y), eine volle funktionale Abhängigkeit entspricht
z = f(x,y).

Nur die eigentlichen Messwerte OC und SO2 erfüllen die volle funktionale Abhängigkeit.
Die Messwerte sind abhängig von der Station und vom Datum.

Funktionale Abhängigkeit

In einer Relation R(A, B, ...) ist das Attribut B von A funktional abhängig, wenn zu
jedem Wert von A genau ein Wert von B gehört. Per Definition ist jedes Nicht-
Schlüsselattribut einer Relation vom Schlüssel funktional abhängig. Schreibweise:
A → B. Mit A ⎯/→ B wird explizit ausgedrückt, dass keine funktionale Abhängigkeit
vorliegt.

Volle funktionale Abhängigkeit

In einer Relation R(S1... Si, B, ...) ist das Attribut B von den Schlüsselattributen
S1...Si voll funktional abhängig, wenn B von der Kombination S1...Si funktional
abhängig ist, nicht aber von einzelnen Attributen S1...Si allein. Bei nur einem
Schlüsselattribut liegt immer eine volle funktionale Abhängigkeit vor.

Kurs Datenbanken

Arno Schmidhauser Seite 31Juni 2006

Partielle funktionale Abhängigkeit

In einer Relation R(S1... Si, B, ...) heisst die funktionale Abhängigkeit Sk → B
partiell, wenn Sk ein Element der Schlüsselattribute S1...Si ist.
Eine partielle funktionale Abhängigkeit drückt das Gegenteil zu einer vollen
funktionalen Abhängigkeit aus.

Transitive funktionale Abhängigkeit

In einer Relation R(S, A, B) ist das Attribut B vom Schlüssel S transitiv abhängig,
wenn B von A und A von S funktional abhängig ist, nicht aber S von A (mit dieser
letzten Bedingung werden die Sekundärschlüssel von transitiven Abhängigkeiten
ausgeschlossen).

Anmerkung

In obigen Definitionen darf anstelle von 'Attribut' singemäss 'Attributkombination'
stehen und unter A, B, C, S usw. sind dann Attributmengen zu verstehen.

Normalisierungsziel

In normalisierten Tabellen sollen nur noch volle funktionale Abhängigkeiten
auftreten, alle anderen sind zu eliminieren.

Kurs Datenbanken

Arno Schmidhauser Seite 32Juni 2006

2. Normalform (2NF)2. Normalform (2NF)

Partielle Schlüssel-
abhängigkeiten entfernt.

Station stations
Nr

stations
Name

messnetz
Nr

messnetz
Name

 1 Aare 1 Uni
 2 Rathaus 2 Kanton
 3 Loeb 2 Kanton

Wetter datum bewölkung
 1.6.01 stark
 2.6.01 mittel
 3.6.01 schwach

Messung stations
Nr

datum oC SO2

 1 1.6.01 21.3 10
 1 2.6.01 18.2 12
 1 3.6.01 12.8 14
 2 1.6.01 21.8 21
 2 2.6.01 18.9 20
 2 3.6.01 13.8 22
 3 1.6.01 21.0 23
 3 2.6.01 17.2 26
 3 3.6.01 14.8 28

Vorgehen für die Überführung von 1NF in 2NF

Die Überführung in 2NF führt immer zu einer Zerlegung der Ausgangstabelle. Einen
eindeutigen Zerlegungsalgorithmus gibt es allerdings nicht. Angenähert kann
folgendes Prozedere angegeben werden: Ausgangspunkt sind die
Schlüsselattribute. Jedes Schlüsselattribut und alle Attribute, die durch dieses
eindeutig bestimmt sind, werden in eine neue Tabelle ausgelagert. In der
Originaltabelle verbleiben alle Schlüsselattribute und alle übrigen Attribute, die
durch den ganzen Schlüssel eindeutig bestimmt sind.

Für obiges Beispiel heisst das:

• Die 'stationsNr' bestimmt eindeutig die Attribute 'stationsName', 'messnetzNr' und
'messnetzName' (umgekehrt allerdings nicht).

• 'datum' bestimmt eindeutig das Attribut 'bewölkung'.

• Die Attribute 'SO2' und oC' sind nur durch 'stationsNr' und 'datum' zusammen
eindeutig bestimmt.

• Das Attribut 'messnetzNr' bestimmt eindeutig das Attribut 'messnetzName'. Weil
aber 'messnetzNr' nicht zum Schlüssel gehört, wird diese Abhängigkeit im
Moment nicht betrachtet.

Durch je eine neue Tabelle (mit einem neu zu definierenden Namen) für die Attribute
'stationsNr' und 'datum' ergeben sich gesamthaft obenstehende drei Tabellen in
zweiter Normalform.

Es ist gut ersichtlich, dass die Zerlegung in 2NF eine Reduktion der Redundanz zur
Folge hat. Die Information über Stationen und Messnetze sind nur noch einmal
vorhanden.

Kurs Datenbanken

Arno Schmidhauser Seite 33Juni 2006

3. Normalform (3NF)3. Normalform (3NF)

Wetter datum bewölkung
 1.6.01 stark
 2.6.01 mittel
 3.6.01 schwach

Messung stationsNr datum oC SO2
 1 1.6.01 21.3 10
 1 2.6.01 18.2 12
 1 3.6.01 12.8 14
 2 1.6.01 21.8 21
 2 2.6.01 18.9 20
 2 3.6.01 13.8 22
 3 1.6.01 21.0 23
 3 2.6.01 17.2 26
 3 3.6.01 14.8 28

Station stations
Nr

stations
Name

messnetz
Nr

 1 Aare 1
 2 Rathaus 2
 3 Loeb 2

Messnetz messnetz
Nr

messnetz
Name

 1 Uni
 2 Kanton

Transitive Abhängigkeiten
entfernt.

Vorgehen für die Überführung von 2NF in 3NF

Wie schon die Überführung in 2NF ist auch diejenige in die 3NF eine Zerlegung von
Tabellen. Ausgangspunkt für die dritte Normalform sind Abhängigkeiten zwischen
Attributen, die nicht zum Schlüssel gehören. Wenn ein Attribut eines oder mehrere
andere eindeutig bestimmt, wird eine neue Tabelle mit den beteiligten Attributen
erstellt. In der Ausgangstabelle werden die abhängigen Attribute gestrichen.

Für obiges Beispiel heisst das:

Das Attribut 'messnetzName' ist von 'messnetzNr' abhängig. Aus ihnen entsteht die
neue Tabelle 'Messnetz'. Damit die Information, zu welchem Messnetz eine Station
gehört, erhalten bleibt muss in der ursprünglichen Tabelle 'Station' noch
mindestens die 'messnetzNr' vorhanden sein.

Mit dem Erreichen der 3NF ist in aller Regel die Überprüfung des Relationen-modelles
beendet. Es exisitieren zwar weitere Normalformen, sie sind aber häufig
automatisch erfüllt oder ihre Erkennung ist schwierig. Die früher aus Performance-
Gründen vorgenommen Denormalisierung in 2NF ist heute nicht mehr relevant.
Relationale Datenbanken sind genügend performant, damit mit einem 3NF
Datenmodell gearbeitet werden kann.

Kurs Datenbanken

Arno Schmidhauser Seite 34Juni 2006

UMLUML--DarstellungDarstellung des des
RelationenmodellesRelationenmodelles

«PK» stationsNr
stationsName
«FK» messnetzNr

«Table»
Station

C
SO2
«PFK» stationsNr
«PFK» datum

«Table»
Messung

«PK» messnetzNr
messnetzName

«Table»
Messnetz

«PK» datum
bewölkung

«Table»
Wetter

Obiges Diagramm stellt das Relationenmodell für das Schadstoff-Messystem in UML-
Form dar. Die Assoziationen sind weggelassen, um zu verdeutlich, dass der Bezug
zwischen den Tupeln zweier Relationen (Tabellen) nur noch durch Werte
bestimmter Attribut hergestellt wird, nämlich den Primärschlüsseln und den
Fremdschlüsseln.

Verwendet man UML zur Darstellung eines Relationenmodelles, so gibt es einige
spezielle Notationen:

• Der Stereotyp «Table» verdeutlicht, dass es sich nicht mehr um eine Klasse im OO-
Sinn, sondern um eine Relation beziehungweise Tabelle im Datenbanksinn handelt.
Häufig trifft man auch auf den Stereotyp «Entity» in UML-Diagrammen. Dieser
bezeichnet eine Klasse, deren Objekte (resp. die Attributwerte) in einer Datenbank
abgelegt werden sollen. Eine Klasse vom Typ «Entity» muss im Rahmen der
Anforderungen 2 und 3 eventuell in mehrere Relationen abgebildet werden
müssen. Es können also aus einer «Entity»-Klasse durchaus mehrere «Table»'s
entstehen.

• Der Stereotyp «PK» bedeutet, dass es sich beim markierten Attribut oder den
markierten Attributen um den Primärschlüssel (Primary Key) handelt.
Primärschlüssel werden in anderen Darstellungen sehr häufig durch Unterstreichen
gekennzeichnet.

• Der Stereotyp «FK» bedeutet, dass es sich beim markierten Attribut oder den
markierten Attributen um einen Fremdschlüssel handelt, also um eine Referenz auf
einen anderen Primärschlüssel.

• Der Stereotyp «PFK» bedeutet, dass es sich beim markierten Attribut oder den
markierten Attributen sowohl um ein Mitglied des Primärschlüssels wie um ein
Mitglied eines Fremdschlüssels handelt.

Siehe Skript 'Datenmodellierung mit UML' für eine detaillierte und ausführliche
Beschreibung.

Kurs Datenbanken

Arno Schmidhauser Seite 35Juni 2006

Daumenregeln Daumenregeln ÜÜberfberfüührunghrung

Konzeptionelles
Modell

Relationen
modell

attribut1

Klasse1

attribut2

Klasse2

1

0..*

«PK» schlüssel1
attribut1

«Table»
Tabelle1

«PK» schlüssel2
«FK» schlüssel1
attribut2

«Table»
Tabelle2

attribut1

Klasse1

attribut2

Klasse2

0..*

0..*

«PK» schlüssel1
attribut1

«Table»
Tabelle1

«PK» schlüssel2
attribut2

«Table»
Tabelle2

«PFK» schlüssel1
«PFK» schlüssel2

«Table»
Tabelle12

attribut1

Klasse1

attribut2

Klasse2

1

0..1

«PK» schlüssel1
attribut1

«Table»
Tabelle1

«PFK» schlüssel1
attribut2

«Table»
Tabelle2

Die Überführung vom UML-Modell in das Relationenmodell RM geschieht unter den
Gesichtspunkten:

• Möglichst wenig Relationen (Tabellen) erzeugen.

• Alle Informationen und Zusammenhänge im UML müssen im RM erhalten bleiben.

• Es sind nur atomare Domänen verfügbar.

• Redudanzfreiheit durch Normalisierung.

Zur Erklärung von «PK» «FK» und «PFK» siehe vorhergehende Folien.

Kurs Datenbanken

Arno Schmidhauser Seite 36Juni 2006

ZusammenfassungZusammenfassung

• Das konzeptionell Modell definiert den Informationsgehalt
einer Datenbanken. Es ist auf das WAS ausgerichtet.

• Das Relationenmodell ist auf die Abbildung der
Information in eine relationale Datenbank ausgerichtet. Es
ist auf das WIE ausgerichtet. Aus einer UML-Klasse
resultieren eine bis mehrere Tabellen.

• Das Relationenmodell muss normalisiert sein.

Das Relationenmodell enthält letzlich nicht nur die aus dem konzeptionellen UML-
Modell abgeleiteten und normaliserten Tabellen, sondern meist auch noch
verschiedene

technische Hilfstabellen, beispielsweise für das Aufbewahren des zuletzt gebrauchten
Primärschlüsselwertes, oder für das Mitführen von Session-Information in einem
Web-Shop etc.

Kurs Datenbanken

Arno Schmidhauser Seite 37Juni 2006

SQL ISQL I

• Übersicht
• Tabellen erzeugen
• Datentypen
• Tabellen modifizieren
• Tabellen abfragen

Die folgenden Beispiele und Erklärungen sind auf Sybase (MS SQL) bezogen, welches
in vielen Teilen mit SQL-3 Entry-Level konform ist. Abweichungen vom Standard
SQL-3 wurden soweit wie möglich kenntlich gemacht.

Kurs Datenbanken

Arno Schmidhauser Seite 38Juni 2006

Was ist SQL? Was ist SQL?

• SQL ist eine deklarative Sprache, d.h. sie definiert was getan
werden soll, nicht wie.

• Jeder Datenbankbenutzer und jede Applikation kommuniziert in
einer relationalen Umgebung ausschliesslich über SQL mit der
Datenbank.

• SQL-Befehle können interaktiv oder eingebettet in verschiedene
Programmiersprachen ausgeführt werden.

• SQL ist ein ANSI/ISO Standard in drei grossen Schritten: 1989,
1992, 1999

Im Juni 1970 veröffentlichte Dr. E.F. Codd im Association of Computer Machinery
Journal den Artikel "A Relational Model of Data for Large Shared Data Banks". Das
dort beschriebene Modell ist als das definitive theoretische Modell für RDBMS
akzepiert.

SQL ist eine (nicht ganz perfekte) Implementation der Relationenalgebra.

Die Sprache "Structured English Query Language" (SEQUEL) wurde bei IBM entwickelt,
um Codd's Modell zu implementieren. SEQUEL wurde später zu SQL (Structured
Query Language). 1979 wurde die erste kommerzielle SQL-Implementation von
Oracle auf den Markt gebracht. Der erste Standard von SQL wurde 1989
herausgegeben.

SQL wird laufend weiter entwickelt, der neueste Standard von ANSI (ISO) ist SQL-3
(auch SQL-99 genannt). Vorhergende sind SQL-92 rsp. SQL-89. SQL-3 ist mit SQL-
92 fast ausnahmslos konform, enthält jedoch wesentliche Erweiterungen,
beispielsweise objektorientierte Ansätze und Anbindungen für die Sprache Java in
SQL-J.

Da Daten in der Regel längerlebig sind als Applikationscode, kommt der Kontinuität von
SQL eine wichtige Bedeutung zu. Die Hersteller von Datenbanksystemen sind
bemüht, ihren SQL-Dialekt in Richtung Standard weiter zu entwickeln und
gleichzeitig die proprietären Erweiterungen oder Spezialitäten zu pflegen. Die
Entwickler haben damit die Wahl, nur mit Konstrukten aus dem Standard-Umfang zu
arbeiten, oder die speziellen Produkteigenschaften mit den entsprechend
proprietären Konstrukten voll zu nutzen. Typisch proprietäre Eigenschaften sind in
den Bereichen Datentypen, Defaultwerten, Abfrage-Befehle, Concurrency Control
und physische Datenorganisation zu finden.

Kurs Datenbanken

Arno Schmidhauser Seite 39Juni 2006

SQLSQL--Befehle, Beispiele Befehle, Beispiele

create table Person (
idPerson integer,
name varchar(64)

)

insert Person (idPerson, name)
values (3, 'Muster')

select *
from Person
where name = 'Muster'

update Person
set name = 'Muster-Müller'
where idPerson = 3

delete Person
where idPerson = 3

Kurs Datenbanken

Arno Schmidhauser Seite 40Juni 2006

SQL als ProtokollspracheSQL als Protokollsprache

• SQL kann im Netzwerksprachgebrauch als Kommunikationsprotokoll
auf Layer 7 aufgefasst werden.

• SQL - Befehle werden über eine Netzwerkverbindung an den
Datenbank-Server geschickt.

• Der Datenbank-Server schickt das Abfrage-Resultat an die Applikation
zurück.

Applikation

JDBC

ODBC

usw.

Datenbank-
Server DB-Dateien

TCP / IP

SQL

Kurs Datenbanken

Arno Schmidhauser Seite 41Juni 2006

SQL vs. ProgrammierspracheSQL vs. Programmiersprache

SQL

select name
from Person
where persNr = '6'

C

prs = fopen ("Person.dat", mode);
while(
fscanf(prs, "%s%s ",persnr, name)> 0) {

if(strcmp(persnr, "6") == 0) {
printf("%s %s", name);

}
}
fclose (prs);

• Lesbarere Statements

• Zugriff durch DBMS optimierbar

• Abfrage wird beim DBMS durchgeführt

• Grosser Overhead für Parsing und Durchführung

Funktionsweise von SQL
SQL lässt den Benutzer die Daten auf der logischen Ebene benutzen, er braucht
grundsätzlich keine Kenntnisse darüber, was im Hintergrund abläuft. Alle Tupel,
welche die Selektionskriterien erfüllen, werden als Einheit dem User Interface oder
dem Applikationsprogramm oder auch einer weiteren Abfrage übergeben.

Man unterscheidet drei Gruppen von SQL-Statements:

1. Data Definition Language DDL: Definition von Datenbankobjekten (Tabellen)
erstellen, verändern und löschen.

2. Data Control Language DCL: Zugriffsrechte auf die Datenbankobjekte verwalten,
Konsistenz unter den Datenbankobjekten definieren.

3. Data Manipulation Language DML: Daten einfügen, verändern, löschen. Daten
abfragen (dies ist der komplexeste Teil von SQL).

Kurs Datenbanken

Arno Schmidhauser Seite 42Juni 2006

SQLSQL--Tabellendefinition, BeispielTabellendefinition, Beispiel

create table Person
(
idPerson numeric(8,0) not null

default autoincrement,
name varchar(30) not null,
vorname varchar(15) not null,
gebDatum date null,
anzKinder integer null,
ahvNr varchar(14) not null,
primary key (idPerson),
unique (ahvNr),
check (ahvNr like '___.__.___.___')

)

Eine SQL-Tabelle definiert ein Relationenschema, d.h. die Name und Domäne der zum
Relationenschema gehörigen Attribute. Ausserdem können in einer SQL-Tabelle der
Primärschlüssel, allfällige Sekundärschlüssel, sowie allfällige Referenzen auf andere
Tabellen (Fremdschlüssel) definiert werden. Mit der Definition der SQL-Tabelle wird
in der Datenbank auch alle notwendige Verwaltungs-Infrastruktur für die
Datensätze (Tupel) vorbereitet. Dazu gehört beispielsweise Information über den
Besitzer, Indices für den schnelleren Zugriff, vorreservierter Platz usw.

SQL ist eine Realisierung des Relationenmodelles. Es gibt daher nur einfache,
atomare Datentypen für die Attribute. Möchte man beispielsweise für eine Person
mehrere Vornamen in der Datenbank festhalten, wird eine zweite Tabelle (Relation)
notwendig, in welcher pro Datensatz (Tupel) ein Vorname festgehalten werden.
Jeder Datensatz der zweiten Tabelle enthält eine Referenz (Fremdschlüssel) auf die
erste Tabelle.

Tabellen werden mit drop table tablename wieder gelöscht. Generell gilt: drop ist
das Gegenteil von create bezüglich Datenstruktur-Befehlen.

Die Angabe default autoincrement als automatischer Zähler für den Primärschlüssel
ist Sybase-spezifisch und soll hier als Beispiel für eine typische Produkterweiterung
genommen werden. Die automatische Schlüsselvergabe wird in SQL-3 nicht
geregelt, jedoch in den meisten Produkten angeboten.

Der like-Operator ist testet den Ausdruck links auf ein bestimmtes Pattern. Ein Pattern
kann echte Zeichen enthalten, sowie die Wildcards ' _' und '%'. '_' bezeichnet ein
einziges, beliebiges Zeichen. '%' bezeichnet ein 0 bis n beliebige Zeichen. In der
Praxis existieren verschiedenste Erweiterungen des like-Operators. In SQL-3
Standard sind diese Erweiterungen im similar-Operator zusammengefasst, der
den Vergleich eines Strings mit einem allgemeinen regulären Ausdruck ermöglicht.

Angaben für die Tabellendefinition beinhalten:

• Attributname, Datentyp, Nullwert, Defaultwert, automatische Schlüsselwerte
• Primärschlüssel, Sekundärschlüssel (unique Angabe)

• Referenzielle Integriätsbedingungen

• Semantische Integritätsbedingungen

Kurs Datenbanken

Arno Schmidhauser Seite 43Juni 2006

SQLSQL--Tabellendefinition, Beispiel ffTabellendefinition, Beispiel ff

create table Adresse (
idAdresse numeric(10,0) not null

default autoincrement,
idPerson numeric(10,0) not null,
strasse varchar(200) not null,
primary key(idAdresse),
foreign key(idPerson) references Person(idPerson)

)

Das Bezeichnen von Primär- und Sekundärschlüsseln kann zur automatischen
Erzeugung entsprechender Indices führen.

Häufig kennen Datenbanksysteme auch temporäre Tabellen. Deren Lebensdauer kann
auf die Transaktion, die Session oder den DBMS-Prozess beschränkt sein. Sie sind
immer im Hauptspeicher angelegt, müssen nicht gesichert werden, unterliegen
keinem gleichzeitigen Zugriff durch mehrere Benutzer und sind daher sehr schnell.

In Zusammenhang mit der Tabellendefinition stehen:

• Rechte für Lesen, Ändern, Löschen, Einfügen

• Zusätzliche Indices

• Views

• Triggers

Weitere Angaben bei der Tabellendefinition sind möglich, aber sehr produktspezifisch.
Es sind meist Angaben zu:

• Speicher-Ordnung, zum Beispiel sequentiell ungeordnet, B-Tree mit Schlüssel,
Hash mit Schlüssel (beeinflusst nur die Performance, nicht das Resultat eines SQL-
Befehles).

• Füllgrad (Platzreserve bei Änderungen an Daten)

• Speicherort (Tablespace, Datenbank-Device)

• Locking-Verhalten (Tabelle, Page, Record)

• Logging (Mit oder ohne Logging)

• Caching (Grösse, Cache-Strategie LRU oder MRU)

• Replikationsangaben

Kurs Datenbanken

Arno Schmidhauser Seite 44Juni 2006

SQLSQL--3 Datentypen3 Datentypen

• Zahlen: INTEGER, SMALLINT,
NUMERIC(p,s), DECIMAL(p,s),
FLOAT(p), REAL(p), DOUBLE PRECISION(p)

• Bitwerte: BIT(n), BIT VARYING(n)

• Binärdaten: BLOB(n)

• Zeichen: CHAR(n), VARCHAR(n),
NCHAR(n), NCHAR VARYING(n), CLOB(n), NCLOB(n)

• Zeit: DATE, TIME(p), TIMESTAMP(p), INTERVAL

• Logik: BOOLEAN

Der SQL-Standard macht, ganz genau betrachtet, keine Angaben über die Art der
Implementation der Datentypen. Beispielsweise ist nicht definiert, wieviele Bytes
und damit einen wie grossen Wertebereich ein INTEGER oder ein FLOAT umfasst.
Aus praktischer Sicht gibt es jedoch Datentypen, welche sich faktisch überall gleich
verhalten, während bei anderen recht grosse Differenzen zwischen den Herstellern
bestehen.

INTEGER und SMALLINT werden überall angeboten und sind in 4 Bytes resp. 2 Bytes
abgelegt.

NUMERIC und DECIMAL werden synonym gehandhabt und sind nützlich für Fix-Punkt
Arithmetik. Berechnungen mit Eingaben im Rahmen der angegebenen Präzision p
und der angegebenen Kommastellen s ergeben ein exaktes Resultat im Rahmen
einer Ausgabe mit p Stellen und s Kommastellen. Der Standard macht keine
Angaben zu den maximalen Angaben für p und s, liegt jedoch bei vielen DBMS weit
über 30.

FLOAT, REAL repräsentieren Zahlen mit Mantisse/Exponent Darstellung. FLOAT und
REAL werden in der Regel in 4 Bytes abgelegt (gemäss IEEE Spezifikation 745-
1985) mit einer Mantisse von 7 Stellen und einem Exponent von -38 bis +35. Wird
eine Präzision p angegeben, benützt das Datenbanksystem letzlich entweder eine 4
Byte oder eine 8 Byte Darstellung.

DOUBLE PRECISION wird in der Regel in 8 Bytes abgelegt mit einer Mantisse von 15
Dezimalstellen und einem Exponent von -304 - + 308.

Bitwerte werden als Strings eingegeben, beispielsweise mit B '1001'. Arithmetische
Operationen sind nicht möglich.

Binärdaten (BLOB heisst Binary Large Object) können beliebig grosse Datenmengen
aufnehmen. Gegenüber Zeichen-Datentypen haben sie keine lexikalische Semantik
(zum Beispiel beim Vergleich von Buchstaben mit oder ohne Umlauten). Auf
Binärdaten gibt es in der Praxis meist weniger Operationen und Vergleiche als bei
Zeichendaten. Die interaktive Ein-/Ausgabe kann in Form von Hexadezimalen
Strings erfolgen, beispielsweise X 'FF00FF'. Je nach Hersteller heissen sich auch
ganz anders.

Kurs Datenbanken

Arno Schmidhauser Seite 45Juni 2006

Der Zeichentyp CHAR nimmt Strings fester Länge auf. Bei Bedarf wird mit Blanks
aufgefüllt. Der Zeichentyp VARCHAR nimmt Strings variabler Länge auf und merkt
sich neben den Zeichen auch die exakte Länge des Strings. Die Maximale Länge
von CHAR und VARCHAR ist je nach Produkt eventuell deutlich eingeschränkt. Die
Empfehlung im SQL-Standard nennt 1000 Zeichen als Minimalempfehlung. Häufig
liegt die Maximale Länge aber bereits bei 255 Zeichen. Der Trend der Hersteller
geht dahin, nicht mehr zwischen CHAR und VARCHAR zu unterscheiden. Wichtig ist,
dass CHAR und VARCHAR Datentypen Zeichen aus einem bestimmten Zeichensatz
und einer bestimmten Sortierordnung aufnehmen. Dieser Zeichensatz ist je nach
Hersteller systemweit oder pro Tabellen-Attribut einstellbar.

Die Zeichentypen NCHAR und NCHAR VARYING unterscheiden sich bezüglich SQL-
Standard nicht wesentlich von CHAR und VARCHAR. Der einzige Unterschied liegt
darin, dass bei NCHAR und NCHAR VARYING ein systemweit definierter Zeichensatz
verwendet wird.

Klassischerweise können CHAR und VARCHAR Zeichentypen technisch nur mit 1-Byte
Zeichensätzen umgehen, beispielsweise ISO 8859-1. Immer mehr ist jedoch der
UNICODE Zeichensatz mit dem Speicherformat UTF-8 gefragt. Hersteller
implementieren deshalb NCHAR und NCHAR VARYING so, dass diese Mehr-Byte
Zeichensätze aufnehmen können.

Achtung: Das Resultat von Vergleichsoperationen ist Zeichensatz- und
Sortierordnungs-abhängig. Die Sortierordnung heisst auch Collation-Sequence und
definiert einen Satz von Regeln für einen bestimmten Zeichensatz. Die Regeln
bestimmen, ob ein Zeichen grösser, kleiner oder gleich wie ein anderes Zeichen ist.
Dementsprechend können beispielsweise die Zeichen ä a und à identisch sein, sie
können unmittelbar aufeinander folgen, oder sie können (bei binärer
Sortierordnung) sehr weit auseinander liegen. Die Sortierordnung beeinflusst
sowohl das Resultat von Vergleichsoperationen wie auch die Ausgabe mit ORDER BY
in select-Befehlen.

Der Typ DATE hat eine Wertebereich von 1. Januar 0001 bis 31.12.9999. Das
Standardformat für die Ein-/Ausgabe ist 'yyyy-mm-dd'. Der Typ Time hat das
Standardformat 'hh:mm:ss.nnnnnn'. Eine genauere Präzision als 1 Sekunde (p >
0) ist optional. Typische Speicherplatz-Belegung für DATE ist 4 Byte, für TIME 8
Byte.

Der Typ TIMESTAMP ist eine Kombination von DATE und TIME und belegt i.a. 8 Byte
Speicherplatz. Das reicht aus für eine Auflösung von 1 Mikrosekunde über den
ganzen Datumsbereich von DATE.

Einige Hersteller stellen Mechanismen zur Verfügung stellen, damit jeder vergebene
Zeitstempel systemweit eindeutig ist, beispielsweise indem einem Zeitwert ein
fortlaufender Zählerwert hinzugefügt wird. Hochaufgelöste Zeitstempel als
Primärschlüssel zu verwenden ist allerdings heikel. Es ist zu testen, ob der
Zeitstempel auch mit der richtigen Auflösung in die Applikation resp. zurück in die
Datenbank gelangt. Soll ein Zeitstempel verwendet werden, um zu prüfen, ob ein
Datensatz nach dem letzten Lesen durch einen anderen Prozess verändert wurde,
kann auch mit einer fortlaufenden Zahl gearbeitet werden.

Kurs Datenbanken

Arno Schmidhauser Seite 46Juni 2006

NullwerteNullwerte

• Null ist eine spezielle Markierung, die anstelle eines
Wertes stehen kann.

• Null wird syntaktisch wie eine Konstante behandelt und
wird null geschrieben.

• Ob null zulässig ist für ein Attribut, wird im Rahmen der
Tabellen- oder Domänendefinition angegeben.

• Gutes Beispiel: Geburtsdatum einer Person (Daten
existieren, sind aber eventuell nicht bekannt)

• Schlechtes Beispiel: Autonummer in einem
Personendatensatz. Der Nullwert ist mehrdeutig: Person
hat kein Auto oder die Nummer ist nicht bekannt.

Kurs Datenbanken

Arno Schmidhauser Seite 47Juni 2006

DefaultwerteDefaultwerte

• Der Defaultwert definiert den Wert für ein Attribut, wenn dieses beim
erstmaligen Einfügen eines Datensatzes in die Tabelle weggelassen
wird.

• Defaultwerte können beispielsweise sein

CURRENT { DATE | TIME | TIMESTAMP | USER }
konstanter Wert | konstanter Ausdruck
NULL

• Anwendungsbeispiele

create table Person (
name varchar(30) default CURRENT USER,
homepage varchar(64) default 'http://localhost'

...)

create table Fall
eingegangenAm timestamp default CURRENT TIMESTAMP,

...)

Obige Beispiele sind in der Syntax spezifisch für Sybase ASA 9.0, decken aber in etwa
die im SQL-Standard definierten Möglichkeiten ab.

Ein Defaultwert kann im Rahmen einer Domänen-Definition oder direkt bei einem
Attribut im Rahmen der Tabellen-Definition angegeben werden. Gibt es sowohl in
der Domäne wie in der direkten Defintion eines Attributes einen Default-Wert, hat
die Angabe bei der Attribut-Definition Vorrang (Lokalitätsprinzip).

Die Gross-/Kleinschreibung für die Schlüsselworte ist meist nicht relevant.

Kurs Datenbanken

Arno Schmidhauser Seite 48Juni 2006

DomDomäänennen

• Eine Domäne definiert einen Wertebereich für ein Attribut:

create table Person (
gebDatum GebDatum,
homepage Url,
land Land

)

• Eine Domäne schränkt einen bestehenden Basistyp weiter ein:

create domain GebDatum date null
check (value <= getdate())

create domain Url varchar(128)
check (value like 'http://%')

create domain Land varchar(2)
check (value in (select land from Land))

Domänen

Domänen dienen nicht dem Erzeugen von Werten, sondern der Definition, welche
Werte erlaubt sind.

Obige Syntax genügt dem SQL-3 Standard. In In Sybase ASA 9.0 wäre das
Schlüsselwort value durch eine Variable mit vorabgestelltem @ zu ersetzen,
beispielsweise @wert.

Achtung: Die Bedingung in der Domänendefinition gilt als erfüllt, wenn sie entweder
als true oder null evaluiert wird.

Es können mehrere check-Klauseln nacheinander aufgeführt werden. Genausogut
kann aber auch innherhalb einer Bedingungen mit AND- oder OR-Verknüpfungen
gearbeitet werden. In SQL-3 kann jede Bedingung auch einen Namen tragen
(Constraint Name), über den sie später gelöscht werden kann.

In SQL-3 kann ein Domain geändert werden mit alter domain. Es ist möglich, den
Defaultwert oder die Bedingung zu löschen, respektive neu hinzuzufügen. Die
bestehenden Datensätze müssen einer allfällig geänderten Domain-Bedingung
genügen. In Sybase ASA 9.0 kann die Domäne über alter table geändert werden.
Datensätze, welche eine allfällig neuen Bedingung genügen, werden ohne
Fehlermeldung beibehalten.

Die explizite Definition einer Domäne ist sehr nützlich zur strikten Kontrolle von
Zustandsattributen mit einer meist geringen Zahl von Werten, beispielsweise:

Zivilstand -> ledig, verheiratet

Geschlecht -> m, f

Bestellung -> laufend, ausgeliefert, bezahlt

Ausleihung -> laufend, gemahnt, zurueck

Hotline-Fall -> entgegengenommen, in Bearbeitung, abgeschlossen, abgebrochen.

Randbemerkung: Die zweistelligen Ländercodes sind in ISO 3166 definiert.

Kurs Datenbanken

Arno Schmidhauser Seite 49Juni 2006

Automatische WerteAutomatische Werte

• Automatische Werte werden bei jeder Modifikation resp.
jeder Einfügung neu berechnet.

• Die Definition von automatischen Werten findet häufig im
Rahmen von Domänen statt.

• Beispiele aus Sybase ASA 9.0:

create domain ID integer default AUTOINCREMENT

create table Person (
idPerson ID,
geaendertAm timestamp default TIMESTAMP,
geaendertVon varchar(32) default LAST USER

)

Die Definition von automatischen Werten im Rahmen von Domänen ist konzeptionell
nicht ganz richtig: Die Domäne ist ja nicht zuständig für die Vergabe von Werten,
sondern legt nur die möglichen Werte eines Attributes fest. Trotzdem arbeiten viele
Produkte auf diese Weise.

Der SQL-Standard macht gar keine Aussagen zu automatischen Werten, hingegen gibt
es in den verschiedenen Produkten einige schöne Möglichkeiten. Obige Beispiele
sind in der Syntax spezifisch für Sybase ASA 9.0.

Ein häufiger Automatismus ist ein Zähler für den Primärschlüssel einer Tabelle.

Die Angaben TIMESTAMP und LAST USER haben zur Folge, dass ein entsprechendes
Attribut bei jeder Modifikation (inkl. Einfügung) auf den aktuellen Wert von
TIMESTAMP oder LAST USER gesetzt wird. Natürlich können die entsprechenden
Attribute auch explizit gesetzt werden. Zu beachten ist der Unterschied zu den
Angaben CURRENT TIMESTAMP oder CURRENT USER bei den Beispielen zu
Domänen, welche lediglich bei der ersten Einfügung eines Datensatzes den Wert
ihres zugeordneten Attributes setzen. Die Angabe CURRENT USER ist weniger
nützlich als es den Anschein hat, weil viele Applikationen gegenüber der Datenbank
nur noch als ein Benutzer auftreten, unabhängig davon, wer effektiv vor dem
Bildschirm sitzt.

Kurs Datenbanken

Arno Schmidhauser Seite 50Juni 2006

Einfach SQLEinfach SQL--Modifikationsbefehle Modifikationsbefehle

insert into Person
(name, vorname, gebDatum, anzKinder, ahvNr)
values
('Muster', 'Franz', '1-jan-2003', 2, '822.59.268.113')

delete from Person
where idPerson = 3

update Person
set ahvNr = '822.59.268.113'
where persnr = 4

Der Unterhalt der Daten geschieht mit den drei SQL-Befehlen insert, delete und
udpate.

Zeilenumbrüche haben keine Relevanz für SQL-Befehle. Die Befehle selbst dürfen
gross oder klein geschrieben werden. Bei Tabellennamen, Attributnamen usw. wird
in vielen System nicht zwischen Gross- und Kleinschreibung unterschieden, es sei
denn, die Namen sind in doppelte Anführungszeichen eingeschlossen (quoted
identifiers). Ob bei Stringdaten zwischen Gross- und Kleinschreibung unterschieden
wird, kann bei vielen Datenbanksystem beim Erstellen der Datenbank definiert
werden. Gemäss SQL-Standard muss wählbar sein, ob Gross-/Kleinschreibung für
Stringdaten relevant ist.

Attribute, welche automatische Schlüssel enthalten, dürfen in der Liste der
einzufügenden Namen nicht vorkommen. Für Attribute mit zugelassenem Null-Wert
darf die Konstante null verwendet werden. Sind bestimmte Attributnamen nicht
aufgeführt, wird für sie automatisch ein Null-Wert oder ein eventuell definierter
Default eingefüllt.

Je nach Datenbanksystem oder Einstellung desselben werden einfache oder doppelte
Anführungszeichen für Strings und Datumswerte verwendet. SQL-3 definiert
einfache Anführungszeichen, die doppelten sind für quoted identifiers (z.B.
Attributnamen mit Spezialzeichen darin) reserviert.

Ein delete-Befehl ohne where-Teil löscht den ganzen Tabellen-Inhalt, jedoch nicht die
Tabelle an sich. Lezteres muss mit drop table geschehen.

Das Standard-Format von Datumswerten ist gemäss SQL- und ISO-Standards 'YYYY-
MM-DD'. Jedes Datenbanksystem hat zusätzliche Befehle mit dem die Eingabe- und
Ausgabeformate von Datumswerten gesetzt werden können. Bei Sybase ASA sind
dies die Optionen DATE_FORMAT für die Ausgabe, und DATE_ORDER für die Eingabe.

Kurs Datenbanken

Arno Schmidhauser Seite 51Juni 2006

Einfache SQLEinfache SQL--AbfragenAbfragen
select * from Person

select upper(name), vorname, gebDatum
from Person
order by name, vorname

select * from Person
where idPerson = 3

select name || ' ' || vorname
from Person
where name like 'I%' or name like 'J%'
order by name, vorname

select name, vorname from Person
where gebDatum is null

Der select-Befehl ermöglicht einfache, aber auch sehr komplexe Abfragen. Die
generelle Struktur einer Abfrage sieht wie folgt aus:

Der select-Teil definiert die Attribute der Resultattabelle (Projektion). Ein * heisst,
dass alle Attribute der im from-Teil genannten Tabellen im Resultat erscheinen. Im
select-Teil dürfen auch Funktionen auf Attributen und Aliasnamen für die
auszugebenden Attributnamen verwendet werden.

Der from-Teil definiert die Ausgangstabellen. Konzeptionell gesehen wird bei einer
Abfrage aus allen genannten Tabellen im from-Teil das kartesische Produkt
gebildet. Aus diesem werden im select-Teil bestimmte Attribute und im where-Teil
bestimmte Datensätze herausgefiltert.

Der where-Teil definiert die Bedingungen an die auszugebenden Datensätze
(Restriktion).

Der order by-Teil definiert die Sortierung der Ausgabe. Da relationale Datenbanken
mengenbasiert arbeiten, kann grundsätzlich nicht von einer Sortierfolge in den
Basistabellen ausgegangen werden. Eine Sortierung ist nur garantiert, wenn sie mit
order by erzwungen wird.

Kurs Datenbanken

Arno Schmidhauser Seite 52Juni 2006

GruppierungGruppierung

select anzKinder, count(*)
from Person
group by anzKinder

select datepart(year, gebDatum) as Jahr, avg(anzKinder)
from Person
where gebDatum is not null
group by Jahr

select anzKinder, count(*)
from Person
group by anzKinder
having count(*) > 10

• Gruppierungen sind bei der Bildung von Statistiken und
der Analyse eines Datenbestandes ein sehr potentes
Hilfsmittel.

Obige Aufzählung der Aggregatfunktionen entspricht dem SQL-3 Standard.

Sehr wichtig ist, dass bei der Gruppierung die einzelnen Datensätze, aus der die
Gruppe gebildet wird, verlorengehen. Da SQL nur Tabellen erster Normalform
kennt, ist es nicht möglich, im obigen ersten Beispiel noch gleichzeitig die Namen
der Personen in jeder Gruppe zu bekommen.

Zu beachten ist der Unterschied zwischen der where-Klausel und der having-Klausel.
Die where-Klausel selektiert Datensätze vor dem Gruppieren. Die having-Klausel
selektiert die Datensätze nach dem Gruppieren, sie filtert also gewisse Gruppen
heraus.

In der select-Klausel können nur folgende Attribute ausgegeben werden:

• Eines oder mehrere der Attribute, die auch in der group by Klausel stehen.

• Eine so genannte Aggregat-Funktion, welche einen Wert über die ganze Gruppe
berechnet: count(*), sum(a), avg(a), max(a), min(a).

Kurs Datenbanken

Arno Schmidhauser Seite 53Juni 2006

UnterabfragenUnterabfragen

select * from Person
where idPerson not in (select idPerson

from Adresse)

select * from Person p
where not exists (select *

from Adresse a
where p.idPerson = a.idPerson)

• Unterabfragen sind nützlich für Abfragen der Art "Suche
alle Datensätze welche in einer anderen Tabellen nicht
vorkommen".

Jede Unterabfrage wird (mindestens konzeptionell) für jeden Datensatz der
übergeordneten Abfrage einmal durchgeführt.

Unterabfragen sind häufig dann anwendbar, wenn sich Fragen stellen wie
"Suche alle x, die nicht in y vorkommen ..." oder "Gib mir alle x, ausser
diejenigen, welche....".

Die Daten der Tabelle in der Unterabfrage können nicht ausgegeben werden. Dafür
müsste (zusätzlich) mit einem Join gearbeitet werden. Siehe nächste Seiten.

Kurs Datenbanken

Arno Schmidhauser Seite 54Juni 2006

Kartesisches ProduktKartesisches Produkt
• Der konzeptionelle Ausgangspunkt für viele Abfragen, die

Information aus mehreren Tabellen zusammen-stellen, ist das
kartesische Produkt. Beispiel in SQL:

select * from Person, Adresse

Person id Person nam e
 1 A
 2 B
 3 C

Adresse idPerson strasse
 1 X
 2 Y

Person.idPerson person.name Adresse.idPerson Adresse.strasse
1 A 1 X
1 A 2 Y
2 B 1 X
2 B 2 Y
3 C 1 X
3 C 2 Y

Das Relationenschema eines kartesischen Produktes besteht aus allen Attributen der
beiden Ausgangsrelationen. Die Produktrelation wird gebildet indem jedes Tupel
der einen Relation mit jedem Tupel der anderen Relation verknüpft wird.

Das kartesiches Produkt kann durch das Datenbanksystem mit Hilfe einer n-fachen
Schleife algorithmisch sehr leicht berechnet werden. Natürlich ist das kartesische
Produkt selten das, was man als Schlussresultat einer Abfrage möchte. Aber es
bildet (mindestens konzeptionell) den Ausgangspunkt für weitere Operationen, d.h.
die Einschränkung der Datensätze mit dem where-Teil (Der genaue Begriff in der
Datenbanktechnologie heisst Restriktion) und die Einschränkung auf bestimmte
Attribute im select-Teil (Der genaue Begriff in der Datenbank-technologie heisst
Projektion).

Kurs Datenbanken

Arno Schmidhauser Seite 55Juni 2006

JoinJoin

• Aus dem kartesischen Produkt zweier Tabellen wird ein
Join, wenn folgende Bedingung gilt: Die Werte der
gemeinsamen Attribute müssen gleich sein.

select * from Person, Adresse
where Person.idPerson = Adresse.idPerson

Pe rson id Pe rson n am e
 1 A
 2 B
 3 C

Adresse idPerson strasse
 1 X
 2 Y

Person.idPerson person.name Adresse.idPerson Adresse.strasse
1 A 1 X
2 B 2 Y

Der Join, auch Verbund genannt, ist ein zentrale Operation bei Abfragen mit SQL. Ihm
gilt auch besondere Aufmerksamkeit bei der Optimierung von Abfragen.

Natürlich kann eine Join-Abfrage mit weiteren Einschränkungen ergänzt werden,
beispielsweise
select name, strasse
from Person, Adresse
where Person.idPerson = Adresse.idPerson
and name = "Müller"

Einer Tabelle im from-Teil kann ein Alias zugeteilt werden. In vielen Fällen ist dies ein
reines Hilfskonstrukt um besser lesbare Abfragen zu erhalten. Beispiel:
select p.name, a.strasse
from Person p, Adresse a
where p.persnr = a.persnr
and p.name = "Müller"

Kurs Datenbanken

Arno Schmidhauser Seite 56Juni 2006

NaturalNatural JoinJoin

• Der Natural Join von zwei Tabellen ist ein Join über die
gemeinsamen Attribute beider Tabellen.

select * from Person natural join Adresse

Pe rson id Pe rson n am e
 1 A
 2 B
 3 C

Adresse idPerson strasse
 1 X
 2 Y

Person.idPerson person.name Adresse.idPerson Adresse.strasse
1 A 1 X
2 B 2 Y

Manchmal ist es notwendig, anzugeben, welche Attribute miteinander verknüpft
werden sollen. Dann ist folgende folgende Schreibweise möglich:

select *
from Person natural join Adresse on (Person.idPerson =
Adresse.idPerson)

Verhalten des Natural Join im SQL-Standard

Der natural join ist kommutativ, das heisst:

A natural join B = B natural join A

Der natural join ist assoziativ, das heisst:

(A natural join B) natural join C = A natural join (B natural join C)

Wenn zwei Tabellen A und B, respektive B und C, keine gemeinsamen Attribute
haben, wird der Natural Join zu einem Kreuzprodukt (Auch Cross Join oder
Kartesisches Produkt genannt).

Der Natural Join verhält sich in Sybase leider nicht assoziativ, sondern vergleicht nur
Attribute unmittelbar benachbarter Tabellen im From-Ausdruck, was zu Problemen
führt, wenn ein Join gebildet werden soll, bei dem eine Tabelle gemeinsame
Attribute zu mehreren anderen Tabellen hat.

Besser als der Natural Join wäre eine Join-Möglichkeit, die sich an den definierten
Fremdschlüssel/Primärschlüssel-Beziehungen ausrichtet. Das ist z.B. bei Sybase
möglich, jedoch nicht im SQL-Standard.

Kurs Datenbanken

Arno Schmidhauser Seite 57Juni 2006

OuterOuter JoinJoin

• Ein Outer Join ist ein Join mit der zusätzlichen Bedingung:
Jeder Datensatz der linken Tabelle muss mindestens
einmal im Resultat erscheinen.

select * from Person natural left outer join Adresse

Person.idPerson person.name Adresse.idPerson Adresse.strasse
1 A 1 X
2 B 2 Y
3 C null null

Person idPerson nam e
 1 A
 2 B
 3 C

Adresse idPerson strasse
 1 X
 2 Y

Outer-Joins sind ein häufiges Bedürfnis in der Praxis. Obige Syntax ist Sybase-
spezifisch. Gemäss SQL-3 Standard müsste folgende Syntax verwendet werden:
select * from Person left outer join Adresse

Falls ein Datenbanksystem keine Outer-Joins anbietet kann er in etwa nachgebildet
werden mit folgender Abfrage, die syntaktisch fast immer erlaubt ist:
select p.persnr, p.name, a.strasse
from Person p, Adresse a
where p.persnr = a.persnr
union
select p.persnr, p.name, null
from Person p
where p.persnr not in (select a.persnr from Adresse a)

Der Outer-Join ist nicht direkt aus dem kartesichen Produkt von Person und Adresse
ableitbar sondern ist eine Vereinigung zweier Abfragen, wie oben dargestellt.

Manchmal ist es notwendig, anzugeben, welche Attribute miteinander verknüpft
werden sollen. Dann ist folgende folgende Schreibweise möglich:

select *
from Person natural left outer join Adresse

on (Person.idPerson = Adresse.idPerson)

Diese Schreibweise ist notwendig, wenn die zu verknüpfenden Attribute nicht gleich
heissen, oder wenn die zu verknüpfenden Tabelle nicht unmittelbars benachbart
sind.

Kurs Datenbanken

Arno Schmidhauser Seite 58Juni 2006

SelfSelf JoinJoin

• Eine Tabelle kann mit sich selber verbunden werden. Man
spricht von einem Self Join. Beispiel: welche Person ist
Vater von B?

select p2.name
from Person p1, Person p2
where p1.idVater = p2.idPerson
and p1.name = 'B'

Person idPerson name idVater
 1 A (null)
 2 B 1
 3 C 2

Person idPerson name idVater
 1 A (null)
 2 B 1
 3 C 2

• Die Tabellen gelten durch ihre Umbennung mit einem Alias
logisch als zwei verschiedene Tabellen.

Wenn Abfragen auf eine Tabelle durchgeführt werden, die mit sich selbst in Beziehung
steht wird die Verwendung von Alias-Namen zwingend.

Join, Natural Join und Self Join werden unter auch unter dem Sammelbegriff Inner
Join zusammengefasst.

Kurs Datenbanken

Arno Schmidhauser Seite 59Juni 2006

SQLSQL--Operatoren und FunktionenOperatoren und Funktionen

• Vergleichsoperatoren (where-Klausel)
=, <, >, <=, >=, <>, between, like

• Boolsche Operatoren (where-Klausel)
and, or, not, (), is null, is not null

• Mengenoperatoren (where-Klausel)
in, not in, exists,
>any, <any, =any, >all, <all, =all

• Mathematische Operatoren (where- und select-Klausel)
+, -, *, /

• Systemfunktionen (where- und select-Klausel)
upper(), lower(), trim(), substring(), ...

Alle oben genannten Operatoren und Funktionen sind im SQL-3 Standard auf-geführt.
Im SQL-Standard und insbesondere in den meisten produktspezifischen SQL-
Dialekten existiert noch eine Vielzahl weiterer Funktionen, vorallem in den
Bereichen

• Stringverarbeitung (Zusammensetzen, Einfügen, Ersetzen, Patternmatching)

• System (Datenbankname, Benutzerdaten, aktuelles Datum und Uhrzeit)

• Datentypkonversion

• Datums- und Zeitverarbeitung (Datumsteile extrahieren, Summe, Differenz)

• Mathematische Funktionen (Winkelfunktionen, Runden, Zufallszahlen,
Potenzierung)

Kurs Datenbanken

Arno Schmidhauser Seite 60Juni 2006

Nullwerte in SQLNullwerte in SQL--KlauselnKlauseln
• Suchbedingungen (where ...)

sind erfüllt, wenn die Prüfung TRUE ergibt.

• Constraints (check ...)
sind erfüllt, wenn das Resultat TRUE oder NULL ist.

• Gruppierungen (group b ...)
ergeben eigene Gruppe für den NULL-Wert.

• Einmaligkeit(unique(...))
Es dürfen beliebige viele NULL-Werte vorkommen.

• Einmaligkeit(distinct)
Der NULL-Wert kommt nur einmal vor.

Zu beachten ist, dass die verschiedenen Produkte oft von diesen Regeln abweichen. In
Sybase darf z.B. der NULL-Wert in einem unique-Attribut nur einmal vorkommen.

Der Datenbank-Papst C.J. Date betrachtet die Einführung von Null-Werten als äusserst
fragwürdig und plädiert für die Anwendung von gut gewählten Default-Werten,
ohne spezielle Behandlung mit einer dreiwertigen Logik.

Kurs Datenbanken

Arno Schmidhauser Seite 61Juni 2006

JDBCJDBC

• Übersicht
• Programmierung
• Transaktionskontrolle
• Fehlerbehandlung

Die folgenden Informationen basieren auf der JDBC Spezifikation 2.x und 3.0, Oktober
2001 von Sun. Wenn in diesem Kurs ausschliessliche Eigenschaften von JDBC 3.0
zur Sprache kommen, ist dies entsprechend notiert.

JDK 1.4 referenziert auf die JDBC-Spezifikation 3.0 mit den AP's java.sql.* und
javax.sql.*

Viele Datenbanken-Hersteller (Sybase ASA 9.0) und die Plattform J2EE 1.3
referenzieren im Moment auf die JDBC-Spezifikation 2.1, mit den Erweiterungen
aus dem Optional Package 2.0 javax.sql.*

JDBC 2.x und 3.0 beziehen sich auf SQL 99

Buch: "Java in Datenbanksystemen"; Petkovic, Brüderl; Addison-Wesley, 2002.

JDBC 3.0 ist im Wesentlichen eine Abrundung und Konsolidierung von JDBC 2.1 und
dem Optional Package 2.0. Einige kleinere Änderungen im Funktionsumfang sind
hinzugekommen. Ausserdem kann JDBC 3.0 auf die definitive Version von SQL99
abstellen.

Kurs Datenbanken

Arno Schmidhauser Seite 62Juni 2006

Was ist JDBC ?Was ist JDBC ?

• JDBCTM = Java Database Connectivity. Vergleichbar mit
ODBC (Open Database Connectivity von Microsoft für C-
Programme)

• JDBC ist ein low-level oder call-level API mit drei
Funktionen
– Verbindung zu einer Datenbank herstellen
– SQL-Befehle absetzen
– Resultate verarbeiten

• JDBC ermöglicht einen produktunabhängigen
Datenbankzugriff, erzwingt ihn aber nicht.

JDBC stellt grundsätzlich nur ein Interface für das "Wie" der Kommunikation
mit DB-Servern zur Verfügung. Über den Befehl Statement.execute()
können im Prinzip beliebige Strings an das Datenbanksystem übergeben
werden. Allerdings bestehen Abhängigkeiten zwischen DB-System und
JDBC z.B. bei der Datentypumwandlung mit getXXX() und setXXX()
Funktionen. JDBC wurde deshalb vor dem Hintergrund von SQL-99
entworfen.

Kurs Datenbanken

Arno Schmidhauser Seite 63Juni 2006

Client/Server Architektur (2 Tier)Client/Server Architektur (2 Tier)

Java
Client RDB

Server
JDBC SQL

Intranet

Diese Architektur ist geeignet für lokale Applikationen im Intranet auf einer
bestimmten Betriebssystemplattform.

Kurs Datenbanken

Arno Schmidhauser Seite 64Juni 2006

InternetInternet--Architektur (3 Tier)Architektur (3 Tier)

RDB
ServerJDBC

IntranetDMZExtranet

SQL im
Intranet

HTML - Applikation
Webserver

Servlet

HTTP

Diese Architektur ist geeignet für einfache Internet-Applikationen.

Kurs Datenbanken

Arno Schmidhauser Seite 65Juni 2006

Das Das PackagePackage java.sqljava.sql

«interface»
Statement

«interface»
ResultSet

«interface»
PreparedStatement

«interface»
CallableStatement

«interface»
Connection

«class»
DriverManager

«creates»

«creates»

«creates»

«creates»

«creates»

«interface»
ResultSetMetaData

«creates»

«interface»
DatabaseMetaData

«creates»

«interface»
Driver

Weitere Klassen
SQLException
SQLWarning
DataTruncation
Date
Time
Timestamp
Types
DriverPropertyInfo

Das Package java.sql gehört zum Sprachumfang von Java

Das JDBC API enthält nahezu nur Interface-Definitionen. Die eigentlichen
Implementationsklassen werden von einem Datenbank- oder Dritthersteller
vertrieben.

Die wichtigste Klasse ist der DriverManager. Bei ihm können die jeweiligen
produktespezifischen Treiber, z.B. für Oracle, ODBC, SQL Server, Sybase
etc. registriert werden.

Kurs Datenbanken

Arno Schmidhauser Seite 66Juni 2006

// Driver registrieren.
SybDriver d = new SybDriver();
DriverManager.registerDriver(d);

// Verbindungsaufbau
Connection con = DriverManager.getConnection(

"jdbc:sybase:Tds:swsdb:2638?ServiceName=b31klass", "dba", "sql");

// Statementobjekt erzeugen
Statement stmt = con.createStatement();

try {
// Query absetzen
ResultSet rs = stmt.executeQuery("SELECT name FROM person");
// Resultat verarbeiten
while (rs.next()) {
String name = rs.getString(1);
System.out.println(name);

}
con.commit();

} catch (SQLException e) {
System.out.println(e.toString()); con.rollback();

}

Ein BeispielEin Beispiel

Typkonversion von
JDBC/SQL nach Java

Connection-URI
jdbc:name:subname:params
jdbc:odbc:source;params

Es können mehrer Treiber registriert werden. Beim Verbindungsaufbau ruft der
Drivermanager der Reihe nach die Methode connect(url, props) seiner
registrierten Treiber auf. Der Treiber prüft seinerseits, ob er mit dem url etwas
anfangen kann. Wenn ja, baut er die Verbindung zur angegeben Datenbank oder
zum angegebenen DBMS auf. Wenn nein, gibt er null zurück. Der Drivermanager
fragt in diesem Fall den nächsten registrierten Treiber an.

Von der Methode DriverManager.getConnection() existieren verschiedene
Varianten. Neben der oben dargestellten wird sehr häufig die Form
getConnection(String url, Properties p) verwendet. Der Parameter url
enthält minimale Angabe zum Verbindungsaufbau, alle übrigen Angaben wie
Datenbank, Username, Passwort etc. werden über das Properties-Objekt
mitgegeben. Das hat den Vorteil, dass zahlreiche, produkt-spezifischen
Angaben im gleichen Properties-Objekt mitgegeben werden können.

Die Methode getString() ist eine von vielen getXXX() Methoden zum Abholen von
Daten in verschiedenste Java Basistypen und Java Klassen. Siehe API Doc der
Klasse ResultSet.

Die Klasse Statement stellt verschiedene Methoden für das Absetzen von SQL-
Befehlen zur Verfügung:
executeQuery("SQL String") ist für select-Abfragen vorgesehen.
executeUpdate("SQL String") ist für insert-, delete- und update-Befehle,
sowie für DDL-Befehle vorgesehen.

execute("SQL String") ist für beliebige SQL-Befehle gedacht, insbesondere
stored-procedure, welche mehrere SQL-Befehle unterschiedlichster Art enthalten
können.

Kurs Datenbanken

Arno Schmidhauser Seite 67Juni 2006

Der Connection-URI muss immer aus 3 Teilen bestehen:

jdbc:subprotocol:params

Der erste Teil ist fix. Der zweite Teil ist meist der Name eines Datenbankproduktes
oder eines Middleware-Herstellers z.B: sybase, oracle, openlink. Der zweite Teil
kann auch das Schlüsselwort odbc sein. Der dritte Teil kann vom Hersteller selbst
strukturiert werden. i.a. kann dort der Name einer Datenbank oder einer
Datenquelle stehen. Username und Passwort werden häufig nicht über den URI,
sondern über das Property Objekt an den Treiber weitergeleitet. Die Treiber-
Hersteller sind jedoch in der Definition der Syntax und der Semantik für den dritten
Teil des URL frei.

Wenn der URI eine ODBC Datequelle bezeichnet, besteht der dritte Teil aus dem
Namen der Datenquelle (logischerName für eine Datenbank) und allfälligen
Parametern zum Aufbau der Verbindung wie Benutzername und Passwort. Beispiel:
jdbc:odbc:testdatenbank;UID=meyer;PWD=geheim

Detail-Beispiel für die Vewendung eines Statement-Objektes:

...

Statement stat = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stat.executeQuery("select * from person");

try {

while (rs.next()) {

String name = rs.getString("name");

System.out.println(name);

}

rs.beforeFirst();

while (rs.next()) {

String name = rs.getString("name");

rs.updateString("email", name+"@sws.bfh.ch");

rs.updateRow();

if (name.length() == 0) rs.deleteRow();

}

catch(SQLException e) { System.out.println (e); }

...

Kurs Datenbanken

Arno Schmidhauser Seite 68Juni 2006

Das Statement-Objekt ist der Ausgangspunkt der SQL-Abfrage. Dem Statement-
Objekt wird ein SQL-Befehl zur Ausführung übergeben. Dabei ist im ersten
Parameter des obigen Aufrufes definiert, wie das zurückgelieferte ResultSet
durchlaufen werden kann, und im zweiten Parameter, ob die Daten darin
modifizierbar sind. Weil im obigen Fall TYPE_SCROLL_INSENSITIVE gesetzt ist,
kann das ResultSet mehrmals und in allen Richtungen durchlaufen, oder jederzeit
auf einen beliebigen Datensatz positioniert werden. Mit der Einstellung
CONCUR_UPDATABLE können Daten über das ResultSet direkt geändert werden. Die
Änderungen werden unmittelbar in der Datenbank nachgetragen. Zu Beachten ist
dabei, dass der Modifizierbarkeit durch das Datenbanksystem Grenzen gesetzt
sind. Join-Abfragen, Abfragen mit Funktions-aufrufen oder Operatoren in der
select-Klausel und Abfragen mit group by-Klauseln können nicht modifiziert
werden.

Der Aufruf der meisten Funktionen des ResultSet ist davon abhängig, dass eine
Datenbank-Connection aktiv ist. Das Weitergeben eines ResultSet an andere Teile
einer Applikation, im Sinnne eines Return-Parameters, ist daher mit Vorsicht zu
verwenden. Sicherer ist das Umkopieren von Abfrageresultaten in Listen, Vektoren
usw.

Für den den ersten Parameter von Connection.createStatement können folgende
Werte eingestellt werden:

ResultSet.TYPE_FORWARD_ONLY heisst, es kann nur vorwärts durch ein ResultSet
iteriert werden. Die einzig erlaubte Postionierungsfunktion ist next().

ResultSet.TYPE_SCROLL_INSENSITIVE heisst, es kann in allen Richtungen durch
ein ResultSet iteriert und beliebig positioniert werden.

ResultSet.TYPE_SCROLL_SENSITIVE heisst, beim Positionieren auf einen
bestimmten Datensatz wird automatisch von der Datenbank der aktuellste Zustand
dieses Datensatzes geholt. Wenn gelesene Datensätze aufgrund der Transaktions-
einstellungen in der Datenbank ohnehin gesperrt bleiben, ist diese Einstellung
überflüssig.

Für den den zweiten Parameter von Connection.createStatement können folgende
Werte eingestellt werden:

ResultSet.CONCUR_READ_ONLY heisst, das ResultSet ist Read-Only.

ResultSet.CONCUR_UPDATABLE heisst, via ResultSet kann direkt die Datenbank
modifiziert werden.

Die Positionierungsfunktionen sind:

ResultSet.first()

ResultSet.last()

ResultSet.next()

ResultSet.previous()

ResultSet.beforeFirst()

ResultSet.afterLast()

ResultSet.absolute(int)

ResultSet.relative(int)

Kurs Datenbanken

Arno Schmidhauser Seite 69Juni 2006

PreparedPrepared Statements (1) Statements (1)

• Beispiel für das Lesen von Daten
...
try {
int id = ... // id von irgendwoher bekommen
PreparedStatement stat = con.prepareStatement(
"select name, gebdatum from person where id = ? ");

stat.setInt(1, id)
ResultSet rs = stat.executeQuery();
while (rs.next()) {
System.out.println(rs.getString(1));
String name = rs.getString(1);
Date gebdatum = rs.getDate(2);
System.out.println(name);
System.out.println(gebdatum.toString());

}
}
catch(SQLException e) {
System.out.println (e);

}

Prepared Statements stellen grundsätzlich nicht mehr Funktionalität als
gewöhnliche Statements zur Verfügung, besitzen jedoch eine Reihe von
Vorteilen in der Handhabung:

• Auch "schwierige" Parameter, wie Datumsobjekte oder binäre Daten
können leicht eingesetzt werden mit den entsprechenden set()-Methoden.

• Anführungszeichen in String-Parametern werden automatisch in eine
korrekte Escape-Folge umgewandelt.

• Ein prepared Statement kann vom Datenbanksystem vorkompiliert werden
und ist dadurch schneller, wenn es mehrmals nacheinander aufgerufen
wird.

Gebrauch von Prepared Statements:

• Anstelle des Fragezeichens wird mit der jeweiligen setXXX() Methode ein
Parameterwert eingefügt.

• Ein Fragezeichen kann überall dort stehen, wo in einem SQL-Befehl ein ein
Datenwert stehen kann.

• Das Fragezeichen ist nicht erlaubt zur Parametrisierung von
Attributnamen, Tabellennamen etc.

Beispiele für PreparedStatements:

• insert into tabelle values (?)

• update tabelle set feld = ?

• delete from tabelle where feld = ?

• select * from tabelle where feld = ?

Ein Fragezeichen kann überall dort stehen, wo in einem SQL-Befehl ein
Datenwert stehen kann.

Kurs Datenbanken

Arno Schmidhauser Seite 70Juni 2006

PreparedPrepared Statements (2)Statements (2)

• Beispiel für das Einfügen von Daten

...
PreparedStatement stat = con.prepareStatement("insert into

person (name, gebdatum) values (?, ?)");

try {
while (...) {
stat.setString(1, ...);
stat.setString(2, ...);
stat.executeUpdate();

}
}
catch(SQLException e) { System.out.println (e); }
...

Kurs Datenbanken

Arno Schmidhauser Seite 71Juni 2006

PreparedPrepared Statements Statements -- PerformancePerformance

0
100
200
300
400
500
600
700
800
900

0 20 40 60 80 100

Einfache Abfrage ohne DP

Komplexe Abfrage ohne DP

Einfache Abfrage mit DP
Komplexe Abfrage mit DP

Anz Abfragen

msec pro Abfrage

DP = Dynamic Prepare

• Prepared Statements sparen massiv Zeit bei komplexen
SQL-Abfragen und mehrmaliger Durchführung!

Obige Zeitmessungen beinhalten den Aufruf von prepareStatement(). Die Prepared
Statements werden der Datenbank zur Vorkompilierung übergeben. Bei Sybase
heisst das, aus der Abfrage wird temporär eine Stored Procedure erzeugt. Damit
die Vorkompilierung durchgeführt wird, muss beim Verbindungsaufbau eine
entsprechende Property gesetzt werden (produktspezifischer Name):
props.put("DYNAMIC_PREPARE", args[3]);
Connection con = DriverManager.getConnection(args[0], props);

Die getestete 'einfache' Abfrage ist:

SELECT name FROM Student WHERE idStudent = ?

Die getestete 'komplexe' Abfrage ist:

SELECT count(*), s.name, k.titel

FROM Rating r, Fragebogen f, Student s, Kriterium k

WHERE r.idFragebogen = f.idFragebogen AND f.idStudent = s.idStudent

AND r.idKriterium = k.idKriterium AND s.idStudent = ?

GROUP BY s.name, k.titel, k.idKriterium

ORDER BY k.titel

(Wie oft hat jeder Student eine bestimmte Frage beantwortet)

Tabellengrössen

Student 4000, Rating 200000, Fragebogen 20000, Kriterium 1000.

Hardware

Server: Sun Sparc Station (1998), Sun Solaris 2.6, Sybase 11.5

Netzwerk: 100 MBit Eithernet, Firewall, CableCom Modem (512/256)

Client: IBM A22m (2001), Java 1.4, jConnect5

Kurs Datenbanken

Arno Schmidhauser Seite 72Juni 2006

BatchBatch UpdatesUpdates

• Batch Updates sind eine Neuerung ab JDBC 2.0
• Es können mehrere SQL insert-, update- oder delete-Befehle

in einem Paket an die Datenbank geschickt werden.
• Beispiel:

...
String query = "INSERT INTO person (name, email, gebdatum)

VALUES (?, ?, getdate())";
PreparedStatement pstmt = con.prepareStatement(query);
while (...) {
pstmt.setString(1, "name " + i);
pstmt.setString(2, "email " + i);
pstmt.addBatch();

}
pstmt.executeBatch();
...

Kurs Datenbanken

Arno Schmidhauser Seite 73Juni 2006

BatchBatch Updates Updates -- PerformancePerformance

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

Ohne Batch
Mit Batch

Anzahl Inserts

msec / insert

• Batch Updates sparen massiv Zeit für die Durchführung
mehrerer SQL-Befehle in einem Schritt!

• Batch Updates optimieren den Netzwerk-Verkehr.

• Prepared Statements optimieren die Durchführungszeit in der Datenbank.

• Die beiden Konzepte können daher mit Gewinn kombiniert werden.

Hardware

Server: Sun Sparc Station (1998), Sun Solaris 2.6, Sybase 11.5

Netzwerk: 100 MBit Eithernet, Firewall, CableCom Modem (512/256)

Client: IBM A22m (2001), Java 1.4, jConnect5

Kurs Datenbanken

Arno Schmidhauser Seite 74Juni 2006

Metadaten, BeispielMetadaten, Beispiel

ResultSet rs = stmt.executeQuery("select * from Person");
ResultSetMetaData rsm = rs.getMetaData();
while (rs.next()) {

for (int i = 1; i <= rsm.getColumnCount(); i++) {
out.println(rsm.getColumnName(i) + ": "

+ rs.getString(i));
out.println(columnSeparator);

}
out.println(rowSeparator);

}

• Die Klasse ResultSetMetaData ist nützlich für die
dynamische Bestimmung der Attribute eines
Abfragesresultates. Beispiel:

Kurs Datenbanken

Arno Schmidhauser Seite 75Juni 2006

TransaktionskontrolleTransaktionskontrolle

• JDBC enthält Methoden für

– das Setzen des Commit-Modus
Connection.setAutoCommit(boolean)

– das Setzen des isolation level
Connection.setIsolationLevel(int)

– commit und rollback von Transaktionen
Connection .commit(), Connection.rollback()

sowie
– das Setzen von Save Points
– die Kontrolle von verteilten Transaktionen (XAResourcen)

Im Rahmen von EJB-Applikationen ist insbesondere der Isolation Level entweder auf
Container-Ebene (Deployment Deskriptor) oder auf Bean-Ebene (mit expliziter
JDBC-Programmierung) zu definieren.

Kurs Datenbanken

Arno Schmidhauser Seite 76Juni 2006

FehlerbehandlungFehlerbehandlung

• Da SQL-Befehle ad hoq ausgeführt und interpretiert werden,
bestehen grundsätzlich sehr viele Fehlermöglichkeiten:

– Inkorrekte Syntax eines SQL-Befehls
– Konvertierungsfehler (z.B. Data Truncation)
– Kein Zugriffsrecht auf eine der beteiligten Tabellen
– Verletzung eines Constraints
– Deadlock-Situation zwischen mehreren Prozessen
– Kommunikationsfehler mit dem Datenbanksystem

Das Absetzen eines SQL-Befehles kann mehrere Fehler gleichzeitig zur Folge haben.

Ein Fehler kann an die Datenbank-Verbindung, an das SQL Statement an sich oder an
einen einzelnen Datensatz des Resultates geknüpft sein.

Ein Fehler kann das Ausführen eines SQL-Befehles verunmöglichen (Exception) oder
nur behindern (Warning).

Der Exception-Mechanismus im Paket java.sql muss diesen Aspekten Rechnung
tragen.

Kurs Datenbanken

Arno Schmidhauser Seite 77Juni 2006

Fehlerbehandlung, BeispielFehlerbehandlung, Beispiel

...
try {
... sql-statements ...

}
catch (SQLException e) {
while (e != null) {
out.println("SQL State: " + e.getSQLState());
out.println("Error Code: " + e.getErrorCode());
out.println("Message: " + e.getMessage());
e = e.getNextException();

}
try {
con.rollback();

}
catch(Exception x) {}

}
...

Zu beachten ist, dass einige Fehlermeldungen spezielle Aktionen erfordern.
Beispielsweise könnte bei einem Deadlock oder bei einem Verbindungsfehler eine
Art Retry-Mechanismus nach folgendem Schema versucht werden:

boolean retry = true;
while (retry) {

try {
... sql-statements ...
retry = false;

}
catch (SQLException e) {
if (e.getSQLState().equals("40001")) {

System.out.println("Deadlock!");
retry = true;

}
else {

try { con.rollback(); }
catch(SQLException e2) {}
retry = false;

}
}

SQLException.getSQLState() liefert einen generische, von ANSI/XOPEN
standardisierten Fehlercode. Die entsprechende Variable heisst allgemein
SQLSTATE. Der Fehlercode besteht aus 5 Zeichen. Die ersten zwei bezeichnen
eine Fehlerkategorie, die nächsten drei den genauen Fehler.

• Alle Stati, die mit 01 beginnen, enthalten Warnungen. Status 01004 ist
beispielsweise eine Data Truncation Warnung.

• Alle Stati, die mit 23 beginnen, bedeuten eine Exception wegen Verletzung
einer Integritätsbedingung.

• Alle Stati, die mit 40 beginnen, weisen auf einen Rollback durch die
Datenbank hin, z.B. aufgrund eines Deadlocks.

• Alle Stati, die mit 42 beginnen, weisen auf einen Syntaxfehler oder eine
Verletzung der Zugriffsrechte hin.

Kurs Datenbanken

Arno Schmidhauser Seite 78Juni 2006

Unterbrechbare Unterbrechbare QueriesQueries

• SQL-Abfragen können längere Zeit dauern, weil
– die Abfrage komplex ist
– der Datenbestand gross ist
– der DB-Server hoch belastet ist
– der Transfer zum Client lange dauert

• Der Benutzer oder der aufrufende Benutzerprozess will die
Möglichkeit besitzen, eine laufende Abfrage abzubrechen, oder
eine maximale Dauer festzulegen.

• Mit folgenden Methoden kann die Ablaufzeit kontrolliert werden:
Statement.setQueryTimeout(int secs)
Statement.cancel()

In Web-Applikation ist ein häufiges Verhaltensmuster wie folgt: Aufgrund eines HTML-
Submit-Aufrufes eines Browsers wird beim Webserver eine Datenbank-Abfrage
gestartet. Wenn diese lange dauert, führt der Benutzer ein "Reload" durch oder
startet den Aufruf nochmals und setzt damit eine zweite identische Abfrage bei der
Datenbank in Gang. Die erste Abfrage läuft immer noch, der Webserver bemerkt
nämlich nicht, dass der Browser nicht mehr auf das Ergebnis des ersten Aufrufes
wartet. Ein Webserver (-Servlet) bemerkt das "Fehlen" des Browsers erst beim
Versuch, Daten zum Browser zu übertragen, d.h. beim Schreiben auf das
ServletResponse-Objekt. Dies geschieht in der Regel aber erst, wenn die
Datenbank-Abfrage durchgeführt wurde.

Ein verbessertes Szenario wäre nun wie folgt: Das verantwortliche Servlet setzt die
Datenbankabfrage in einem eigenen Thread ab, und testet währenddessen
periodisch, ob das ServletResponse-Objekt noch offen ist (zum Beispiel durch
Schreiben von Leerzeichen und/oder eine flush()-Operation). Wird das
ServletResponse-Objekt ungültig, kann das verantwortliche Servlet das laufende
SQL-Statement mit der cancel()-Methode unterbrechen.

Als einfache, aber grobe Variante, um lang dauernde SQL-Abfragen zu unterbrechen,
kann auch ein generelles Timeout auf ein Statement gesetzt werden mit
Statement.setQueryTimeout().

Das Unterbrechen von laufenenden SQL-Statements mit setQueryTimeout() oder
cancel() bedingt, dass der JDBC-Driver und das native Datenbank-Protokoll das
Unterbrechen von Queries unterstützt.

Kurs Datenbanken

Arno Schmidhauser Seite 79Juni 2006

SQL IISQL II

• Views
• Constraints
• Triggers
• Funktionen und Prozeduren

Kurs Datenbanken

Arno Schmidhauser Seite 80Juni 2006

ViewsViews

• Views sind virtuelle Tabellen, deren Inhalt dem Resultat
eines select-Befehles entspricht.

• Views sind eine Datenschnittstelle.

• Views sind eine applikations- oder
benutzerspezifische Sichtweise auf
gemeinsame Basisdaten.

• Erzeugen einer View
create view view_names
[(column_names)]
as select_statement
[with check option]

Applikation

View

Basistabelle(n)
Basistabelle(n)

Basistabelle(n)

select
insert
delete
update

Eine View kann wie eine Interface-Definition in einer Programmiersprache angesehen
werden.

Eine View kann in vielerei Hinsicht wie eine gewöhnliche Tabelle behandelt werden.
Man kann sie abfragen und mit gewissen Einschränkungen auch modifizieren oder
mit Rechten versehen. Eine einmal erzeugte View bleibt solange bestehen, bis sie
explizit wieder gelöscht wird (drop view). Wenn eine der View zugrundeliegende
Tabelle gelöscht wird, merkt dies das Datenbanksystem eventuell erst beim
nächsten Zugriff auf die View.

Der Inhalt einer View ist virtuell. Beim Abfragen einer View wird in jedem Fall auch der
der View zugrundeliegende select-Befehl durchgeführt.

Es gibt auch Datenbanksysteme, welche eine View materialisieren können. Bei der
Definition kann dann angegeben werden, in welchen Zeitintervallen die
Materialisierung stattfinden soll. Materialisierte Views können zulasten des
Speicherplatzes die Abfrage-Performance enorm steigern.

Eine View ist, genau wie eine Tabelle, mit Zugriffsrechten versehen. Auf die
zugrundeliegenden Basistabellen benötigt nur der Erzeuger der View die
notwendigen Rechte. Für die Benutzung der View sind ausschliesslich die
Zugriffsrechte auf der View selbst ausschlaggebend.

Die Klausel with check option stellt sicher, dass Datensätze der View nur geändert
oder modifiziert werden können, wenn sie der where-Bedingung des zugehörigen
select-Befehles entsprechen.

Kurs Datenbanken

Arno Schmidhauser Seite 81Juni 2006

ViewsViews, Beispiel 1, Beispiel 1

• Gewisse Attribute welche der Tabellenverwaltung durch
Systemapplikationen dienen, sollen ausgeblendet werden.

create table Person
(
idPerson numeric(10,0) default autoincrement,
kuerzel varchar(5),
name varchar(50)),
lastmodifdate datetime null,
lastmodifuser varchar(10) null

)

create view PersonDaten (nr, kuerzel, name)
as
select idPerson, kuerzel, name
from Person

Obige View basiert nur auf einer einzigen Tabelle. Der zugehörige select-Befehl enthält
keine Funktionen in der select-Liste und keine Gruppierung nach der where-
Klausel. Über die View können, konzeptionell gesehen, wiederspruchsfrei und ohne
Zweideutigkeiten Datenwerte eingefügt oder modifiziert werden. Die View ist
deshalb auch effektiv modifizierbar und die Änderungen werden an die Basistabelle
weiterpropagiert. Für die in der View nicht sichtbaren Felder lastmodifdate und
lastmodifuser werden durch das System die Default-Werte eingefüllt, in diesem
Fall also zweimal der Null-Wert.

Das Abfüllen sinnvoller Werte für die Attribute lastmodifdate und lastmodifuser
könnte z.B. ein Trigger warnehmen (siehe Kapitel über Trigger).

Kurs Datenbanken

Arno Schmidhauser Seite 82Juni 2006

ViewsViews, Beispiel 2, Beispiel 2

• Daten soll auf vorpräparierte Weise einer Applikation zur Verfügung
gestellt werden. Die zugrundeliegenden Tabellen sind versteckt.

create table Adresse
(

idAdresse numeric(10,0),
idPerson numeric(10,0),
strasse varchar(64)

)

create table Person
(
idPerson numeric(10,0),
name varchar(50)

)

create view PersonenAdressen (id, name, strasse)
as
select p.idPerson, p.name, a.strasse
from Person p natural left outer join Adresse a

Obiges Beispiel zeigt eine View, welche dem Benutzer das Resultat einer häufig
benutzten Abfrage zur Verfügung stellt. Sie versteckt in diesem Beispiel ausserdem
die produktabhängige Realisierung eines Outer-Joins.

Die dargestellte View kann nicht modifiziert werden, d.h. die Ausführung von insert-,
delete- und update-Befehlen führt zu einem Fehler. Unter folgenden Umständen ist
eine View nicht modifzierbar:

• Eines oder mehrere Attribute werden aus den Basistabellen berechnet.
Beispiel: create view v as select uppercase(name) from Person

• Der from-Teil enthält mehr als eine Tabelle (Join, Produkt, Union)

• Die Abfrage enthält eine Gruppierung (group by Klausel)

• Der select-Teil enthält das distinct-Schlüsselwort

• Die zugrundeliegende Tabelle enthält Attribute, welche nicht in der View-Definition
vorkommen, aber auch keinen Default-Wert (zum Beispiel null) haben.

Kurs Datenbanken

Arno Schmidhauser Seite 83Juni 2006

ConstraintsConstraints (Integrit(Integritäätsbedingungen)tsbedingungen)

• Ein Constraint bindet eine logische Bedingung an eine
Tabelle. Es gibt 4 Constraint-Typen:

primary key
unique
foreign key
check

• Die Constraint-Prüfung wird ausgelöst durch einen
insert-, update- oder delete-Befehl, und für jeden von
diesem Befehl betroffenen Datensatz ausgewertet.

• Constraints müssen deterministisch sein, d.h. sie dürfen
keine zeitabhängigen oder ausserhalb der Datenbank
liegende Funktionen benützen.

unique-Constraint

Jede Kombination der genannten Attribute muss über die Tabelle hinweg eindeutig
sein. Gemäss Standard dürfen beliebig viele NULL-Werte vorkommen. Zwei NULL-
Werte gelten sinngemäss als verschieden.

primary key-Constraint

keines der genannten Attribute darf NULL sein. Jede Kombination der genannten
Attribute muss über die Tabelle hinweg eindeutig sein.

foreign key-Constraint (Referentielle Integritätsbedingung)

Jeder Fremdschlüssel muss einen korrespondierenden Primärschlüssel besitzen
oder der Fremdschlüssel muss NULL sein (sofern das die Definition des
Fremdschlüsselattributes dies erlaubt). Es gibt zwei Bedrohungen gegen den
foreign key Constraint:

1. Verletzung beim Einfügen eines Datensatzes in die Fremdschlüssel-Tabelle.
Im diesem Fall weist das Datenbanksystem die Einfügung in zurück.

2. Verletzung beim Löschen von Datensätzen in der Primärschlüssel-Tabelle. In
diesem Fall gibt es drei Möglichkeiten, welche letztlich wieder auf die
Bedingung führen, dass ein Fremdschlüssel immer einen
korrespondierenden Primärschlüssel besitzen oder NULL sein muss: Die
Löschung wird verboten, die Löschung wird weitergegeben oder die
Fremdschlüssel werden auf NULL gesetzt.

check-Constraint (allgemeine Integritätsbedingung)

Die gesetzte Bedingung muss für jeden Datensatz wahr oder NULL sein. Damit ein
Datensatz korrekt, der check-Constraint also nicht verletzt ist, muss folgende
Bedingung wahr sein:

NOT EXISTS (SELECT * FROM table WHERE NOT (check-condition))

Kurs Datenbanken

Arno Schmidhauser Seite 84Juni 2006

Da ein gelöschter Datensatz nicht mehr existiert, löst ein delete-Befehl nicht die
Prüfung der check-Bedingung aus.

Einige Datenbanksysteme beschränken die check-Klausel auf lokale Bedingungen, d.h.
Bedingungen, die anhand der eigenen Tabelle oder sogar nur des betroffenen
Datensatzes evaluiert werden können. Der Grund liegt im Aufwand herauszufinden,
unter welchen Umständen die Prüfung von Check-Bedingungen ausgelöst werden
muss. Beispiel:

create table Person (

persnr integer,

...

)

create table Adresse (

persnr integer,

adrnr integer,

...

)

alter table Person add check (persnr in (select persnr from Adresse))

Folgende zwei insert Befehle funktionieren korrekt:
insert into Adresse values (1, 1, ...)

insert into Person values (1, ...)

Folgende zwei insert Befehle funktionieren korrekterweise nicht, weil beim Einfügen
der Person noch keine Adresse vorhanden ist:

insert into Person values (2, ...)

insert into Adresse values (2, 1, ...)

Folgender delete-Befehl, welcher dazu führt, dass Personen ohne Adressen in der
Datenbank auftreten können, wird fälschlicherweise vom DBMS zugelassen:

delete from Adresse

Es müsste nämlich die Prüfung der check-Bedingung auf der Personen-Tabelle aktiviert
werden. Die Verletzung der check-Bedingung wird erst im Rahmen eines update-
Befehles, z.B. update Person set persnr = persnr, bemerkt.

Kurs Datenbanken

Arno Schmidhauser Seite 85Juni 2006

ConstraintConstraint SyntaxSyntax

CREATE TABLE tabelle
({Spaltendef | cons-def [zeitpunkt] }, ...)
cons-def:
[CONSTRAINT name]
{ UNIQUE (Spaltenname, ...)
| PRIMARY KEY (Spaltenname, ...)
| CHECK (Bedingung)
| FOREIGN KEY (Spaltenname, ...)
REFERENCES tabelle [(Spaltenname, ...)]
[ON DELETE { NO ACTION | RESTRICT | CASCADE

SET NULL | SET DEFAULT }]
}

zeitpunkt:
[INITIALLIY DEFERRED | INITIALLY IMMEDIATE]

Die obige Syntax nach SQL-99 ist nicht vollständig, beleuchtet aber die wichtigsten
Möglichkeiten. Weggelassen wurde u.a. dass ein Constraint für ein einzelnes
Attribut auch nach der Datentyp-Definition angefügt werden kann.

Kurs Datenbanken

Arno Schmidhauser Seite 86Juni 2006

TriggerTrigger

• Ein Trigger ist ein benutzerdefiniertes Programm, das
automatisch durch einen insert-, delete- oder update-
Befehl ausgelöst wird. Es besteht aus
– Kontrollstrukturen
– Referenz auf die geänderten Daten
– Lokalen und globalen Variablen
– SQL-Befehlen

• Anwendungsgebiete
– Referentielle und allgemeine Integritätsprüfung
– Historisierung
– Automatische Folgeoperationen
– Nachführen redundanter Daten

Trigger können Kontrollfunktionen wahrnehmen oder Dienstleistungen für den
Benutzer zur Verfügung stellen, d.h. die Funktionalität von SQL-Befehlen
applikationsorientiert verändern. Einige Beispiele für den Einsatz von Triggern:

• Eine Tabelle stelle einen Komponentenbaum dar. Beim Löschen einer Komponente
werden durch den Trigger alle abhängigen Komponenten ebenfalls gelöscht.

• Beim Ändern einer Adresse wird automatisch die alte Adresse in einer History-
Tabelle abgelegt.

• Beim Absinken des Lagerbestandes eines Artikels unter eine kritische Grenze wird
automatisch eine Nachbestellung vorgenommen.

• Beim Eintragen einer Lektion in den Stundenplan wird automatisch die
Lektionensumme des Faches, der Klasse und des Dozenten neu berechnet und in
die entsprechenden Tabellen eingetragen.

Trigger können pro SQL-Befehl oder pro betroffenen Datensatz ausgelöst werden.

Der zu einem Trigger gehörende Programmcode kann insert-, delete- oder update-
Befehle enthalten, welche wiederum zur Auslösung anderer oder desselben
Triggers führen können. Dies kann für absichtliche Rekursionen ausgenützt
werden, kann aber auch zu fälschlicherweise nicht-terminierenden
Kettenreaktionen führen.

Kurs Datenbanken

Arno Schmidhauser Seite 87Juni 2006

TriggerTrigger, Beispiel 1, Beispiel 1

• Automatisches Nachführen von Attributwerten in einer
Tabelle

create trigger setModifControl
after update of kuerzel, name on Person
referencing new as neu
for each row
begin
update Person
set lastmodifdate = current timestamp
where idPerson = neu.idPerson

end;

create table Person (
idPerson numeric(10,0) default autoincrement,
kuerzel varchar(5),
name varchar(50),
lastmodifdate timestamp null

);

Der Name des Triggers dient nur der Verwaltung, z.B. Löschen mit drop trigger
triggername.

Ein Trigger bezieht sich immer auf eine Tabelle.

Trigger auf Views sind nicht möglich gemäss SQL-Standard.

Kurs Datenbanken

Arno Schmidhauser Seite 88Juni 2006

TriggerTrigger, Beispiel 2, Beispiel 2

• Beim Ändern der Adresse einer Person sollen die alten
Daten automatisch in einer History-Tabelle aufbewahrt
werden:

create table Adresse (
idAdresse numeric(10,0)
default autoincrement,
strasse varchar(50)

);

create trigger AdressChanged
after update of strasse on Adresse
referencing old as alt
for each row
begin
insert into History (idAdresse, strasse, modifdate)
values (alt.idAdresse, alt.strasse, current timestamp)

end;

create table History (
idAdresse numeric(10,0),
strasse varchar(50),
modifdate timestamp

);

Kurs Datenbanken

Arno Schmidhauser Seite 89Juni 2006

TriggerTrigger, Beispiel 3, Beispiel 3

• Beim Löschen einer Komponente in einem Kompo-
nentenbaum werde alle abhängigen Teile gelöscht.

A

CB

ED

delete

create table Component
(

compID numeric(10,0),
parentID numeric(10,0) null,
name varchar(100)

)

create trigger ComponentDeleted after delete on Component
referencing old as alt
for each row
begin
delete from Component
where parentID = alt.compID

end;

trigger löscht

Für obiges Beispiel ist die Tabelle wie folgt belegt:

Die Tabelle Component steht für alle Arten von Tabellen, welche eine hierarchische
Struktur definieren. Konkrete Beispiele sind:

• Mitarbeiter in einer hierarchischen Organisationsstruktur

• Geräte, welche aus verschiedenen Komponenten bestehen

Component compID parentID name
1 null A
2 1 B
3 1 C
4 2 D
5 2 E

Kurs Datenbanken

Arno Schmidhauser Seite 90Juni 2006

Allgemeine TriggersyntaxAllgemeine Triggersyntax

create trigger triggername
before | after | instead of
insert | delete | update of columns
on table
order number
referencing reference
for each row | statement
when condition
SQL statements

Obige Darstellung ist eine vereinfachte Syntax gemäss SQL-3 Standard. Sie soll hier
vorallem für die Erklärung der verschiedenen Elemente eines Triggers dienen.

triggername

Name für die Verwaltung des Triggers. Es sind mehrere Triggers pro Tabelle
möglich.

before | after| instead of

Der Trigger wird vor oder nach der Durchführung des auslösenden SQL-Befehles
ausgeführt. Viele Datenbanksysteme kennen nur after. Einige DBMS kennen auch
die Klausel instead of, diese gehört jedoch nicht zum SQL-3 Standard.

Die Aufrufreihenfolge im Rahmen einer SQL-Änderungsoperation ist wie folgt:

1. Before Trigger

2. Referentielle Aktionen

3. Eigentliche Modifikationsoperation

4. Constraint-Prüfung

5. After Trigger

6. Deferred Contraints

insert | delete | update of columns

Die auslösenden Operationen des Triggers. Für Update Operationen können die
Attribute angegeben werden. Eine oder mehrere Angaben sind möglich.

on

Tabellenname. Trigger auf Views und temporären Tabellen sind nicht erlaubt.

Kurs Datenbanken

Arno Schmidhauser Seite 91Juni 2006

order

gehört nicht zu SQL-3, ist aber bei einigen DBMS vorhanden. Bestimmt die
Ausführungsreihenfolge bei mehreren Triggern auf derselben Tabelle.

referencing

Zu jedem Trigger gehört eine Referenz auf den alten und neuen Datensatz, rsp. bei
Triggern, die pro Statement nur einmal ausgelösten werden, je eine interne Tabelle
mit den alten und neuen Datensätzen. Die vorgeschriebene Syntax für die
referencing Klausel ist:

old as oldvalue new as newvalue

rsp.

old_table as oldname new_table as newname

In vielen Produkten kommt dieser Teil in der Triggerdefinition nicht vor, da die
Namen fest vorgegeben sind.

when

Eine Bedingung, die festlegt, ob überhaupt in den Triggercode eingetreten werden
soll. Die Bedingung muss determinstisch sein, darf also beispielswese keine
Zeitvergleiche mit der aktuellen Zeit enthalten.

for each row | statement

Definiert ob der Trigger pro Datensatz oder pro Statement ausgeführt werden soll.
Programmtechnisch ist es einfacher, mit einem Statement-Trigger einen Datensatz-
Trigger nachzubilden als umgekehrt.

Vergleicht man dieselbe Aufgabe mit Statement-Trigger oder Row-Trigger
implementiert, so sind Statement-Trigger klar effizienter in der Ausführung. Auf der
anderen Seite erlauben Row-Trigger eventuell einen frühzeitigen Abbruch einer
umfangreichen SQL-Operation. Auch in diesem Bereich sind teilweise
Einschränkungen durch die Hersteller zu erwarten. So erlaubt beispielsweise
Sybase ASA 9.0 keine Statement Triggers mit before-Angabe.

Kurs Datenbanken

Arno Schmidhauser Seite 92Juni 2006

Anwendungen Anwendungen BeforeBefore--TriggerTrigger

• Frühzeitiges Testen von Integritätsbedingungen und Abbrechen
von unerlaubten Operationen. Beispiel: Eine Reservation für ein
Hotelzimmer darf nur gelöscht werden, wenn sie zeitlich bereits
vorbei ist. Der Trigger enthält in diesem Fall eine Rollback
[Trigger] Anweisung.

• Ausführen von Ergänzungen oder Berechnungen für einen
Datensatz vor dem Einfügen in die Tabelle. Beispiel:
create trigger t1 before insert on Person
referencing new as newP for each row
begin
set newP.kuerzel = substring(newP.name,1,3)

end

Die rote Zeile ist ein eigentliches Kernkonstrukt für einen Before-Trigger. Es würde
beispielsweise erlauben, intelligente Default-Werte beim Einfügen von neuen
Datenwerten zu generieren. Ein Beispiel dazu wäre etwa: Beim Einfügen eines
neuen Datensatzes in die Adresstabelle die private Telefonnummer gleich der
Geschäftstelefonnummer zu setzen, wenn die Geschäftstelefonnummer
ausgelassen wird. Gleichzeitig kann mit einem check-Constraint erzwungen
werden, dass eine Geschäftstelefonnummer existiert. Der check-Constraint wird ja
erst geprüft, nachdem der before-Trigger bereits abgelaufen und die eigentliche
Einfüge- oder Änderungsoperation bereits ausgeführt ist.

Kurs Datenbanken

Arno Schmidhauser Seite 93Juni 2006

Kurs Datenbanken

Arno Schmidhauser Seite 94Juni 2006

Anwendungen Anwendungen InsteadInstead OfOf--TriggerTrigger

• Einen delete-Befehl so verfremden, dass ein Datensatz
nicht effektiv gelöscht, sondern nur ein deleted-Flag
gesetzt wird.

• Einen update-Befehl so verfremden, dass ein Datensatz
nicht geändert sondern nur eine neue Version eingefügt
wird.

• Einen insert-Befehl so verfremden, dass mehrere Tabellen
auf einmal abgefüllt werden können (Trigger auf eine
Platzhalter-Tabelle oder eine View setzen, wenn das DMBS
dies zulässt).

Kurs Datenbanken

Arno Schmidhauser Seite 95Juni 2006

SQLSQL--Funktionen und Funktionen und --ProzedurenProzeduren

• In der Datenbank gespeichert, von jeder Art Client aus
aufrufbar.

• Grundkonzept wie in jeder Programmiersprache:
Konstrukte für Parameter, Variablen, Schlaufen,
Verzweigungen, Operationen, Fehlerbehandlung etc.

• Sehr gute Performance gegenüber Durchführung
derselben Aufgabe im Client.

• Funktionen und Prozeduren sind Datenbankobjekte, sie
unterliegen also Zugriffsrechten.

• Viele DB-Hersteller erlauben auch in Java geschriebene
Funktionen und Prozeduren (SQL-J Standard).

Kurs Datenbanken

Arno Schmidhauser Seite 96Juni 2006

SQLSQL--Funktionen, AnwendungFunktionen, Anwendung

• Funktionen werden im Rahmen eines select, insert, update
oder delete-Befehles aufgerufen.

• Anwendungsbeispiele:

select name from Person
where alter(gebDatum) > 20

insert into Person(idPerson, kuerzel, ...)
values (nextKey(), kuerzel(name, vorname), ...)

Die Funktion alter() muss nur eine einfache Datumsdifferenz berechnen. Die Funktion
kuerzel() entnimmt dem Namen und Vornamen ein paar wenige Zeichen und gibt
diese als Namenskürzel zurück (Beispiel: Erstes und drittletztes Zeichen des
Nachnamens, erstes Zeichen des Vornamens).

Funktionen sind deshalb sehr interessant, weil sie direkt in die SQL-Befehle
eingebettet werden können, und weil sie zentral in der Datenbank zur Verfügung
stehen.

Für berechnungsintensive Aufgaben sind Funktionen nur geeignet, wenn Sie in einer
klassischen Programmiersprache implementierbar sind. Beispielsweise wären
Funktionen wie encrypt(), decrypt(), compress(), uncompress() eventuell
wünschenswert als SQL-Funktionen. SQL stellt aber nur ungenügende oder wenig
performanente Hilfsmittel für die Verarbeitung von Byte-Daten oder Arrays, für
komplexe Arithmetik usw. zur Verfügung. Solche Funktionen werden deshalb eher
extern in den Applikationen realisiert.

Kurs Datenbanken

Arno Schmidhauser Seite 97Juni 2006

SQLSQL--Funktionen, DefinitionFunktionen, Definition
Funktionen werden mit create function erstellt. Beispiel:

create function nextKey()
returns numeric(10,0) not deterministic
begin
declare v numeric(10,0);
update KeyValue
set currentValue = currentValue + 1;
select currentValue into v
from KeyValue;
return v;

end;

-- Hilfstabelle
create table KeyValue (currentValue numeric(10,0))

Dieses klassische Beispiel ermöglicht es, die Erzeugung von Primärschlüsseln
gegenüber dem insert-Befehl zu abstrahieren.

Die Funktion kann beispielsweise wie folgt erweitert werden:

• Mit einem Aufruf können ganze Wertebereiche (z.B. die nächsten 10) für Schlüssel
reserviert werden. Parameter für Anzahl abzuholender Werte.

• Es können mehrere Schlüsselzähler verwaltet werden (z.B. einen pro
Tabellenname). Parameter für Name des Schlüssels und Ergänzung der Tabelle
KeyValue um Attribut mit dem Schlüsselnamen.

• Der Primärschlüssel kann in der Funktion um Hostname, Zeitstempel etc. ergänzt
werden, wenn beispielsweise ein global eindeutiger Schlüssel generiert werden
muss. Der Returnwert muss vom Typ varchar() o.ä. sein.

Die Angabe not deterministic legt fest, dass der Aufruf von nextKey() bei jedem
Aufruf einen anderen Rückgabewert generiert, auch wenn die Funktionsparameter
nicht ändern, respektive keiner vorhanden ist. Returnwerte von deterministic
Funktionen können im Cache-abgelegt werden, solche von not deterministic
Funktionen nicht.

Kurs Datenbanken

Arno Schmidhauser Seite 98Juni 2006

SQLSQL--ProzedurenProzeduren

• Unterschied zu Funktionen:
– Eigenständiger Aufruf mit call procname(parameterliste),

unabhängig von einem äusseren select-, update-, delete- oder
insert-Befehles.

– Prozeduren können In und/oder out Parameter haben.
– Prozeduren haben einen Returnwert (nur für technische Zwecke).
– Prozeduren können select-Befehle enthalten, derene Resultat.

direkt an den Client zurückliefert wird (als ResultSet in Java).

• Anwendungsgebiete:
– Komplexe Abfragen (Erweiterte Möglichkeiten zu Views)
– Zur Vermeidung von mehrfachem Code in Triggern: Eine Prozedur

für mehrere Trigger.
– Als Interface zu den Tabellen, anstelle direkter SQL-Befehle.

Es gibt Firmen, in denen der Zugriff von Applikationen auf die Datenbank
grundsätzlich nur über Prozeduren erlaubt ist. Das Ausführungsrecht auf select,
insert, delete, update wird den Datenbankbenützern entzogen, dafür das
Ausführungsrecht auf die jeweiligen Prozeduren erteilt.

Kurs Datenbanken

Arno Schmidhauser Seite 99Juni 2006

SQLSQL--Prozeduren, Beispiel Prozeduren, Beispiel

create procedure getFaelle(p_status varchar(64))
begin
if p_status = 'eingegangen' then
select * from Fall f where f.status = p_status ;

elseif p_status = 'übernommen' then
select * from Fall f join Mitarbeiter m
where f.status = p_status ;

elseif p_status = 'abgeschlossen' then
select * from Fall f join Kunde k
where f.status = p_status ;

else
select 'Fehlerhafter Parameterwert';

end if;
end

Mit dieser Prozedur werden Supportfälle, abhängig vom Status abgefragt. Die
Prozedur liefert ein ResultSet zurück. Ein Returnwert ist nicht deklariert, könnte
jedoch für die Fehlerbehandlung eingesetzt werden.

Kurs Datenbanken

Arno Schmidhauser Seite 100Juni 2006

TransaktionsmodellTransaktionsmodell
• Definition
• ACID Regel

Ein Transaktionsmodell ist notwendig, weil letzlich die phyischen Resourcen
bestimmten Einschränkungen unterliegen:

• Der Zeitbedarf für eine Abfrage oder Änderung ist nicht beliebig klein.

• Speichermedien sind nicht beliebig gross und der Zugriff darauf nicht beliebig
schnell.

• Programme, Hardware und Kommunikationskanäle können fehlerhaft sein.

Aus diesen Gründen ist eine Zusammenarbeitsvereinbarung zwischen den Clients und
der Datenbank notwendig. Das Transaktionsmodell definiert die Grundsätze dieser
Zusammenarbeit.

Kurs Datenbanken

Arno Schmidhauser Seite 101Juni 2006

Was ist eine TransaktionWas ist eine Transaktion

• Aus logischer Sicht ist eine Transaktion ein Arbeitspaket,
das einen geschäftlichen Nutzen erzeugt.

– So klein wie möglich.
– so gross wie nötig, um alle Integritätsbedingungen

einhalten zu können.

• Aus technischer Sicht ist eine Transaktion eine Folge von
Lese- und Änderungsoperationen in der Datenbank, mit
einem definierten Beginn und einem definierten Abschluss.

• Die Transaktionsverwaltung ist eine der Kernaufgaben
eines Datenbanksystems.

Kurs Datenbanken

Arno Schmidhauser Seite 102Juni 2006

ACIDACID--RegelRegel

• Das Datenbanksystem garantiert für eine Transaktion
folgende Eigenschaften:

A Atomarität

C Konsistenz

I Isolation

D Dauerhaftigkeit

Diese Eigenschaften werden als ACID Regel bezeichnet.

Die Einhaltung der ACID-Regel ist ein zentraler Grundsatz aller Datenbanksysteme.

Atomarität
Eine Transaktion kann alle gewünschten Operationen durchführen, oder sie hat gar
keine Auswirkungen auf den Zustand der Datenbank ("Alles oder Nichts"-Prinzip).
In Fehlersituationen kann eine Transaktion durch das Applikations-programm oder
durch das DBMS abgebrochen werden. Das DBMS ist dafür verantwortlich, dass alle
Änderungen am Datenbestand seit Beginn der Transaktion rückgängig gemacht
werden (Undo-Recovery).

Konsistenz
Bei Abschluss der Transaktion muss ein konsistenter Datenbankzustand vorliegen.
Jede im DBMS enthaltene Integritätsregel muss spätestens beim Abschluss der
Transaktion erfüllt sein. An einer umfassenden Konsistenzerhaltung ist natürlich
auch die Applikation beteiligt, weil es praktisch unmöglich ist, alle Forderungen in
Form von Constraints (siehe Folien über Constraints) in der Datenbank zu
realisieren.

Isolation
Die Datenbank muss so erscheinen, wie wenn sie jedem Benutzer einzeln gehörte:
Laufen mehrere Transaktionen quasi-parallel ab, so müssen die einzelnen
Transaktionen so gesteuert werden, dass sie gegenseitig voneinander nichts
merken (Wenigstens in Bezug auf den Datenzustand und die Abfrageresultate,
sicher nicht vollständig in Bezug auf die Performance).

Dauerhaftigkeit
Nach Abschluss einer Transaktion sind die von ihr ausgeführten Änderungen gegen
alle Arten von Ausfällen gesichert. Auch Prozessabstürze und Plattenfehler dürfen
nicht zu Datenverlust führen.

Kurs Datenbanken

Arno Schmidhauser Seite 103Juni 2006

Die Garantie der ACID-Regel bedeutet für den Applikationsprogrammierer eine enorme
Erleichterung. Er kann unter allen Umständen von einem korrekten, den
Spezifikationen entsprechenden Datenbankzustand ausgehen.

Sowohl relationale wie auch objektorientierte Datenbanken halten sich an die ACID
Regel.

Innerhalb einer Transaktion stellt das Datenbanksystem der Applikation Hilfsmittel zur
Verfügung, um den Ablauf der Transaktion teilweise rückgängig zu machen, ohne
dass gerade die gesamte Transaktion abgebrochen oder wiedeholt werden muss. Im
Falle eines Deadlocks kann beispielsweise je nach Systemeinstellung nur der
verursachende SQL-Befehles rückgängig gemacht werden.

Auch die Isolationsbedingung kann gelockert werden, wenn ein Prozess beispielsweise
mehr Interesse an der Verfügbarkeit als der Korrektheit von Daten hat.

Kurs Datenbanken

Arno Schmidhauser Seite 104Juni 2006

Arbeiten mit TransaktionenArbeiten mit Transaktionen

• Jeder lesende oder schreibende Zugriff auf die Datenbank kann
nur innerhalb einer Transaktion stattfinden.

• Eine Transaktion beginnt explizit mit einem "begin transaction"
Befehl oder implizit mit dem ersten SQL-Befehl.

• Eine Transaktion wird nur mit dem "commit"-Befehl korrekt
abgeschlossen. Andernfalls gilt sie noch nicht als korrekt
beendet.

• Eine Transaktion kann explizit mit "rollback" oder implizit durch
ein äusseres Ereignis abgebrochen werden.

Beispiel einer korrekten Transaktion:

/* beginn der Transaktion durch ersten select-Befehl */
select * from Person
delete from Person
where name = 'Müller'
commit
/* Alle Änderungen sind nun definitiv */

Beispiel einer durch den Benutzer abgebrochenen Transaktion:

delete from Person
where name = 'Müller'
rollback /* Änderungen werden rückgängig gemacht */

Eine Transaktion kann aus verschiedenen Gründen durch das Datenbanksystem
zwangsweise abgebrochen werden:

• Deadlock von zwei Benutzerprozessen

• Verletzung von Zugriffsrechten oder Integritätsbedingungen

• Crash rsp. Verbindungsabbruch des Benutzerprozesses

Das Datenbanksystem liefert dem Benutzer einen Fehlerstatus zurück. Diesen
auszuwerten und ev. einen fehlgeschlagenen SQL-Befehl oder eine Transaktion
zu wiederholen, ist Sache der Applikation.

Kurs Datenbanken

Arno Schmidhauser Seite 105Juni 2006

Auch das reine Lesen von Daten kann ausdrücklich nur innerhalb einer Transaktion
geschehen. Es werden zwar keine Daten verändert, der Anfangs- und der
Endzustand sind daher derselbe, aber es wird ausdrücklich verlangt, dass ein
konsistenter (korrekter) Zustand gelesen wird. Damit dies vom
Datenbankmanagementsystem auch bei mehreren konkurrenzierenden Benutzern
der Datenbank richtig gehandhabt werden kann, müssen z.B. Lesesperren auf die
gelesenen Daten gesetzt werden. Dies beeinflusst wiederum schreibende
Transaktionen, die warten müssen, bis die Lesetransaktionen beenden und damit
(implizit) ihre Sperren freigeben.

Letzlich kann nur der Datenbankbenutzer entscheiden, wann alle Änderungen oder
Abfragen, die zu einem korrekten Zustandsübergang gehören, ausgeführt sind. Das
Absetzen des commit-Befehles ist daher Sache des Datenbank-Benutzers (Clients)
und nicht des Datenbanksystems. Das Datenbanksystem kann allenfalls prüfen, ob
gewisse Integritätsregeln verletzt sind und die Transaktion zwangsweise abbrechen
und zurücksetzen. Beispiel: Gemäss ERD wird verlangt, dass zu einer Person
immer mindestens eine Adresse gehört. Das Eingeben einer neuen Person mit einer
oder mehrerer Adressen ist nun Sache des Benutzers. Das DBMS kann nicht selber
Adressen zu einer Person erzeugen. Es kann lediglich bei Abschluss der Transaktion
prüfen ob mindestens eine Adresse da ist. Im allgemeinen gilt also auch:

Transaktion ≠einzelner SQL-Befehl

Allerdings arbeiten viele Datenbanksysteme per Default in einem "Autocommit"-
Modus, d.h. nach jedem SQL-Befehl wird durch das DBMS ein commit-Befehl
ausgelöst. In sehr vielen Fällen ist das jedoch im Sinne des Datenmodells falsch
und kann zu einem scheinkorrekten Zustand der DB führen.

Eine Datenbank muss sich jederzeit in einem konsistenten (korrekten) Zustand
befinden. Dies ist der Fall, wenn

• sich ihre Datenwerte mit allen Integritätsbedingungen vertragen,

• ihre Datenwerte mit der gegenwärtigen Realität übereinstimmen,

• alle relevanten Daten vollständig in der Datenbank vorhanden sind.

Verletzungen der ersten Bedingung haben meist technische Ursachen, z.B.
Speicherüberlauf, Systemabsturz, Disk-Crash, Hardware-Fehler, logische Fehler in
der Applikation.
Die beiden letzten Bedingungen können nur über organisatorische Massnahmen
garantiert werden, es sei denn, die Datenbank arbeitet beispielsweise mit einem
automatisierten Produktionssystem zusammen.

Eine Transaktion wird immer über eine Verbindung (Session) mit der Datenbank
abgewickelt. Eine Verbindung kann gleichzeitig nur eine Transaktion bedienen, und
ein Verbindungsabbruch hat immer einen Transaktionsabbruch zur Folge. Über eine
Verbindung werden nacheinander eine oder mehrere Transaktionen abgewickelt.
Eine Transaktion sollte möglichst rasch abgewickelt werden, da sie immer
Resourcen reserviert, welche anderen Transaktionen nicht zur Verfügung stehen.

Jede Transaktion ist im DBMS meist ein eigener Thread. Die Transaktions-Threads
konkurrieren um die vorhanden Resourcen.

Kurs Datenbanken

Arno Schmidhauser Seite 106Juni 2006

ConcurrenyConcurreny ControlControl

• Zweck
• Serialisierbarkeit
• Locking
• Deadlock

Kurs Datenbanken

Arno Schmidhauser Seite 107Juni 2006

ZweckZweck

• Einerseits: Isolation
– Änderungen am Datenbestand dürfen erst bei

Transaktionsabschluss für andere sichtbar sein.

• Andererseits: Parallelität
– Eine Datenbank muss mehrere Benutzer(-prozesse)

gleichzeitig bedienen können und es sollen möglichst wenig
Wartesituationen entstehen.

Realisierungsstrategie
Die parallele Ausführung von Transaktionen muss bezüglich
Datenzustand und bezüglich Resultat-ausgabe zum Client
identisch mit der seriellen Ausführung von Transaktionen
sein.

Die beiden Anforderungen Isolation und Parallelität arbeiten im Prinzip gegeneinander,
wobei der Isolation die höhere Priorität zukommen muss. Ein sehr einfache
Realisierung der Isolationsbedingung wäre es, die Datenbank exklusiv für die
gerade laufende Transaktion arbeiten zu lassen. Alle anderen Transaktionen
müssten warten, bis die gerade laufende fertig ist. Alle Transaktionen werden also
faktisch hintereinandergeschaltet oder serialisiert.

Eine schlauere Datenbank wird versuchen, von allen Transaktionen den jeweils
nächsten anstehenden SQL-Befehl entgegenzunehmen, und davon immer
denjenigen auszuführen, dass man nach am Schluss aller Transaktionen sagen
kann: Die abwechslungsweise Ausführung von SQL-Befehlen ist auf dasselbe
herausgekommen, wie wenn alle Transaktionen streng hintereinander ausgeführt
worden wären. Damit ist sowohl die Isolationsbedingung, wie die Forderung
möglichst hoher Parallelität erfüllt. Die Datenbank muss also für Serialierbarkeit
sorgen. Serialisiert und serialisierbar unterscheiden sich lediglich in der Art der
Ausführung, nicht in Bezug auf die Auswirkung auf die Daten.

Kurs Datenbanken

Arno Schmidhauser Seite 108Juni 2006

Zweck, MittelZweck, Mittel

Isolation

Serialisierbarkeit

Concurrency Control

Locking

Timestamping

Datenversionierung

garantiert

benutztfördert

Parallelität

Isolation ist ein allgemeine Anforderung, die an die Datenbank gestellt wird. Sie ist
quantitativ schwer fassbar. Serialisierbarkeit ist eine konkrete Art der Isolation,
welche verhältnismässig einfach zu implementieren ist, und deshalb in den
marktüblichen Datenbanksystemen die einzig vorkommende.

Das Concurrency-Control ist der Mechanismus, welcher die Isolation und die
Parallelität sicherstellt. Locking, Timestamping oder Datenversionierung sind
mögliche Werkzeuge, welche das Concurrency Control für seine beiden
Hauptaufgaben benutzt.

Kurs Datenbanken

Arno Schmidhauser Seite 109Juni 2006

SerialisierbarkeitSerialisierbarkeit

Transaktion 1

1.1 select :persnr from Person
where name = "Schmid"

1.2 delete from Adressen
where persnr = :persnr

1.3 delete from Person
where persnr = :persnr
commit

Transaktion 2

2.1 select :persnr from Person
where name = "Schmid"

2.2 select * from Adressen
where persnr = :persnr
commit

Jeder parallele Ablauf mehrerer Transaktionen muss
inhaltlich einem seriellen Ablauf entsprechen. Beispiel:

Ein korrekter Ablauf im Sinne obiger Definition ist:
1.1 2.1 2.2 1.2 1.3

Kurs Datenbanken

Arno Schmidhauser Seite 110Juni 2006

SerialisierbarkeitSerialisierbarkeit ffff

Unter der Annahme, dass die Datenbank keine Synchro-
nisationsmittel einsetzt und jedes SQL-Statement ein
atomarer Schritt ist, sind verschiedene zeitliche Abläufe der
beiden Transaktionen denkbar:

1. 1.1 2.1 1.2 2.2 1.3 (f)
2. 1.1 2.1 1.2 1.3 2.2 (f)
3. 1.1 2.1 2.2 1.2 1.3 (k)
4. 1.1 1.2 2.1 1.3 2.2 (f)
5. 1.1 1.2 2.1 2.2 1.3 (f)
6. 1.1 1.2 1.3 2.1 2.2 (s)
7. 2.1 1.1 1.2 2.2 1.3 (f)
8. 2.1 1.1 2.2 1.2 1.3 (k)
9. 2.1 1.1 1.2 1.3 2.2 (f)
10. 2.1 2.2 1.1 1.2 1.3 (s)

Die beiden mit (s) gekennzeichneten Abläufen entsprechen dem vollständigen
Nacheinander beider Transaktionen (serialisierte Abläufe). Alle anderen Abläufe
müssen bezüglich Ausgabe zum Prozess, rsp. bezüglich Datenbankzustand einem
der beiden serialisierten und damit korrekten Abläufe entsprechen (k), sonst sind
sie falsch (f).

Das Datenbanksystem muss Synchronisations-Mittel besitzen und einsetzen, damit

• eine hohe Parallelität gewährleistet ist.

• keine falschen Abläufe möglich sind (garantierte Serialisierbarkeit).

Serialisierbarkeit löst die Frage nicht, in welcher Reihenfolge die Transaktionen am
besten ausgeführt werden, sondern gibt nur an, dass eine parallele Ausführung
keine anderen Resultate als eine serielle Ausführung hat. Die durch die
sequenzielle Ausführung einer Reihe von Transaktionen erzielten Ergebnisse gelten
alle als richtig.

Kurs Datenbanken

Arno Schmidhauser Seite 111Juni 2006

LockingLocking

• Locking ist die häufigste Möglichkeit, die Serialisierbarkeit zu
gewährleisten.
– Für das Lesen eines Datensatzes wird ein S-Lock gesetzt
– Für das Ändern, Löschen oder Einfügen eines Datensatzes

wird ein X-Lock gesetzt.
• Die gesetzten Locks sind gemäss einer Verträglichkeitstabelle

untereinander kompatibel oder nicht:

S X
S + -
X - -

Bestehende Sperre

Angeforderte Sperre

Angeforderte Sperre wird
gewährt (+) oder nicht gewährt (-)

Das Datenbanksystem setzt für jeden SQL-Befehl automatisch entsprechende Sperren
auf den ausgewählten Datenelementen.

Schreibsperren werden bis zum Transaktionsende gehalten. Eine vorherige Freigabe
würde die Isolationsbedingung verletzen: Vor dem Transaktionsabschluss ist nicht
garantiert, dass Änderungen nicht noch rückgängig gemacht werden, sei es durch
den Client (Rollback-Befehl) oder den Datenbankserver (Crash, Deadlock).
Schreibsperren können nicht umgangen oder ausser Kraft gesetzt werden.

Lesesperren werden ebenfalls bis zum Transaktionsende gehalten. Ein
Benutzerprozess kann daher sicher sein, dass einmal eingelesene Daten in der
Datenbank zwischenzeitlich nicht geändert werden. Im Gegensatz zum Sperren von
Daten beim Schreiben sind aber auf Wunsch des Programmierers oder des
Datenbank-Administrators verschärfte oder erleichterte Sperren beim Lesen
möglich: Es dürfen X-Locks zum Lesen gesetzt werden oder man kann ohne
Sperren lesen (Dirty Read). Bei gewissen Datenbanksystemen können Lesesperren
auch unmittelbar nach dem Lesen, anstatt erst bei Transaktionsende
zurückgegeben werden (Short Locks).

Jedes Datenbanksystem hat eigene Feinheiten in der Locking Strategie, die es bei
einer stark gebrauchten Datenbank zu beachten gilt, und die Ausgangspunkt für
Tuning-Massnahmen sind. Einige Spezialitäten sind im folgenden beschrieben.

Kurs Datenbanken

Arno Schmidhauser Seite 112Juni 2006

Spezialitäten

Mit D-Locks (Sybase, SQL-Server) kann verhindert werden, dass zeitlich überlappende
Lesesperren einen schreibwilligen Prozess dauernd vom Zugriff ausschliessen. Ein
D-Lock wird von einem Schreiber angefordert, und sobald alle Lesesperren
verschwunden sind, in einen X-Lock umgewandelt.

Update-Locks (U) werden für die Deadlock-Verhinderung eingesetzt. U ist mit S
verträglich, aber nicht mit anderen U und X. Sobald tatsächlich die gelesenen
Daten geändert werden, wird U in X konvertiert. Dies ist nur möglich, wenn keine
anderen Lesesperren vorhanden sind. Update-Locks sind insbesonde für das
Arbeiten mit Cursorn geeignet: Die Datenbank liest die potentiell zu
modifizierenden Daten relativ rasch ein, der genaue Zeitpunkt des Updates ist aber
durch den Datenbank-Client bestimmt:

declare c cursor for
select persnr
from person
for update of adresse;

/* Records werden mit U statt mit S gesperrt. */

update person
set adresse = "neu"
where current of c; /* Hier wird U in X umgewandelt. */

Null-Locks werden für unsicheres Lesen (Dirty Read) eingesetzt. Ein Null-Lock ist gar
keine Sperre und ist daher mit allen anderen Locks verträglich.

Der Zugriff auf die Indextabellen ist ebenfalls zu berücksichtigen, es gelten meist
diesselben Regeln wie auf den eigentlichen Datentabellen.

Neben den "High-Level" Locks für die eigentlichen Daten, die durch das DBMS wie
oben beschrieben gehandhabt werden, kommen für den Zugriff auf Hilfsresourcen
(z.B. die Locktabelle selbst) auch die Synchronisations-Mechanismen des
Betriebssystems zum Einsatz, beispielsweise Semaphore, Mutex-Variablen oder
Spin Locks bei Multiprozessor-Systemen.

S X U D n u ll

S + - + + +
X - - - - +
U + - - - +
D - - - - +

n u ll + + + + +

Kurs Datenbanken

Arno Schmidhauser Seite 113Juni 2006

DeadlockDeadlock

• Beim Arbeiten mit Locks können so genannte Deadlocks
auftreten. Deadlocks sind in der Informatik ein allgemein
bekanntes Problem:

Datensatz

Transaktion 1

Liest Datensatz,
bekommt hierfür S-Lock

Möchte Datensatz schreiben,
benötigt X-Lock, wartet auf
Freigabe S-Lock durch T2

Transaktion 2

Liest Datensatz,
bekommt hierfür S-Lock

Möchte Datensatz schreiben,
benötigt X-Lock, wartet auf
Freigabe S-Lock durch T1

Gegenseitiges Warten = Deadlock

Kurs Datenbanken

Arno Schmidhauser Seite 114Juni 2006

DeadlocksDeadlocks bei der bei der SerialisierungSerialisierung

• Einige der Abläufe unter 'Serialisierbarkeit' erzeugen einen
Deadlock. Der Deadlock ist konzeptionell gesehen nicht
ein Fehler, sondern bedeutet:

– Es gibt keinen Weg mehr, die anstehenden
Transaktionen so zu steuern, dass ein serialisierbarer
Ablauf entsteht.

– Eine der beteiligten Transaktionen wird zurückgesetzt,
so dass für die übrigen wieder die Chance besteht,
gemäss Serialisierbarkeitsprinzip
abzulaufen.2004.ppt#121. Serialisierbarkeit

Mögliche Deadlocks sind der Preis für die Anforderung hoher Parallelität. Man kann die
Serialisierbarkeit auch erreichen ohne Deadlock-Bedrohung, indem die involvierten
Tabellen oder Datensätze zum vornherein exklusiv gesperrt werden. Die meisten
Datenbankssysteme kennen entsprechende Befehle, beispielsweise: LOCK TABLE
tablename in EXCLUSIVE MODE. Damit ist aber jede Parallelität von Transaktionen
verhindert.

Kurs Datenbanken

Arno Schmidhauser Seite 115Juni 2006

ZweiZwei--Phasen SperrprotokollPhasen Sperrprotokoll

1. Bevor eine Transaktion auf einem Datensatz aktiv wird,
muss sie eine Sperre (S oder X) erwerben.

2. Sperren werden beim Commit zurückgegeben.

-> Dieses Protokoll garantiert einen serialisierbaren Ablauf
von parallelen Transaktionen, ohne Berücksichtigung des
Phantom-Problems.

-> Das Protokoll ist nicht Deadlock-frei.

Der Kurzname 2PL ist aus 'Two-Phase Locking' abgeleitet.

Die Phase 1 entspricht praktisch der Zeit während der Lese- und
Änderungsoperationen durch die Transaktion durchgeführt werden.

2PL garantiert einen serialisierbaren Ablauf, wenn nur auf vorhandenen Datensätzen
gelesen oder geändert wird. Betrachtet man die zusätzliche Situation, dass von
anderen Transaktionen Datensätze eingefügt werden, die unter Umständen einer
Auswahlbedingung der ersten Transaktion genügen, können Konsistenzprobleme
auftreten (siehe Folie über Phantome).

Phantomproblem

T1 T2

select count(*)

from Person

Speicher für count(*) Personen belegen

insert Person

values ('Muster', 'Hans');

commit;

select name, vorname

from Person

Personen in Speicher abfüllen

Phantom!

Kurs Datenbanken

Arno Schmidhauser Seite 116Juni 2006

Sperren auf TabellenebeneSperren auf Tabellenebene

• Um Serialisierbarkeit auch für Transaktionen zu
erreichen, welche Datensätze einfügen, werden Sperren
auf Tabellenebene verwendet (Phantomproblem).

• Minimalkonzept: Eine Lesesperre S auf der Tabelle
verhindert das Einfügen von neuen Datensätzen.

• In Datenbanken werden heute meist Range-Locks zur
Vermeidung von Einfügekonflikten verwendet: Ein
Range Lock sperrt nur einen kritischen Bereich der
Tabelle.

Sperren auf Tabellen-Ebene kommen in folgenden Fällen zur Anwendung:

• Mit einer Sperre auf Tabellen-Ebene (S oder X) kann das Einfügen neuer
Datensätze durch andere Transaktionen verhindert werden (Mit Sperren auf
Datensatz-Ebene ist dies nicht möglich). Das schliesst mögliche
Konsistenzprobleme aus (siehe Folie über Phantome). Besitzt eine Transaktion eine
S-Sperre auf einer Tabelle können keine X-Sperren auf Datensätzen von anderen
Transaktionen erworben werden. Besitzt eine Transaktionen X-Sperren auf
einzelnen Datensätzen, kann eine andere Transaktion keine S-Sperre auf der
ganzen Tabelle erwerben.

• Bei SQL-Befehlen, die sonst falsche Ergebnisse oder inkonsistente Zustände zur
Folge hätten, wie create index, create constraint, grant, revoke, drop table.

• Wenn mehr als eine vorgesehene Anzahl Datensätze gesperrt werden müssen, und
damit die interne Verwaltung zu gross würde, eskaliert das DBMS die Einzelsperren
auf die ganze Tabelle. Die Sperren auf den Datensätzen können dann freigegeben
werden.

• Wenn der Benutzerprozess oder der Administrator dies aus applikatorischen
Gründen wünscht. Ein X-Sperre auf Tabellen-Ebene garantiert dem Besitzer
lesenden und schreibenden Zugriff auf sämtliche Datensätze der Tabelle ohne
jegliche Deadlock-Gefahr.

Anstelle eines S-Lock auf der ganzen Tabelle hat sich in letzter Zeit der Range-Lock
durchgesetzt: Es wird via Index nur derjenige Bereich von Datensätzen gesperrt,
der durch die where-Bedinung in einem SQL-Befehl definiert ist. Datensätze
ausserhalb dieses Bereichs kommen für Konflikte gar nicht in Frage und müssen
daher auch nicht gesperrt werden. Range-Locks sind umso günstiger, je mehr
Datensätze mit unterschiedlichen Werten vorhanden sind. Die einzige Bedingung
ist das Vorhandensein eines Index und einer where-Bedingung, welche die
gesuchten Daten wesentlich einschränkt.

Kurs Datenbanken

Arno Schmidhauser Seite 117Juni 2006

IsolationsgradeIsolationsgrade

• Je nach Applikation kommen gewisse SQL-Befehlsfolgen, welche die

Serialisierbarkeit gefährden, nicht vor. Unter Umständen will man

auch die vollständige Serialisierbarkeit aufgeben, zugunsten einer

erhöhten Parallelität.

• SQL-3 definiert deshalb verschiedene Isolationsgrade beim Lesen
von Daten:

SERIALIZABLE 3

REPEATABLE READ 2

READ COMMITTED 1

READ UNCOMMITTED 0

Der Befehl zum Setzen des Isolationsgrades ist:
set transaction isolation level konstante | zahl

SERIALIZABLE

Der Modus SERIALIZABLE garantiert die Serialisierbarkeit einer Transaktion. Die
Implementation basiert im einfachsten Fall auf einer Lese-Sperre der ganzen
Tabelle. Einfügungen neuer Datensätze (Phantom-Problem) werden damit
verhindert. Diese Implementation lässt immer noch andere Leseprozesse zu, eine
gewisse Parallelität ist also gewährleistet. Deadlocks können auftreten, wenn zwei
Transaktionen je eine Lesesperre auf der Tabelle besitzen und anschliessend
innerhalb der Tabelle Änderungen vornehmen wollen. Der zu erwerbende X-Lock
für einen Datensatz verträgt sich per Definition nicht mit dem S-Lock einer anderen
Transaktion auf der Tabelle. Die meisten Datenbankssysteme bieten zusätzlich
Lock-Befehle an, mit denen man die ganze Tabelle exklusiv sperren kann. Damit ist
die relativ hohe Deadlock-Gefahr gebannt und die Serialiserbarkeit garantiert, aber
auch jede Parallelität verunmöglicht. Der entsprechende Befehl hat häufig folgende
Form: LOCK TABLE tablename in EXCLUSIVE MODE.

Eine neue und sehr effiziente Implementation für den Modus SERIALIZABLE arbeitet
mit Range Locks (siehe Anhang). Ein Range-Lock sperrt logische Bereiche (Die
Bedingung in der where-Klausel von SQL-Befehlen), statt einzelne Datensätze.

Befehl
Sperre auf
Datensatz

Sperre auf
Tabelle

Sperrdauer

select - S bis commit
update X - bis commit
delete X - bis commit
insert X - bis commit
create index - X bis commit
alter table - X bis commit

SERIALIZABLE
Zu beachten: Ein X-Lock auf
einen Datensatz kann nur
gesetzt werden, wenn kein
S-Lock auf die Tabelle
besteht und umgekehrt.

Kurs Datenbanken

Arno Schmidhauser Seite 118Juni 2006

REPEATABLE READ

Das wiederholte Absetzen desselben Abfrage-Befehles liefert dasselbe Resultat. Einmal in
die Applikation gelesene Daten können also durch andere nicht verändert werden.
Realisierungsmöglichkeit 1: Lesesperren, die bis zum Transaktionsende gehalten werden.

READ COMMITTED

Es besteht die Anforderung, dass nur bestätigte Daten gelesen werden, d.h.solche die sich
nicht in Bearbeitung befinden. Anwendungsbeispiel: Management- Informationsyssteme-
und statistitische Auswertungen. Realisierungsmöglichkeit 1: Eine Abfrage gibt ihre
Lesesperren unmittelbar nach dem Lesevorgang zurück, statt sie bis zum Transaktionsende
zu behalten. Eine andere Transaktion kann damit die Daten verändern. Nachteil:
Schreibsperren können die Abfrage immer noch blockieren. Realisierungsmöglichkeit 2: Der
letzte gültige Zustand eines Datenelementes wird aufbewahrt für die Lesetransaktionen
(Siehe Concurrency Control mit Versionen). Realisierungsmöglichkeit 3:
Zeitstempelverfahren (siehe Folie über 'Concurrency Control mit Zeitstempeln').

READ UNCOMMITTED

Es dürfen unbestätigte Daten gelesen werden. Realisierung 1: Es wird mit Null-Locks
gearbeitet. Vorteil: es gibt mit Sicherkeit keine Wartesituationen für die eigene oder andere
Transaktionen. Nachteil: Es können nicht bestätigte Daten gelesen werden, d.h. solche, die
von einer anderen Transaktion ev. wieder zurückgesetzt werden.

Befehl
Sperre auf
Datensatz

Sperre auf
Tabelle

Sperrdauer

select S - bis commit
update X - bis commit
delete X - bis commit
insert X - bis commit
create index - X bis commit
alter table - X bis commit

REPEATABLE READ

Befehl
Sperre auf
Datensatz

Sperre auf
Tabelle

Sperrdauer

select S - nur select
update X - bis commit
delete X - bis commit
insert X - bis commit
create index - X bis commit
alter table - X bis commit

READ COMMITTED

Befehl
Sperre auf
Datensatz

Sperre auf
Tabelle

Sperrdauer

select - - -
update X - bis commit
delete X - bis commit
insert X - bis commit
create index - X bis commit
alter table - X bis commit

READ UNCOMMITTED

Kurs Datenbanken

Arno Schmidhauser Seite 119Juni 2006

MMöögliche Inkonsistenzengliche Inkonsistenzen

• Die Abschwächung des Isolationsgrades hat den Vorteil, dass
die Parallelität erhöht wird.

• Die Abschwächung des Isolationsgrades hat den Nachteil, dass
gewisse Inkonsistenzen auftreten können, resp. in Kauf
genommen werden:

SERIALIZABLE keine Inkonsistenzen

REPEATABLE READ Phantome möglich

READ COMMITTED Lost Updates möglich

READ UNCOMMITTED Lesen unbestätigter Daten möglich

Kurs Datenbanken

Arno Schmidhauser Seite 120Juni 2006

PhantomPhantom--ProblemProblem
T1 T2
select *
from Person
where name = 'Muster'
select *
from Person
where name = 'Muster'

insert Person (name)
values ('Muster')
commit

select *
from Person
where name = 'Muster'
commit

Hier REPEATABLE READ garantiert für
bisherige Personen, aber eine
zusätzliche Person aufgetaucht.

Hier REPEATABLE READ
garantiert

Phantom-Problem

Eine erste Transaktion selektiert Datensätze nach bestimmten Kriterien. Eine
zweite Transaktion fügt einen neuen Datensatz ein und committet diesen. Wenn
die erste Transaktion ihre Abfrage nochmals durchführt, findet sie den neuen
Datensatz. Der neue Datensatz wird bezüglich der ersten Transaktion als Phantom
bezeichnet.

Phantome können zu Schwierigkeiten bei statistischen Auswertungen führen.
Phantome können auch zu Programmierproblemen führen, wenn beispielsweise
eine Abfrage abgesetzt wird, um die Anzahl Datensätze zu zählen, dann aufgrund
der Zählung Speicherplatz für die zu erwartenden Datensätze bereitsgestellt wird.
Wenn in der zweiten Abfrage für die eigentlichen Datensätze dann plötzlich
zusätzliche Datensätze auftreten, kann dies zu Speicherüberläufen führen.

Ein Phantom-Problem kann auch beim Löschen von Datensätzen auftreten. Eine erste
Transaktion löscht einen bestimmten Datensatz, führt aber noch kein commit
durch. Eine andere Transaktion liest alle Datensätze der Tabelle. Die erste
Transaktion führt ein Rollback durch. Die zweite Transaktion liest die Tabelle noch
einmal und sieht nun den vorher gelöschten Datensatz. Aufgrund der
Implementation der Löschoperation bei vielen Datenbanksystemen ist jedoch
dieser Fall meist nicht möglich, da gelöschte Datensätze in der Tabelle verbleiben,
allerdings mit einer Schreibsperre versehen, und der Leseprozesse beim Zugriff auf
diesen Datensatz warten muss, bis die löschende Transaktion entweder ein
Commit oder ein Rollback durchführt.

Kurs Datenbanken

Arno Schmidhauser Seite 121Juni 2006

Lost UpdateLost Update--ProblemProblem
T1 T2
select saldo
from Konto
where idKonto = 3

select saldo
from Konto
where idKonto = 3
neuerSaldo = saldo + 100

update Konto
set saldo = neuerSaldo
where idKonto = 3
commit

neuerSaldo = saldo + 100
update Konto
set saldo = neuerSaldo
where idKonto = 3
commit

Änderungen von T2 gehen beim
Update von T1 verloren !

Lost Update-Problem

Wenn die gelesenen Daten verändert und anschliessend wieder in die Datenbank
zurückgeschrieben werden kann das Problem auftreten, dass eine andere
Transaktion in der Zwischenzeit die Daten ebenfalls gelesen, verändert und bereits
committet hat. Die erste Transaktion wird dann beim Zurückschreiben ihrer Daten
die Änderungen der anderen Transaktion zunichten machen. Der Update der
anderen Transaktion geht damit verloren.

Kurs Datenbanken

Arno Schmidhauser Seite 122Juni 2006

Lange TransaktionenLange Transaktionen
• Kurze vs lange Transaktion
• Checkout/Checkin-Verfahren
• Zeitstempel/Prüfregel-Verfahren

Kurs Datenbanken

Arno Schmidhauser Seite 123Juni 2006

Kurze und lange Transaktionen 1Kurze und lange Transaktionen 1

Bisher: Kurze, technische Transaktionen

– Oberstes Ziel ist ein serialisierbarer Ablauf
– Keine spezifische Semantik bei Konflikten,

sondern Abbruch der Transaktion.
– Keine Benutzerinteraktion während der Transaktion

(Alle Informationen und Regeln zur Durchführung der
Transaktion sind vorgängig bekannt)

– Minimalen Zeitbedarf anstreben.

Die technischen Transaktionen haben eigentlich keine Semantik, sondern sind
lediglich ein Konstrukt, um zu verstecken, dass der Zugriff auf Daten eine endliche
Zeit beansprucht und mit beschränkter Sicherheit stattfindet. Wären Applikation,
Netzwerk und Datenbank unendlich schnelle und unendlich sichere Resourcen,
bestünde kein Bedarf an einem technischen Transaktionskonzept. Jede Transaktion
wäre momentan begonnen und momentan beendet und damit in jedem Fall
komplett vor oder komplett nach einer anderen Transaktion durchgeführt. Die
Serialisierbarkeit wäre also gewährleistet.

Kurs Datenbanken

Arno Schmidhauser Seite 124Juni 2006

Kurze und lange Transaktionen 2Kurze und lange Transaktionen 2

Neu: Lange, logische Transaktionen

– Daten aus DB entnehmen für Applikation
– Bearbeitung in der Applikation beliebig lange
– Benutzerinteraktion während der Transaktion muss

möglich sein, da nicht alle Informationen oder Regeln
explizit bekannt sind.

– Zurückschreiben in die Datenbank
– Basis für Entnahme und Zurückschreiben: Kurze

Transaktionen.

Eine lange Transaktion entspricht eigentlich der Realisierung eines Use Cases gemäss
UML.

Kurs Datenbanken

Arno Schmidhauser Seite 125Juni 2006

Applikation (GUI)

Datenbank

Problematisches Vorgehen 1Problematisches Vorgehen 1

Daten lesen Daten schreiben / Commit

Transaktion 1 (unerwünscht lang)

Daten werden durch Benutzer bearbeitet
(lange Transaktion)

Nur für den Fall wo der "Benutzer" ein anderer Computer ist, der seine Aufgabe in
kurzer Zeit löst, kann mit einer einzigen Transaktion gearbeitet werden. Für den
Fall, wo die gelesenen Daten durch einen menschlichen Benutzer bearbeitet
werden, und die benötigte Zeit undefinierbar lang ist, müssen zwei
unterschiedliche Transaktionen verwendet werden für das Lesen der Daten und
das letztendliche Zurückschreiben. Eine kurze Zeit sei hier definiert als eine
Zeitspanne innerhalb der es akzeptiert ist, dass es zu gewissen Resourcen-
Blockierungen (Locks) kommt, welche den Zugriff anderer Transaktionen auf die
gemeinsamen Daten verzögern.

Kurs Datenbanken

Arno Schmidhauser Seite 126Juni 2006

Applikation (GUI)

Datenbank

Problematisches Vorgehen 2Problematisches Vorgehen 2

Daten werden durch Benutzer bearbeitet
(lange Transaktion)

Daten lesen / Commit Daten schreiben / Commit
Keine Konfliktprüfung !

Transaktion 1
(kurz)

Transaktion 2
(kurz)

Für den Fall, wo die gelesenen Daten durch einen menschlichen Benutzer bearbeitet
werden, und die benötigte Zeit lang ist, müssen zwei unterschiedliche
Transaktionen verwendet werden für das Lesen der Daten und das letztendliche
Zurückschreiben. Eine lange Zeit sei hier definiert als eine Zeitspanne innerhalb
der es nicht akzeptiert ist, dass es zu Resourcen-Blockierungen (Locks) kommen
kann, welche den Zugriff anderer Transaktionen auf die gemeinsamen Daten
verzögern.

Das wesentliche Problem, welches man sich hier einhandelt, ist die Unsicherheit, ob
das Zurückschreiben noch auf den ursprünglich gelesenen Daten erfolgte, oder ob
zwischenzeitlich eine andere Transaktion die Daten verändert hat. Änderungen
einer anderen Transaktion, welche in der Zwischenzeit stattgefunden haben,
werden einfach überschrieben und damit zunichte gemacht. Das kann erlaubt sein,
nach der Idee: Die neuesten Änderungen sind sowieso die wahrscheinlich
korrektesten. Es kann aber auch unerwünscht sein, wenn es sich beispielsweise
um das Ändern eines Lagerbestandes in einer Materialbewirtschaftung handelt:
Zwei Transaktionen lesen einen Lagerbestand von 10 Stück, ziehen jede ein Stück
ab, und schreiben anschliessend je einen aktuellen Bestand von 9 zurück. Eine
der Änderungen geht verloren. Als weitere Möglichkeit kann einfach gefordert
werden, dass eine Applikation einfach benachrichtigt wird, wenn beim
Zurückschreiben entdeckt wird, dass ein Konflikt entstehen könnte.

Kurs Datenbanken

Arno Schmidhauser Seite 127Juni 2006

Applikation (GUI)

Datenbank

LLöösung 1: sung 1: checkoutcheckout / / checkincheckin

Daten werden durch Benutzer bearbeitet
(lange Transaktion)

Daten lesen
Flag setzen

Daten schreiben
Flag zurücksetzen

Transaktion 1
(kurz)

Transaktion 2
(kurz)

Der checkout/checkin Mechanismus basiert auf freiwilliger Koordination mehrerer
Applikationen: Wenn das Flag durch eine Applikation gesetzt ist, verzichten andere
Applikationen auf den Gebrauch der markierten Daten. Das Flag kann
unterschiedlich ausgestaltet sein:

• Binäres Flag, im Sinne eines Locks: Das Flag kann die Bedeutung einer exklusiven
Sperre haben. Das Flag kann aber auch die Bedeutung haben, dass die flag-
setzende Applikation die Daten ändern und zurückschreiben darf, während die
anderen Applikationen nur lesend auf die Daten zugreifen dürfen.

• Flag + Zeitstempel + Benutzerinformation: Das Flag kann die Bedeutung einer
exklusiven Sperre haben. Das Flag kann aber auch die Bedeutung haben, dass die
flag-setzende Applikation die Daten ändern und zurückschreiben darf, während die
anderen Applikationen nur lesend auf die Daten zugreifen dürfen. Die zusätzliche
Information kann für folgenden Fall benutzt werden: Die Applikation, welche das
Flag besitzt, vergisst vielleicht, das Flag wieder zurückzusetzen. Eine andere
Applikation, respektive ein anderer Benutzer kann anhand von Zeitstempel und
Benutzerinformation mit einer gewissen Sicherheit feststellen, ob die Daten
tatsächlich noch in Benutzung sind, oder lediglich das Flag nie zurückgesetzt
wurde.

Zu beachten: Transaktion 2 muss im Modus SERIALIZABLE ablaufen!

Kurs Datenbanken

Arno Schmidhauser Seite 128Juni 2006

Applikation (GUI)

Datenbank

LLöösung 2: Zeitstempel/Prsung 2: Zeitstempel/Prüüfregelfregel

Daten werden durch Benutzer bearbeitet
(lange Transaktion)

Daten lesen
Zeitstempel lesen

Zeitstempel prüfen
Daten schreiben
Zeitstempel neu setzen

Transaktion 1
(kurz)

Transaktion 2
(kurz)

Beim Lesen eines Datensatzes wird immer der Zeitstempel mitgenommen, welcher
den Zeitpunkt der letzten Änderung angibt. Beim Zurückschreiben wird geprüft, ob
der Zeitstempel noch stimmt. Wenn ja, werden die eigenen Änderungen in die
Datenbank zurückgeschrieben. Wenn nein, werden die eigenen Änderungen
verworfen.

Gegenüber dem checkout/checkin-Verfahren wird beim Zeitstempelverfahren zum
Zeitpunkt des Lesens von Daten noch kein Flag oder eine andere Markierung
gesetzt. Der Vorteil besteht darin, dass keine Flag-"Leiche" in der Datenbank
entstehen kann, weil eine Applikation ein gesetzt Flag nicht korrekt zurücksetzt.
Der Nachteil besteht darin, dass eine Applikation unter Umständen im späten
Zeitpunkt des Zurückschreibens gezwungen ist, auf das Zurückschreiben zu
verzichten, weil ein anderer Benutzer die Daten zwischenzeitlich verändert hat.

Das Zeitstempelverfahren kann abgewandelt werden:

• Im Falle eines Konfliktes wird die Applikation resp. der Benutzer informiert. Dieser
kann sich dann entscheiden, ob er die Änderungen trotzdem vornehmen will oder
nicht. Zu beachten ist für dieses Vorgehen aber, dass die Daten sich nochmals
ändern können, während der Benutzer über den Abbruch entscheidet.

• Anstelle eines Zeitstempels werden die ursprünglich von der Applikation gelesenen
Daten aufbewahrt (Nebst den vorgenommenen Modifikationen). Zum Zeitpunkt
des Zurückschreibens wird geprüft ob die ursprünglich gelesenen Daten noch mit
den aktuellen in der Datenbank übereinstimmen. Der Vorteil liegt darin, dass die
Datenbank in keiner Weise mit Hilfsinformationen wie Zeitstempeln "verschmutzt"
wird. Der Nachteil liegt im erhöhten Speicher- und Zeitbedarf für das Aufbewahren
und Vergleichen der ursprünglichen Daten.

• Anstelle eines Zeitstempels werden ganz spezifische Konfliktprüfungsregeln
angewendet. Beispielsweise könnte es erlaubt sein, dass zwei Benutzer gleichzeitig
eine Reservation einfügen (Änderung einer Reservationstabelle durch Einfügen
eines neuen Datensatzes), sofern sich die beiden eingefügten Datensätze bezüglich
von- und bis-Datum der Reservation nicht überschneiden.

Kurs Datenbanken

Arno Schmidhauser Seite 129Juni 2006

Transaktion vs. VerbindungTransaktion vs. Verbindung

• Eine kurze Transaktion wird immer über eine Verbindung
abgewickelt.

• Über eine Verbindung können mehrere Transaktionen
abgewickelt werden, aber immer nur nacheinander.

• Kurze Transaktionen können die zugrundeliegende
Verbindung nicht überdauern.

• Ein Verbindungsabbruch hat immer einen Transaktions-
abbruch zur Folge.

• Lange Transaktionen beinhalten unter Umständen einen
gewollten oder ungewollten Unterbruch der Verbindung:
Sie müssen in der Regel selber implementiert werden.

Der wesentliche Vorteil einer Transaktion, die im Rahmen einer Verbindung abläuft ist,
dass das Datenbanksystem selber entscheiden kann, wann die Transaktion
zwangsläufig abgebrochen werden muss: Beim Verbindungsabbruch und damit
auch bei einem allfälligen Servercrash. Kann oder muss eine Transaktion einen
Verbindungsunterbruch überdauern, muss das Datenbanksystem in der Lage sein,
alle Hilfsdaten der Transaktion (zum Beispiel Transaktionsname und gesetzte
Locks) dauerhaft aufzubewahren. Dies ist bei allen gängigen Datenbank-Produkten
aber nicht der Fall.

Kurs Datenbanken

Arno Schmidhauser Seite 130Juni 2006

UnterstUnterstüützung ftzung füür lange Transaktionenr lange Transaktionen

• Das Zeitstempelverfahren erlaubt das Abwickeln langer
Transaktionen (READ COMMITTED-Garantie und
Vermeidung von Lost Updates) innerhalb einer
technischen Transaktion/Verbindung.

• Das Versionenverfahren von Oracle erlaubt das Abwickeln
langer Lesetransaktionen (Daten mit REPEATABLE READ
Garantie) innerhalb einer technischen
Transaktion/Verbindung.

Kurs Datenbanken

Arno Schmidhauser Seite 131Juni 2006

ZusammenfassungZusammenfassung

• Generische Basismechanismen für das Concurreny Control
werden von der Datenbank zur Verfügung gestellt.

• Für kurze Transaktionen und niedrig belastete
Datenbanken kann generell mit dem höchstem
Isolationsgrad gearbeitet werden.

• Bei hoher Datenbankbelastung muss eine schwächere
Einstellung des Isolationsgrades geprüft werden.

• Lange Transaktionen erfordern immer eine
problembezogene Vorgehensweise um Performance- und
Korrektheit der Daten unter einen Hut zu bringen.

Kurs Datenbanken

Arno Schmidhauser Seite 132Juni 2006

RecoveryRecovery

• Aufgaben
• Fehlerarten
• Logging
• Fehlerbehebung

Kurs Datenbanken

Arno Schmidhauser Seite 133Juni 2006

Kurs Datenbanken

Arno Schmidhauser Seite 134Juni 2006

Das Das RecoveryRecovery--SystemSystem

• Das Recovery-System eines DBMS enthält alle Hilfsmittel zum
Wiederherstellen eines korrekten Datenbank-zustandes nach

− Transaktionsfehlern

− Systemfehlern

− Plattenfehlern

• Das Recovery-System garantiert die Atomarität und Dauerhaftigkeit
einer Transaktion (ACID Regel).

• Das Recovery-Systems basiert auf dem Führen eines Logfiles, in
welchem Änderungen protokolliert werden.

• Abschätzen und Überwachen der Grösse und Festlegen des
Speicherortes für das Logfile sind zwei wichtige Aufgaben der
Datenbank-Administration

Das Recovery-System bestimmt wesentlich die Performance eines Datenbanksystems.
Eine Faustregel geht von 10-100 Transaktionen pro Sekunde aus. Die Zahl ergibt
sich dadurch, dass spätestens bei Transaktionsende für jede Änderungstransaktion
einige I/O-Pages ungepuffert auf das Logfile geschrieben werden müssen.

Bei hoher Transaktionslast kann die Anzahl Transaktionen pro Sekunde z.B.
wesentlich erhöht werden, wenn die Änderungen mehrerer Transaktionen
zusammen auf das Logfile geschrieben werden können ("grouped commit").

Kurs Datenbanken

Arno Schmidhauser Seite 135Juni 2006

FehlerartenFehlerarten

• Transaktionsfehler
– Rollback-Befehl durch Applikation
– Verletzung von Integritätsbedingungen
– Verletzung von Zugriffsrechten
– Deadlock
– Verbindungsunterbruch oder Client-Crash

• Systemfehler
– Stromausfall, Hardware- oder Memory-Fehler

• Plattenfehler
– Speichermedium wird physisch defekt, Fehlfunktionen

des Controllers

Transaktionsfehler sind relativ häufig und müssen effizient gehandhabt werden. Die
Aufgabe der Datenbank ist es, den Zustand der Daten wie vor der Transaktion
wieder herzustellen.

Bei Systemfehlern (auf Serverseite) gehen laufende Transaktionen und alle Memory-
Inhalte des Servers verloren. Die Aufgabe des Datenbanksystems beim Restart ist
es, den jüngsten korrekten Zustand der Datenbank wieder herzustellen. Dazu
müssen die Änderungen aller zum Fehlerzeitpunkt laufenden Transaktionen
rückgängig gemacht werden. Die Änderungen aller zum Fehlerzeitpunkt korrekt
abgeschlossenen Transaktionen, welche aber nur im Memory abgelegt waren,
müssen anhand des Logfiles rekonstruiert werden.

Bei Plattenfehlern hilft nur eine Wiederherstellung der Datenbank aus speziellen
Backup-Kopien (On-Line-Backups). Die Aufgabe der Datenbank besteht darin,
regelmässig solche Backups herzustellen.

Kurs Datenbanken

Arno Schmidhauser Seite 136Juni 2006

Beachte, dass eine wegen einem Deadlock abgebrochene Transaktion nicht durch das
DBMS wiederholt werden kann! Beispiel:

begin transaction

select lohn from Mitarbeiter where mitarbId = 9

// Applikation berechnet: neuer_lohn = f(lohn)

update Mitarbeiter set lohn = neuer_lohn where mitarbId = 9

// hier beispielsweise Deadlock ...

Durch den Abbruch der Transaktion werden die Sperren auf dem Mitarbeiter-Datensatz
freigegeben. Das DBMS kann also nicht garantieren, dass das Attribut lohn noch
denselben Wert hat wie beim ersten select. Da es die Funktion f nicht kennt,
kann es nicht entscheiden, ob der update nochmals durchgeführt werden darf oder
nicht.

Kurs Datenbanken

Arno Schmidhauser Seite 137Juni 2006

Ablauf von ModifikationsbefehlenAblauf von Modifikationsbefehlen

DB-Storage

Checkpoint (Gelegentlich)

SQL-Befehl eines Clients

1.

2. Neue Datenwerte

Logfile

Alte und neue
Datenwerte

Workspace

Im Logfile werden die Datensätze mit ihrem neuen und alten Zustand abgelegt. Damit
ist grundsätzlich eine Wiederherstellbarkeit der Datenbank nach vorwärts wie nach
rückwärts gewährleistet.

Der Workspace ist ein von der Datenbank vollständig kontrollierter Cache der
permanenten Datenbank (DB-Storage). Hier befinden sich alle in Gebrauch
stehenden Datensätze. Der Workspace wird zu bestimmten Zeitpunkten auf die
permanente Datenbank zurückgeschrieben.

Die Bewirtschaftung des Logfiles kann nach zwei Strategien erfolgen:

1. Jeder SQL-Befehl wird sofort und ungepuffert protokolliert. Damit besteht
keine Abhängigkeit vom Status des Workspace und des Ausführens eines
Checkpoints. Gleichzeitig ist diese Variante aus Performance-Sicht etwas
langsam.

2. Das Logfile hat einen eigenen Cache. Dieser muss jedoch spätestens beim
Commit-Befehl oder vor einem Checkpoint in das permanente Logfile
übertragen werden. Vorteil: mehrere commit-willige Transaktionen können
zusammengefasst werden und deren Änderungen in einem Durchlauf vom
Cache des Logfiles in das permanente Logfile geschrieben werden. Nachteil:
Schwieriger zu implementieren für den DB-Hersteller. Eine Applikation muss
eventuell auf den Commit-Befehl etwas länger warten.

Die Variante 2 ist aus globaler Sicht effizienter, aus lokaler Applikationssicht
kann sie schlechter sein.

Kurs Datenbanken

Arno Schmidhauser Seite 138Juni 2006

LoggingLogging, Beispiel, Beispiel

Zeit

T1

T2

T3

T4

Checkpoint Systemfehler

B
O

T
 T

1

M21 M22

M31 M32

M41 M42

M11

B
O

T
 T

2

B
O

T
 T

3

B
O

T
 T

4

C
M

T
 T

1

C
M

T
 T

2

R
B
K
 T

3

B
_
C
K
P
T
 (T

2
,T

3
,T

4
)

E
_
C
K
P
T
 (T

2
,T

3
,T

4
)

M
2
1

M
1
1

M
2
2

M
3
1

M
3
2

M
4
1

M
4
2

Logfile

Das hier vorgestellte Logging dient der Behebung von Transaktions- und
Systemfehlern. Es gibt verschiedenste Varianten in der Logging-Technik. Die hier
präsentierte entspricht einem "guten Durchschnitt" der bekannten DB-Systeme,
ohne allzu stark auf Details einzugehen. Sehr genaue Informationen sind in [3] zu
finden.

Das Logfile

• Jeder Eintrag im Logfile ist mit einer LSN (Log Sequence Number) eindeutig
identifiziert. Die LSN entspricht der Adresse des Eintrages. Alle Einträge einer
bestimmten Transaktion sind untereinander rückwärtsverkettet, damit eine
effiziente Behandlung von Transaktionsfehlern möglich ist.
Alle Einträge im Logfile müssen permanent sein. Das Schreiben in das Logfile darf
nicht gepuffert sein.

• Jede Änderung am Transaktionsstatus eines Client-Prozesses wird im Logfile
festgehalten. Es wird also der Beginn einer Transaktion (BOT), der Commit (CMT)
oder Rollback (RBK) festgehalten. Ein Rollback-Eintrag wird durch das
Datenbanksystem auch erzeugt, wenn der Transaktionsabbruch erzwungen ist, z.B.
durch einen Deadlock.

• Bei jedem SQL-Befehl, der Änderungen am Datenbestand zur Folge hat, werden die
alten und neuen Datenwerte, inkl. Transaktionsnummer und Verweis auf die
zugehörige Datenadresse in der Hauptdatenbank, protokolliert. In der Regel
werden ganze I/O-Page in das Logfile geschrieben (physisches Logging). Die
Platzverschwendung steht dabei einer effizienten Wiederherstellung der Datenbank
gegenüber.
Eine I/O-Page mit den alten Werten ("Before-Image") wird für die Wieder-
herstellung des Datenbankzustandes bei nicht korrekt abgeschlossenen
Transaktionen verwendet. Eine I/O-Page mit neuen Werten ("After-Image") wird
zur Wiederherstellung nach Systemfehlern benötigt, wenn eine Transaktion zwar
korrekt beendet wurde, deren neue Datenwerte aber noch nicht vom Datenbank-
Buffer in die physische Datenbank (Festplatte) geschrieben werden konnte.

Kurs Datenbanken

Arno Schmidhauser Seite 139Juni 2006

• Jeder Checkpoint (siehe unten) mit Verweisen auf die laufenden Transaktionen
wird ebenfalls im Logfile festgehalten.

Checkpoint

Als Checkpoint bezeichnet man den Zeitpunkt, an dem modifizierte I/O-Pages im
Workspace der Datenbank auf das Speichermedium (Festplatte) geschrieben
werden. Aus der Sicht von Benutzerprozessen möchte man möglichst wenige
Checkpoints durchführen, da diese die Performance negativ beeinflussen. Aus Sicht
einer raschen Wiederherstellung der Datenbank nach einem Crash möchte man
möglichst viele Checkpoints durchführen. Zwingend wird ein Checkpoint, wenn der
Workspace für alle modifizierten Seite zu klein wird. Nach dem Checkpoint können
alte, nicht mehr benötigte I/O-Pages, ob geändert oder nicht, entfernt werden.

Grösse des Logfiles
jede Änderung eines Datensatzes erfordert die Speicherung des alten und des
neuen ganzen Datensatzes im Logfile. Eingefügte resp. gelöschte Datensätze
erfordern das Abspeichern des Datensatzes im Log. Die Grösse des Logfiles wächst
also proportional zur Anzahl Änderungen. Da das Logfile häufig für inkrementelle
Backups verwendet wird, muss genügend Platz für alle Änderungen zwischen zwei
Backups vorhanden sein:

Grösse = a * (((m * g * 2) div p) + p)

a = Anzahl Transaktionen, die im Logfile aufbewahrt werden müssen

m = Anzahl geänderte Datensätze pro Transaktion

g = Grösse eines geänderten Datensatzes

div = Ganzzahl-Division, (3 div 2 ist also beispielsweise 0)

p = Seitengrösse der Datenbank (typischerweise ca. 2048 Bytes)

Beispiel: 1000 * ((10 * 2 * 1000) div 2048 + 2048) = 200 MB

Eine exakte Berechnung ist schwierig, da weitere Hilfsinformationen im Logfile
abgelegt werden, was die Grösse erhöht. Eventuell können Transaktionen
zusammengefasst werden, wenn sie zeitlich sehr nahe beeinanderliegen, was die
Grösse verkleinert. Gewisse Datenbanken bewahren nur die neuen Datenwerte auf,
weil die alten ausschliesslich im Cache gehalten werden. Dann entfällt der Faktor 2.

Kurs Datenbanken

Arno Schmidhauser Seite 140Juni 2006

Behebung von TransaktionsfehlernBehebung von Transaktionsfehlern

• Bei einem Transaktionsfehler werden aus den rückwärts
verketteten Transaktionseinträgen im Logfile die alten
Daten (Before Images) in den Cache übertragen.

• Das Datenbanksystem führt hierzu für jede laufende
Transaktion einen Verweis auf den letzten Log- Eintrag
mit. Der Transaktionsabbruch wird im Logfile ebenfalls
protokolliert.

• Beispiel: Für Transaktion T3 müssen die Before-Images
von M31 und M32 zurückgeladen werden.

Kurs Datenbanken

Arno Schmidhauser Seite 141Juni 2006

Behebung von SystemfehlernBehebung von Systemfehlern

• Gewinner- und Verlierer-Transaktionen ermitteln

• Verlierer-Transaktionen mit Hilfe der Before-Images
zurücksetzen

• Gewinner-Transaktionen mit Hilfe der After-Images noch
einmal durchführen

• Checkpoint durchführen

• Beispiel
– Gewinner: T2 -> M22 nachspielen.
– Verlierer: T3 und T4 -> M31, M41 zurücksetzen.

Beim Restart des Datenbanksystems wird folgendes Recovery-Prozedere angewendet:

• Ausgehend vom letzten Checkpoint werden Gewinner- und Verlierer-Transaktionen
ermittelt. Gewinner sind alle, für die ein Commit-Eintrag existiert. Verlierer sind
alle, für die ein Rollback oder gar kein Eintrag vorliegt.

• In einem Redo-Lauf werden alle I/O-Pages in den Workspace zurückgeladen. Es
müssen nur I/O-Pages berücksichtigt werden, die jünger als der letzte Checkpoint
sind.

• In einem Undo-Lauf werden von den Verlierer-Transaktionen alle I/O-Pages mit
den alten Datenwerten ("Before-Images") in den Workspace zurückgeladen. Das
Logfile wird hierzu rückwärts abgearbeitet. Die Logfile-Einträge müssen
zurückreichen bis zum Beginn der ältesten beim letzten Checkpoint noch laufenden
Transaktion.

Beachte, dass bei Verlierer-Transaktionen auch alle 'Before-Images' vor dem
Checkpoint benötigt werden. Wurde nämlich eine Verlierer-Transaktion bei einem
Rollback (nach dem Checkpoint) bereits einmal zurückgesetzt, ist diese
Rücksetzung durch den Systemfehler ev. zunichte, wenn noch kein weiterer
Checkpoint stattgefunden hat.

• Anschliessend an das Recovery wird ein Checkpoint ausgelöst und die Datenbank
für den Multiuser-Betrieb freigegeben.

Kurs Datenbanken

Arno Schmidhauser Seite 142Juni 2006

Neuere Datenbanktechnologien (Objektdatenbanken) verfolgen einen Pure-Redo
Strategie. Diese geht davon aus, dass sämtliche Änderungen einer Transaktion bis
zum commit-Befehl, rollback-Befehl oder Transaktionsabbruch im Speicher des
Benutzerprozesses, rsp. in einem für ihn reservierten, privaten Workspace der
Datebank gehalten werden können. Bei einem Transaktionsabbruch wird einfach
dieser Workspace freigegeben. Das DBMS muss lediglich noch den Abbruch der
Transaktion notieren und allfällige Sperren freigeben. Bei korrektem Abschluss der
Transaktion mit einem commit-Befehl werden alle modifizierten Daten (After-
Images) zum DBMS übertragen, dort in das Logfile geschrieben und anschliessend
in die Datenbank übertragen. Bei einem Crash des DBMS muss bei der
Wiederherstellung lediglich der Inhalt des Logfiles seit dem letzten Checkpoint
nochmals auf die Datenbank übertragen werden (Redo-Lauf).

Kurs Datenbanken

Arno Schmidhauser Seite 143Juni 2006

PlattenfehlerPlattenfehler

1. Massnahme: Ausfallrate von Platten verkleinern durch
– Plattenspiegelung (via Datenbanksystem)
– RAID System (via Betriebssystem)

2. Massnahme: On-Line Backup erstellen. Nur On-Line
Backups garantieren die Wiederherstellbarkeit einer
Datenbank nach Plattenfehlern.

Betriebssystem-Backups sind ungeeignet!

Plattenspiegelung vom Datenbanksystem selbst (Sybase) zur Verfügung gestellt.
Plattenspiegelung ist sehr effizient: Die Zeit für den Schreibzugriff wird nicht
erhöht, da parallel geschrieben werden kann. Lesezugriffe werden bei guter DB-
Software sogar schneller, da beide Platten für unterschiedliche Lesezugriffe benutzt
werden können.

Beim RAID-5 Verfahren werden die Daten parallel auf zwei Disks geschrieben und
gleichzeitig wird Zusatzinformation für die Korrektur kleinerer Fehler auf den
Platten gespeichert. RAID-5 besitzt eine sehr hohe Performance. Nachteil: Der
Ausfall einer Platte verlangsamt den Zugriff bis zur vollständigen Rekonstruktion.
Defekte Controller können das beste RAID- System unbrauchbar machen.

Betriebssystem-Backups sind ungeeignet für die Sicherung von Datenbanken, da sie
inkonsistente Datenbanken speichern. Mit Dateien aus einem Betriebssystem-
Backup kann eine abgestürzte Datenbank in der Regel nicht wieder hochgefahren
werden. Beispiel eines inkonsistenten Ablaufes des Betriebssystem-Backups (BB)
und des Datenbankservers (DB):
1. BB mach Backup von X1, 2: DB ändert A nach A' und B nach B', 3. BB macht
Backup von X2. Beim Zurückladen des Backups würde B' auf nicht mehr existentes
A zeigen.

A A' B B'

X1 X2

DB-Datei

Kurs Datenbanken

Arno Schmidhauser Seite 144Juni 2006

OnOn--LineLine BackupBackup

• Anforderungen
– Es wird ein konsistenter Datenbankzustand gesichert

oder es kann ein solcher aus dem Backup
rekonstruiert werden.

– Der Datenbankbetrieb muss während dem Backup
weiterlaufen.

– Im Extremfall gilt: Jede bestätigte Transaktion muss
bei einem Plattfehler rekonstruiert werden können.

• Schritte
1. Voller Backup
2. Inkrementeller Backup

Full Backup

1. Beginn des Backups im Logfile markieren.

2. Checkpoint durchführen, danach bis Backup-Ende keinen weiteren Checkpoint
durchführen.

3. Alle zur Datenbank gehörenden Seiten (Dateien) sichern.

4. Als letztes die Before-Images aller beim Checkpoint laufenden Transaktionen in den
Backup übertragen.

5. Ende des Backups im Logfile markieren.

Effekt

Der Backup gilt für den Zeitpunkt des Checkpoints, abzüglich der zu diesem
Zeitpunkt noch laufenden Transaktionen, und abzüglich der während dem Backup
gestarteten Transaktionen.

Logfile kürzen

Alle vor dem Checkpoint beendeten Transaktionen (commit oder rollback) können
nach dem Backup aus dem Logfile gelöscht werden.

Inkrementeller Backup

1. Im Logfile den Beginn des inkrementellen Backups markieren.

2. Checkpoint durchführen.

3. Alle After-Images der beim letzten Backup-Checkpoint laufenden und aller danach
gestarteten Transaktionen und bis zum jetzigen Checkpoint abgeschlossenen
Transaktionen sichern.

4. Ende des Backups im Logfile markieren.

5. Das Logfile kann anschliessend um die gesicherten Transaktionen gekürzt werden.

...

Kurs Datenbanken

Arno Schmidhauser Seite 145Juni 2006

Ablaufbeispiel Ablaufbeispiel OnOn--LineLine BackupBackup

T1 T2 T3 TB Logfile Kommentar
insert x insert x T1

backup database
backup ready BR TB wartet auf Commits aller bei BR laufenden

Transaktionen.
commit commit T1

checkpoint CP TB führt nun Checkpoint durch. Danach kein
Checkpoint mehr bis Backup-Ende.
Backup läuft nun ...

insert z insert z T3 nur im Memory, nicht auf DB Dateien
commit commit T3

insert y1 insert y1 T2 nur im Memory, nicht auf DB Dateien
backup end BE

insert y2 insert y2 T2
commit commit T2

TB schreibt die Before-Images der beim Checkpoint
laufenden Transaktionen auf den Backup

Backup ist beendet

...

Restore

Full Backup zurückspielen.

Alle inkrementellen Backups nachspielen.

Sicherung gegen Verluste zwischen zwei Backups (volle oder inkrementelle)

Full- und Incrementell-Backup schützen nicht vor Verlusten zwischen zwei
Backups. Hier hilft nur das Führen einer gespiegelten oder zusätzlichen Logdatei
auf einem zweiten physischen Medium, damit die Logdatei sicher nicht verloren
gehen kann. Alternativ gibt es auch Systeme mit Log-Servern. Jede fertige
Transaktion wird im Rahmen des commit-Befehles an diesen Log-Server
weitergeleitet, der eines oder mehrerer Logfiles auf unterschiedlichen Medien
führt.

Varianten

Es gibt zahlreiche Modifikationen und Untervarianten dieses Verfahrens.
Beispielsweise können während dem Full-Backup weitere Checkpoints möglich
sein, um Memory-Probleme zu verhindern. Dann müssen aber die Before-Images
aller bei Backup-Beginn laufenden und aller später eröffneten Transaktionen
aufgezeichnet, und später dem Backup mitgegeben werden. Der Backup,
überspielt mit diesen Before-Images, wiederspiegelt dann einen konsistenten
Zustand zum Zeitpunkt des Backup-Beginnes.

Kurs Datenbanken

Arno Schmidhauser Seite 146Juni 2006

ZugriffsoptimierungZugriffsoptimierung

• Zielsetzung
• Indexierung von Daten
• SQL Ausführungsplan
• Optimierungshinweise

Für eine gute Performance sind verschiedenste Software- und Hardware-
Komponenten verantwortlich. Oft können Mängel im Software-Bereich durch eine
schnellere CPU, grössere Disk, mehr Memory usw. ausgeglichen werden.

Bei Datenbanken ist die Komplexität einer schlecht optimierten Abfrage proportional
zum Produkt der Tabellengrössen. Die folgende Join-Abfrage über zwei Tabellen mit
je 10'000 Einträgen kann im schlimmsten Fall 108 Vergleichs- und
Verknüpfungsoperationen zur Folge haben, im besten Fall können es weniger als
105. sein.

select name, vorname, strasse

from person, adresse

where person.persnr = adresse.persnr

Ein zentraler Aspekt bei der Performance-Optimierung ist die Art, wie das
Datenbanksystem eine Abfrage durchführt. Dabei spielen Indices eine wichtige
Rolle, aber auch gewisse Formulierungen im where-Teil eines SQL-Befehles. Diese
beiden Themen werden deshalb im Folgenden besprochen.

Weitere wichtige Aspekte der Optimierung sind:

• Clustering von Tabellen: Welche Tabellen sind physisch auf denselben I/O-Pages zu
speichern, weil sie häufig in Joins gebraucht werden?

• Füllfaktor von Tabellen: Führen grösser werdende Datensätze zu einer
Reorganisation der I/O-Page?

• Parallelisierung von I/O: Können Logfile, Metadaten und eigentliche Datentabellen
auf getrennten I/O-Geräten plaziert werden?

• Vermeidung von Wartezuständen im Multiuser-Betrieb!

Kurs Datenbanken

Arno Schmidhauser Seite 147Juni 2006

ZielsetzungZielsetzung

• Ein zentrales Ziel der Abfrageoptimierung ist die Minimierung
des Zugriffs auf I/O-Pages.

• Eine I/O-Page ist ein Datenblock fester Grösse, der am Stück
von einem Speichermedium gelesen oder darauf geschrieben
wird.

• Ein Query Optimizer erzeugt einen Query Execution Plan (QEP),
der den Ablauf einer Abfrage festlegt.

• Die Hilfsinformation für die Planung einer Abfrage sind
verschiedenste Statistiken.

• Das primäre Hilfsmittel für die Durchführung einer Abfrage ist
ein Index.

Die Grösse einer IO-Page ist abhängig vom Produkt oder kann allenfalls bei der
Initialisierung einer Datenbank angegeben werden. Die Grösse liegt häufig bei 2
oder 4 KB. Bei konfigurierbaren Produkten kann etwa im Bereich von 2 – 32 KB
gewählt werden.

Kurs Datenbanken

Arno Schmidhauser Seite 148Juni 2006

Indexierung von DatenIndexierung von Daten

• Ein Index ist eine Hilfsstruktur zum schnelleren Auffinden
von Datensätzen.

• Indices werden immer für ein, allenfalls mehrere Attribute
einer Tabelle erzeugt.

• Für Primär- und Fremdschlüssel erzeugt das DMBS meist
selbstständig einen Index.

• Für Attribute, die in Suchbedingungen oder Sortierklauseln
vorkommen, werden zusätzliche Indices erstellt mit:
create index ixname on table (attr1 [,attrn]...)

• Indices haben meist die Struktur eines verzweigten,
ausgeglichenen Baumes (B*).

Indices werden durch den Datenbankadministrator rsp. Tabellenbesitzer erzeugt. Sie
dienen dem schnelleren Zugriff auf Datensätze bei bestimmten Formen der where-
Klausel eines select-, update- oder delete-Befehles. Beispielsweise ist ein Index
über dem Namen einer Person sehr effizient einsetzbar für das Auffinden von
Datensätzen, wenn die Suchbedingung lautet: where name = "Meier". Indices
werden auch benützt, um die Eindeutigkeit von Primär- und Sekundärschlüsseln
festzustellen. Wenn eine SQL-Tabellendefinition eine primary key-Definition
enthält, wird bei manchen Datenbanksystemen automatisch ein Index auf den
Schlüsselattributen erstellt.

Indices verschnellern unter vielen Umständen die Abfrage von Daten, verlangsamen
aber auch Änderungsoperationen, weil bei jeder Änderung die Indexdaten
nachgeführt werden müssen.

Indizes werden fast immer als zusätzliche Struktur neben den eigentlichen Tabellen
erstellt und verwaltet. In grösseren Datenbanksystemen können aber auch die
Basistabellen selbst nach einer Indexstruktur abgelegt sein.

Achtung: über die Verwendung eines Index entscheidet immer das Datenbanksystem!
Der Benutzer setzt lediglich einen SQL-Befehl über Tabellen ab.

Indices können wesentlich mehr physikalischen Platz beanspruchen als die
eigentlichen Nutzdaten. Ein Faktor 10 ist durchaus nicht ungewöhnlich.

Indices können nur auf "kurzen" Datentypen wie varchar, integer, float, date etc
erstellt werden.

Kurs Datenbanken

Arno Schmidhauser Seite 149Juni 2006

Index-Typen

B*-Bäume sind heute der häufigste Indextyp in Datenbanksystemen. Die Zugriffszeit
auf bestimmte Datensätze wächst nur logarithmisch mit der Anzahl vorhandener
Datensätze und nicht proportional wie das ohne Index der Fall wäre. B*-Bäume
erlauben die indexunterstützte Suche nach Daten, wenn die Suchbedingungen
einen oder mehrere Vergleichsoperatoren =, >, <, >=, <= und like enthält.
Ausserdem können sie für die sortierte Ausgabe von Datensätzen eingesetzt
werden.

Hash-Tabellen als Indices erlauben einen extrem schnellen Zugriff auf einzelne
Datensätze. Die Zugriffszeit ist konstant und unabhängig von der Anzahl
Datensätze! Jedoch können Hash-Tabellen nur für Suchbedingungen mit dem
Operator = eingesetzt werden und Sie sind nicht für die sortierte Ausgabe von
Daten geeignet.

Kurs Datenbanken

Arno Schmidhauser Seite 150Juni 2006

B*B*--IndexIndex

Z0 W1 Z1 W2 Z2 freier Platz

Z0 W1 Z1 W2 Z2 freier Platz Z0 W1 Z1 W2 Z2 freier Platz

P S1 D1 S2 D2 freier Platz N P S1 D1 S2 D2 freier Platz N

Knoten (I/O-Page)

R1 R2 R3 R4 R5 R6 R7 R1 R2 R3 R4 R5 R6 R7

In
d
ex

D
aten

Z0, Z1, Z2 Zeiger auf Knoten

W1, W2 Wegweiser-Schlüssel (fiktive Schlüssel)

S1, S2 Effektive Schlüssel (entsprechen Daten)

D1, D2 Zeiger auf Datensätze

P, N Zeiger auf Vorgänger- resp. Nachfolge-Knoten

R1, R2 Datensätze

Ein Knoten entspricht einer I/O-Page. Jeder Knoten enthält eine Anzahl
Wegweiserschlüssel. Innerhalb des Knotens sind die Wegweiserschlüssel sortiert,
und auf jeder Ebene von Knoten liegen die Wegweiserschlüssel von links nach
rechts ebenfall sortiert vor. Vor jedem Wegweiserschlüssel Wi weist ein Zeiger auf
einen Knoten, dessen Wegweiserschlüssel kleiner als Wi sind. Nach dem letzten
Wegweiserschlüssel Wl in einem Knoten weist ein Zeiger auf einen Knoten, dessen
Wegweiserschlüssel grösser oder gleich als Wl sind. In den Blättern des Baumes
sind die tatsächlich in der Datenbank existierenden Schlüsselwerte abgelegt,
zusammen mit einem Zeiger auf den eigentlichen Datensatz. Die Blattknoten sind
untereinander als lineare Liste verbunden.

Die Wegweiserschlüssel können tatsächlichen Schlüsselwerten entsprechen oder
Abkürzungen sein.

Der Zugriff auf einen Datensatz mit einem bestimmten Schlüsselwert benötigt rund
k+1log(N/k) + 1 + 1 Zugriffe auf I/O-Pages. k bedeutet hier die Anzahl Schlüssel
pro Knoten, N die Anzahl Schlüssel (rsp. Datensätze in der zugehörigen
Basistabelle). Für das Auffinden jedes weiteren Datensatzes der dem Schlüsselwert
genügt sind dann höchstens noch zwei Zugriffe notwendig, weil die Schlüsselwerte
über alle Blattknoten sortiert vorliegen.

In praktischen Fällen, wo die Anzahl Schlüssel pro Knoten typischerweise grösser als
10 ist (häufig sogar grösser als 100), kann einfach gerechnet werden:
Anzahl Knotenzugriffe, um einen Datensatz zu finden = klog(N/k) + 1 + 1, bei
1'000'000 Datensätzen und 100 Schlüsseln pro Indexknoten also beispielsweise 4
Zugriffe.

Kurs Datenbanken

Arno Schmidhauser Seite 151Juni 2006

B*B*--IndexIndex, Beispiel, Beispiel

E N

A D G K P T

G
a
b
i

G
ü
n
t
h
r

E
d
g
a
r

E
m
i
l

Index

Emil

Schlossweg1

Huber

Xeno

Waldstr. 8

Müller

Daten

K
u
r
t

L
o
r
e
n
z

N
i
c
o
l
a

O
t
h
m
a
r

P
e
t
e
r

R
o
l
f

T
h
o
m
a
s

X
e
n
o

C
a
r
m
e
n

D
a
n
i
el

Dieser Index enthält 2 Schlüsselwerte pro Knoten.

Von jedem Knoten gehen daher 3 Zeiger auf weitere Knoten aus. Der
Verzweigungsgrad ist daher 3. Pro Ebene multipliziert sich die Anzahl Knoten um
3. Die unterste Ebene mit den Blattknoten muss breit genug sein, um alle
vorkommenden Schlüsselwerte aufzunehmen. In diesem Beispiel gäbe es also für
eine Tabelle mit 1000 Einträgen gesamthaft 6 Ebenen: 36 Knoten * 2 Einträge pro
Knoten = 1458 Einträge.

Der Zugriff auf einen Datensatz via Index benötigt also: 3log(1000 / 2) + 2 = 8
Zugriffe auf Knoten.

Verzweigungsgrad = Anzahl ausgehende Zeiger von jedem Knoten = Anzahl Schlüssel
pro Knoten + 1.

Kurs Datenbanken

Arno Schmidhauser Seite 152Juni 2006

AnwendungsmAnwendungsmööglichkeiten B*glichkeiten B*

• Auffinden einzelner Datensätzen eines bestimmten
Schlüsselwertes. Beispiel:
where name = 'Meyer'

• Auffinden von Datensätzen in einem bestimmten
Schlüsselbereich.Beispiel:
where gebdatum between '1.1.2000' and 1.1.2001

• Sortierte Ausgabe von Daten. Beispiel:
order by name

• Auffinden von Datensätzen wenn nur der Anfang des
Schlüssels bekannt ist. Beispiel:
where name like 'M%'

Mit einem B*-Indices auf dem Attribut att können Datensätze gesucht werden, für die
Bedingungen der folgenden Art gelten

where att op wert (op ist dabei einer der Operatoren =, >, <, >=, <=, like)

where att > wert1 and att < wert2

order by att

Weil die Zeiger auf die eigentlichen Daten und die effektiven Schlüsselwerte erst in
den Blattknoten vorkommen, können die inneren Knoten wesentlich stärker
gepackt werden, also mehr Zeiger und Wegweiser-Schlüssel enthalten. Damit ist
die Tiefe des Baumes kleiner und das Auffinden einzelner Datensätze ist noch
effizienter als bei der in Algorithmen-Büchern häufig beschriebene B-Bäumen.
Letztere enthalten in jedem Knoten vollständige Schlüsselwerte und Zeiger auf
Datensätze.

Kurs Datenbanken

Arno Schmidhauser Seite 153Juni 2006

JoinJoin--BildungBildung

• Joins sind ein zentrales Konstrukt in SQL. Sie werden
hauptsächlich in drei Varianten durchgeführt.

– Kartesisches Produkt
• Doppelte Schlaufe zur Abarbeitung der Tabellen
• Aufwand M/k1 * N/k2

– Lookup Join
• Äussere Tabelle durchlaufen, für innere Tabelle Index verwenden.
• Aufwand M/k1 * (k2log(N/k2)+2)

– Sort-Merge
• Beide Tabellen sortieren, dann abgleichen
• Aufwand M*k1log(M) + N*k2log(N) + (M/k1+N/k2)

Kartesisches Produkt
Beide Tabellen werden in einer doppelten Schlaufe abgearbeitet. Es werden keine
bestehenden Indices benötigt. Das kartesische Produkte wird angewendet bei sehr
kleinen Tabellen (wenige I/O-Pages), wo eine Sortierung oder temporäre
Indexbildung nicht lohnenswert ist.

Lookup-Join
Für jeden Datensatz in der äusseren Tabelle wird via einen Index der inneren
Tabelle der zugehörige Datensatz ermittelt. Lookup-Joins sind effizient, wenn die
äussere Tabelle wesentlich kleiner ist als die innere. Die äussere Tabelle kann
dabei einer realen Tabelle entsprechen, oder das Zwischenresultat einer bereits
ermittelten Abfragebedingung auf dieser sein.

Sort-Merge Join
Beide zu verbindenden Tabellen werden zuerst nach dem Join-Attribut sortiert.
Anschliessend werden die sortierten Tabellen gegeneinander abgeglichen (Merge).
Die Sortierung der einen oder anderen Tabelle kann entfallen, wenn für das zu
sortierende Attribut ein Index besteht. Sort-Merge Joins sind sehr effizient, wenn
beide beteiligten Tabellen etwa gleich gross sind. Wenn für beide Tabellen ein
Index auf dem Join-Attribut vorhanden ist, besteht der Aufwand lediglich im
Mischen der Blätter der beiden Indexe. Das Verfahren ist dann extrem effizient.

Es gibt viele weitere Algorithmen und Varianten der obengenannten Verfahren zur
Join-Bildung. Zu erwähnen ist hier noch der in letzter Zeit häufiger anzutreffende
Hash-Join: Aus jedem Datensatz wird für den Wert der Join-Attribute ein Hashwert
berechnet. Datensätze mit gleichem Hashwert aus den beiden Tabellen kommen in
einen Bucket pro Hash-Adresse. Am Schluss wird der Inhalt jedes Buckets durch
Verknüpfen der Datensätze der linken und rechten Tabelle verarbeitet und
ausgegeben.

Kurs Datenbanken

Arno Schmidhauser Seite 154Juni 2006

AusfAusfüührungsplanhrungsplan

• Eine Ausführungsplan (QEP) bestimmt, mit welchen
Indexzugriffen, mit welchen Join-Methoden usw. eine
Abfrage durchgeführt wird.

• Das DBMS kann für den ermittelten Ausführungsplan
Informationen anzeigen über
– Verwendete Basistabellen, Indices, Hilfstabellen
– Angewendete Operationen
– Benötige Anzahl I/O-Operationen und CPU-Zeit

• Anhand des Ausführungsplanes können kritische Teile
einer Abfrage identifiziert und ev. umformuliert oder neue
Indices definiert werden.

Die Ermittlung des Ausführungsplanes ist eine sehr komplexe Aufgabe, die viel Zeit in
Anspruch nehmen kann. Für die Anwendungspraxis ist es meist ausreichend, die
wichtigsten Faktoren zu kennen, welche eine Abfrage schnell oder langsam
machen. Entsprechend sind dann die Abfragen zu formulieren oder Indices auf
Tabellen zu setzen. Die Besichtigung des Ausführungsplanes mit den effektiven
benötigten I/O-Operationen dient der Überprüfung der Performance.

Ein Datenbanksystem ist ohne weiteres in der Lage, eine Abfrage über eine grosse
Anzahl Tabellen (>10) hinweg vernünftig zu optimieren.

In Sybase wird die Anzeige des Ausführungsplanes und der I/O-Statistik mit set
showplan on, set statistics time on und set statistics io on aktiviert.

Kurs Datenbanken

Arno Schmidhauser Seite 155Juni 2006

OptimierungshinweiseOptimierungshinweise

• Auf Primär- und Fremdschlüsselattributen einen Index
erstellen.

• Für Attribute, die häufig in der order by Klausel
auftreten, einen Index erstellen.

• Indices beschleunigen Abfragen, aber verlangsamen
Änderungen.

• Der Boolsche Operator NOT und der Vergleichsoperator
<> sind nicht optimierbar.

• Ausdrücke mit dem Vergleichsoperator LIKE sind nur
optimierbar, wenn allfällige Wildcards nicht am Anfang
des Suchmusters stehen.

• Ausdrücke mit einem Funktionsaufruf über einem
Attribut sind nicht optimierbar.

Where-Klausel als optimierbaren Ausdruck gestalten:

Optimierbarer Ausdruck = Indexiertes Attribut VglOp Einfacher Ausdruck

Ein einfacher Ausdruck enthält Attribute, Konstanten und Funktionen davon.

Optimierbarer Ausdruck = Optimierbarer Ausdruck BoolOp Ausdruck

VglOp { <, >, <=, >=, =, LIKE, BETWEEN }

BoolOp { AND, OR }

