Relationale Datenbanken

© Dr. Arno Schmidhauser

Letzte Revision: Dezember 2006
Email: arno.schmidhauser@sws.bfh.ch
Webseite: http://www.sws.bfh.ch/db

Kurs Datenbanken

Arno Schmidhauser Juni 2006 Seite 2

Kurs Datenbanken

Inhalt

Einleitung
Datenmodellierung
Das Relationenmodell
SQL I

JDBC

SQL 11
Transaktionsmodell
Concurrency Control
Lange Transaktionen
Recovery-System
Zugriffsoptimierung

13
19
37
61
79
100
106
122
132
146

Arno Schmidhauser

Juni 2006

Seite 3

Kurs Datenbanken

Arno Schmidhauser Juni 2006 Seite 4

Kurs Datenbanken

Einleitung

Arno Schmidhauser Juni 2006 Seite 5

Kurs Datenbanken

Literatur

[1] "Einstieg in SQL"; Markus Troll, Oliver Bartosch; Galileo Computing,
2004.

[2]"Relationale Datenbanken und SQL"; Glunter Matthiessen, Michael
Unterstein; Addison-Wesley, 3. Auflage, 2003.

[3] "Database Design for Smarties”; R. J. Muller; Morgan Kaufmann,
1999.

[4] "Datenbanksysteme, Konzepte und Techniken der Implementation”;
T. Harder, E. Rahm; Springer 1999.

[5] "Database Systems"; Paolo Atzeni et. al; McGraw-Hill, 2000.

[6] "SQL-3 Complete, Really"; Peter Gulutzan, Trudy Pelzer; Miller
Freeman, 1999.

[7] "SQL Performance Tuning"; Peter Gulutzan, Trudy Pelzer; Addison-
Wesley, 2003.

[8] "A Guide to the SQL Standard"; C.J. Date; Addison-Wesley 2000.
[9] "Database Administration”; Craig S. Mullins; Addison-Wesley, 2002.

Zu [6] gibt es ein vollstdndig SQL-99 konformes Datenbanksystem namens OCELOT
(www.ocelot.ca). Es eignet sich sehr gut fiir das Studium von SQL als
Datenbanksprache.

Die Websites der verschiedenen DB-Hersteller kbnnen sehr informativ sein und bieten
besonders beziglich technologischer Fragen oft gute Hilfe.

Die Originalstandards zu SQL erhalt man von ANSI:
http://www.ansi.org

Arno Schmidhauser Juni 2006 Seite 6

Kurs Datenbanken

Ziele des Kurses

Jeder Teilnehmer ...
¢ kennt das Relationenmodell.

e kennt die Sprache SQL und kann sie interaktiv oder in
Applikationen eingebettet anwenden.

e kann aus einer praktischen Problemstellung ein
Datenmodell in UML ableiten.

¢ versteht den Begriff der Transaktion und kann ihn

Arno Schmidhauser

anwenden.
¢ hat eine Vorstellung tber die innere Organisation eines
Datenbanksystems.
Juni 2006

Seite 7

Kurs Datenbanken

Eigenschaften einer Datenbank

= Verwaltung kleiner bis grdsster Datenbestande

e Einfacher, standardisierter Zugriff auf Daten mit SQL
« Weit verbreitete Programmier API's (ODBC, JDBC)

e ausgefeilte und hocheffiziente Zugriffsmechanismen
 Wiederherstellung nach Server- oder Client-Crash

e Integritatsregeln stellen Korrektheit der Daten sicher
« Replikations- und Verteilungsmechanismen

e Zugriffskoordination

= Benutzerauthorisierung

Aufgefuhrt sind hier hauptséchlich technologische Grunde fur den Einsatz eines
Datenbanksystems. Daneben - oder sogar schwergewichtig - gibt es auch
organisatorische und modellorientierte Griinde. Fir relationale Datenbanken
existiert beispielsweise eine enorme Vielfalt an Drittprodukten, welche die
Implementation einer Anwendung unterstitzen. Auch die Werkzeuge fur das
Tuning des Zugriffs und das Monitoring von zugreifenden Applikationen sind von
enormer Bedeutung beim Betrieb.

Die Relationale Datenbank ist eines der erfolgreichsten Konzepte in der Informatik. Auf
der Basis eines einfachen und sauberen theoretischen Modells aus den 70er
Jahren, des Relationenmodelles und der Relationenalgebra, wurde die Sprache SQL
entwickelt (Strucured Query Language). SQL dient sowohl der Strukturdefinition
einer Datenbank (hauptséachlich in Form von Tabellen) wie auch der Abfrage und
Manipulation der Daten darin. SQL definiert damit faktisch die dussere Sicht auf die
Datenbank und die funktionalen Méglichkeiten fiir den Entwickler oder den
Benultzer. SQL hat seit seiner Entstehung in den 80er Jahre drei grossere
Standardisierungen durch ANSI und ISO durchlaufen (SQL-1 von 1989, SQL-2 von
1992, SQL-3 von 1999) und ist weitestgehend von der Software-Industrie
anerkannt. Die Produkthersteller bemuhen sich klar um eine Anndherung an den
Standard.

Relationale Datenbank beherrschen gegeniuber anderen Datenbankmodellen
volumenmaéssig den Markt. Die 5 gréssten Produkte sind Oracle, DB2, SQL
Server, Informix und Sybase. Wichtig ist auch Interbase (Borland) und MySQL
(sehr populéares Open Source Produkt). Eine Vielzahl weiterer Systeme mit
speziellen Eigenschaften stehen zur Verfugung. Beispielsweise reine Java-
Datenbanken wie PointBase.

Die relationalen Systeme werden in verschiedene Richtungen weiterentwickelt.
Beispielsweise wird versucht, mit dem Einbau von Java als Programmiersprache
und Java-Klassen als Datentypen eine Vereinheitlichung zwischen dem Typsystem
einer populéren Programmiersprache und demjenigen von SQL zu erreichen.
Andere Hersteller haben sich um sprachneutrale, objektorientierte Erweiterungen
bemiht, z.B. Oracle. Man spricht von objektrelationalen Datenbanken.

Neben der Familie der relationalen Datenbanken und ihrer Auslaufer gibt es auch rein
objektorientierte Datenbanken und XML-basierte Produkte.

Arno Schmidhauser Juni 2006 Seite 8

Kurs Datenbanken

Client-Server Architektur

Client-Anwendung

Hilfsbibliotheken |
|

SQL

Datenbank-

Resultat

Eine Datenbank ist ein Server-Programm, welches von seinen Client-Anwendungen
SQL-Befehle entgegennimmt. Der Datenbank-Server lauft meist auf einem daftr
vorgesehen Rechner. Das Server-Programm kontrolliert und verwaltet die zu ihm
gehdrigen Datenbanken.

Die Kommunikation zwischen Client und Server findet meist tber eine TCP/IP
Verbindung statt, Uber welche die Datenbank SQL-Befehle entgegennimmt und
Abfrageresultate ausliefert.

Der Server Uberwacht die Verbindung zu jedem Client und kann bei dessen Absturz
einen Rollback unfertiger Arbeiten (Transaktionen) durchfuhren.

Der Server steuert den Zugriff mehrerer Clients auf dieselben Daten, indem er
wéhrend einer SQL-Operation die betroffenen Daten zuhanden eines Client sperrt.

Arno Schmidhauser Juni 2006 Seite 9

Kurs Datenbanken

Programm-Beispiel

try {
Connection con = DriverManager.getConnection(...);
Statement stmt = con.createStatement();
String ql = "SELECT saldo FROM Konto WHERE idKonto = 4711";
ResultSet rs = stmt.executeQuery(gl);
if (rs.next(Q)) {

kontostand = rs.getiInt("saldo");

kontostand = kontostand — 1000000;
}
String g2 = "UPDATE Konto SET saldo = ? WHERE idKonto = 4711";
PreparedStatment pstmt = con.prepareStatement(g2)";
pstmt.setint(1, kontostand);
pstmt.executeUpdate();
con.commit();

}
catch (SQLException e) { con.rollback(Q); }

Gegeben sei folgende SQL-Tabelle

create table Konto (
idkonto varchar(32),
saldo numeric (10,2),
primary key (idKonto),
check (saldo > 0) initially deferred

Das Durchfiihren des select-Befehls beinhaltet fur die Datenbank folgende Aufgaben:
. Transaktion 6ffnen ('Begin Transaction'-Eintrag im Lodfile)

. Syntax parsen

. Ausfihrungsrecht fur 'select’ auf die Tabelle 'Konto' prifen

. Ausfuhrungsplan (Algorithmus) fur die Abfrage ermitteln

. Lese-Sperren auf die gelesenen Datenelemente setzen

. Daten ausliefern

o 00~ WOWDN PR

Arno Schmidhauser Juni 2006

Seite 10

Kurs Datenbanken

Das Durchfiihren des update-Befehls beinhaltet fur die Datenbank folgende Aufgaben:
1. Syntax parsen
2. Ausfuhrungsrecht fur ‘update’ auf die Tabelle 'Konto® priufen

3. Schreibsperre auf die zu &ndernden Datenelemente setzen (genauer: Lesesperre in
Schreibsperre umwandeln)

4. Alte und neue Datenwerte im Logfile protokollieren
. Anderung durchfiihren

al

Das Durchfiihren des commit-Befehls beinhaltet flir die Datenbank folgende
Aufgaben:

1. check-Bedingung prufen, im Fehlerfall Rollback durchfuihren
2. 'End Transaction'-Eintrag im Lodfile festhalten
3. Sperren und damit die Daten fur andere Benutzer freigeben

Arno Schmidhauser Juni 2006 Seite 11

Kurs Datenbanken

Arno Schmidhauser Juni 2006 Seite 12

Kurs Datenbanken

Datenmodellierung

- 3-stufige Modellierung
» Konzeptionelles Modell

Das Relationmodell ist ein formales Datenmodell.

Arno Schmidhauser Juni 2006 Seite 13

Kurs Datenbanken

3-stufige Modellierung

Konzeptionelles Modell

Bendotigte Informationen und Zusammenhénge darstellen. Wichtig:
Ubersichtlichkeit, informell. Werkzeug: Grafische Notation nach UML

1l

Formales Modell

Festlegung eines bestimmten Datenbanktyps (Relationale DB) und
Befriedigung von dessen Anspriichen (Normalisierung).
Darstellung mit UML oder tabellarisch.

1l

Physisches Modell

Implementation des Datenmodelles (Tabellen mit SQL-Befehlen
erzeugen, Hilfsstrukturen aufbauen)

Das Formale Modell heisst auch Logisches Modell

Arno Schmidhauser Juni 2006 Seite 14

Kurs Datenbanken

Konzeptionelles Modell mit UML

 Das konzeptionelle Modell dient der Darstellung
— der bendtigten Information
— von Zusammenhangen

= Beispiel: Datenmodell zur Erfassung von Luftschadstoffen an
verschiedenen Standorten.

«Entity» «Entity» «Entity»
Messnetz Station Messung
messnetzNr {key} stationsNr {key} C
messnetzName 1 0..* |stationsName 1 0.* |so2
0..*
«Entity»
Wetter
bewdlkung
datum 1

Vorgaben fir dieses Datenmodell:

1. Messungen und Messstationen sind die zentralen und wichtigen Elemente fur
dieses Datenmodell.

2. Jede Messung ist einer Station zugeordnet, resp. wurde dort durchgefuhrt.
Jede Messung bezieht sich auf bestimmte Wetterangaben.

4. Jede Station ist einem bestimmten Messnetz (Beispielsweise das Netz des Kantons,
das Netz der Uni, das Netz des VCS usw.) zugeordnet.

w

Bemerkungen:

1. Im Rahmen von UML kann die Eindeutigkeit eines Attributes ganz allgemein als
Zusicherung ausgedrickt werden. Zusicherungen werden in geschweiften
Klammern dargestellt, hier mit {key}.

2. Im Rahmen des UML-Modelles ist nicht spezifiziert, wie Assoziationen
implementiert werden. Bei einer Programmiersprache wiurde man mit Referenzen
oder Pointern arbeiten, bei relationalen Datenbanken mit Fremdschliisseln welche
sich auf Priméarschliussel beziehen.

Arno Schmidhauser Juni 2006 Seite 15

Kurs Datenbanken

UML-Elemente fur
das konzeptionelle Datenmodell

e Fur die Datenmodellierung sind folgende Elemente
wichtig:

— Klasse: Definiert Name und Attribute von physischen
oder konzeptionellen Dingen.

— Assoziation: Statuiert einen Zusammenhang (eine
Abhangigkeit) zwischen zwei Klassen.

— Multiplizitat: Definiert, wieviele Objekte der einen
Klasse mit wievielen Objekten der anderen Klasse in
Zusammenhang stehen.

Im

Arno Schmidhauser

Kurs Uber UML wurde ebenfalls bereits von Klassen und einem Klassenmodell
gesprochen. Im Rahmen der Datenmodellierung interessieren ausschliesslich die
sog. Entity-Klassen, d.h. solche, die langfristige Informationen tragen. Im Rahmen
der Applikationentwicklung kommen auch noch viele Klassen zum Zug, die
Funktionalitat tragen, beispielsweise um bestimmte Informationen fir eine
Darstellung im Browser aufzubereiten, Uber ein Netzwerk zu transportieren usw.

Juni 2006

Seite 16

Kurs Datenbanken

Prinzipien fur das
konzeptionelle Modell

Eine Klasse beschreibt ein einzelnes Objekt
Bezeichnungen sind anwendungs-, nicht software-bezogen
Eine Klasse hat mehr als ein darstellungswurdiges Attribut
Attribute einer Klasse haben denselben Lebenszyklus

Eine Klasse sammelt eng zusammengehdrende Attribute

o ok~ w0 D PR

Jedes Attribut hat nur eine Bedeutung

Arno Schmidhauser

Eine Klasse muss einen Namen haben, der ein einzelnes Objekt der Klasse
beschreibt. In der Regel ist das ein Substantiv in Einzahl. Die Klasse darf nicht die
Menge aller Objekte bezeichnen. Substantive durfen nicht in Mehrzahl geschrieben
sein. Wenn die Menge der Objekte als Ganzes wichtig ist, sollte dafur eine eigene
Klasse definiert werden (Beispiel: Klasse 'Katalog' und Klasse '‘Buch’, statt nur
Tabelle '‘Buchkatalog' mit Buch-Datensatzen darin). Eine guter Ansatz fur die
Syntax von Namen ist Java: Klassennamen mit Grossbuchstabe, Attributnamen mit
Kleinbuchstaben beginnen. Einzelne Worte in Wortkombinationen mit
Grossbuchstaben abtrennen (Beispiel Klasse '‘KursUmfrage' mit Attribut
‘startDatum?).

Namen von Klassen und Attributen mussen fur die Anwendung der Software von
Bedeutung sein und sollten keine software-technischen Erganzungen haben (
Gutes Beispiel: Bucherkatalog, schlechtes Beispiel: BuchCollection)

Eine Klasse sollte mehr als ein Attribut haben. Wenn nicht, kann das Attribut
wahrscheinlich einer anderen Klasse zugeordnet werden. Ausnahme: Wenn zu
erwarten ist, dass die Anzahl Attribute in nachster Zeit zunimmt.

Die Attribute einer Klasse sollen denselben Lebenszyklus wie die ganzen Objekte
der Klasse haben. Attribute einer Klasse, die zeitweilig gar keinen Sinn machen,
sind anderen Klassen zuzuordnen (Beispiel: Attribut '‘Diagnose’ fir ein Patienten-
Objekt ist schlecht, weil der Patient in der Patientenverwaltungs-Software
wahrscheinlich mehrere Jahre lebt, die meiste Zeit aber gar nicht krank ist. Zwei
Klassen erstellen: ‘Patient’ und 'Fall’).

Nur eng zusammengehorende Attribute in einer Klasse sammeln (Schlechtes
Beispiel: 'EntleiherName’ in der Klasse '‘Buch' in einer Bibliothekssoftware).

Jedem Attribut nur eine Bedeutung geben. Beispiel: Die Klasse 'Artikel' habe das
Attribut 'Lagerbestand’. Eine Zahl zwischen O und « bedeute den tatsachlichen
Lagerbestand, die Zahl -1, dass der Artikel nicht mehr verfugbar ist. Die Software
zur Ermittlung der gesamten Anzahl Artikel in einem Lager muss nun mit
schwerfalligen Konstrukten immer zwei Falle unterscheiden. Besser: Neues Attribut
'Status' fur Klasse 'Artikel einfuhren.

Juni 2006

Seite 17

Kurs Datenbanken

Arno Schmidhauser Juni 2006 Seite 18

Kurs Datenbanken

Das Relationenmodell

 Was ist eine Relation
< Normalisierung

Das Relationmodell ist ein formales Datenmodell.

Arno Schmidhauser Juni 2006 Seite 19

Kurs Datenbanken

Woher kommt der Begriff Relation?

¢ Mathematische Basis: Mengenlehre.
¢ Domane D = Wertemenge [—Datentyp]

¢ Relationenschema = Menge von Attributen A; mit
zugehdrigen Domanen D, [—Tabellendefinition]

e Tupel = Wertekombination aus D; x D, X D;.... D,
[—Datensatz]

¢ Relation = Menge von Tupeln aus einem
Relationenschema [—~Tabelleninhalt]

¢ Relationenmodell = Menge aller Relationenschemas
[—-Datenmodell]

¢ Die Relationenalgebra definiert Operationen auf
Relationen wie Projektion, Selektion, Vereinigung,
Differenz, Durchschnitt, Verbund und Produkt [~SOL]

Das Hauptstrukturelement einer relationalen Datenbank ist die Relation. In der Praxis
des Entwicklers kann man die Begriffe Relation und Tabelle als identisch
behandeln.

SQL ist eine, wenn auch die wichtigste Implementation des Relationenmodelles und
der Relationenalgebra.

In SQL-Datenbanken sind sowohl die eigentlichen Daten, wie auch Hilfs- und
Metadaten (z.B. Tabelle aller Benutzer, Tabelle aller Attributnamen, Tabellen aller
Datentypen, Tabelle aller Tabellen usw.) in Tabellen organisiert.

Letzlich hat sich die Einfachheit von Tabellen als Vorteil fur das Aufkommen und die
Anwendung der relationalen Datenbanken erwiesen. Die Sprache SQL ist damit
relativ einfach und Uberschaubar geblieben.

Die Relationenalgebra und ihre Operation haben folgende Eigenschaften

deskriptiv
Alle Operationen sind mengen- und bedingungsorientiert. Es gibt keine
Ablaufkonstrukte, wie Verzweigungen und Schlaufen.

abgeschlossen
Jede Operation ergibt wieder eine Relation.

optimierbar

Durch algebraische Umformung eines Ausdrucks mit Operationen kdnnen
ausfihrungsmassig performantere Ausdriicke erzeugt werden. Beispielsweise ist
der Ausdruck (R1 U R2) n R3 unter Umstanden besser bearbeitbar durch den
aquivalenten Ausdruck (R1nR3) U (R2 N R3)

effizient

Die Komplexitat einer Operation wachst héchstens proportional zum Produkt der
Anzahl Tupel in den beteiligten Relationen.

sicher
Jede Operation ist von endlicher Dauer, wenn der Datenbestand endlich ist.

orthogonal

Alle Operationen kénnen frei und ohne Einschrankungen miteinander kombiniert
werden. Die Orthogonalitat ist bei SQL nicht vollumfanglich gewahrleistet, weil
etwa verschachtelte Abfragen (select ... from (select ... from)) nicht moglich
sind.

Arno Schmidhauser Juni 2006

Kurs Datenbanken

Eigenschaften einer relationalen
Datenbank

e Die Domane [Datentyp] jedes Attributes [Feldes] ist atomar.

e Elemente [Datensatze] der Relation mussen
unterscheidbar, das heisst eindeutig identifizierbar sein.

¢ Relationen [Tabellen] sind Mengen, die Elemente daher nicht
geordnet.

Die Bedingung, dass die Doméane eines Attributes atomar sein muss, ist ein
entscheidendes Charakteristikum fiur relationale Datenbanken. Sie bedeutet, dass
einzelne Attributwerte in sich nicht wieder ein Tupel oder eine Menge von Tupeln
sein durfen. Dies steht ganz im Gegensatz zur objektorientierten Programmierung,
wo Attribute (Member) von Objekten selbst wieder einfache oder komplexe
Objekte, Listen, Mengen oder Arrays von Objekten sein durfen. In der
objektorientierten Programmierung kdnnen Objekte also eine umfangreiche und
komplexe Substruktur haben. In einer relationalen Datenbank ist das nicht
moglich. Dies bewirkt einerseits eine sehr einfache Struktur der einzelnen
Relationen (Tabellen), fuhrt andererseits aber zu einer grossen Anzahl von
Relationen, welche miteinander in Beziehung stehen.

Eine Relation rsp. eine Tabelle stellt im mathematischen Sinn immer eine Menge dar.
Die Elemente einer Menge miussen unterscheidbar sein. Dies fuhrt zur
Notwendigkeit von Relationen- oder Primarschlisseln. Enthalt eine Tabelle zwei
vollig identische Datenséatze, représentieren sie dasselbe Element und kdnnen tber
SQL-Befehle nicht mehr unterschiedlich behandelt werden.

Die Elemente einer Menge haben nicht von sich aus eine Ordnung, d.h. es gibt keine
vorbestimmte Reihenfolge der Elemente. Das Datenbanksystem verwaltet Eintrage
in einer Tabelle ohne Garantie fur eine bestimmte Reihenfolge. Diese kann
allenfalls durch Sortieren bei der Ausgabe realisiert werden. Dazu muss aber ein
geeignetes Attribut vorhanden sein, oder ein solches geschaffen werden. Beispiel:
Die Vornamen einer Person haben im Pass eine definierte Reihenfolge, namlich die,
wie die Namen geschrieben stehen. Die Reihenfolge ist nicht alfabetisch. Um die
Reihenfolge in einer Datenbank-Tabelle sicherzustellen, muss eine explizite
Nummerierung vorgenommen werden, zum Beispiel mit einem Attribut
'VornameNummer".

Arno Schmidhauser Juni 2006 Seite 21

Kurs Datenbanken

Relation, Begriffe

Primarschlissel Sekundarschlussel Fremdschlissel

Person | persNr| name [vorname [gebDatum| ahvNr | abtNr Es'ras‘toir?”ensc'“ema

Tupel 1
Tupel 2 Kardinalitat 3
Tupel 3

Wert? aus der Grad 6

Domane von persnr
Relationenschlissel: persNr, name-+vorname-+gebDatum, ahvNr
Gewahlter Priméarschlussel: persNr

Relationenschema
Menge der Attribute einer Relation, "Relation ohne Inhalt".

Relation
Menge von Tupeln. Die Komponenten der Tupel sind definiert durch das
Relationenschema. Jede Komponente eines Tupels ist ein Wert aus der Domane
des entsprechenden Attributes. Weil Relationen Mengen sind, ist es per Definition
nicht mdglich, dass zwei identische Tupel vorkommen. Jedes Element kann in einer
Menge nur einmal vorkommen. Um die Einzigartigkeit jedes Tupels sicherzustellen,
definiert man Relationenschlisse und daraus wiederum einen speziellen, den
Primarschlissel. Eine Menge ist nicht geordnet und folglich liegen die Tupel einer
Tabelle nicht in einer bestimmten Reihenfolge vor. Anwendungsprogramme durfen
nicht von einer bestimmten Reihenfolge der Tupel ausgehen.

Attribut
Name einer Eigenschaft, fur die jedem Element der Relation ein Wert zugeordnet
werden kann. Jedes Attribut hat eine zugeordnete Wertemenge (Doméne).

Relationenschlissel
Eine minimale Menge von Attributen, deren Werte jedes Tupel in der Relation
eindeutig identifizieren, heisst Relationenschlissel. Minimal heisst: Wenn man
eines der Attribute des Relationenschlissels entfernt, bilden die Gbrigen keinen
Schlissel mehr. Es kann mehrere Relationenschliissel geben, aber immer gibt es
mindestens einen (sonst liegt keine Relation vor), namlich die Menge aller Attribute
der Relation. Ein Relationenschlussel heisst manchmal auch Candidate Key.
Ob ein bestimmtes Attribut oder eine Attributkombination einen Relationen-
schlissel darstellt ist nicht naturgegeben, sondern eine Definitionsfrage. Eine
Telefonnummer kénnte beispielsweise je nach Annahmen ein Personelement
eindeutig identifizieren oder aber von mehreren Personen benutzt werden.

Arno Schmidhauser Juni 2006 Seite 22

Kurs Datenbanken

Priméarschlissel
Die Wahl des Priméarschlussels ist ein Designentscheid. Aus den
Relationenschlisseln wird einer ausgewahlt und als Primarschlissel bezeichnet. Die
ubrigen Relationenschlussel sind dann Sekundarschlissel. Sehr haufig wird die
Relation um ein kinstliches Schlisselattribut ergénzt und dieses zum
Primarschlussel erklart. Der Priméarschlissel sollte aus moglichst wenigen
Attributen mit konstanten Werten zusammengesetzt sein. In der Regel bervorzugt
man einzelne Attribute. Primérschlissel mussen zu jeder Zeit definiert sein. Sie
durfen keine Nullwerte (siehe unten) enthalten.
Schlissel definieren in keiner Weise eine Speicherreihenfolge oder eine bestimmte
Zugriffsmethode auf die Daten. Dies ist Sache der Systemoptimierung der
Datenbank bei der Durchfuhrung einer Abfrage.
Ein Primarschlussel kann grundsatzlich ein einzelnes Attribut oder eine
Kombinationen von Attributen sein. In der Regel bervorzugt man einzelne
Attribute.

Fremdschlussel
Der Fremdschlissel identifiziert nicht ein Tupel innerhalb der Relation, wie der
Primér- oder ein Sekundérschlissel. Der Fremdschlussel bezieht sich auf den Wert
eines PrimérschlUssel in einer anderen Relation. Ein Fremdschlissel setzt somit
Tupel (Datenséatze) aus zwei verschiedenen Relationen in Beziehung miteinander.
Das Pendant zum Fremdschlissel in der Programmierung ist der Pointer.

Doméne
Menge der méglichen Werte fur ein Attribut, auch Wertemenge genannt. Mehrere
Attribute kdnnen diesselbe Domane haben. Doméanen sind atomar, das heisst,
einzelne Attributwerte dirfen in sich nicht wieder ein Tupel oder eine Menge sein.
Dies steht ganz im Gegensatz zur objektorientierten Programmierung, wo Attribute
(Member) von Klassen selbst wieder einfache oder komplexe Objekte, Listen,
Mengen oder Arrays von Objekten sein durfen. In der objektorientierten
Programmierung kénnen Objekte also eine umfangreiche und komplexe
Substruktur haben. In einer relationalen Datenbank ist das nicht méglich. Dies
bewirkt einerseits eine sehr einfache Struktur der einzelnen Relationen (Tabellen),
fuhrt andererseits aber zu einer grossen Anzahl von Relationen, welche
miteinander in Beziehung stehen.
Anmerkung: Es ist sehr geféhrlich, eine Pseudostrukturierung vorzunehmen, z.B.
ein Attribut 'adresse' als komma-separierte Liste von 'strasse’, 'plz' und 'ort' in
einer Relation zu definieren. Die Abfrage- und Verwaltungs-mdglichkeiten der
Sprache SQL versagen meist ihre Dienste in solchen Féllen. Definitiv schlecht wird
die Performance, wenn in pseudostrukturierten Feldern nach Information gesucht
werden muss.
In der Praxis gibt es zwei Arten Doméanen flur ein Attribut. Einerseits kann ein
vorgegebener Basistyp (Zahl, String, Datum, Zeit) gewahlt werden, andererseits
kann ein Basistyp genommen werden, und dieser mit zuséatzlichen Bedingungen
eingeschrankt werden. Beispielsweise kann eine Zahl auf einen Wert zwischen 1
und 10 eingeschrankt werden, oder ein Ortsname (String) muss in einer Liste
vorgegebener Namen vorkommen.

Relationenmodell
Das Relationenmodell im Sinne aller verwendeten Relationenschemas heisst haufig
auch Datenbankschema. Ein Datenbankschema ist haufig gleichbedeutend mit
einer effektiv erzeugten Datenbank (create database-Befehl) oder allen Tabellen
eines bestimmten Benutzers.

Datenbank-Slang
Relation = Tabelle = Entitat
Relationenschema = Tabellendefinition
Attribut = Spalte = Feld
Tupel =Zeile = Record = Datensatz
Doméane = Wertemenge = Feldtyp
Sehr verpont, weil Missverstdndnisse entstehen kdnnen: Datenbank = Tabelle

Arno Schmidhauser Juni 2006 Seite 23

Kurs Datenbanken

Ableitung des Relationenmodelles

Das Relationenmodell kann aus dem konzeptionellen
Modell wie folgt abgeleitet werden:

. FOr jede UML-Klasse eine Tabelle erstellen,

Primarschlissel und Fremdschlissel festlegen/wahlen.

. Tabellen mit atomaren Doméanen erstellen

(Erste Normalform).

. Vermeidung unterwinschter Abhangigkeiten durch

Normalisieren in die zweite und dritte Normalform.

Normalisierung

Arno Schmidhauser

Juni 2006

Seite 24

Kurs Datenbanken

Ableitung des Relationenmodelles,
Ausgangspunkt

e Fur das folgende Beispiel soll von einem ganz einfachen,
konzeptionellen UML-Modell fur das Schadstoff-Messystem
ausgegangen werden, um den Ableitungsprozess zu illustrieren

«Entity»
Station
stationsNr {key}

stationsName
messnetzNr
messnetzName
datum
bewdlkung
S02

C

Dies ist ein reines Schulbuchbeispiel. Ein geubter Designer wird sicherlich keine so mit

Arno Schmidhauser

Information Uberladene Klasse definieren.

Juni 2006

Seite 25

Kurs Datenbanken

Eine Tabelle pro UML-Klasse ...

Station | stations | stations | messnetz | messnetz | datum [bewdlkung |°C SO,
Nr Name Nr Name

1 Aare 1 Uni 1.6.01 | stark 21.3 |10

2.6.01 | mittel 18.2 [12

3.6.01 | schwach 12.8 | 14

2 Rathaus 2 Kanton 1.6.01 | stark 21.8 |21

2.6.01 | mittel 18.9 | 20

«Table»

Station 3.6.01 | schwach 13.8 | 22
<<tP*§_>> Sti‘tionSNr 3 Loeb 2 Kanton 1.6.01 | stark 21.0 | 23
stationsName 7
messnetzNr 2.6.01 | mittel 17.2 [26
messnetzName 3.6.01 | schwach 14.8 | 28
messzeit
bewdélkung
S02
C
Bemerkungen:

- Die Priméarschliussel wurden unterstrichen. In der tabellarischen Darstellung ist dies
meistens so anzutreffen. In der klassenorientierten Darstellung nach UML werden
die Primarschlissel meist mit «PK» gekennzeichnet.

Folgende Annahmen gelten hier und fur die folgende Normalisierung:
e pro Tag (oder pro ‘datum') liegt ein Wetterbericht mit Bewoélkungsangabe vor.
< Temperatur und SO,-Konzentration werden pro Station und Tag einmal erfasst.

< Das Wetter ('‘bewdlkung') ist fur alle Stationen dasselbe, es wird durch einen
zentralen meteorlogischen Dienst zur Verfugung gestellt.

Probleme / Unschonheiten:

« Das Einfugen eines neuen Messnetzes ohne mindestens eine Station ist nicht
moglich.

« Sehr viele Daten sind mehrfach erwahnt, z.B. der Zusammenhang zwischen Datum
und Bewdlkung, zwischen Messnetznummer und Messnetzname etc.

 Das Ldschen der Station 1 ist nicht mdglich, wenn man die Information Uber das
Messnetz behalten will.

Arno Schmidhauser Juni 2006

Seite 26

Kurs Datenbanken

Normalisierung

e Vermeidet ...
e Redundanzen und damit potentielle Widerspriche.

e unerwiinschte Seiteneffekte (Anomalien) beim Einfiigen, Andern oder
Ldschen von Daten.

e Ermoglicht ...
e das "one fact in one place"-Prinzip.

¢ ein Datenmodell, das von jedem Entwickler verstanden wird und
interpretierbar ist.

e dass alle vorhandenen Informationen auch tatsachlich abgefragt
werden kénnen.

Ein sauberes UML-Modell, korrekt in Tabellen Uberfuhrt, ergibt meistens ein
weitgehend normalisiertes Datenmodell. Die eigentliche Schwierigkeit liegt auch
nicht im Durchfihren der Normalisierung, sondern im Erkennen und Definieren der
ihr zugrundeliegenden Abhangigkeiten zwischen Attributen ("Gehort ein Mitarbeiter
zu einer oder zu mehreren Abteilungen oder manchmal auch zu keiner?"). Die
meisten entsprechenden Uberlegungen werden aber direkt oder indirekt beim
Erstellen des UML-Modelles angestellt, weshalb die Normalisierung vorallem auch
ein Werkzeug zur Verifikation des Datenmodells ist.

Auch wenn der Ausgangspunkt eines Datenmodells beispielsweise ein bestehendes,
unnormalisiertes Papierformular oder Excel-Sheet ist, welches bereits eine
tabellenartige Struktur aufweist, geht ein sinnvoller Entwurfsweg zuerst Uber ein
UML-Modell und danach Uber eine Normalisierung der daraus gewonnen Tabellen.

Arno Schmidhauser Juni 2006 Seite 27

Kurs Datenbanken

Die Normalformen

ONF Jede Tabelle hat einen Primarschlissel.
1NF Die Domanen aller Attribute sind atomar.

2NF Bei Tabellen mit mehreren Primarschlusselattributen
muss jedes Attribut, das nicht zum SchlUssel gehort,
von allen Attributen des Schlissel abhangig sein. Es
darf also keine partiellen Schlusselabh&ngigkeiten
geben.

3NF Zwischen zwei Attributen, die nicht zum SchlUssel
gehoren, darf keine Abhangigkeit bestehen. Es darf also
keine transitiven Abhangigkeiten geben.

Die nullte Normalform (ONF) ist inoffiziell. Es soll aber nochmals festgehalten werden,
dass die Definition eines PrimarschlUssels eine zwingende Voraussetzung fur die
Normalisierung ist.

Diese Definitionen sind nur Daumenregeln. Eine exaktere Definition ist unter dem
Kapitel 'Funktionale Abhangigkeiten' zu finden.

Es gibt viele weitere Normalformen, mit denen man unter praktischen Umstanden
jedoch nie in Konflikt gerat oder deren Auflésung zu umsténdlich ware.
Gelegentlich gibt es Probleme mit der Boyce-Codd Normalform. Diese ist deshalb
am Schluss des Kapitels noch aufgefiihrt.

Arno Schmidhauser Juni 2006 Seite 28

Kurs Datenbanken

1. Normalform (1NF)
| primarschiusse! |

Messung | stations | stations | mess- | messnetz | datum | bewolkung |°C SO,

Nr Name netzNr | Name

1 Aare 1 Uni 1.6.01 | stark 21.3 |10
1 Aare 1 Uni 2.6.01 [mittel 18.2 |12
1 Aare 1 uUni 3.6.01 [schwach 12.8 | 14
2 Rathaus 2 Kanton 1.6.01 | stark 21.8 | 21
2 Rathaus 2 Kanton 2.6.01 | mittel 18.9 | 20
2 Rathaus 2 Kanton 3.6.01 [schwach 13.8 | 22
3 Loeb 2 Kanton 1.6.01 | stark 21.0 | 23
3 Loeb 2 Kanton 2.6.01 [mittel 17.2 | 26
3 Loeb 2 Kanton 3.6.01 [schwach 14.8 | 28

Atomare Domanen sicherstellen.

Vorgehen fur die Uberfilhrung von unnormalisierten Tabellen in 1NF

Das Relationenschema wird beibehalten. Weil allerdings nur noch ein Wert fur
jedes Attribut in einem Tupel zugelassen ist, wird jedes Tupel aus der
unnormalisierten Tabelle in ein oder mehrere Tupel der 1NF-Tabelle abgebildet,
entsprechend dem durch die Problemstellung gegebenen Zusammenhang (z.B.
unabhangige Elemente der mengenwertigen Attribute oder eins zu eins
Entsprechungen). Durch die Vervielfaltigung der Tupel wird nattrlich auch der
bisherige Primarschlissel ungiltig und es muss ein neuer definiert werden. In
diesem Fall besteht der neue Primarschlissel aus den Attributen 'stationsNr' und
datum’.

Alle vorhandene Information kann Uber SQL-Abfragen der Datenbank entnommen
werden. Beispielsweise ist eine Abfrage nach dem maximalen SO,-Wert oder
der vollstdndigen Menge aller Wetterberichte (Datum mit Bewo6lkungsangabe) jetzt
moglich.

Tabellen in erster Normalform enthalten enorm viel Redundanz. Ein Update-Befehl
betrifft sehr viele Eintrage.

In obigem Beispiel bestehen immer noch unerwiinschte Abhangigkeiten: Alle Daten
muissen immer noch einer Station und neu sogar einem Datum zugeordnet werden.
Das Einfiigen neuer Messnetze oder Wetterberichte (Bewdlkungsdaten) ist nur in
Zusammenhang mit einer Station moglich.

Arno Schmidhauser Juni 2006 Seite 29

Kurs Datenbanken

2. und 3. Normalform, funktionale
Abhangigkeiten feststellen

m /\ Problemfalle

Messung | stations | stations | mess- | messnetz | datum | bewdlkung |°C SO,
Nr Name netzNr | Name
1 Aare 1 Uni 1.6.01 | stark 21.3 |10
1 Aare 1 Uni 2.6.01 | mittel 18.2 |12
1 Aare 1 Uni 3.6.01 | schwach 12.8 |14
2 Rathaus 2 Kanton 1.6.01 | stark 21.8 |21
2 Rathaus 2 Kanton 2.6.01 | mittel 18.9 [20
2 Rathaus 2 Kanton 3.6.01 | schwach 13.8 |22
3 Loeb 2 Kanton 1.6.01 | stark 21.0 |23
3 Loeb 2 Kanton 2.6.01 | mittel 17.2 |26
3 Loeb 2 Kanton 3.6.01 | schwach 14.8 | 28
\Y
\Y; Ok
Legende

P = Partielle funktionale Abhangigkeit
T = Transitive funktionale Abhangigkeit
V = Volle funktionale Abhangigkeit

Eine funktionale Abhangkeit drickt aus: Ein Attributwert ist eine (diskrete) Funktion
von einem oder mehreren anderen Attributwerten. Bezogen auf ein x,y,z
Koordinationsystem entspricht eine partielle funktionale Abhangigkeit
beispielsweise z = f(x) oder z = f(y), eine volle funktionale Abhéangigkeit entspricht
z = f(x,y).

Nur die eigentlichen Messwerte °C und SO, erfullen die volle funktionale Abhangigkeit.
Die Messwerte sind abhangig von der Station und vom Datum.

Funktionale Abhangigkeit

In einer Relation R(A, B, ...) ist das Attribut B von A funktional abhangig, wenn zu
jedem Wert von A genau ein Wert von B gehort. Per Definition ist jedes Nicht-
Schlisselattribut einer Relation vom Schlissel funktional abhéngig. Schreibweise:
A — B. Mit A—/— B wird explizit ausgedrickt, dass keine funktionale Abhangigkeit
vorliegt.

Volle funktionale Abh&ngigkeit

In einer Relation R(S;... S;, B, ...) ist das Attribut B von den Schlusselattributen
S;...S; voll funktional abhéngig, wenn B von der Kombination S;...S; funktional
abhangig ist, nicht aber von einzelnen Attributen S,...S; allein. Bei nur einem
Schliusselattribut liegt immer eine volle funktionale Abhangigkeit vor.

Arno Schmidhauser Juni 2006 Seite 30

Kurs Datenbanken

Partielle funktionale Abhangigkeit

In einer Relation R(S;... S;, B, ...) heisst die funktionale Abhé&ngigkeit S, — B
partiell, wenn S, ein Element der SchlUsselattribute S;...S; ist.

Eine partielle funktionale Abhéngigkeit drickt das Gegenteil zu einer vollen
funktionalen Abhangigkeit aus.

Transitive funktionale Abhangigkeit

In einer Relation R(S, A, B) ist das Attribut B vom Schlussel S transitiv abhéngig,
wenn B von A und A von S funktional abhangig ist, nicht aber S von A (mit dieser
letzten Bedingung werden die Sekundarschlissel von transitiven Abhangigkeiten

ausgeschlossen).

Anmerkung

In obigen Definitionen darf anstelle von "Attribut’ singemass "Attributkombination
stehen und unter A, B, C, S usw. sind dann Attributmengen zu verstehen.

Normalisierungsziel

In normalisierten Tabellen sollen nur noch volle funktionale Abh&ngigkeiten
auftreten, alle anderen sind zu eliminieren.

Arno Schmidhauser Juni 2006 Seite 31

Kurs Datenbanken

2. Normalform (2NF)

Station stations | stations messnetz | messnetz
Nr Name Nr Name
1 Aare 1 Uni

2 Rathaus 2 Kanton

3 Loeb 2 Kanton
Partielle Schlissel- Messung stations datum [°C SO,
abhangigkeiten entfernt. 1 Y TREERED
1 2.6.01 |18.2 [12
1 3.6.01 [12.8 |14
.. 2 1.6.01 [21.8 |21
|Wetter datum | bewdlkung > 5601 T189 20
1.6.01 st?clrk > 3.6.0L |13.8 |22
2.6.01 | mittel 3 1.6.01 |21.0 [23
3.6.01 | schwach 3 2.6.01 |17.2 [26
3 3.6.01 |14.8 |28

Vorgehen fur die Uberfithrung von 1NF in 2NF

Die Uberfiihrung in 2NF fuihrt immer zu einer Zerlegung der Ausgangstabelle. Einen
eindeutigen Zerlegungsalgorithmus gibt es allerdings nicht. Angenéahert kann
folgendes Prozedere angegeben werden: Ausgangspunkt sind die
Schlusselattribute. Jedes Schlisselattribut und alle Attribute, die durch dieses
eindeutig bestimmt sind, werden in eine neue Tabelle ausgelagert. In der
Originaltabelle verbleiben alle Schlusselattribute und alle tGbrigen Attribute, die
durch den ganzen Schlussel eindeutig bestimmt sind.

Fur obiges Beispiel heisst das:

Die 'stationsNr' bestimmt eindeutig die Attribute 'stationsName', 'messnetzNr' und
'messnetzName' (umgekehrt allerdings nicht).

‘datum' bestimmt eindeutig das Attribut ‘bewdlkung’.

Die Attribute 'SO,' und °C' sind nur durch 'stationsNr' und ‘datum' zusammen
eindeutig bestimmt.

Das Attribut 'messnetzNr' bestimmt eindeutig das Attribut ‘'messnetzName’. Weil
aber 'messnetzNr' nicht zum Schlussel gehort, wird diese Abhangigkeit im
Moment nicht betrachtet.

Durch je eine neue Tabelle (mit einem neu zu definierenden Namen) fur die Attribute

‘stationsNr' und ‘datum’ ergeben sich gesamthaft obenstehende drei Tabellen in
zweiter Normalform.

Es ist gut ersichtlich, dass die Zerlegung in 2NF eine Reduktion der Redundanz zur

Folge hat. Die Information Uber Stationen und Messnetze sind nur noch einmal
vorhanden.

Arno Schmidhauser Juni 2006

Seite 32

Kurs Datenbanken

3. Normalform (3NF)

Transitive Abhangigkeiten

Messung stationsNr datum | °C SO,
entfernt' 1 1.6.01 |21.3 |10
1 2.6.01 118.2 |12
- - - 1 3.6.01 |12.8 |14
Station stations | stations messnetz > 1.6.01 |21.8 |21
Nr Name Nr 2 2.6.01 |18.9 |20
1 Aare 1 2 3.6.01 |13.8 |22
2 Rathaus 2 3 1.6.01 |21.0 |23
3 Loeb 2 3 2.6.01 |17.2 |26
3 3.6.01 | 14.8 | 28

Wetter datum bewdlkung
1.6.01 | stark

Messnetz messnetz | messnetz

Nr Na_me 2.6.01 | mittel
1 uni 3.6.01 | schwach
2 Kanton

Vorgehen fur die Uberfithrung von 2NF in 3NF

Wie schon die Uberfihrung in 2NF ist auch diejenige in die 3NF eine Zerlegung von
Tabellen. Ausgangspunkt fur die dritte Normalform sind Abhangigkeiten zwischen
Attributen, die nicht zum Schlissel gehéren. Wenn ein Attribut eines oder mehrere
andere eindeutig bestimmt, wird eine neue Tabelle mit den beteiligten Attributen
erstellt. In der Ausgangstabelle werden die abhangigen Attribute gestrichen.

Flur obiges Beispiel heisst das:

Das Attribut 'messnetzName' ist von ‘'messnetzNr' abhangig. Aus ihnen entsteht die
neue Tabelle 'Messnetz'. Damit die Information, zu welchem Messnetz eine Station
gehort, erhalten bleibt muss in der urspringlichen Tabelle 'Station' noch
mindestens die 'messnetzNr' vorhanden sein.

Mit dem Erreichen der 3NF ist in aller Regel die Uberpriifung des Relationen-modelles
beendet. Es exisitieren zwar weitere Normalformen, sie sind aber haufig
automatisch erfullt oder ihre Erkennung ist schwierig. Die friuher aus Performance-
Grunden vorgenommen Denormalisierung in 2NF ist heute nicht mehr relevant.
Relationale Datenbanken sind gentigend performant, damit mit einem 3NF
Datenmodell gearbeitet werden kann.

Arno Schmidhauser Juni 2006 Seite 33

Kurs Datenbanken

UML-Darstellung des
Relationenmodelles

«Table» «Table»
Station Messung
«PK» stationsNr C
stationsName SO2
«FK» messnetzNr «PFK>» stationsNr|
«PFK» datum

«Table» «Table»

Messnetz Wetter
«PK» messnetzNr «PK» datum

messnetzName bewdlkung

Obiges Diagramm stellt das Relationenmodell fir das Schadstoff-Messystem in UML-
Form dar. Die Assoziationen sind weggelassen, um zu verdeutlich, dass der Bezug
zwischen den Tupeln zweier Relationen (Tabellen) nur noch durch Werte
bestimmter Attribut hergestellt wird, ndmlich den Priméarschliisseln und den
Fremdschlisseln.

Verwendet man UML zur Darstellung eines Relationenmodelles, so gibt es einige
spezielle Notationen:

= Der Stereotyp «Table» verdeutlicht, dass es sich nicht mehr um eine Klasse im OO-
Sinn, sondern um eine Relation beziehungweise Tabelle im Datenbanksinn handelt.
Haufig trifft man auch auf den Stereotyp «Entity» in UML-Diagrammen. Dieser
bezeichnet eine Klasse, deren Objekte (resp. die Attributwerte) in einer Datenbank
abgelegt werden sollen. Eine Klasse vom Typ «Entity» muss im Rahmen der
Anforderungen 2 und 3 eventuell in mehrere Relationen abgebildet werden
mussen. Es kénnen also aus einer «Entity»-Klasse durchaus mehrere «Table»'s
entstehen.

= Der Stereotyp «PK» bedeutet, dass es sich beim markierten Attribut oder den
markierten Attributen um den Priméarschlussel (Primary Key) handelt.
Priméarschlissel werden in anderen Darstellungen sehr haufig durch Unterstreichen
gekennzeichnet.

« Der Stereotyp «FK» bedeutet, dass es sich beim markierten Attribut oder den
markierten Attributen um einen Fremdschlissel handelt, also um eine Referenz auf
einen anderen Primarschlissel.

« Der Stereotyp «PFK» bedeutet, dass es sich beim markierten Attribut oder den
markierten Attributen sowohl um ein Mitglied des Priméarschlissels wie um ein
Mitglied eines Fremdschlussels handelt.

& Siehe Skript 'Datenmodellierung mit UML' fiir eine detaillierte und ausftihrliche
Beschreibung.

Arno Schmidhauser Juni 2006

Seite 34

Kurs Datenbanken

Klassel Klassel Klassel
attributl attributl attributl
! . Konzeptionelles
©)..1L
0..*
Modell
K.Iassez Klasse2 Klasse2
attribut2 attribut2 attribut2
«Table» «Table» «Table»
Tabellel Tabellel Tabellel
<PK> schlussell| «PK>» schliissell] «PK>» schliissell|
attributl attributl attributl
«Table»
Tabelle12 -
P schitssell] Relationen
«PFK>» schliissel2|
«Table» «Table» I l lOd el I
Table:
Tabelle2 ebelles Tabelle2
«PFK» schlssell| ~ [«PK» schlussel2 U
attribut2 «<FK» schlussell «ftK.); s::zhlusseIZ
lattribut2 LT

Die Uberfiihrung vom UML-Modell in das Relationenmodell RM geschieht unter den
Gesichtspunkten:

e Mdglichst wenig Relationen (Tabellen) erzeugen.
e Alle Informationen und Zusammenhénge im UML mussen im RM erhalten bleiben.
e Es sind nur atomare Domanen verfligbar.

e Redudanzfreiheit durch Normalisierung.

Zur Erklarung von «PK» «FK» und «PFK» siehe vorhergehende Folien.

Arno Schmidhauser Juni 2006

Seite 35

Kurs Datenbanken

Zusammenfassung

» Das konzeptionell Modell definiert den Informationsgehalt
einer Datenbanken. Es ist auf das WAS ausgerichtet.

e Das Relationenmodell ist auf die Abbildung der
Information in eine relationale Datenbank ausgerichtet. Es
ist auf das WIE ausgerichtet. Aus einer UML-Klasse
resultieren eine bis mehrere Tabellen.

e Das Relationenmodell muss normalisiert sein.

Das Relationenmodell enthélt letzlich nicht nur die aus dem konzeptionellen UML-
Modell abgeleiteten und normaliserten Tabellen, sondern meist auch noch
verschiedene

technische Hilfstabellen, beispielsweise fir das Aufbewahren des zuletzt gebrauchten
Primarschlisselwertes, oder flr das Mitfihren von Session-Information in einem
Web-Shop etc.

Arno Schmidhauser Juni 2006 Seite 36

Kurs Datenbanken

SQL |

Ubersicht

Tabellen erzeugen
Datentypen

Tabellen modifizieren
Tabellen abfragen

Die folgenden Beispiele und Erklarungen sind auf Sybase (MS SQL) bezogen, welches
in vielen Teilen mit SQL-3 Entry-Level konform ist. Abweichungen vom Standard
SQL-3 wurden soweit wie mdglich kenntlich gemacht.

Arno Schmidhauser

Juni 2006

Seite 37

Kurs Datenbanken

Was ist SQL?

e SQL ist eine deklarative Sprache, d.h. sie definiert was getan
werden soll, nicht wie.

e Jeder Datenbankbenutzer und jede Applikation kommuniziert in
einer relationalen Umgebung ausschliesslich Gber SQL mit der
Datenbank.

e SQL-Befehle kdnnen interaktiv oder eingebettet in verschiedene
Programmiersprachen ausgefuhrt werden.

e SQL ist ein ANSI/ISO Standard in drei grossen Schritten: 1989,
1992, 1999

Im Juni 1970 verdoffentlichte Dr. E.F. Codd im Association of Computer Machinery
Journal den Artikel "A Relational Model of Data for Large Shared Data Banks". Das
dort beschriebene Modell ist als das definitive theoretische Modell fur RDBMS
akzepiert.

SQL ist eine (nicht ganz perfekte) Implementation der Relationenalgebra.

Die Sprache "Structured English Query Language" (SEQUEL) wurde bei IBM entwickelt,
um Codd's Modell zu implementieren. SEQUEL wurde spater zu SQL (Structured
Query Language). 1979 wurde die erste kommerzielle SQL-Implementation von
Oracle auf den Markt gebracht. Der erste Standard von SQL wurde 1989
herausgegeben.

SQL wird laufend weiter entwickelt, der neueste Standard von ANSI (ISO) ist SQL-3
(auch SQL-99 genannt). Vorhergende sind SQL-92 rsp. SQL-89. SQL-3 ist mit SQL-
92 fast ausnahmslos konform, enthalt jedoch wesentliche Erweiterungen,
beispielsweise objektorientierte Anséatze und Anbindungen fir die Sprache Java in
SQL-J.

Da Daten in der Regel langerlebig sind als Applikationscode, kommt der Kontinuitat von
SQL eine wichtige Bedeutung zu. Die Hersteller von Datenbanksystemen sind
bemiuht, ihren SQL-Dialekt in Richtung Standard weiter zu entwickeln und
gleichzeitig die proprietdren Erweiterungen oder Spezialitaten zu pflegen. Die
Entwickler haben damit die Wahl, nur mit Konstrukten aus dem Standard-Umfang zu
arbeiten, oder die speziellen Produkteigenschaften mit den entsprechend
proprietaren Konstrukten voll zu nutzen. Typisch proprietare Eigenschaften sind in
den Bereichen Datentypen, Defaultwerten, Abfrage-Befehle, Concurrency Control
und physische Datenorganisation zu finden.

Arno Schmidhauser Juni 2006 Seite 38

Kurs Datenbanken

SQL-Befehle, Beispiele

create table Person (
idPerson integer,
name varchar(64)

)

insert Person (idPerson, name)
values (3, "Muster®)

select *
from Person
where name = "Muster”

update Person
set name = "Muster-Muller*®
where i1dPerson = 3

delete Person
where i1dPerson = 3

Arno Schmidhauser

Juni 2006

Seite 39

Kurs Datenbanken

SQL als Protokollsprache

SQL kann im Netzwerksprachgebrauch als Kommunikationsprotokoll
auf Layer 7 aufgefasst werden.

SQL - Befehle werden Uber eine Netzwerkverbindung an den
Datenbank-Server geschickt.

Der Datenbank-Server schickt das Abfrage-Resultat an die Applikation

Arno Schmidhauser

zuruck.
JDBC SQL -
L Datenbank-
sppllsin Sk <:> Server DB-Dateien
Usw. TCP/ IP
Juni 2006

Seite 40

Kurs Datenbanken

SQL vs. Programmiersprache

SQL C
select name prs = fopen ("Person.dat', mode);
from Person while(
where persNr = "6° fscanf(prs, "%s%s ',persnr, name)> 0) {

if(stremp(persnr, "6") == 0) {
printf("%s %s'", name);
}
3

fclose (prs);

Lesbarere Statements

Zugriff durch DBMS optimierbar
Abfrage wird beim DBMS durchgefuhrt

Grosser Overhead fur Parsing und Durchfihrung

Funktionsweise von SQL
SQL lasst den Benutzer die Daten auf der logischen Ebene benutzen, er braucht
grundsatzlich keine Kenntnisse dartiber, was im Hintergrund ablauft. Alle Tupel,
welche die Selektionskriterien erfiillen, werden als Einheit dem User Interface oder
dem Applikationsprogramm oder auch einer weiteren Abfrage uUbergeben.

Man unterscheidet drei Gruppen von SQL-Statements:

1. Data Definition Language DDL: Definition von Datenbankobjekten (Tabellen)
erstellen, verandern und I6schen.

2. Data Control Language DCL: Zugriffsrechte auf die Datenbankobjekte verwalten,
Konsistenz unter den Datenbankobjekten definieren.

3. Data Manipulation Language DML: Daten einfligen, verdndern, I6schen. Daten
abfragen (dies ist der komplexeste Teil von SQL).

Arno Schmidhauser Juni 2006 Seite 41

Kurs Datenbanken

SQL-Tabellendefinition, Beispiel

create table Person

(
idPerson numeric(8,0) not null
default autoincrement,
name varchar(30) not null,
vorname varchar(15) not null,
gebDatum date null,
anzKinder integer null,
ahvNr varchar(14) not null,
primary key (idPerson),
unique (ahviNr),
check (ahvNr like *© .. . ")
)

Eine SQL-Tabelle definiert ein Relationenschema, d.h. die Name und Doméne der zum
Relationenschema gehdrigen Attribute. Ausserdem kdénnen in einer SQL-Tabelle der
Primarschlussel, allfallige Sekundérschlussel, sowie allfédllige Referenzen auf andere
Tabellen (Fremdschlissel) definiert werden. Mit der Definition der SQL-Tabelle wird
in der Datenbank auch alle notwendige Verwaltungs-Infrastruktur fur die
Datensatze (Tupel) vorbereitet. Dazu gehort beispielsweise Information tber den
Besitzer, Indices fur den schnelleren Zugriff, vorreservierter Platz usw.

SQL ist eine Realisierung des Relationenmodelles. Es gibt daher nur einfache,
atomare Datentypen fiur die Attribute. Méchte man beispielsweise fur eine Person
mehrere Vornamen in der Datenbank festhalten, wird eine zweite Tabelle (Relation)
notwendig, in welcher pro Datensatz (Tupel) ein Vorname festgehalten werden.
Jeder Datensatz der zweiten Tabelle enthalt eine Referenz (Fremdschlussel) auf die
erste Tabelle.

Tabellen werden mit drop table tablename wieder geldscht. Generell gilt: drop ist
das Gegenteil von create beziglich Datenstruktur-Befehlen.

Die Angabe default autoincrement als automatischer Zahler fur den Primérschlissel
ist Sybase-spezifisch und soll hier als Beispiel fur eine typische Produkterweiterung
genommen werden. Die automatische Schlisselvergabe wird in SQL-3 nicht
geregelt, jedoch in den meisten Produkten angeboten.

Der like-Operator ist testet den Ausdruck links auf ein bestimmtes Pattern. Ein Pattern
kann echte Zeichen enthalten, sowie die Wildcards ' _' und '%"'. ' ' bezeichnet ein
einziges, beliebiges Zeichen. '%' bezeichnet ein 0 bis n beliebige Zeichen. In der
Praxis existieren verschiedenste Erweiterungen des like-Operators. In SQL-3
Standard sind diese Erweiterungen im similar-Operator zusammengefasst, der
den Vergleich eines Strings mit einem allgemeinen regularen Ausdruck ermdglicht.

Angaben fur die Tabellendefinition beinhalten:

- Attributname, Datentyp, Nullwert, Defaultwert, automatische Schlusselwerte
e Primarschlussel, Sekundarschlissel (unique Angabe)

« Referenzielle Integriatsbedingungen

< Semantische Integritdtsbedingungen

Arno Schmidhauser Juni 2006 Seite 42

Kurs Datenbanken

SQL-Tabellendefinition, Beispiel ff

create table Adresse (
idAdresse numeric(10,0) not null
default autoincrement,
idPerson numeric(10,0) not null,
strasse varchar(200) not null,
primary key(idAdresse),
foreign key(idPerson) references Person(idPerson)

Das Bezeichnen von Priméar- und Sekundéarschlisseln kann zur automatischen
Erzeugung entsprechender Indices fuhren.

Haufig kennen Datenbanksysteme auch temporéare Tabellen. Deren Lebensdauer kann
auf die Transaktion, die Session oder den DBMS-Prozess beschrankt sein. Sie sind
immer im Hauptspeicher angelegt, miussen nicht gesichert werden, unterliegen
keinem gleichzeitigen Zugriff durch mehrere Benutzer und sind daher sehr schnell.

In Zusammenhang mit der Tabellendefinition stehen:
= Rechte fur Lesen, Andern, Léschen, Einfiigen

e Zusatzliche Indices

e Views

- Triggers

Weitere Angaben bei der Tabellendefinition sind moglich, aber sehr produktspezifisch.
Es sind meist Angaben zu:

= Speicher-Ordnung, zum Beispiel sequentiell ungeordnet, B-Tree mit Schlissel,
Hash mit Schlissel (beeinflusst nur die Performance, nicht das Resultat eines SQL-
Befehles).

= Fullgrad (Platzreserve bei Anderungen an Daten)
= Speicherort (Tablespace, Datenbank-Device)

« Locking-Verhalten (Tabelle, Page, Record)

« Logging (Mit oder ohne Logging)

= Caching (Grésse, Cache-Strategie LRU oder MRU)
* Replikationsangaben

Arno Schmidhauser Juni 2006 Seite 43

Kurs Datenbanken

SQL-3 Datentypen

- Zahlen: INTEGER, SMALLINT,
NUMERIC(p,s), DECIMAL(p,S),
FLOAT(p), REAL(p), DOUBLE PRECISION(p)

e Bitwerte: BIT(n), BIT VARYING(n)
e Binardaten: BLOB(n)

e Zeichen: CHAR(n), VARCHAR(N),
NCHAR(n), NCHAR VARYING(n), CLOB(n), NCLOB(n)

- Zeit: DATE, TIME(p), TIMESTAMP(p), INTERVAL

e Logik: BOOLEAN

Der SQL-Standard macht, ganz genau betrachtet, keine Angaben Uber die Art der
Implementation der Datentypen. Beispielsweise ist nicht definiert, wieviele Bytes
und damit einen wie grossen Wertebereich ein INTEGER oder ein FLOAT umfasst.
Aus praktischer Sicht gibt es jedoch Datentypen, welche sich faktisch tberall gleich
verhalten, wahrend bei anderen recht grosse Differenzen zwischen den Herstellern
bestehen.

INTEGER und SMALLINT werden uUberall angeboten und sind in 4 Bytes resp. 2 Bytes
abgelegt.

NUMERIC und DECIMAL werden synonym gehandhabt und sind nitzlich fur Fix-Punkt
Arithmetik. Berechnungen mit Eingaben im Rahmen der angegebenen Prazision p
und der angegebenen Kommastellen s ergeben ein exaktes Resultat im Rahmen
einer Ausgabe mit p Stellen und s Kommastellen. Der Standard macht keine
Angaben zu den maximalen Angaben fir p und s, liegt jedoch bei vielen DBMS weit
uber 30.

FLOAT, REAL reprasentieren Zahlen mit Mantisse/Exponent Darstellung. FLOAT und
REAL werden in der Regel in 4 Bytes abgelegt (gemass IEEE Spezifikation 745-
1985) mit einer Mantisse von 7 Stellen und einem Exponent von -38 bis +35. Wird
eine Prazision p angegeben, benutzt das Datenbanksystem letzlich entweder eine 4
Byte oder eine 8 Byte Darstellung.

DOUBLE PRECISION wird in der Regel in 8 Bytes abgelegt mit einer Mantisse von 15
Dezimalstellen und einem Exponent von -304 - + 308.

Bitwerte werden als Strings eingegeben, beispielsweise mit B "1001". Arithmetische
Operationen sind nicht mdoglich.

Binardaten (BLOB heisst Binary Large Object) kénnen beliebig grosse Datenmengen
aufnehmen. Gegenuber Zeichen-Datentypen haben sie keine lexikalische Semantik
(zum Beispiel beim Vergleich von Buchstaben mit oder ohne Umlauten). Auf
Binardaten gibt es in der Praxis meist weniger Operationen und Vergleiche als bei
Zeichendaten. Die interaktive Ein-/Ausgabe kann in Form von Hexadezimalen
Strings erfolgen, beispielsweise X "FFOOFF". Je nach Hersteller heissen sich auch
ganz anders.

Arno Schmidhauser Juni 2006 Seite 44

Kurs Datenbanken

Der Zeichentyp CHAR nimmt Strings fester LaAnge auf. Bei Bedarf wird mit Blanks

aufgefullt. Der Zeichentyp VARCHAR nimmt Strings variabler Ldnge auf und merkt
sich neben den Zeichen auch die exakte Lange des Strings. Die Maximale Lange
von CHAR und VARCHAR ist je nach Produkt eventuell deutlich eingeschrankt. Die
Empfehlung im SQL-Standard nennt 1000 Zeichen als Minimalempfehlung. Haufig
liegt die Maximale Lange aber bereits bei 255 Zeichen. Der Trend der Hersteller
geht dahin, nicht mehr zwischen CHAR und VARCHAR zu unterscheiden. Wichtig ist,
dass CHAR und VARCHAR Datentypen Zeichen aus einem bestimmten Zeichensatz
und einer bestimmten Sortierordnung aufnehmen. Dieser Zeichensatz ist je nach
Hersteller systemweit oder pro Tabellen-Attribut einstellbar.

Die Zeichentypen NCHAR und NCHAR VARY ING unterscheiden sich beztglich SQL-

Standard nicht wesentlich von CHAR und VARCHAR. Der einzige Unterschied liegt
darin, dass bei NCHAR und NCHAR VARYING ein systemweit definierter Zeichensatz
verwendet wird.

Klassischerweise kénnen CHAR und VARCHAR Zeichentypen technisch nur mit 1-Byte

Zeichensétzen umgehen, beispielsweise 1SO 8859-1. Immer mehr ist jedoch der
UNICODE Zeichensatz mit dem Speicherformat UTF-8 gefragt. Hersteller
implementieren deshalb NCHAR und NCHAR VARYING so, dass diese Mehr-Byte
Zeichensatze aufnehmen kdnnen.

Achtung: Das Resultat von Vergleichsoperationen ist Zeichensatz- und

Sortierordnungs-abhangig. Die Sortierordnung heisst auch Collation-Sequence und
definiert einen Satz von Regeln fur einen bestimmten Zeichensatz. Die Regeln

bestimmen, ob ein Zeichen grésser, kleiner oder gleich wie ein anderes Zeichen ist.

Dementsprechend kénnen beispielsweise die Zeichen & a und a identisch sein, sie
kénnen unmittelbar aufeinander folgen, oder sie kénnen (bei binarer
Sortierordnung) sehr weit auseinander liegen. Die Sortierordnung beeinflusst

sowohl das Resultat von Vergleichsoperationen wie auch die Ausgabe mit ORDER BY

in select-Befehlen.

Der Typ DATE hat eine Wertebereich von 1. Januar 0001 bis 31.12.9999. Das

Standardformat fur die Ein-/Ausgabe ist "yyyy-mm-dd®. Der Typ Time hat das
Standardformat ‘hh:mm:ss.nnnnnn’'. Eine genauere Prazision als 1 Sekunde (p >
0) ist optional. Typische Speicherplatz-Belegung fur DATE ist 4 Byte, fur TIME 8
Byte.

Der Typ TIMESTAMP ist eine Kombination von DATE und TIME und belegt i.a. 8 Byte

Speicherplatz. Das reicht aus fur eine Auflésung von 1 Mikrosekunde Uber den
ganzen Datumsbereich von DATE.

Einige Hersteller stellen Mechanismen zur Verfugung stellen, damit jeder vergebene

Arno Schmidhauser

Zeitstempel systemweit eindeutig ist, beispielsweise indem einem Zeitwert ein
fortlaufender Zahlerwert hinzugeftigt wird. Hochaufgeldste Zeitstempel als
Priméarschlussel zu verwenden ist allerdings heikel. Es ist zu testen, ob der
Zeitstempel auch mit der richtigen Auflésung in die Applikation resp. zurick in die
Datenbank gelangt. Soll ein Zeitstempel verwendet werden, um zu prifen, ob ein
Datensatz nach dem letzten Lesen durch einen anderen Prozess verandert wurde,
kann auch mit einer fortlaufenden Zahl gearbeitet werden.

Juni 2006

Seite 45

Kurs Datenbanken

Nullwerte

Null ist eine spezielle Markierung, die anstelle eines
Wertes stehen kann.

Null wird syntaktisch wie eine Konstante behandelt und
wird null geschrieben.

Ob null zulassig ist fur ein Attribut, wird im Rahmen der
Tabellen- oder Doméanendefinition angegeben.

Gutes Beispiel: Geburtsdatum einer Person (Daten
existieren, sind aber eventuell nicht bekannt)

Schlechtes Beispiel: Autonummer in einem

Personendatensatz. Der Nullwert ist mehrdeutig: Person
hat kein Auto oder die Nummer ist nicht bekannt.

Arno Schmidhauser

Juni 2006

Seite 46

Kurs Datenbanken

Defaultwerte

Der Defaultwert definiert den Wert fur ein Attribut, wenn dieses beim
erstmaligen Einfigen eines Datensatzes in die Tabelle weggelassen
wird.

Defaultwerte kdnnen beispielsweise sein

CURRENT { DATE | TIME | TIMESTAMP | USER }
konstanter Wert | konstanter Ausdruck
NULL

Anwendungsbeispiele

create table Person (
name varchar(30) default CURRENT USER,
homepage varchar(64) default "http://localhost*”

---)

create table Fall
eingegangenAm timestamp default CURRENT TIMESTAMP,

Obige Beispiele sind in der Syntax spezifisch fiir Sybase ASA 9.0, decken aber in etwa

die im SQL-Standard definierten Méglichkeiten ab.

Ein Defaultwert kann im Rahmen einer Doméanen-Definition oder direkt bei einem
Attribut im Rahmen der Tabellen-Definition angegeben werden. Gibt es sowohl in
der Doméane wie in der direkten Defintion eines Attributes einen Default-Wert, hat

die Angabe bei der Attribut-Definition Vorrang (Lokalitatsprinzip).
Die Gross-/Kleinschreibung fur die Schlisselworte ist meist nicht relevant.

Arno Schmidhauser

Juni 2006

Seite 47

Kurs Datenbanken

Domanen

e Eine Doméane definiert einen Wertebereich fur ein Attribut:

create table Person (
gebDatum GebDatum,
homepage url, ‘*”/,i:::::>* Domé&nen
land Land

)

e Eine Doméane schrankt einen bestehenden Basistyp weiter ein:

create domain GebDatum date null
check (value <= getdate())
create domain Url varchar(128)
check (value like "http://%")
create domain Land varchar(2)
check (value in (select land from Land))

Domanen dienen nicht dem Erzeugen von Werten, sondern der Definition, welche
Werte erlaubt sind.

Obige Syntax gentgt dem SQL-3 Standard. In In Sybase ASA 9.0 ware das
Schlusselwort value durch eine Variable mit vorabgestelltem @ zu ersetzen,
beispielsweise @wert.

Achtung: Die Bedingung in der Domanendefinition gilt als erfullt, wenn sie entweder
als true oder null evaluiert wird.

Es kdnnen mehrere check-Klauseln nacheinander aufgefuhrt werden. Genausogut
kann aber auch innherhalb einer Bedingungen mit AND- oder OR-Verknlipfungen
gearbeitet werden. In SQL-3 kann jede Bedingung auch einen Namen tragen
(Constraint Name), Uber den sie spater geléscht werden kann.

In SQL-3 kann ein Domain geédndert werden mit alter domain. Es ist moéglich, den
Defaultwert oder die Bedingung zu I6schen, respektive neu hinzuzufugen. Die
bestehenden Datensétze mussen einer allfallig geanderten Domain-Bedingung
genugen. In Sybase ASA 9.0 kann die Doméne Uber alter table geandert werden.
Datensatze, welche eine allfallig neuen Bedingung genuigen, werden ohne
Fehlermeldung beibehalten.

Die explizite Definition einer Doméne ist sehr nitzlich zur strikten Kontrolle von
Zustandsattributen mit einer meist geringen Zahl von Werten, beispielsweise:

Zivilstand -> ledig, verheiratet

Geschlecht -> m, f

Bestellung -> laufend, ausgeliefert, bezahlt
Ausleihung -> laufend, gemahnt, zurueck

Hotline-Fall -> entgegengenommen, in Bearbeitung, abgeschlossen, abgebrochen.

Randbemerkung: Die zweistelligen Landercodes sind in 1ISO 3166 definiert.

Arno Schmidhauser Juni 2006

Seite 48

Kurs Datenbanken

Automatische Werte

= Automatische Werte werden bei jeder Modifikation resp.
jeder Einfugung neu berechnet.

» Die Definition von automatischen Werten findet haufig im
Rahmen von Domé&nen statt.

e Beispiele aus Sybase ASA 9.0:

create domain 1D integer default AUTOINCREMENT

create table Person (
idPerson 1D,
geaendertAm timestamp default TIMESTAMP,
geaendertVon varchar(32) default LAST USER
)

Die Definition von automatischen Werten im Rahmen von Domanen ist konzeptionell

nicht ganz richtig: Die Domane ist ja nicht zustandig fur die Vergabe von Werten,
sondern legt nur die moéglichen Werte eines Attributes fest. Trotzdem arbeiten viele
Produkte auf diese Weise.

Der SQL-Standard macht gar keine Aussagen zu automatischen Werten, hingegen gibt

es in den verschiedenen Produkten einige schéne Moglichkeiten. Obige Beispiele
sind in der Syntax spezifisch fur Sybase ASA 9.0.

Ein haufiger Automatismus ist ein Z&ahler fur den Primarschlissel einer Tabelle.
Die Angaben TIMESTAMP und LAST USER haben zur Folge, dass ein entsprechendes

Arno Schmidhauser

Attribut bei jeder Modifikation (inkl. Einfugung) auf den aktuellen Wert von
TIMESTAMP oder LAST USER gesetzt wird. Naturlich kdnnen die entsprechenden
Attribute auch explizit gesetzt werden. Zu beachten ist der Unterschied zu den
Angaben CURRENT TIMESTAMP oder CURRENT USER bei den Beispielen zu
Domanen, welche lediglich bei der ersten Einfligung eines Datensatzes den Wert
ihres zugeordneten Attributes setzen. Die Angabe CURRENT USER ist weniger
ndtzlich als es den Anschein hat, weil viele Applikationen gegenuber der Datenbank
nur noch als ein Benutzer auftreten, unabhéangig davon, wer effektiv vor dem
Bildschirm sitzt.

Juni 2006

Seite 49

Kurs Datenbanken

Einfach SQL-Modifikationsbefehle

insert into Person
(name, vorname, gebDatum, anzKinder, ahvNr)

values
("Muster®, “Franz®, "1-jan-2003", 2, "822.59.268.113")

delete from Person
where i1dPerson = 3

update Person
set ahvNr = "822.59.268.113"

where persnr = 4

Der Unterhalt der Daten geschieht mit den drei SQL-Befehlen insert, delete und
udpate.

Zeilenumbriche haben keine Relevanz fur SQL-Befehle. Die Befehle selbst durfen
gross oder klein geschrieben werden. Bei Tabellennamen, Attributnamen usw. wird
in vielen System nicht zwischen Gross- und Kleinschreibung unterschieden, es sei
denn, die Namen sind in doppelte Anfihrungszeichen eingeschlossen (quoted
identifiers). Ob bei Stringdaten zwischen Gross- und Kleinschreibung unterschieden
wird, kann bei vielen Datenbanksystem beim Erstellen der Datenbank definiert
werden. Gemass SQL-Standard muss wéhlbar sein, ob Gross-/Kleinschreibung fur
Stringdaten relevant ist.

Attribute, welche automatische Schlussel enthalten, dirfen in der Liste der
einzufigenden Namen nicht vorkommen. Fir Attribute mit zugelassenem Null-Wert
darf die Konstante null verwendet werden. Sind bestimmte Attributnamen nicht
aufgefuhrt, wird fur sie automatisch ein Null-Wert oder ein eventuell definierter
Default eingefullt.

Je nach Datenbanksystem oder Einstellung desselben werden einfache oder doppelte
Anfuhrungszeichen fur Strings und Datumswerte verwendet. SQL-3 definiert
einfache Anfuhrungszeichen, die doppelten sind fur quoted identifiers (z.B.
Attributnamen mit Spezialzeichen darin) reserviert.

Ein delete-Befehl ohne where-Teil I6scht den ganzen Tabellen-Inhalt, jedoch nicht die
Tabelle an sich. Lezteres muss mit drop table geschehen.

Das Standard-Format von Datumswerten ist gemass SQL- und ISO-Standards "YYYY-
MM-DD*". Jedes Datenbanksystem hat zusatzliche Befehle mit dem die Eingabe- und

Ausgabeformate von Datumswerten gesetzt werden kdnnen. Bei Sybase ASA sind
dies die Optionen DATE_FORMAT fir die Ausgabe, und DATE_ORDER fir die Eingabe.

Arno Schmidhauser Juni 2006 Seite 50

Kurs Datenbanken

Einfache SQL-Abfragen

select * from Person

select upper(name), vorname, gebDatum
from Person
order by name, vorname

select * from Person
where i1dPerson = 3
select name || " *©
from Person

where name like "1%" or name like "J%"
order by name, vorname

Il vorname

select name, vorname from Person
where gebDatum is null

Der select-Befehl erméglicht einfache, aber auch sehr komplexe Abfragen. Die

Arno Schmidhauser

generelle Struktur einer Abfrage sieht wie folgt aus:

Der select-Teil definiert die Attribute der Resultattabelle (Projektion). Ein * heisst,
dass alle Attribute der im from-Teil genannten Tabellen im Resultat erscheinen. Im
select-Teil durfen auch Funktionen auf Attributen und Aliasnamen fur die
auszugebenden Attributnamen verwendet werden.

Der from-Teil definiert die Ausgangstabellen. Konzeptionell gesehen wird bei einer
Abfrage aus allen genannten Tabellen im from-Teil das kartesische Produkt
gebildet. Aus diesem werden im select-Teil bestimmte Attribute und im where-Teil
bestimmte Datenséatze herausgefiltert.

Der where-Teil definiert die Bedingungen an die auszugebenden Datenséatze
(Restriktion).

Der order by-Teil definiert die Sortierung der Ausgabe. Da relationale Datenbanken
mengenbasiert arbeiten, kann grundsatzlich nicht von einer Sortierfolge in den
Basistabellen ausgegangen werden. Eine Sortierung ist nur garantiert, wenn sie mit
order by erzwungen wird.

Juni 2006

Seite 51

Kurs Datenbanken

Gruppierung

¢ Gruppierungen sind bei der Bildung von Statistiken und
der Analyse eines Datenbestandes ein sehr potentes
Hilfsmittel.

select anzKinder, count(*)
from Person
group by anzKinder

select datepart(year, gebDatum) as Jahr, avg(anzKinder)
from Person

where gebDatum is not null
group by Jahr

select anzKinder, count(*)
from Person

group by anzKinder

having count(*) > 10

Obige Aufzahlung der Aggregatfunktionen entspricht dem SQL-3 Standard.

Sehr wichtig ist, dass bei der Gruppierung die einzelnen Datensatze, aus der die
Gruppe gebildet wird, verlorengehen. Da SQL nur Tabellen erster Normalform
kennt, ist es nicht méglich, im obigen ersten Beispiel noch gleichzeitig die Namen
der Personen in jeder Gruppe zu bekommen.

Zu beachten ist der Unterschied zwischen der where-Klausel und der having-Klausel.
Die where-Klausel selektiert Datenséatze vor dem Gruppieren. Die having-Klausel

selektiert die Datensatze nach dem Gruppieren, sie filtert also gewisse Gruppen
heraus.

In der select-Klausel kdnnen nur folgende Attribute ausgegeben werden:
= Eines oder mehrere der Attribute, die auch in der group by Klausel stehen.

< Eine so genannte Aggregat-Funktion, welche einen Wert Uber die ganze Gruppe
berechnet: count(*), sum(a), avg(a), max(a), min(a).

Arno Schmidhauser Juni 2006

Seite 52

Kurs Datenbanken

Unterabfragen

¢ Unterabfragen sind nutzlich fur Abfragen der Art "Suche
alle Datensatze welche in einer anderen Tabellen nicht
vorkommen".

select * from Person
where idPerson not in (select idPerson
from Adresse)

select * from Person p
where not exists (select *
from Adresse a
where p.idPerson = a.idPerson)

Jede Unterabfrage wird (mindestens konzeptionell) fir jeden Datensatz der
Ubergeordneten Abfrage einmal durchgefihrt.

Unterabfragen sind haufig dann anwendbar, wenn sich Fragen stellen wie
"Suche alle x, die nicht in y vorkommen ..." oder "Gib mir alle x, ausser
diejenigen, welche....".

Die Daten der Tabelle in der Unterabfrage kdnnen nicht ausgegeben werden. Daftur
musste (zuséatzlich) mit einem Join gearbeitet werden. - Siehe nachste Seiten.

Arno Schmidhauser Juni 2006 Seite 53

Kurs Datenbanken

Kartesisches Produkt

e Der konzeptionelle Ausgangspunkt fur viele Abfragen, die
Information aus mehreren Tabellen zusammen-stellen, ist das
kartesische Produkt. Beispiel in SQL:

|Person idPerson name |Adresse idPerson | strasse
1 A 1 X
2 B 2 Y
3 C

select * from Person, Adresse

Person.idPerson [person.name Adresse.idPerson [Adresse.strasse

W(W[N[N (R [P
OO|m|m@(>|>
NN
<|x|<[x|<[x

Das Relationenschema eines kartesischen Produktes besteht aus allen Attributen der
beiden Ausgangsrelationen. Die Produktrelation wird gebildet indem jedes Tupel
der einen Relation mit jedem Tupel der anderen Relation verknupft wird.

Das kartesiches Produkt kann durch das Datenbanksystem mit Hilfe einer n-fachen
Schleife algorithmisch sehr leicht berechnet werden. Naturlich ist das kartesische
Produkt selten das, was man als Schlussresultat einer Abfrage mdchte. Aber es

bildet (mindestens konzeptionell) den Ausgangspunkt fur weitere Operationen, d.h.

die Einschrédnkung der Datensatze mit dem where-Teil (Der genaue Begriff in der
Datenbanktechnologie heisst Restriktion) und die Einschrankung auf bestimmte
Attribute im select-Teil (Der genaue Begriff in der Datenbank-technologie heisst
Projektion).

Arno Schmidhauser Juni 2006

Seite 54

Kurs Datenbanken

Join

Aus dem kartesischen Produkt zweier Tabellen wird ein
Join, wenn folgende Bedingung gilt: Die Werte der
gemeinsamen Attribute mussen gleich sein.

select * from Person, Adresse
where Person.idPerson = Adresse.idPerson

|Person |idPerson |[name | Adresse |idPerson | strasse
1 A 1 X
2 B 2 Y
3 C

Person.idPerson

person.name

Adresse.idPerson

Adresse.strasse

1

A

1

X

2

B

2

Y

Der Join, auch Verbund genannt, ist ein zentrale Operation bei Abfragen mit SQL. Ihm

gilt auch besondere Aufmerksamkeit bei der Optimierung von Abfragen.

Naturlich kann eine Join-Abfrage mit weiteren Einschrankungen erganzt werden,
beispielsweise
select name,
from Person,
where Person.

strasse
Adresse

and name = "Muller™

Einer Tabelle im from-Teil kann ein Alias zugeteilt werden. In vielen Fallen ist dies ein

idPerson = Adresse.idPerson

reines Hilfskonstrukt um besser lesbare Abfragen zu erhalten. Beispiel:

select p.name, a.strasse
from Person p, Adresse a
where p.persnr = a.persnr

and p.name

Arno Schmidhauser

"Maller™

Juni 2006

Seite 55

Kurs Datenbanken

Natural Join

e Der Natural Join von zwei Tabellen ist ein Join Uber die
gemeinsamen Attribute beider Tabellen.

|Person idPerson name |Ade&m idPerson | strasse
1 A 1 X
2 B 2 Y
3 C

select * from Person natural join Adresse

Person.idPerson |person.name Adresse.idPerson [Adresse.strasse
1 A 1 X
2 B 2 Y

Manchmal ist es notwendig, anzugeben, welche Attribute miteinander verknupft
werden sollen. Dann ist folgende folgende Schreibweise méglich:

select *

from Person natural join Adresse on (Person.idPerson =
Adresse. idPerson)

Verhalten des Natural Join im SQL-Standard

Der natural join ist kommutativ, das heisst:

A natural join B = B natural join A

Der natural join ist assoziativ, das heisst:

(A natural join B) natural join C = A natural join (B natural join C)

Wenn zwei Tabellen A und B, respektive B und C, keine gemeinsamen Attribute
haben, wird der Natural Join zu einem Kreuzprodukt (Auch Cross Join oder
Kartesisches Produkt genannt).

Der Natural Join verhalt sich in Sybase leider nicht assoziativ, sondern vergleicht nur
Attribute unmittelbar benachbarter Tabellen im From-Ausdruck, was zu Problemen
fahrt, wenn ein Join gebildet werden soll, bei dem eine Tabelle gemeinsame
Attribute zu mehreren anderen Tabellen hat.

Besser als der Natural Join ware eine Join-Mdglichkeit, die sich an den definierten
FremdschlUssel/Priméarschlissel-Beziehungen ausrichtet. Das ist z.B. bei Sybase
mdglich, jedoch nicht im SQL-Standard.

Arno Schmidhauser Juni 2006 Seite 56

Kurs Datenbanken

Quter Join

einmal im Resultat erscheinen.

e Ein Outer Join ist ein Join mit der zusatzlichen Bedingung:
Jeder Datensatz der linken Tabelle muss mindestens

|Person [idPerson |[name | [Adresse |idPerson [strasse
1 A 1 X
2 B 2 Y
3 C

select * from Person natural left outer join Adresse

Person.idPerson | person.name | Adresse.idPerson | Adresse.strasse
1 A 1 X

2 B 2 Y

3 C null null

Outer-Joins sind ein haufiges Bedurfnis in der Praxis. Obige Syntax ist Sybase-
spezifisch. Gemass SQL-3 Standard misste folgende Syntax verwendet werden:

select * from Person left outer join Adresse

Falls ein Datenbanksystem keine Outer-Joins anbietet kann er in etwa nachgebildet
werden mit folgender Abfrage, die syntaktisch fast immer erlaubt ist:

select p.persnr, p.name, a.strasse

from Person p, Adresse a

where p.persnr = a.persnr

union

select p.persnr, p.-name, null

from Person p

where p.persnr not in (select a.persnr from Adresse

a)

Der Outer-Join ist nicht direkt aus dem kartesichen Produkt von Person und Adresse
ableitbar sondern ist eine Vereinigung zweier Abfragen, wie oben dargestellit.

Manchmal ist es notwendig, anzugeben, welche Attribute miteinander verknupft
werden sollen. Dann ist folgende folgende Schreibweise méglich:

select *
from Person natural left outer join Adresse
on (Person.idPerson = Adresse.idPerson)

Diese Schreibweise ist notwendig, wenn die zu verknipfenden Attribute nicht gleich

heissen, oder wenn die zu verkniuipfenden Tabelle nicht unmittelbars benachbart

sind.

Arno Schmidhauser Juni 2006

Seite 57

Kurs Datenbanken

Self Join

e Eine Tabelle kann mit sich selber verbunden werden. Man
spricht von einem Self Join. Beispiel: welche Person ist

Vater von B?

| Person |idPerson [name |idVater | Person [idPerson |name |idVater
1 A (nulb 1 A (nulb
2 B 1 — 2 B 1
3 C 2 3 C 2

select p2.name

from Person pl, Person p2
where pl.idVater = p2.idPerson
and pl.name = "B*

¢ Die Tabellen gelten durch ihre Umbennung mit einem Alias
logisch als zwei verschiedene Tabellen.

Wenn Abfragen auf eine Tabelle durchgefihrt werden, die mit sich selbst in Beziehung
steht wird die Verwendung von Alias-Namen zwingend.

Join, Natural Join und Self Join werden unter auch unter dem Sammelbegriff Inner
Join zusammengefasst.

Juni 2006 Seite 58

Arno Schmidhauser

Kurs Datenbanken

SQL-Operatoren und Funktionen

Vergleichsoperatoren (where-Klausel)
=, <, >, <=, >=, <>, between, like

Boolsche Operatoren (where-Klausel)
and, or, not, (), is null, is not null

Mengenoperatoren (where-Klausel)
in, not in, exists,
>any, <any, =any, >all, <all, =all

Mathematische Operatoren (where- und select-Klausel)
+ ’ - 2 * ’ /

Systemfunktionen (where- und select-Klausel)
upper(), lower(), trim(), substring(Q, --.

Alle oben genannten Operatoren und Funktionen sind im SQL-3 Standard auf-gefuhrt.
Im SQL-Standard und insbesondere in den meisten produktspezifischen SQL-

Dialekten existiert noch eine Vielzahl weiterer Funktionen, vorallem in den
Bereichen

= Stringverarbeitung (Zusammensetzen, Einfligen, Ersetzen, Patternmatching)

= System (Datenbankname, Benutzerdaten, aktuelles Datum und Uhrzeit)

« Datentypkonversion

= Datums- und Zeitverarbeitung (Datumsteile extrahieren, Summe, Differenz)

» Mathematische Funktionen (Winkelfunktionen, Runden, Zufallszahlen,
Potenzierung)

Arno Schmidhauser

Juni 2006

Seite 59

Kurs Datenbanken

Nullwerte in SQL-Klauseln

Suchbedingungen (where ...)
sind erfullt, wenn die Prufung TRUE ergibt.

Constraints (check ...)

sind erfillt, wenn das Resultat TRUE oder NULL ist.

Gruppierungen (group b ...)
ergeben eigene Gruppe fur den NULL-Wert.

Einmaligkeit(unique(...))
Es durfen beliebige viele NULL-Werte vorkommen.

Einmaligkeit(distinct)
Der NULL-Wert kommt nur einmal vor.

Zu beachten ist, dass die verschiedenen Produkte oft von diesen Regeln abweichen. In
Sybase darf z.B. der NULL-Wert in einem unique-Attribut nur einmal vorkommen.

Der Datenbank-Papst C.J. Date betrachtet die Einfihrung von Null-Werten als ausserst
fragwirdig und pladiert fur die Anwendung von gut gewéahlten Default-Werten,

ohne spezielle Behandlung mit einer dreiwertigen Logik.

Arno Schmidhauser

Juni 2006

Seite 60

Kurs Datenbanken

JDBC

= Ubersicht

e Programmierung

« Transaktionskontrolle
 Fehlerbehandlung

Die folgenden Informationen basieren auf der JDBC Spezifikation 2.x und 3.0, Oktober
2001 von Sun. Wenn in diesem Kurs ausschliessliche Eigenschaften von JDBC 3.0
zur Sprache kommen, ist dies entsprechend notiert.

JDK 1.4 referenziert auf die JDBC-Spezifikation 3.0 mit den AP's java.sqgl.* und
javax.sqgl.*

Viele Datenbanken-Hersteller (Sybase ASA 9.0) und die Plattform J2EE 1.3
referenzieren im Moment auf die JDBC-Spezifikation 2.1, mit den Erweiterungen
aus dem Optional Package 2.0 javax.sgl.*

JDBC 2.x und 3.0 beziehen sich auf SQL 99

Buch: "Java in Datenbanksystemen"; Petkovic, Bruderl; Addison-Wesley, 2002.

JDBC 3.0 ist im Wesentlichen eine Abrundung und Konsolidierung von JDBC 2.1 und
dem Optional Package 2.0. Einige kleinere Anderungen im Funktionsumfang sind
hinzugekommen. Ausserdem kann JDBC 3.0 auf die definitive Version von SQL99
abstellen.

Arno Schmidhauser Juni 2006 Seite 61

Kurs Datenbanken

Was ist JDBC ?

e JDBC™ = Java Database Connectivity. Vergleichbar mit
ODBC (Open Database Connectivity von Microsoft fur C-
Programme)

e JDBC ist ein low-level oder call-level APl mit drei
Funktionen

— Verbindung zu einer Datenbank herstellen
— SQL-Befehle absetzen
— Resultate verarbeiten

 JDBC ermdglicht einen produktunabhangigen
Datenbankzugriff, erzwingt ihn aber nicht.

Arno Schmidhauser

JDBC stellt grundsétzlich nur ein Interface fur das "Wie" der Kommunikation
mit DB-Servern zur Verfiigung. Uber den Befehl Statement.execute()
kénnen im Prinzip beliebige Strings an das Datenbanksystem Ubergeben
werden. Allerdings bestehen Abhangigkeiten zwischen DB-System und
JDBC z.B. bei der Datentypumwandlung mit getXXX() und setXXX()
Funktionen. JDBC wurde deshalb vor dem Hintergrund von SQL-99
entworfen.

Juni 2006

Seite 62

Kurs Datenbanken

Client/Server Architektur (2 Tier)

Java
Client JDBBC RDB
Server

Intranet

Diese Architektur ist geeignet fur lokale Applikationen im Intranet auf einer
bestimmten Betriebssystemplattform.

Arno Schmidhauser Juni 2006 Seite 63

Kurs Datenbanken

Internet-Architektur (3 Tier)

Webserver
HTML - Applikation < HTTP >

Servlet -

SQL im RDB
JDBC Intranet Server

Extranet DMZ Intranet

Diese Architektur ist geeignet fur einfache Internet-Applikationen.

Arno Schmidhauser Juni 2006 Seite 64

Kurs Datenbanken

«nterface»
ResultSet

Das Package java.sqgl

«creates»

«creates»

«interface»
Statement

«class»
DriverManager

«Creg

«interface»
ResultSetMetaData

«interface»

PreparedStatement

«creates»

ates»

«creqtes»

«interface»
CallableStatement

«Crex

tes»

«interface»
Connection

«interface»
Driver

«interface»

DatabaseMetaData
«creates»

Weitere Klassen
SQLException
SQLWarning
DataTruncation
Date

Time

Timestamp

Types
DriverPropertylInfo

Arno Schmidhauser

Das Package java.sql gehodrt zum Sprachumfang von Java

Das JDBC API enthélt nahezu nur Interface-Definitionen. Die eigentlichen
Implementationsklassen werden von einem Datenbank- oder Dritthersteller

vertrieben.

Die wichtigste Klasse ist der DriverManager. Bei ihm kdnnen die jeweiligen
produktespezifischen Treiber, z.B. fur Oracle, ODBC, SQL Server, Sybase
etc. registriert werden.

Juni 2006

Seite 65

Kurs Datenbanken

Ein Beispiel

// Driver registrieren.
SybDriver d = new SybDriver();
DriverManager .registerDriver(d);

// Verbindungsaufbau
Connection con = DriverManager.getConnection(
"jdbc:sybase:Tds:swsdb:2638?ServiceName=b31lklass'", "dba", "sqgl");
// Statementobjekt erzeugen \ Connection-URI
Statement stmt = con.createStatement(); jdbc:name:subname:params
jdbc:odbc:source;params

try {

// Query absetzen

ResultSet rs = stmt.executeQuery(*'SELECT name FROM person');

// Resultat verarbeiten

while (rs.next(Q)) {

String name = rs.getString(1);

System.out.printin(name);
s \ Typkonversion von

con.commit(); i JDBC/SQL nach Java
} catch (SQLException e) {

System.out._printin(e.toString()); con.rollback();
}

Es kdnnen mehrer Treiber registriert werden. Beim Verbindungsaufbau ruft der
Drivermanager der Reihe nach die Methode connect(url, props) seiner
registrierten Treiber auf. Der Treiber pruft seinerseits, ob er mit dem url etwas
anfangen kann. Wenn ja, baut er die Verbindung zur angegeben Datenbank oder
zum angegebenen DBMS auf. Wenn nein, gibt er null zuriick. Der Drivermanager
fragt in diesem Fall den nachsten registrierten Treiber an.

Von der Methode DriverManager.getConnection() existieren verschiedene
Varianten. Neben der oben dargestellten wird sehr haufig die Form
getConnection(String url, Properties p) verwendet. Der Parameter url
enthalt minimale Angabe zum Verbindungsaufbau, alle tibrigen Angaben wie
Datenbank, Username, Passwort etc. werden uUber das Properties-Objekt
mitgegeben. Das hat den Vorteil, dass zahlreiche, produkt-spezifischen
Angaben im gleichen Properties-Objekt mitgegeben werden kénnen.

Die Methode getString() ist eine von vielen getXXX() Methoden zum Abholen von
Daten in verschiedenste Java Basistypen und Java Klassen. Siehe API Doc der
Klasse ResultSet.

Die Klasse statement stellt verschiedene Methoden fir das Absetzen von SQL-
Befehlen zur Verfugung:
executeQuery("SQL String") ist fUr select-Abfragen vorgesehen.
executeUpdate ("SQL String") ist fUr insert-, delete- und update-Befehle,
sowie fur DDL-Befehle vorgesehen.

execute ("SQL String") ist fur beliebige SQL-Befehle gedacht, insbesondere
stored-procedure, welche mehrere SQL-Befehle unterschiedlichster Art enthalten
kénnen.

Arno Schmidhauser Juni 2006 Seite 66

Kurs Datenbanken

Der Connection-URI muss immer aus 3 Teilen bestehen:
jdbc:subprotocol:params
Der erste Teil ist fix. Der zweite Teil ist meist der Name eines Datenbankproduktes
oder eines Middleware-Herstellers z.B: sybase, oracle, openlink. Der zweite Teil
kann auch das Schlisselwort odbc sein. Der dritte Teil kann vom Hersteller selbst
strukturiert werden. i.a. kann dort der Name einer Datenbank oder einer
Datenquelle stehen. Username und Passwort werden haufig nicht Gber den URI,
sondern Uber das Property Objekt an den Treiber weitergeleitet. Die Treiber-

Hersteller sind jedoch in der Definition der Syntax und der Semantik fur den dritten
Teil des URL frei.

Wenn der URI eine ODBC Datequelle bezeichnet, besteht der dritte Teil aus dem
Namen der Datenquelle (logischerName fur eine Datenbank) und allfélligen
Parametern zum Aufbau der Verbindung wie Benutzername und Passwort. Beispiel:
jdbc:odbc:testdatenbank;UID=meyer;PWD=geheim

Detail-Beispiel fur die Vewendung eines Statement-Objektes:

Statement stat = con.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stat.executeQuery(“'select * from person™);

try {

whille (rs.next()) {
String name = rs.getString("name");
System.out.printIn(name);

}

rs._beforeFirst();

while (rs.next(Q)) {
String name = rs.getString("name");
rs.updateString("email™, name+"@sws.bfh.ch™);
rs.updateRow();
if (name.length() == 0) rs.deleteRow();

}

catch(SQLException e) { System.out.println (e); }

Arno Schmidhauser Juni 2006 Seite 67

Kurs Datenbanken

Das Statement-Objekt ist der Ausgangspunkt der SQL-Abfrage. Dem Statement-
Objekt wird ein SQL-Befehl zur Ausfuhrung tUbergeben. Dabei ist im ersten
Parameter des obigen Aufrufes definiert, wie das zurlickgelieferte ResultSet
durchlaufen werden kann, und im zweiten Parameter, ob die Daten darin
modifizierbar sind. Weil im obigen Fall TYPE_SCROLL_INSENSITIVE gesetzt ist,
kann das ResultSet mehrmals und in allen Richtungen durchlaufen, oder jederzeit

auf einen beliebigen Datensatz positioniert werden. Mit der Einstellung
CONCUR_UPDATABLE kdnnen Daten uUber das ResultSet direkt gedndert werden. Die
Anderungen werden unmittelbar in der Datenbank nachgetragen. Zu Beachten ist
dabei, dass der Modifizierbarkeit durch das Datenbanksystem Grenzen gesetzt
sind. Join-Abfragen, Abfragen mit Funktions-aufrufen oder Operatoren in der
select-Klausel und Abfragen mit group by-Klauseln kdnnen nicht modifiziert
werden.

Der Aufruf der meisten Funktionen des ResultSet ist davon abhéngig, dass eine
Datenbank-Connection aktiv ist. Das Weitergeben eines ResultSet an andere Teile
einer Applikation, im Sinnne eines Return-Parameters, ist daher mit Vorsicht zu
verwenden. Sicherer ist das Umkopieren von Abfrageresultaten in Listen, Vektoren
usw.

Fur den den ersten Parameter von Connection.createStatement kdnnen folgende
Werte eingestellt werden:

ResultSet.TYPE FORWARD ONLY heisst, es kann nur vorwérts durch ein ResultSet
iteriert werden. Die einzig erlaubte Postionierungsfunktion ist next () .

ResultSet.TYPE SCROLL_INSENSITIVE heisst, es kann in allen Richtungen durch
ein ResultSet iteriert und beliebig positioniert werden.

ResultSet.TYPE SCROLL_SENSITIVE heisst, beim Positionieren auf einen
bestimmten Datensatz wird automatisch von der Datenbank der aktuellste Zustand
dieses Datensatzes geholt. Wenn gelesene Datensatze aufgrund der Transaktions-
einstellungen in der Datenbank ohnehin gesperrt bleiben, ist diese Einstellung
uberflissig.

Fur den den zweiten Parameter von Connection.createStatement konnen folgende
Werte eingestellt werden:

ResultSet.CONCUR_READ ONLY heisst, das ResultSet ist Read-Only.

ResultSet.CONCUR_UPDATABLE heisst, via ResultSet kann direkt die Datenbank
modifiziert werden.

Die Positionierungsfunktionen sind:

ResultSet.first()
ResultSet. last()
ResultSet.next()
ResultSet.previous()
ResultSet.beforeFirst()
ResultSet.afterLast()
ResultSet.absolute(int)
ResultSet.relative(int)

Arno Schmidhauser Juni 2006 Seite 68

Kurs Datenbanken

}

try {

}
catch(SQLException e) {

Prepared Statements (1)
Beispiel fur das Lesen von Daten

int id = ... // id von irgendwoher bekommen
PreparedStatement stat = con.prepareStatement(
"select name, gebdatum from person where id = ? ");
stat.setInt(1, id) *
ResultSet rs = stat.executeQuery();
while (rs.next()) {
System.out.printIn(rs.getString(1));
String name = rs.getString(1);
Date gebdatum = rs.getDate(2);
System.out.printIn(name);
System.out.printlIn(gebdatum.toString());
}

System.out.println (e);

Prepared Statements stellen grundsatzlich nicht mehr Funktionalitat als

gewdhnliche Statements zur Verfugung, besitzen jedoch eine Reihe von
Vorteilen in der Handhabung:

Auch "schwierige” Parameter, wie Datumsobjekte oder binare Daten
kénnen leicht eingesetzt werden mit den entsprechenden set()-Methoden.

Anfuhrungszeichen in String-Parametern werden automatisch in eine
korrekte Escape-Folge umgewandelt.

Ein prepared Statement kann vom Datenbanksystem vorkompiliert werden
und ist dadurch schneller, wenn es mehrmals nacheinander aufgerufen
wird.

Gebrauch von Prepared Statements:

Anstelle des Fragezeichens wird mit der jeweiligen setXXX() Methode ein
Parameterwert eingefligt.

Ein Fragezeichen kann uberall dort stehen, wo in einem SQL-Befehl ein ein
Datenwert stehen kann.

Das Fragezeichen ist nicht erlaubt zur Parametrisierung von
Attributnamen, Tabellennamen etc.

Beispiele fur PreparedStatements:

insert into tabelle values (?)
update tabelle set feld = ?

delete from tabelle where feld = ?
select * from tabelle where feld = ?

Ein Fragezeichen kann uberall dort stehen, wo in einem SQL-Befehl ein

Arno Schmidhauser

Datenwert stehen kann.

Juni 2006 Seite 69

Kurs Datenbanken

Prepared Statements (2)

- Beispiel fur das Einfugen von Daten

PreparedStatement stat = con.prepareStatement("insert into
person (name, gebdatum) values (?, ?)");

try { {
while (...) {
stat.setString(1, ...);
stat.setString(2, ...);

stat.executeUpdate();

}

}
catch(SQLException e) { System.out.printin (e); }

Arno Schmidhauser Juni 2006 Seite 70

Kurs Datenbanken

Prepared Statements - Performance

msec pro Abfrage
900

’ —e— Einfache Abfrage ohne DP
800
700 . o - —a— Komplexe Abfrage ohne DP
600 Einfache Abfrage mlt.DP
500 Komplexe Abfrage mit DP
400
300 DP = Dynamic Prepare
200
100 & -

0 , ; ; ;)
0 20 40 60 80 100 Anz Abfragen

* Prepared Statements sparen massiv Zeit bei komplexen
SQL-Abfragen und mehrmaliger Durchfihrung!

Obige Zeitmessungen beinhalten den Aufruf von prepareStatement (). Die Prepared
Statements werden der Datenbank zur Vorkompilierung Ubergeben. Bei Sybase
heisst das, aus der Abfrage wird temporar eine Stored Procedure erzeugt. Damit
die Vorkompilierung durchgefuhrt wird, muss beim Verbindungsaufbau eine
entsprechende Property gesetzt werden (produktspezifischer Name):
props.put ("DYNAMIC PREPARE", args([3]);

Connection con = DriverManager.getConnection(args[0], props);

Die getestete 'einfache’ Abfrage ist:
SELECT name FROM Student WHERE idStudent = ?

Die getestete 'komplexe' Abfrage ist:
SELECT count (*), s.name, k.titel
FROM Rating r, Fragebogen f, Student s, Kriterium k
WHERE r.idFragebogen = f.idFragebogen AND f.idStudent = s.idStudent
AND r.idKriterium = k.idKriterium AND s.idStudent = ?
GROUP BY s.name, k.titel, k.idKriterium
ORDER BY k.titel
(Wie oft hat jeder Student eine bestimmte Frage beantwortet)

Tabellengrdssen
Student 4000, Rating 200000, Fragebogen 20000, Kriterium 1000.

Hardware
Server: Sun Sparc Station (1998), Sun Solaris 2.6, Sybase 11.5
Netzwerk: 100 MBit Eithernet, Firewall, CableCom Modem (512/256)
Client: IBM A22m (2001), Java 1.4, jConnect5

Arno Schmidhauser Juni 2006 Seite 71

Kurs Datenbanken

Batch Updates

= Batch Updates sind eine Neuerung ab JDBC 2.0

« Es kénnen mehrere SQL insert-, update- oder delete-Befehle
in einem Paket an die Datenbank geschickt werden.

* Beispiel:

String query = "INSERT INTO person (name, email, gebdatum)
VALUES (?, ?, getdate())";
PreparedStatement pstmt = con.prepareStatement(query);
while ...) {
pstmt.setString(1, "name " + i);
pstmt.setString(2, "email " + i);
pstmt.addBatch();

}
pstmt.executeBatch();

Arno Schmidhauser Juni 2006 Seite 72

Kurs Datenbanken

Batch Updates - Performance

msec / insert

100
90 #
80
70

60 1 —e— Ohne Batch

50 _

40 | l‘\‘__‘\ —=— Mit Batch
30

20 k\
10

0 20 40 60 80 100

Anzahl Inserts

e Batch Updates sparen massiv Zeit fur die Durchfuhrung
mehrerer SQL-Befehle in einem Schritt!

« Batch Updates optimieren den Netzwerk-Verkehr.
= Prepared Statements optimieren die Durchfihrungszeit in der Datenbank.
« Die beiden Konzepte kdnnen daher mit Gewinn kombiniert werden.

Hardware
Server: Sun Sparc Station (1998), Sun Solaris 2.6, Sybase 11.5
Netzwerk: 100 MBit Eithernet, Firewall, CableCom Modem (512/256)
Client: IBM A22m (2001), Java 1.4, jConnect5

Arno Schmidhauser Juni 2006 Seite 73

Kurs Datenbanken

Metadaten, Beispiel

» Die Klasse ResultSetMetaData ist nutzlich fur die
dynamische Bestimmung der Attribute eines
Abfragesresultates. Beispiel:

ResultSet rs = stmt.executeQuery("'select * from Person™);
ResultSetMetaData rsm = rs.getMetaData();
while (rs.next()) {
for (int i = 1; i <= rsm.getColumnCount(); i++) {
out_printin(rsm.getColumnName(i) + **
+ rs.getString(i));
out._printin(columnSeparator);

}

out.printin(rowSeparator);

Arno Schmidhauser Juni 2006 Seite 74

Kurs Datenbanken

Transaktionskontrolle

< JDBC enthalt Methoden fir

— das Setzen des Commit-Modus
Connection.setAutoCommit(boolean)

— das Setzen des isolation level
Connection.setlsolationLevel(int)

— commit und rollback von Transaktionen
Connection .commit(), Connection.rollback(Q)

sowie
— das Setzen von Save Points
— die Kontrolle von verteilten Transaktionen (XAResourcen)

Im Rahmen von EJB-Applikationen ist insbesondere der Isolation Level entweder auf
Container-Ebene (Deployment Deskriptor) oder auf Bean-Ebene (mit expliziter
JDBC-Programmierung) zu definieren.

Arno Schmidhauser Juni 2006 Seite 75

Kurs Datenbanken

Fehlerbehandlung

e Da SQL-Befehle ad hoq ausgefuhrt und interpretiert werden,
bestehen grundsatzlich sehr viele Fehlermdglichkeiten:

— Inkorrekte Syntax eines SQL-Befehls

— Konvertierungsfehler (z.B. Data Truncation)

— Kein Zugriffsrecht auf eine der beteiligten Tabellen
— Verletzung eines Constraints

— Deadlock-Situation zwischen mehreren Prozessen

— Kommunikationsfehler mit dem Datenbanksystem

Das Absetzen eines SQL-Befehles kann mehrere Fehler gleichzeitig zur Folge haben.

Ein Fehler kann an die Datenbank-Verbindung, an das SQL Statement an sich oder an
einen einzelnen Datensatz des Resultates geknupft sein.

Ein Fehler kann das Ausfuhren eines SQL-Befehles verunmdéglichen (Exception) oder
nur behindern (Warning).

Der Exception-Mechanismus im Paket java.sgl muss diesen Aspekten Rechnung
tragen.

Arno Schmidhauser Juni 2006 Seite 76

Kurs Datenbanken

Fehlerbehandlung, Beispiel

try {
... sql-statements ...

¥
catch (SQLException e) {
while (e = null) {

out.printlIn("SQL State: " + e.getSQLState());
out.printIn("Error Code: " + e.getErrorCode());
out.printIn("Message: " + e.getMessage());
e = e.getNextException();

}

try {

con.rollback();

catch(Exception x) {}
3

Zu beachten ist, dass einige Fehlermeldungen spezielle Aktionen erfordern.
Beispielsweise kénnte bei einem Deadlock oder bei einem Verbindungsfehler eine
Art Retry-Mechanismus nach folgendem Schema versucht werden:

boolean retry = true;
while (retry) {

try {
... sql-statements ...

retry = false;

}
catch (SQLException e) {
if (e.getSQLState().equals(40001)) {
System.out._printIn(*'Deadlock!™");
retry = true;

else {
try { con.rollbackQ); }
catch(SQLException e2) {}
retry = false;
}
¥

SQLException.getSQLState() liefert einen generische, von ANSI/XOPEN
standardisierten Fehlercode. Die entsprechende Variable heisst allgemein
SQLSTATE. Der Fehlercode besteht aus 5 Zeichen. Die ersten zwei bezeichnen
eine Fehlerkategorie, die nachsten drei den genauen Fehler.

« Alle Stati, die mit 01 beginnen, enthalten Warnungen. Status 01004 ist
beispielsweise eine Data Truncation Warnung.

- Alle Stati, die mit 23 beginnen, bedeuten eine Exception wegen Verletzung
einer Integritatsbedingung.

= Alle Stati, die mit 40 beginnen, weisen auf einen Rollback durch die
Datenbank hin, z.B. aufgrund eines Deadlocks.

« Alle Stati, die mit 42 beginnen, weisen auf einen Syntaxfehler oder eine
Verletzung der Zugriffsrechte hin.

Arno Schmidhauser Juni 2006 Seite 77

Kurs Datenbanken

Unterbrechbare Queries

e SQL-Abfragen kénnen langere Zeit dauern, weil
— die Abfrage komplex ist
— der Datenbestand gross ist
— der DB-Server hoch belastet ist
— der Transfer zum Client lange dauert

« Der Benutzer oder der aufrufende Benutzerprozess will die
Moglichkeit besitzen, eine laufende Abfrage abzubrechen, oder
eine maximale Dauer festzulegen.

« Mit folgenden Methoden kann die Ablaufzeit kontrolliert werden:
Statement.setQueryTimeout(int secs)
Statement.cancel ()

In Web-Applikation ist ein haufiges Verhaltensmuster wie folgt: Aufgrund eines HTML-
Submit-Aufrufes eines Browsers wird beim Webserver eine Datenbank-Abfrage
gestartet. Wenn diese lange dauert, fuhrt der Benutzer ein "Reload" durch oder
startet den Aufruf nochmals und setzt damit eine zweite identische Abfrage bei der
Datenbank in Gang. Die erste Abfrage lauft immer noch, der Webserver bemerkt
namlich nicht, dass der Browser nicht mehr auf das Ergebnis des ersten Aufrufes
wartet. Ein Webserver (-Servlet) bemerkt das "Fehlen" des Browsers erst beim
Versuch, Daten zum Browser zu Ubertragen, d.h. beim Schreiben auf das
ServletResponse-Objekt. Dies geschieht in der Regel aber erst, wenn die
Datenbank-Abfrage durchgefiuihrt wurde.

Ein verbessertes Szenario ware nun wie folgt: Das verantwortliche Servlet setzt die
Datenbankabfrage in einem eigenen Thread ab, und testet wéhrenddessen
periodisch, ob das ServletResponse-Objekt noch offen ist (zum Beispiel durch
Schreiben von Leerzeichen und/oder eine flush()-Operation). Wird das
ServletResponse-Objekt unglltig, kann das verantwortliche Servlet das laufende
SQL-Statement mit der cancel () -Methode unterbrechen.

Als einfache, aber grobe Variante, um lang dauernde SQL-Abfragen zu unterbrechen,
kann auch ein generelles Timeout auf ein Statement gesetzt werden mit
Statement.setQueryTimeout ().

Das Unterbrechen von laufenenden SQL-Statements mit setQueryTimeout () oder
cancel () bedingt, dass der JDBC-Driver und das native Datenbank-Protokoll das
Unterbrechen von Queries unterstitzt.

Arno Schmidhauser Juni 2006 Seite 78

Kurs Datenbanken

SQL 11

Views

Constraints

Triggers

Funktionen und Prozeduren

Arno Schmidhauser

Juni 2006

Seite 79

Kurs Datenbanken

Views

« Views sind virtuelle Tabellen, deren Inhalt dem Resultat
eines select-Befehles entspricht.

= Views sind eine Datenschnittstelle. ‘ Applikation ‘
. select
« Views sind eine applikations- oder insert
.- . . delete
benutzerspezifische Sichtweise auf update

gemeinsame Basisdaten. ‘ :
View ‘

e Erzeugen einer View

create view view_names :
[(column_names)] .

- Basistabelle(n
as select_statement Q)

[with check option]

Eine View kann wie eine Interface-Definition in einer Programmiersprache angesehen
werden.

Eine View kann in vielerei Hinsicht wie eine gewdhnliche Tabelle behandelt werden.
Man kann sie abfragen und mit gewissen Einschrdnkungen auch modifizieren oder
mit Rechten versehen. Eine einmal erzeugte View bleibt solange bestehen, bis sie
explizit wieder geldscht wird (drop view). Wenn eine der View zugrundeliegende
Tabelle geldscht wird, merkt dies das Datenbanksystem eventuell erst beim
nachsten Zugriff auf die View.

Der Inhalt einer View ist virtuell. Beim Abfragen einer View wird in jedem Fall auch der
der View zugrundeliegende select-Befehl durchgefihrt.

Es gibt auch Datenbanksysteme, welche eine View materialisieren kdnnen. Bei der
Definition kann dann angegeben werden, in welchen Zeitintervallen die
Materialisierung stattfinden soll. Materialisierte Views kénnen zulasten des
Speicherplatzes die Abfrage-Performance enorm steigern.

Eine View ist, genau wie eine Tabelle, mit Zugriffsrechten versehen. Auf die
zugrundeliegenden Basistabellen bendtigt nur der Erzeuger der View die
notwendigen Rechte. Fir die Benutzung der View sind ausschliesslich die
Zugriffsrechte auf der View selbst ausschlaggebend.

Die Klausel with check option stellt sicher, dass Datensatze der View nur geadndert
oder modifiziert werden kénnen, wenn sie der where-Bedingung des zugehérigen
select-Befehles entsprechen.

Arno Schmidhauser Juni 2006 Seite 80

Kurs Datenbanken

Views, Beispiel 1

e Gewisse Attribute welche der Tabellenverwaltung durch
Systemapplikationen dienen, sollen ausgeblendet werden.

create table Person

(
idPerson numeric(10,0) default autoincrement,
kuerzel varchar(5),
name varchar(50)),

lastmodifdate datetime null,
lastmodifuser varchar(10) null

)

create view PersonDaten (nr, kuerzel, name)
as

select idPerson, kuerzel, name

from Person

Obige View basiert nur auf einer einzigen Tabelle. Der zugehérige select-Befehl enthalt

keine Funktionen in der select-Liste und keine Gruppierung nach der where-
Klausel. Uber die View kénnen, konzeptionell gesehen, wiederspruchsfrei und ohne
Zweideutigkeiten Datenwerte eingefligt oder modifiziert werden. Die View ist
deshalb auch effektiv modifizierbar und die Anderungen werden an die Basistabelle
weiterpropagiert. Fir die in der View nicht sichtbaren Felder lastmodifdate und
lastmodifuser werden durch das System die Default-Werte eingefillt, in diesem
Fall also zweimal der Null-Wert.

Das Abflllen sinnvoller Werte flr die Attribute lastmodifdate und lastmodifuser

Arno Schmidhauser

kénnte z.B. ein Trigger warnehmen (siehe Kapitel tGber Trigger).

Juni 2006

Seite 81

Kurs Datenbanken

Views, Beispiel 2

= Daten soll auf vorpraparierte Weise einer Applikation zur Verfligung
gestellt werden. Die zugrundeliegenden Tabellen sind versteckt.

create table Person create table Adresse
((
idPerson numeric(10,0), idAdresse numeric(10,0),
name varchar (50) idPerson numeric(10,0),
strasse varchar(64)
)

create view PersonenAdressen (id, name, strasse)
as

select p.idPerson, p.name, a.strasse

from Person p natural left outer join Adresse a

Obiges Beispiel zeigt eine View, welche dem Benutzer das Resultat einer haufig
benutzten Abfrage zur Verfligung stellt. Sie versteckt in diesem Beispiel ausserdem
die produktabhéngige Realisierung eines Outer-Joins.

Die dargestellte View kann nicht modifiziert werden, d.h. die Ausfihrung von insert-,
delete- und update-Befehlen fuhrt zu einem Fehler. Unter folgenden Umsténden ist
eine View nicht modifzierbar:

 Eines oder mehrere Attribute werden aus den Basistabellen berechnet.
Beispiel: create view v as select uppercase(name) from Person

« Der from-Teil enthélt mehr als eine Tabelle (Join, Produkt, Union)
« Die Abfrage enthélt eine Gruppierung (group by Klausel)
« Der select-Teil enthalt das distinct-Schlisselwort

- Die zugrundeliegende Tabelle enthalt Attribute, welche nicht in der View-Definition
vorkommen, aber auch keinen Default-Wert (zum Beispiel null) haben.

Arno Schmidhauser Juni 2006

Seite 82

Kurs Datenbanken

Constraints (Integritatsbedingungen)

e Ein Constraint bindet eine logische Bedingung an eine
Tabelle. Es gibt 4 Constraint-Typen:

primary key
unique
foreign key
check

e Die Constraint-Prufung wird ausgel6st durch einen
insert-, update- oder delete-Befehl, und fur jeden von

diesem Befehl betroffenen Datensatz ausgewertet.

e Constraints mussen deterministisch sein, d.h. sie durfen
keine zeitabhangigen oder ausserhalb der Datenbank
liegende Funktionen benutzen.

unique-Constraint

Jede Kombination der genannten Attribute muss Uber die Tabelle hinweg eindeutig
sein. Gemass Standard durfen beliebig viele NULL-Werte vorkommen. Zwei NULL-
Werte gelten sinngemass als verschieden.

primary key-Constraint

keines der genannten Attribute darf NULL sein. Jede Kombination der genannten
Attribute muss Uber die Tabelle hinweg eindeutig sein.

foreign key-Constraint (Referentielle Integritatsbedingung)

Jeder Fremdschlissel muss einen korrespondierenden Priméarschlissel besitzen
oder der Fremdschlissel muss NULL sein (sofern das die Definition des
Fremdschlusselattributes dies erlaubt). Es gibt zwei Bedrohungen gegen den
foreign key Constraint:

1. Verletzung beim Einfliigen eines Datensatzes in die Fremdschlissel-Tabelle.
Im diesem Fall weist das Datenbanksystem die Einfiigung in zurtck.

2. Verletzung beim Léschen von Datensatzen in der Primérschlussel-Tabelle. In
diesem Fall gibt es drei Méglichkeiten, welche letztlich wieder auf die
Bedingung fiihren, dass ein Fremdschlissel immer einen
korrespondierenden Priméarschlissel besitzen oder NULL sein muss: Die
Ldschung wird verboten, die Loschung wird weitergegeben oder die
Fremdschlussel werden auf NULL gesetzt.

check-Constraint (allgemeine Integritatsbedingung)

Die gesetzte Bedingung muss fur jeden Datensatz wahr oder NULL sein. Damit ein
Datensatz korrekt, der check-Constraint also nicht verletzt ist, muss folgende
Bedingung wahr sein:

NOT EXISTS (SELECT * FROM table WHERE NOT (check-condition))

Arno Schmidhauser Juni 2006 Seite 83

Arno Schmidhauser

Kurs Datenbanken

Da ein geldschter Datensatz nicht mehr existiert, I6st ein delete-Befehl nicht die
Prufung der check-Bedingung aus.
Einige Datenbanksysteme beschréanken die check-Klausel auf lokale Bedingungen, d.h.
Bedingungen, die anhand der eigenen Tabelle oder sogar nur des betroffenen
Datensatzes evaluiert werden kénnen. Der Grund liegt im Aufwand herauszufinden,
unter welchen Umstanden die Prufung von Check-Bedingungen ausgel6st werden
muss. Beispiel:

create table Person (

persnr integer,

)

create table Adresse (
persnr integer,
adrnr integer,

)

alter table Person add check (persnr in (select persnr from Adresse))

Folgende zwei insert Befehle funktionieren korrekt:
insert into Adresse values (1, 1, ...)
insert into Person values (1, ...)

Folgende zwei insert Befehle funktionieren korrekterweise nicht, weil beim Einfligen
der Person noch keine Adresse vorhanden ist:

insert into Person values (2, ...)
insert into Adresse values (2, 1, ...)

Folgender delete-Befehl, welcher dazu fuhrt, dass Personen ohne Adressen in der
Datenbank auftreten kdnnen, wird félschlicherweise vom DBMS zugelassen:

delete from Adresse

Es miusste namlich die Prifung der check-Bedingung auf der Personen-Tabelle aktiviert
werden. Die Verletzung der check-Bedingung wird erst im Rahmen eines update-
Befehles, z.B. update Person set persnr = persnr, bemerkt.

Juni 2006

Seite 84

Kurs Datenbanken

Constraint Syntax

CREATE TABLE tabelle
({Spaltendef | cons-def [zeitpunkt] }, --.)
cons-def:
[CONSTRAINT name]
{ UNIQUE (Spaltenname, ...)
| PRIMARY KEY (Spaltenname, ...)
] CHECK (Bedingung)
| FOREIGN KEY (Spaltenname, ...)
REFERENCES tabelle [(Spaltenname, ...)]
[ON DELETE { NO ACTION | RESTRICT | CASCADE
SET NULL | SET DEFAULT }]
}
zeitpunkt:
[INITIALLIY DEFERRED | INITIALLY IMMEDIATE]

Die obige Syntax nach SQL-99 ist nicht vollstandig, beleuchtet aber die wichtigsten
Mdoglichkeiten. Weggelassen wurde u.a. dass ein Constraint fur ein einzelnes
Attribut auch nach der Datentyp-Definition angefligt werden kann.

Arno Schmidhauser Juni 2006 Seite 85

Kurs Datenbanken

Trigger

= Ein Trigger ist ein benutzerdefiniertes Programm, das
automatisch durch einen insert-, delete- oder update-
Befehl ausgeldst wird. Es besteht aus

— Kontrollstrukturen

— Referenz auf die gednderten Daten
— Lokalen und globalen Variablen

— SQL-Befehlen

< Anwendungsgebiete
— Referentielle und allgemeine Integritatsprufung
— Historisierung
— Automatische Folgeoperationen
— Nachfuhren redundanter Daten

Trigger kénnen Kontrollfunktionen wahrnehmen oder Dienstleistungen fir den
Benutzer zur Verfigung stellen, d.h. die Funktionalitat von SQL-Befehlen
applikationsorientiert verandern. Einige Beispiele fir den Einsatz von Triggern:

« Eine Tabelle stelle einen Komponentenbaum dar. Beim Léschen einer Komponente
werden durch den Trigger alle abhangigen Komponenten ebenfalls geléscht.

= Beim Andern einer Adresse wird automatisch die alte Adresse in einer History-
Tabelle abgelegt.

< Beim Absinken des Lagerbestandes eines Artikels unter eine kritische Grenze wird
automatisch eine Nachbestellung vorgenommen.

< Beim Eintragen einer Lektion in den Stundenplan wird automatisch die
Lektionensumme des Faches, der Klasse und des Dozenten neu berechnet und in
die entsprechenden Tabellen eingetragen.

Trigger kdnnen pro SQL-Befehl oder pro betroffenen Datensatz ausgeldst werden.

Der zu einem Trigger gehdrende Programmcode kann insert-, delete- oder update-
Befehle enthalten, welche wiederum zur Auslésung anderer oder desselben
Triggers fuhren kdnnen. Dies kann fir absichtliche Rekursionen ausgenitzt
werden, kann aber auch zu falschlicherweise nicht-terminierenden
Kettenreaktionen fuhren.

Arno Schmidhauser Juni 2006 Seite 86

Kurs Datenbanken

Trigger, Beispiel 1

e Automatisches Nachfuhren von Attributwerten in einer

Tabelle
create table Person (
idPerson numeric(10,0) default autoincrement,
kuerzel varchar(5),
name varchar(50),
lastmodifdate timestamp null
)

create trigger setModifControl
after update of kuerzel, name on Person
referencing new as neu
for each row
begin
update Person
set lastmodifdate = current timestamp
where idPerson = neu.idPerson
end;

Der Name des Triggers dient nur der Verwaltung, z.B. Lodschen mit drop trigger
triggername.

Ein Trigger bezieht sich immer auf eine Tabelle.
Trigger auf Views sind nicht moéglich gemass SQL-Standard.

Arno Schmidhauser Juni 2006 Seite 87

Kurs Datenbanken

Trigger, Beispiel 2

- Beim Andern der Adresse einer Person sollen die alten
Daten automatisch in einer History-Tabelle aufbewahrt

werden:

create table Adresse (create table History (
idAdresse numeric(10,0) idAdresse numeric(10,0),
default autoincrement, strasse varchar(50),
strasse varchar(50) modifdate timestamp

):):

create trigger AdressChanged

after update of strasse on Adresse

referencing old as alt

for each row

begin
insert into History (idAdresse, strasse, modifdate)
values (alt.idAdresse, alt.strasse, current timestamp)

end;

Arno Schmidhauser Juni 2006 Seite 88

Kurs Datenbanken

Trigger, Beispiel 3

e Beim Loschen einer Komponente in einem Kompo-
nentenbaum werde alle abhé&ngigen Teile geldscht.

create table Component °

(
complD numeric(10,0), e
parentlD numeric(10,0) null, delete — e

name varchar(100)
) OO

triggAer 16scht

create trigger ComponentDeleted after delete on Component
referencing old as alt
for each row
begin
delete from Component
where parentlD = alt.complID
end;

Fur obiges Beispiel ist die Tabelle wie folgt belegt:

[Component complD parentID name
1 null A
2 1 B
3 1 C
4 2 D
5 2 E

Die Tabelle Component steht fir alle Arten von Tabellen, welche eine hierarchische
Struktur definieren. Konkrete Beispiele sind:

= Mitarbeiter in einer hierarchischen Organisationsstruktur
* Geréate, welche aus verschiedenen Komponenten bestehen

Arno Schmidhauser Juni 2006

Seite 89

Kurs Datenbanken

Allgemeine Triggersyntax

create trigger triggername

before | after

insert | delete | update of columns
on table

referencing reference
for each row | statement
when condition

SQL statements

Obige Darstellung ist eine vereinfachte Syntax gemass SQL-3 Standard. Sie soll hier
vorallem fur die Erklarung der verschiedenen Elemente eines Triggers dienen.

triggername

Name flr die Verwaltung des Triggers. Es sind mehrere Triggers pro Tabelle
maoglich.

before | after| instead of

Der Trigger wird vor oder nach der Durchfuhrung des auslésenden SQL-Befehles
ausgefuhrt. Viele Datenbanksysteme kennen nur after. Einige DBMS kennen auch
die Klausel instead of, diese gehort jedoch nicht zum SQL-3 Standard.

Die Aufrufreihenfolge im Rahmen einer SQL-Anderungsoperation ist wie folgt:
Before Trigger

Referentielle Aktionen

Eigentliche Modifikationsoperation

Constraint-Prifung

After Trigger

2

Deferred Contraints

insert | delete | update of columns

Die auslésenden Operationen des Triggers. Fur Update Operationen kdnnen die
Attribute angegeben werden. Eine oder mehrere Angaben sind mdglich.

on
Tabellenname. Trigger auf Views und temporéaren Tabellen sind nicht erlaubt.

Arno Schmidhauser Juni 2006 Seite 90

Kurs Datenbanken

order

gehdrt nicht zu SQL-3, ist aber bei einigen DBMS vorhanden. Bestimmt die
Ausfuhrungsreihenfolge bei mehreren Triggern auf derselben Tabelle.

referencing

Zu jedem Trigger gehort eine Referenz auf den alten und neuen Datensatz, rsp. bei
Triggern, die pro Statement nur einmal ausgeldsten werden, je eine interne Tabelle
mit den alten und neuen Datenséatzen. Die vorgeschriebene Syntax fur die
referencing Klausel ist:

old as oldvalue new as newvalue
rsp.
old_table as oldname new_table as newname

In vielen Produkten kommt dieser Teil in der Triggerdefinition nicht vor, da die
Namen fest vorgegeben sind.

when

Eine Bedingung, die festlegt, ob Uberhaupt in den Triggercode eingetreten werden
soll. Die Bedingung muss determinstisch sein, darf also beispielswese keine
Zeitvergleiche mit der aktuellen Zeit enthalten.

for each row | statement

Arno Schmidhauser

Definiert ob der Trigger pro Datensatz oder pro Statement ausgefuhrt werden soll.
Programmtechnisch ist es einfacher, mit einem Statement-Trigger einen Datensatz-
Trigger nachzubilden als umgekehrt.

Vergleicht man dieselbe Aufgabe mit Statement-Trigger oder Row-Trigger
implementiert, so sind Statement-Trigger klar effizienter in der Ausfihrung. Auf der
anderen Seite erlauben Row-Trigger eventuell einen frihzeitigen Abbruch einer
umfangreichen SQL-Operation. Auch in diesem Bereich sind teilweise
Einschrankungen durch die Hersteller zu erwarten. So erlaubt beispielsweise
Sybase ASA 9.0 keine Statement Triggers mit before-Angabe.

Juni 2006

Seite 91

Kurs Datenbanken

Anwendungen Before-Trigger

Fruhzeitiges Testen von Integritatsbedingungen und Abbrechen
von unerlaubten Operationen. Beispiel: Eine Reservation fiur ein
Hotelzimmer darf nur geldéscht werden, wenn sie zeitlich bereits
vorbei ist. Der Trigger enthalt in diesem Fall eine Rol 1back
[Trigger] Anweisung.
Ausfuhren von Erganzungen oder Berechnungen fur einen
Datensatz vor dem Einfugen in die Tabelle. Beispiel:

create trigger tl before insert on Person

referencing new as newP for each row

begin

set newP_kuerzel = substring(newP.name,1,3)

end

Die rote Zeile ist ein eigentliches Kernkonstrukt fur einen Before-Trigger. Es wirde

Arno Schmidhauser

beispielsweise erlauben, intelligente Default-Werte beim Einfliigen von neuen
Datenwerten zu generieren. Ein Beispiel dazu ware etwa: Beim Einfugen eines
neuen Datensatzes in die Adresstabelle die private Telefonnummer gleich der
Geschaftstelefonnummer zu setzen, wenn die Geschaftstelefonnummer
ausgelassen wird. Gleichzeitig kann mit einem check-Constraint erzwungen
werden, dass eine Geschéaftstelefonnummer existiert. Der check-Constraint wird ja
erst geprift, nachdem der before-Trigger bereits abgelaufen und die eigentliche
Einflige- oder Anderungsoperation bereits ausgefiihrt ist.

Juni 2006

Seite 92

Kurs Datenbanken

Arno Schmidhauser Juni 2006 Seite 93

Kurs Datenbanken

Anwendungen Instead Of-Trigger

Einen delete-Befehl so verfremden, dass ein Datensatz
nicht effektiv geldscht, sondern nur ein deleted-Flag
gesetzt wird.

Einen update-Befehl so verfremden, dass ein Datensatz
nicht geandert sondern nur eine neue Version eingefugt
wird.

Einen insert-Befehl so verfremden, dass mehrere Tabellen
auf einmal abgefullt werden kénnen (Trigger auf eine
Platzhalter-Tabelle oder eine View setzen, wenn das DMBS
dies zulasst).

Arno Schmidhauser

Juni 2006

Seite 94

Kurs Datenbanken

SQL-Funktionen und -Prozeduren

In der Datenbank gespeichert, von jeder Art Client aus
aufrufbar.

Grundkonzept wie in jeder Programmiersprache:
Konstrukte fur Parameter, Variablen, Schlaufen,
Verzweigungen, Operationen, Fehlerbehandlung etc.
Sehr gute Performance gegenuber Durchfuhrung
derselben Aufgabe im Client.

Funktionen und Prozeduren sind Datenbankobjekte, sie
unterliegen also Zugriffsrechten.

Viele DB-Hersteller erlauben auch in Java geschriebene
Funktionen und Prozeduren (SQL-J Standard).

Arno Schmidhauser

Juni 2006

Seite 95

Kurs Datenbanken

SQL-Funktionen, Anwendung

< Funktionen werden im Rahmen eines select, insert, update
oder delete-Befehles aufgerufen.

< Anwendungsbeispiele:

select name from Person
where alter(gebDatum) > 20

insert into Person(idPerson, kuerzel, ...)
values (nextKey(), kuerzel(name, vorname), ...)

Die Funktion alter() muss nur eine einfache Datumsdifferenz berechnen. Die Funktion
kuerzel() entnimmt dem Namen und Vornamen ein paar wenige Zeichen und gibt
diese als Namenskurzel zuriick (Beispiel: Erstes und drittletztes Zeichen des
Nachnamens, erstes Zeichen des Vornamens).

Funktionen sind deshalb sehr interessant, weil sie direkt in die SQL-Befehle
eingebettet werden kdnnen, und weil sie zentral in der Datenbank zur Verfigung
stehen.

Fur berechnungsintensive Aufgaben sind Funktionen nur geeignet, wenn Sie in einer
klassischen Programmiersprache implementierbar sind. Beispielsweise waren
Funktionen wie encrypt(), decrypt(), compress(), uncompress() eventuell
wuinschenswert als SQL-Funktionen. SQL stellt aber nur ungentigende oder wenig
performanente Hilfsmittel fur die Verarbeitung von Byte-Daten oder Arrays, fur
komplexe Arithmetik usw. zur Verfugung. Solche Funktionen werden deshalb eher
extern in den Applikationen realisiert.

Arno Schmidhauser Juni 2006 Seite 96

Kurs Datenbanken

SQL-Funktionen, Definition

Funktionen werden mit create function erstellt. Beispiel:

create function nextKey()
returns numeric(10,0) not deterministic
begin
declare v numeric(10,0);
update KeyValue
set currentValue = currentValue + 1;
select currentValue into v
from KeyValue;
return v;
end;

-- Hilfstabelle
create table KeyValue (currentValue numeric(10,0))

Dieses klassische Beispiel ermdglicht es, die Erzeugung von Primarschlisseln
gegeniber dem insert-Befehl zu abstrahieren.

Die Funktion kann beispielsweise wie folgt erweitert werden:

= Mit einem Aufruf kbnnen ganze Wertebereiche (z.B. die ndchsten 10) fur Schlissel
reserviert werden. - Parameter fur Anzahl abzuholender Werte.

= Es kdnnen mehrere Schlusselzahler verwaltet werden (z.B. einen pro
Tabellenname). > Parameter fir Name des Schlissels und Erganzung der Tabelle
KeyValue um Attribut mit dem Schlisselnamen.

= Der Primarschlissel kann in der Funktion um Hostname, Zeitstempel etc. erganzt
werden, wenn beispielsweise ein global eindeutiger Schlissel generiert werden
muss. = Der Returnwert muss vom Typ varchar() o.a. sein.

Die Angabe not deterministic legt fest, dass der Aufruf von nextKey() bei jedem
Aufruf einen anderen Rickgabewert generiert, auch wenn die Funktionsparameter
nicht andern, respektive keiner vorhanden ist. Returnwerte von deterministic
Funktionen kénnen im Cache-abgelegt werden, solche von not deterministic
Funktionen nicht.

Arno Schmidhauser Juni 2006 Seite 97

Kurs Datenbanken

SQL-Prozeduren

e Unterschied zu Funktionen:

— Eigenstandiger Aufruf mit call procname(parameterliste),
unabhéangig von einem ausseren select-, update-, delete- oder
insert-Befehles.

— Prozeduren kdnnen In und/oder out Parameter haben.

— Prozeduren haben einen Returnwert (nur fur technische Zwecke).

— Prozeduren kdnnen select-Befehle enthalten, derene Resultat.
direkt an den Client zurtckliefert wird (als ResultSet in Java).

= Anwendungsgebiete:
— Komplexe Abfragen (Erweiterte Mdglichkeiten zu Views)

— Zur Vermeidung von mehrfachem Code in Triggern: Eine Prozedur
far mehrere Trigger.

— Als Interface zu den Tabellen, anstelle direkter SQL-Befehle.

Es gibt Firmen, in denen der Zugriff von Applikationen auf die Datenbank
grundsatzlich nur Uber Prozeduren erlaubt ist. Das Ausfiihrungsrecht auf select,
insert, delete, update wird den Datenbankbenutzern entzogen, daftr das
Ausfuhrungsrecht auf die jeweiligen Prozeduren erteilt.

Arno Schmidhauser Juni 2006 Seite 98

Kurs Datenbanken

SQL-Prozeduren, Beispiel

create procedure getFaelle(p_status varchar(64))
begin
if p_status = "eingegangen® then
select * from Fall T where f.status = p_status ;
elseif p_status = "Ubernommen® then
select * from Fall f join Mitarbeiter m
where f._.status = p_status ;
elseif p_status = "abgeschlossen® then
select * from Fall f join Kunde k
where f.status = p_status ;
else
select "Fehlerhafter Parameterwert”;
end if;
end

Mit dieser Prozedur werden Supportfélle, abhédngig vom Status abgefragt. Die
Prozedur liefert ein ResultSet zuriick. Ein Returnwert ist nicht deklariert, kdnnte
jedoch fur die Fehlerbehandlung eingesetzt werden.

Arno Schmidhauser Juni 2006 Seite 99

Kurs Datenbanken

Transaktionsmodell

e Definition
e ACID Regel

Ein Transaktionsmodell ist notwendig, weil letzlich die phyischen Resourcen
bestimmten Einschrankungen unterliegen:

= Der Zeitbedarf fur eine Abfrage oder Anderung ist nicht beliebig klein.

= Speichermedien sind nicht beliebig gross und der Zugriff darauf nicht beliebig
schnell.

= Programme, Hardware und Kommunikationskanale kénnen fehlerhaft sein.

Aus diesen Grunden ist eine Zusammenarbeitsvereinbarung zwischen den Clients und
der Datenbank notwendig. Das Transaktionsmodell definiert die Grundséatze dieser

Zusammenarbeit.

Arno Schmidhauser Juni 2006 Seite 100

Kurs Datenbanken

Was ist eine Transaktion

= Aus logischer Sicht ist eine Transaktion ein Arbeitspaket,
das einen geschaftlichen Nutzen erzeugt.

— So klein wie madglich.

— SO gross wie notig, um alle Integritatsbedingungen
einhalten zu kénnen.

e Aus technischer Sicht ist eine Transaktion eine Folge von
Lese- und Anderungsoperationen in der Datenbank, mit
einem definierten Beginn und einem definierten Abschluss.

 Die Transaktionsverwaltung ist eine der Kernaufgaben
eines Datenbanksystems.

Arno Schmidhauser Juni 2006 Seite 101

Kurs Datenbanken

ACID-Regel

 Das Datenbanksystem garantiert fur eine Transaktion
folgende Eigenschaften:

A Atomaritat

C Konsistenz

| Isolation

D Dauerhaftigkeit

Diese Eigenschaften werden als ACID Regel bezeichnet.

Die Einhaltung der ACID-Regel ist ein zentraler Grundsatz aller Datenbanksysteme.

Atomaritat
Eine Transaktion kann alle gewiinschten Operationen durchfiihren, oder sie hat gar
keine Auswirkungen auf den Zustand der Datenbank ("Alles oder Nichts"-Prinzip).
In Fehlersituationen kann eine Transaktion durch das Applikations-programm oder
durch das DBMS abgebrochen werden. Das DBMS ist dafur verantwortlich, dass alle
Anderungen am Datenbestand seit Beginn der Transaktion riickgangig gemacht
werden (Undo-Recovery).

Konsistenz
Bei Abschluss der Transaktion muss ein konsistenter Datenbankzustand vorliegen.
Jede im DBMS enthaltene Integritatsregel muss spatestens beim Abschluss der
Transaktion erfullt sein. An einer umfassenden Konsistenzerhaltung ist nattrlich
auch die Applikation beteiligt, weil es praktisch unmdglich ist, alle Forderungen in
Form von Constraints (siehe Folien Uber Constraints) in der Datenbank zu
realisieren.

Isolation
Die Datenbank muss so erscheinen, wie wenn sie jedem Benutzer einzeln gehoérte:
Laufen mehrere Transaktionen quasi-parallel ab, so missen die einzelnen
Transaktionen so gesteuert werden, dass sie gegenseitig voneinander nichts
merken (Wenigstens in Bezug auf den Datenzustand und die Abfrageresultate,
sicher nicht vollstandig in Bezug auf die Performance).

Dauerhaftigkeit
Nach Abschluss einer Transaktion sind die von ihr ausgefilhrten Anderungen gegen
alle Arten von Ausféllen gesichert. Auch Prozessabstirze und Plattenfehler durfen
nicht zu Datenverlust fuhren.

Arno Schmidhauser Juni 2006 Seite 102

Kurs Datenbanken

Die Garantie der ACID-Regel bedeutet fur den Applikationsprogrammierer eine enorme
Erleichterung. Er kann unter allen Umstanden von einem korrekten, den
Spezifikationen entsprechenden Datenbankzustand ausgehen.

Sowohl relationale wie auch objektorientierte Datenbanken halten sich an die ACID
Regel.

Innerhalb einer Transaktion stellt das Datenbanksystem der Applikation Hilfsmittel zur
Verfugung, um den Ablauf der Transaktion teilweise riickgangig zu machen, ohne
dass gerade die gesamte Transaktion abgebrochen oder wiedeholt werden muss. Im
Falle eines Deadlocks kann beispielsweise je nach Systemeinstellung nur der
verursachende SQL-Befehles riickgangig gemacht werden.

Auch die Isolationsbedingung kann gelockert werden, wenn ein Prozess beispielsweise
mehr Interesse an der Verfugbarkeit als der Korrektheit von Daten hat.

Arno Schmidhauser Juni 2006 Seite 103

Kurs Datenbanken

Arbeiten mit Transaktionen

Jeder lesende oder schreibende Zugriff auf die Datenbank kann
nur innerhalb einer Transaktion stattfinden.

Eine Transaktion beginnt explizit mit einem "begin transaction”
Befehl oder implizit mit dem ersten SQL-Befehl.

Eine Transaktion wird nur mit dem "commit"-Befehl korrekt
abgeschlossen. Andernfalls gilt sie noch nicht als korrekt
beendet.

Eine Transaktion kann explizit mit "rollback" oder implizit durch
ein ausseres Ereignis abgebrochen werden.

Beispiel einer korrekten Transaktion:

/* beginn der Transaktion durch ersten select-Befehl */
select * from Person

delete from Person

where name = “Muller”

commit

/* Alle Anderungen sind nun definitiv */

Beispiel einer durch den Benutzer abgebrochenen Transaktion:

delete from Person
where name = “Muller*®
rollback /* Anderungen werden riickgingig gemacht */

Eine Transaktion kann aus verschiedenen Grunden durch das Datenbanksystem
zwangsweise abgebrochen werden:

Arno Schmidhauser

e Deadlock von zwei Benutzerprozessen
e Verletzung von Zugriffsrechten oder Integritatsbedingungen

e Crash rsp. Verbindungsabbruch des Benutzerprozesses

Das Datenbanksystem liefert dem Benutzer einen Fehlerstatus zuriick. Diesen
auszuwerten und ev. einen fehlgeschlagenen SQL-Befehl oder eine Transaktion

zu wiederholen, ist Sache der Applikation.

Juni 2006

Seite 104

Kurs Datenbanken

Auch das reine Lesen von Daten kann ausdrtcklich nur innerhalb einer Transaktion
geschehen. Es werden zwar keine Daten verandert, der Anfangs- und der
Endzustand sind daher derselbe, aber es wird ausdrucklich verlangt, dass ein
konsistenter (korrekter) Zustand gelesen wird. Damit dies vom
Datenbankmanagementsystem auch bei mehreren konkurrenzierenden Benutzern
der Datenbank richtig gehandhabt werden kann, miissen z.B. Lesesperren auf die
gelesenen Daten gesetzt werden. Dies beeinflusst wiederum schreibende
Transaktionen, die warten muissen, bis die Lesetransaktionen beenden und damit
(implizit) ihre Sperren freigeben.

Letzlich kann nur der Datenbankbenutzer entscheiden, wann alle Anderungen oder
Abfragen, die zu einem korrekten Zustandstuibergang gehéren, ausgefiihrt sind. Das
Absetzen des commit-Befehles ist daher Sache des Datenbank-Benutzers (Clients)
und nicht des Datenbanksystems. Das Datenbanksystem kann allenfalls prifen, ob
gewisse Integritatsregeln verletzt sind und die Transaktion zwangsweise abbrechen
und zurucksetzen. Beispiel: Gemass ERD wird verlangt, dass zu einer Person
immer mindestens eine Adresse gehort. Das Eingeben einer neuen Person mit einer
oder mehrerer Adressen ist nun Sache des Benutzers. Das DBMS kann nicht selber
Adressen zu einer Person erzeugen. Es kann lediglich bei Abschluss der Transaktion
prufen ob mindestens eine Adresse da ist. Im allgemeinen gilt also auch:

Transaktion #einzelner SQL-Befehl

Allerdings arbeiten viele Datenbanksysteme per Default in einem "Autocommit"-
Modus, d.h. nach jedem SQL-Befehl wird durch das DBMS ein commit-Befehl
ausgeldst. In sehr vielen Féllen ist das jedoch im Sinne des Datenmodells falsch
und kann zu einem scheinkorrekten Zustand der DB fiihren.

Eine Datenbank muss sich jederzeit in einem konsistenten (korrekten) Zustand
befinden. Dies ist der Fall, wenn

= sich ihre Datenwerte mit allen Integritatsbedingungen vertragen,
= ihre Datenwerte mit der gegenwartigen Realitat Ubereinstimmen,
= alle relevanten Daten vollstandig in der Datenbank vorhanden sind.

Verletzungen der ersten Bedingung haben meist technische Ursachen, z.B.
Speichertberlauf, Systemabsturz, Disk-Crash, Hardware-Fehler, logische Fehler in
der Applikation.

Die beiden letzten Bedingungen kdnnen nur Uber organisatorische Massnahmen
garantiert werden, es sei denn, die Datenbank arbeitet beispielsweise mit einem
automatisierten Produktionssystem zusammen.

Eine Transaktion wird immer uUber eine Verbindung (Session) mit der Datenbank
abgewickelt. Eine Verbindung kann gleichzeitig nur eine Transaktion bedienen, und
ein Verbindungsabbruch hat immer einen Transaktionsabbruch zur Folge. Uber eine
Verbindung werden nacheinander eine oder mehrere Transaktionen abgewickelt.
Eine Transaktion sollte mdglichst rasch abgewickelt werden, da sie immer
Resourcen reserviert, welche anderen Transaktionen nicht zur Verfigung stehen.

Jede Transaktion ist im DBMS meist ein eigener Thread. Die Transaktions-Threads
konkurrieren um die vorhanden Resourcen.

Arno Schmidhauser Juni 2006 Seite 105

Kurs Datenbanken

Concurreny Control

e Zweck

e Serialisierbarkeit
* Locking

e Deadlock

Arno Schmidhauser

Juni 2006

Seite 106

Kurs Datenbanken

Zweck

e Einerseits: Isolation

— Anderungen am Datenbestand diirfen erst bei
Transaktionsabschluss fur andere sichtbar sein.

= Andererseits: Parallelitat
— Eine Datenbank muss mehrere Benutzer(-prozesse)
gleichzeitig bedienen kénnen und es sollen mdéglichst wenig
Wartesituationen entstehen.

- Realisierungsstrategie
Die parallele Ausfuhrung von Transaktionen muss bezuglich
Datenzustand und bezlglich Resultat-ausgabe zum Client
identisch mit der seriellen Ausfiihrung von Transaktionen
sein.

Die beiden Anforderungen Isolation und Parallelitat arbeiten im Prinzip gegeneinander,
wobei der Isolation die héhere Prioritat zukommen muss. Ein sehr einfache
Realisierung der Isolationsbedingung ware es, die Datenbank exklusiv fur die
gerade laufende Transaktion arbeiten zu lassen. Alle anderen Transaktionen
mussten warten, bis die gerade laufende fertig ist. Alle Transaktionen werden also
faktisch hintereinandergeschaltet oder serialisiert.

Eine schlauere Datenbank wird versuchen, von allen Transaktionen den jeweils
nachsten anstehenden SQL-Befehl entgegenzunehmen, und davon immer
denjenigen auszufiihren, dass man nach am Schluss aller Transaktionen sagen
kann: Die abwechslungsweise Ausfulhrung von SQL-Befehlen ist auf dasselbe
herausgekommen, wie wenn alle Transaktionen streng hintereinander ausgefuhrt
worden waren. Damit ist sowohl die Isolationsbedingung, wie die Forderung
moglichst hoher Parallelitat erfullt. Die Datenbank muss also fur Serialierbarkeit
sorgen. Serialisiert und serialisierbar unterscheiden sich lediglich in der Art der
Ausfuhrung, nicht in Bezug auf die Auswirkung auf die Daten.

Arno Schmidhauser Juni 2006 Seite 107

Kurs Datenbanken

Zweck, Mittel
Isolation
o -
fordert benutzt
Parallelitat _

Isolation ist ein allgemeine Anforderung, die an die Datenbank gestellt wird. Sie ist
quantitativ schwer fassbar. Serialisierbarkeit ist eine konkrete Art der Isolation,
welche verhaltnismassig einfach zu implementieren ist, und deshalb in den
marktiblichen Datenbanksystemen die einzig vorkommende.

Das Concurrency-Control ist der Mechanismus, welcher die Isolation und die
Parallelitat sicherstellt. Locking, Timestamping oder Datenversionierung sind
mogliche Werkzeuge, welche das Concurrency Control fur seine beiden
Hauptaufgaben benutzt.

Arno Schmidhauser Juni 2006 Seite 108

Kurs Datenbanken

Transaktion 1

commit

1.3 delete from Person
where persnr = :persnr

Serialisierbarkeit

Jeder parallele Ablauf mehrerer Transaktionen muss
inhaltlich einem seriellen Ablauf entsprechen. Beispiel:

Transaktion 2

1.1 select :persnr from Person 2.1 select :persnr from Person
where name = "Schmid" where name = "Schmid"
1.2 delete from Adressen 2.2 select * from Adressen
where persnr = :persnr where persnr = :persnr
commit

Ein korrekter Ablauf im Sinne obiger Definition ist:

11>21>22->1.2->13

Arno Schmidhauser

Juni 2006

Seite 109

Kurs Datenbanken

Serialisierbarkeit ff

Unter der Annahme, dass die Datenbank keine Synchro-
nisationsmittel einsetzt und jedes SQL-Statement ein
atomarer Schritt ist, sind verschiedene zeitliche Ablaufe der
beiden Transaktionen denkbar:

1. 1.12521>12>22>1.3 G
2. 1.1521512313>22 0
3. 112521222312>13 ()
4. 11512521313>22)
5. 1.1>122521322>1.3)
7. 21251.1512>22>13 0
8. 212511222312>13 ()
9. 212511512313>22 @

Die beiden mit (s) gekennzeichneten Ablaufen entsprechen dem vollstédndigen
Nacheinander beider Transaktionen (serialisierte Ablaufe). Alle anderen Ablaufe
mussen beziuglich Ausgabe zum Prozess, rsp. beziliglich Datenbankzustand einem
der beiden serialisierten und damit korrekten Ablaufe entsprechen (k), sonst sind
sie falsch (f).

Das Datenbanksystem muss Synchronisations-Mittel besitzen und einsetzen, damit
= eine hohe Parallelitdt gewahrleistet ist.
= keine falschen Ablaufe méglich sind (garantierte Serialisierbarkeit).

Serialisierbarkeit I6st die Frage nicht, in welcher Reihenfolge die Transaktionen am
besten ausgefuhrt werden, sondern gibt nur an, dass eine parallele Ausfiihrung
keine anderen Resultate als eine serielle Ausfuhrung hat. Die durch die
sequenzielle Ausfihrung einer Reihe von Transaktionen erzielten Ergebnisse gelten
alle als richtig.

Arno Schmidhauser Juni 2006 Seite 110

Kurs Datenbanken

Locking

e Locking ist die haufigste Moglichkeit, die Serialisierbarkeit zu
gewahrleisten.

— FuUr das Lesen eines Datensatzes wird ein S-Lock gesetzt
— Fur das Andern, Loschen oder Einfligen eines Datensatzes
wird ein X-Lock gesetzt.
e Die gesetzten Locks sind gemass einer Vertraglichkeitstabelle
untereinander kompatibel oder nicht:

S X

Angeforderte Sperre

X| »n

™~

Angeforderte Sperre wird
gewahrt (+) oder nicht gewahrt (-)

Bestehende Sperre

Das Datenbanksystem setzt fur jeden SQL-Befehl automatisch entsprechende Sperren
auf den ausgewahlten Datenelementen.

Schreibsperren werden bis zum Transaktionsende gehalten. Eine vorherige Freigabe
wurde die Isolationsbedingung verletzen: Vor dem Transaktionsabschluss ist nicht
garantiert, dass Anderungen nicht noch riickgéngig gemacht werden, sei es durch
den Client (Rollback-Befehl) oder den Datenbankserver (Crash, Deadlock).
Schreibsperren kédnnen nicht umgangen oder ausser Kraft gesetzt werden.

Lesesperren werden ebenfalls bis zum Transaktionsende gehalten. Ein
Benutzerprozess kann daher sicher sein, dass einmal eingelesene Daten in der
Datenbank zwischenzeitlich nicht geandert werden. Im Gegensatz zum Sperren von
Daten beim Schreiben sind aber auf Wunsch des Programmierers oder des
Datenbank-Administrators verschérfte oder erleichterte Sperren beim Lesen
moglich: Es durfen X-Locks zum Lesen gesetzt werden oder man kann ohne
Sperren lesen (Dirty Read). Bei gewissen Datenbanksystemen kénnen Lesesperren
auch unmittelbar nach dem Lesen, anstatt erst bei Transaktionsende
zuruckgegeben werden (Short Locks).

Jedes Datenbanksystem hat eigene Feinheiten in der Locking Strategie, die es bei
einer stark gebrauchten Datenbank zu beachten gilt, und die Ausgangspunkt fur
Tuning-Massnahmen sind. Einige Spezialitaten sind im folgenden beschrieben.

Arno Schmidhauser Juni 2006 Seite 111

Kurs Datenbanken

Spezialitaten

Mit D-Locks (Sybase, SQL-Server) kann verhindert werden, dass zeitlich GUberlappende
Lesesperren einen schreibwilligen Prozess dauernd vom Zugriff ausschliessen. Ein
D-Lock wird von einem Schreiber angefordert, und sobald alle Lesesperren
verschwunden sind, in einen X-Lock umgewandelt.

S X U D null
S + - + + +
X - - - - +
U + - - - +
D - - - - +
null + + + + +

Update-Locks (U) werden fiir die Deadlock-Verhinderung eingesetzt. U ist mit S
vertréglich, aber nicht mit anderen U und X. Sobald tatséachlich die gelesenen
Daten geandert werden, wird U in X konvertiert. Dies ist nur mdglich, wenn keine
anderen Lesesperren vorhanden sind. Update-Locks sind insbesonde fur das
Arbeiten mit Cursorn geeignet: Die Datenbank liest die potentiell zu
modifizierenden Daten relativ rasch ein, der genaue Zeitpunkt des Updates ist aber
durch den Datenbank-Client bestimmt:

declare c cursor for
select persnr

from person

for update of adresse;

/* Records werden mit U statt mit S gesperrt. */

update person
set adresse = "neu"
where current of c; /* Hier wird U in X umgewandelt. */

Null-Locks werden fiir unsicheres Lesen (Dirty Read) eingesetzt. Ein Null-Lock ist gar
keine Sperre und ist daher mit allen anderen Locks vertréglich.

Der Zugriff auf die Indextabellen ist ebenfalls zu bertcksichtigen, es gelten meist
diesselben Regeln wie auf den eigentlichen Datentabellen.

Neben den "High-Level" Locks fir die eigentlichen Daten, die durch das DBMS wie
oben beschrieben gehandhabt werden, kommen fur den Zugriff auf Hilfsresourcen
(z.B. die Locktabelle selbst) auch die Synchronisations-Mechanismen des
Betriebssystems zum Einsatz, beispielsweise Semaphore, Mutex-Variablen oder
Spin Locks bei Multiprozessor-Systemen.

Arno Schmidhauser Juni 2006 Seite 112

Kurs Datenbanken

Deadlock

Beim Arbeiten mit Locks kénnen so genannte Deadlocks
auftreten. Deadlocks sind in der Informatik ein allgemein

bekanntes Problem:

Transaktion 1

Liest Datensatz,
bekommt hierfir S-Lock

Mochte Datensatz schreiben,
benétigt X-Lock, wartet auf
Freigabe S-Lock durch T2

Datensatz

C

Transaktion 2

Liest Datensatz,
bekommt hierfur S-Lock

Mochte Datensatz schreiben,
bendétigt X-Lock, wartet auf
Freigabe S-Lock durch T1

Gegenseitiges Warten = Deadlock

Arno Schmidhauser

Juni 2006

Seite 113

Kurs Datenbanken

Deadlocks bei der Serialisierung

« Einige der Ablaufe unter 'Serialisierbarkeit' erzeugen einen
Deadlock. Der Deadlock ist konzeptionell gesehen nicht
ein Fehler, sondern bedeutet:

— Es gibt keinen Weg mehr, die anstehenden
Transaktionen so zu steuern, dass ein serialisierbarer
Ablauf entsteht.

— Eine der beteiligten Transaktionen wird zurickgesetzt,
so dass fur die tbrigen wieder die Chance besteht,
gemass Serialisierbarkeitsprinzip
abzulaufen.

Mdogliche Deadlocks sind der Preis fur die Anforderung hoher Parallelitat. Man kann die
Serialisierbarkeit auch erreichen ohne Deadlock-Bedrohung, indem die involvierten
Tabellen oder Datensatze zum vornherein exklusiv gesperrt werden. Die meisten
Datenbankssysteme kennen entsprechende Befehle, beispielsweise: LOCK TABLE
tablename in EXCLUSIVE MODE. Damit ist aber jede Parallelitédt von Transaktionen

verhindert.

Arno Schmidhauser Juni 2006 Seite 114

Kurs Datenbanken

Zwei-Phasen Sperrprotokoll

1. Bevor eine Transaktion auf einem Datensatz aktiv wird,
muss sie eine Sperre (S oder X) erwerben.

2. Sperren werden beim Commit zurickgegeben.

-> Dieses Protokoll garantiert einen serialisierbaren Ablauf
von parallelen Transaktionen, ohne Bertcksichtigung des
Phantom-Problems.

-> Das Protokoll ist nicht Deadlock-frei.

Der Kurzname 2PL ist aus 'Two-Phase Locking' abgeleitet.

Die Phase 1 entspricht praktisch der Zeit wahrend der Lese- und
Anderungsoperationen durch die Transaktion durchgefiihrt werden.

2PL garantiert einen serialisierbaren Ablauf, wenn nur auf vorhandenen Datensatzen
gelesen oder geandert wird. Betrachtet man die zusatzliche Situation, dass von
anderen Transaktionen Datenséatze eingefuigt werden, die unter Umsténden einer
Auswahlbedingung der ersten Transaktion gentigen, kénnen Konsistenzprobleme
auftreten (siehe Folie Uber Phantome).

Phantomproblem

T1 T2
select count(*)
from Person

Speicher fur count(*) Personen belegen
insert Person

[values ('Muster’, 'Hans');
commit;

select name, vorname

from Person
Phantom!

d

Personen in Sr;eicher abftllen

Arno Schmidhauser Juni 2006 Seite 115

Kurs Datenbanken

Sperren auf Tabellenebene

= Um Serialisierbarkeit auch fur Transaktionen zu
erreichen, welche Datenséatze einfiigen, werden Sperren
auf Tabellenebene verwendet (- Phantomproblem).

« Minimalkonzept: Eine Lesesperre S auf der Tabelle
verhindert das Einfigen von neuen Datenséatzen.

« In Datenbanken werden heute meist Range-Locks zur
Vermeidung von Einfugekonflikten verwendet: Ein
Range Lock sperrt nur einen kritischen Bereich der
Tabelle.

Sperren auf Tabellen-Ebene kommen in folgenden Fallen zur Anwendung:

« Mit einer Sperre auf Tabellen-Ebene (S oder X) kann das Einfligen neuer
Datensatze durch andere Transaktionen verhindert werden (Mit Sperren auf
Datensatz-Ebene ist dies nicht moglich). Das schliesst mégliche
Konsistenzprobleme aus (siehe Folie Uber Phantome). Besitzt eine Transaktion eine
S-Sperre auf einer Tabelle kdnnen keine X-Sperren auf Datensatzen von anderen
Transaktionen erworben werden. Besitzt eine Transaktionen X-Sperren auf
einzelnen Datensatzen, kann eine andere Transaktion keine S-Sperre auf der
ganzen Tabelle erwerben.

= Bei SQL-Befehlen, die sonst falsche Ergebnisse oder inkonsistente Zustande zur
Folge hatten, wie create index, create constraint, grant, revoke, drop table.

< Wenn mehr als eine vorgesehene Anzahl Datensétze gesperrt werden mussen, und
damit die interne Verwaltung zu gross wiurde, eskaliert das DBMS die Einzelsperren
auf die ganze Tabelle. Die Sperren auf den Datenséatzen kdnnen dann freigegeben
werden.

< Wenn der Benutzerprozess oder der Administrator dies aus applikatorischen
Grinden wiinscht. Ein X-Sperre auf Tabellen-Ebene garantiert dem Besitzer
lesenden und schreibenden Zugriff auf samtliche Datensatze der Tabelle ohne
jegliche Deadlock-Gefahr.

Anstelle eines S-Lock auf der ganzen Tabelle hat sich in letzter Zeit der Range-Lock
durchgesetzt: Es wird via Index nur derjenige Bereich von Datenséatzen gesperrt,
der durch die where-Bedinung in einem SQL-Befehl definiert ist. Datensétze
ausserhalb dieses Bereichs kommen fur Konflikte gar nicht in Frage und mussen
daher auch nicht gesperrt werden. Range-Locks sind umso giinstiger, je mehr
Datensatze mit unterschiedlichen Werten vorhanden sind. Die einzige Bedingung
ist das Vorhandensein eines Index und einer where-Bedingung, welche die
gesuchten Daten wesentlich einschrankt.

Arno Schmidhauser Juni 2006 Seite 116

Kurs Datenbanken

erhohten Parallelitat.

von Daten:

SERIALIZABLE
REPEATABLE READ
READ COMMITTED
READ UNCOMMITTED

Isolationsgrade

O r N W

« Je nach Applikation kommen gewisse SQL-Befehlsfolgen, welche die
Serialisierbarkeit gefahrden, nicht vor. Unter Umstanden will man
auch die vollstandige Serialisierbarkeit aufgeben, zugunsten einer

e SQL-3 definiert deshalb verschiedene Isolationsgrade beim Lesen

Der Befehl zum Setzen des Isolationsgrades ist:

set transaction isolation level konstante | zahl

SERIALIZABLE

Der Modus SERIALIZABLE garantiert die Serialisierbarkeit einer Transaktion. Die
Implementation basiert im einfachsten Fall auf einer Lese-Sperre der ganzen
Tabelle. Einfllgungen neuer Datensatze (Phantom-Problem) werden damit
verhindert. Diese Implementation lasst immer noch andere Leseprozesse zu, eine
gewisse Parallelitat ist also gewahrleistet. Deadlocks kénnen auftreten, wenn zwei
Transaktionen je eine Lesesperre auf der Tabelle besitzen und anschliessend
innerhalb der Tabelle Anderungen vornehmen wollen. Der zu erwerbende X-Lock
far einen Datensatz vertragt sich per Definition nicht mit dem S-Lock einer anderen
Transaktion auf der Tabelle. Die meisten Datenbankssysteme bieten zuséatzlich
Lock-Befehle an, mit denen man die ganze Tabelle exklusiv sperren kann. Damit ist
die relativ hohe Deadlock-Gefahr gebannt und die Serialiserbarkeit garantiert, aber
auch jede Parallelitat verunméglicht. Der entsprechende Befehl hat h&aufig folgende

Form: LOCK TABLE tablename in EXCLUSIVE MODE.

Sperre auf Sperre auf Sperrdauer

SERIALIZABLE
Befehl Datensatz Tabelle
select - S
update X -
delete X -
insert X -
create index - X
Ein alter table - X

Arno Schmidhauser

bis commit
bis commit
bis commit
bis commit
bis commit

Zu beachten: Ein X-Lock auf
einen Datensatz kann nur
gesetzt werden, wenn kein
S-Lock auf die Tabelle
besteht und umgekehrt.

bis commit Viodus SERIALIZABLE arbeitet
mit Range Locks (siehe Anhang). Ein Range-Lock sperrt logische Bereiche (Die
Bedingung in der where-Klausel von SQL-Befehlen), statt einzelne Datensatze.

Juni 2006

Seite 117

Kurs Datenbanken

REPEATABLE READ

Das wiederholte Absetzen desselben Abfrage-Befehles liefert dasselbe Resultat. Einmal in
die Applikation gelesene Daten kénnen also durch andere nicht verédndert werden.
Realisierungsmoglichkeit 1: Lesesperren, die bis zum Transaktionsende gehalten werden.

REPEATABLE READ
Sperre auf Sperre auf Sperrdauer

Befehl Datensatz Tabelle

select S - bis commit
update X - bis commit
delete X - bis commit
insert X - bis commit
create index - X bis commit
alter table - X bis commit

READ COMMITTED

Es besteht die Anforderung, dass nur bestatigte Daten gelesen werden, d.h.solche die sich
nicht in Bearbeitung befinden. Anwendungsbeispiel: Management- Informationsyssteme-
und statistitische Auswertungen. Realisierungsmadglichkeit 1: Eine Abfrage gibt ihre
Lesesperren unmittelbar nach dem Lesevorgang zuriick, statt sie bis zum Transaktionsende
zu behalten. Eine andere Transaktion kann damit die Daten verandern. Nachteil:
Schreibsperren kénnen die Abfrage immer noch blockieren. Realisierungsmadglichkeit 2: Der
letzte glltige Zustand eines Datenelementes wird aufbewabhrt fur die Lesetransaktionen
(Siehe Concurrency Control mit Versionen). Realisierungsmaglichkeit 3:
Zeitstempelverfahren (siehe Folie tber 'Concurrency Control mit Zeitstempeln').

READ COMMITTED
Sperre auf Sperre auf Sperrdauer

Befehl Datensatz Tabelle

select S - nur select
update X - bis commit
delete X - bis commit
insert X - bis commit
create index - X bis commit
alter table - X bis commlt

== .~——r.oierung 1: Es wird mit Null-Locks
gearbeltet Vorteil: es gibt mit Slcherkelt kelne Wartesituationen fir die eigene oder andere
Transaktionen. Nachteil: Es kdnnen nicht bestéatigte Daten gelesen werden, d.h. solche, die
von einer anderen Transaktion ev. wieder zuriickgesetzt werden.

C et oo sntigee e geie e —r s

READ UNCOMMITTED
Sperre auf Sperre auf Sperrdauer

Befehl Datensatz Tabelle
select - - -
update X - bis commit
delete X - bis commit
insert X - bis commit
create index - X bis commit
alter table - X bis commit
Arno Schmidhauser Juni 2006

Seite 118

Kurs Datenbanken

MdOgliche Inkonsistenzen

= Die Abschwachung des Isolationsgrades hat den Vorteil, dass
die Parallelitat erho6ht wird.
= Die Abschwéchung des Isolationsgrades hat den Nachteil, dass

gewisse Inkonsistenzen auftreten kdnnen, resp. in Kauf
genommen werden:

SERIALIZABLE keine Inkonsistenzen
REPEATABLE READ Phantome maglich
READ COMMITTED Lost Updates madglich

READ UNCOMMITTED Lesen unbestatigter Daten moglich

Arno Schmidhauser Juni 2006 Seite 119

Kurs Datenbanken

Phantom-Problem

T1 T2
select *

from Person

where name = 'Muster'

select *
from Person ‘ — Hier REPEATABLE READ

where name = 'Muster' garantiert

insert Person (name)
values ('Muster’)

commit
select *
from Person +«——— Hier REPEATABLE READ garantiert fur
where name = 'Muster' bisherige Personen, aber eine
commit zuséatzliche Person aufgetaucht.

Phantom-Problem

Eine erste Transaktion selektiert Datensatze nach bestimmten Kriterien. Eine
zweite Transaktion fligt einen neuen Datensatz ein und committet diesen. Wenn
die erste Transaktion ihre Abfrage nochmals durchfihrt, findet sie den neuen
Datensatz. Der neue Datensatz wird bezuglich der ersten Transaktion als Phantom
bezeichnet.

Phantome kénnen zu Schwierigkeiten bei statistischen Auswertungen fuhren.
Phantome kdnnen auch zu Programmierproblemen fuhren, wenn beispielsweise
eine Abfrage abgesetzt wird, um die Anzahl Datenséatze zu zahlen, dann aufgrund
der Z&hlung Speicherplatz fur die zu erwartenden Datensétze bereitsgestellt wird.
Wenn in der zweiten Abfrage fur die eigentlichen Datensatze dann plétzlich
zuséatzliche Datensétze auftreten, kann dies zu Speicheruberlaufen fuhren.

Ein Phantom-Problem kann auch beim Loschen von Datensatzen auftreten. Eine erste
Transaktion I6scht einen bestimmten Datensatz, fuhrt aber noch kein commit
durch. Eine andere Transaktion liest alle Datensatze der Tabelle. Die erste
Transaktion fuhrt ein Rollback durch. Die zweite Transaktion liest die Tabelle noch
einmal und sieht nun den vorher geldschten Datensatz. Aufgrund der
Implementation der Loschoperation bei vielen Datenbanksystemen ist jedoch
dieser Fall meist nicht mdglich, da geléschte Datensatze in der Tabelle verbleiben,
allerdings mit einer Schreibsperre versehen, und der Leseprozesse beim Zugriff auf
diesen Datensatz warten muss, bis die l6schende Transaktion entweder ein
Commit oder ein Rollback durchfihrt.

Arno Schmidhauser Juni 2006 Seite 120

Kurs Datenbanken

T1

select saldo

from Konto

where idKonto = 3

update Konto

set saldo = neuerSaldo
where idKonto = 3
commit

Lost Update-Problem

T2

select saldo

from Konto

where idKonto = 3
neuerSaldo = saldo + 100

update Konto

set saldo = neuerSaldo
where idKonto = 3
commit

neuerSaldo = saldo + 100

Anderungen von T2 gehen beim
Update von T1 verloren !

Lost Update-Problem

Wenn die gelesenen Daten verédndert und anschliessend wieder in die Datenbank
zuriickgeschrieben werden kann das Problem auftreten, dass eine andere
Transaktion in der Zwischenzeit die Daten ebenfalls gelesen, verandert und bereits
committet hat. Die erste Transaktion wird dann beim Zuriickschreiben ihrer Daten
die Anderungen der anderen Transaktion zunichten machen. Der Update der
anderen Transaktion geht damit verloren.

Arno Schmidhauser

Juni 2006

Seite 121

Kurs Datenbanken

Lange Transaktionen

 Kurze vs lange Transaktion
* Checkout/Checkin-Verfahren
e Zeitstempel/Priufregel-Verfahren

Arno Schmidhauser Juni 2006 Seite 122

Kurs Datenbanken

Kurze und lange Transaktionen 1

Bisher: Kurze, technische Transaktionen

— Oberstes Ziel ist ein serialisierbarer Ablauf

— Keine spezifische Semantik bei Konflikten,
sondern Abbruch der Transaktion.

— Keine Benutzerinteraktion wéhrend der Transaktion
(Alle Informationen und Regeln zur Durchfuihrung der
Transaktion sind vorgangig bekannt)

— Minimalen Zeitbedarf anstreben.

Die technischen Transaktionen haben eigentlich keine Semantik, sondern sind
lediglich ein Konstrukt, um zu verstecken, dass der Zugriff auf Daten eine endliche
Zeit beansprucht und mit beschrankter Sicherheit stattfindet. Waren Applikation,
Netzwerk und Datenbank unendlich schnelle und unendlich sichere Resourcen,
bestiinde kein Bedarf an einem technischen Transaktionskonzept. Jede Transaktion
wére momentan begonnen und momentan beendet und damit in jedem Fall
komplett vor oder komplett nach einer anderen Transaktion durchgefiihrt. Die
Serialisierbarkeit wére also gewéhrleistet.

Arno Schmidhauser Juni 2006 Seite 123

Kurs Datenbanken

Kurze und lange Transaktionen 2

Neu: Lange, logische Transaktionen

— Daten aus DB entnehmen fur Applikation

— Bearbeitung in der Applikation beliebig lange

— Benutzerinteraktion wahrend der Transaktion muss
moglich sein, da nicht alle Informationen oder Regeln
explizit bekannt sind.

— Zuruckschreiben in die Datenbank

— Basis fur Entnahme und Zuruckschreiben: Kurze
Transaktionen.

Eine lange Transaktion entspricht eigentlich der Realisierung eines Use Cases gemass

UML.

Arno Schmidhauser

Juni 2006

Seite 124

Kurs Datenbanken

Problematisches Vorgehen 1

Nur fir den Fall wo der "Benutzer" ein anderer Computer ist, der seine Aufgabe in
kurzer Zeit 16st, kann mit einer einzigen Transaktion gearbeitet werden. Fur den
Fall, wo die gelesenen Daten durch einen menschlichen Benutzer bearbeitet
werden, und die bendtigte Zeit undefinierbar lang ist, missen zwei
unterschiedliche Transaktionen verwendet werden fir das Lesen der Daten und
das letztendliche Zuriuckschreiben. Eine kurze Zeit sei hier definiert als eine
Zeitspanne innerhalb der es akzeptiert ist, dass es zu gewissen Resourcen-
Blockierungen (Locks) kommt, welche den Zugriff anderer Transaktionen auf die
gemeinsamen Daten verzogern.

Arno Schmidhauser Juni 2006 Seite 125

Kurs Datenbanken

Problematisches Vorgehen 2

Applikation (GUI)

Daten werden durch Benutzer bearbeitet
(lange Transaktion)

schreiben / Commit
Keine |Konfliktprufung !

Daten |esen / Commit

Fur den Fall, wo die gelesenen Daten durch einen menschlichen Benutzer bearbeitet

werden, und die benétigte Zeit lang ist, missen zwei unterschiedliche
Transaktionen verwendet werden fur das Lesen der Daten und das letztendliche
Zuruckschreiben. Eine lange Zeit sei hier definiert als eine Zeitspanne innerhalb
der es nicht akzeptiert ist, dass es zu Resourcen-Blockierungen (Locks) kommen
kann, welche den Zugriff anderer Transaktionen auf die gemeinsamen Daten
verzogern.

Das wesentliche Problem, welches man sich hier einhandelt, ist die Unsicherheit, ob

Arno Schmidhauser

das Zurickschreiben noch auf den urspriinglich gelesenen Daten erfolgte, oder ob
zwischenzeitlich eine andere Transaktion die Daten verandert hat. Anderungen
einer anderen Transaktion, welche in der Zwischenzeit stattgefunden haben,
werden einfach Uberschrieben und damit zunichte gemacht. Das kann erlaubt sein,
nach der ldee: Die neuesten Anderungen sind sowieso die wahrscheinlich
korrektesten. Es kann aber auch unerwiinscht sein, wenn es sich beispielsweise
um das Andern eines Lagerbestandes in einer Materialbewirtschaftung handelt:
Zwei Transaktionen lesen einen Lagerbestand von 10 Stiick, ziehen jede ein Stuck
ab, und schreiben anschliessend je einen aktuellen Bestand von 9 zuriick. Eine
der Anderungen geht verloren. Als weitere Mdglichkeit kann einfach gefordert
werden, dass eine Applikation einfach benachrichtigt wird, wenn beim
Zuruckschreiben entdeckt wird, dass ein Konflikt entstehen kdnnte.

Juni 2006

Seite 126

Kurs Datenbanken

Losung 1: checkout / checkin

Applikation (GUI)

Daten werden durch Benutzer bearbeitet
(lange Transaktion)

Daten|lesen schreiben
Flag setzen Flag zurucksetzen

Der checkout/checkin Mechanismus basiert auf freiwilliger Koordination mehrerer
Applikationen: Wenn das Flag durch eine Applikation gesetzt ist, verzichten andere
Applikationen auf den Gebrauch der markierten Daten. Das Flag kann
unterschiedlich ausgestaltet sein:

= Binares Flag, im Sinne eines Locks: Das Flag kann die Bedeutung einer exklusiven
Sperre haben. Das Flag kann aber auch die Bedeutung haben, dass die flag-
setzende Applikation die Daten andern und zurtickschreiben darf, wahrend die
anderen Applikationen nur lesend auf die Daten zugreifen durfen.

= Flag + Zeitstempel + Benutzerinformation: Das Flag kann die Bedeutung einer
exklusiven Sperre haben. Das Flag kann aber auch die Bedeutung haben, dass die
flag-setzende Applikation die Daten andern und zuriickschreiben darf, wahrend die
anderen Applikationen nur lesend auf die Daten zugreifen dirfen. Die zusatzliche
Information kann fir folgenden Fall benutzt werden: Die Applikation, welche das
Flag besitzt, vergisst vielleicht, das Flag wieder zuriickzusetzen. Eine andere
Applikation, respektive ein anderer Benutzer kann anhand von Zeitstempel und
Benutzerinformation mit einer gewissen Sicherheit feststellen, ob die Daten
tatsachlich noch in Benutzung sind, oder lediglich das Flag nie zuriickgesetzt
wurde.

Zu beachten: Transaktion 2 muss im Modus SERIALIZABLE ablaufen!

Arno Schmidhauser Juni 2006 Seite 127

Kurs Datenbanken

Losung 2: Zeitstempel/Prifregel

Applikation (GUI)

Daten werden durch Benutzer bearbeitet
(lange Transaktion)

Daten|lesen Zeitstempel priufen
Zeitstempel lesen Daten schreiben
Zeitstempel neu setzen

Beim Lesen eines Datensatzes wird immer der Zeitstempel mitgenommen, welcher
den Zeitpunkt der letzten Anderung angibt. Beim Zurtickschreiben wird gepruft, ob
der Zeitstempel noch stimmt. Wenn ja, werden die eigenen Anderungen in die
Datenbank zuriickgeschrieben. Wenn nein, werden die eigenen Anderungen
verworfen.

Gegenuber dem checkout/checkin-Verfahren wird beim Zeitstempelverfahren zum
Zeitpunkt des Lesens von Daten noch kein Flag oder eine andere Markierung
gesetzt. Der Vorteil besteht darin, dass keine Flag-"Leiche" in der Datenbank
entstehen kann, weil eine Applikation ein gesetzt Flag nicht korrekt zuriicksetzt.
Der Nachteil besteht darin, dass eine Applikation unter Umsténden im spaten
Zeitpunkt des Zurickschreibens gezwungen ist, auf das Zurtckschreiben zu
verzichten, weil ein anderer Benutzer die Daten zwischenzeitlich verandert hat.

Das Zeitstempelverfahren kann abgewandelt werden:

= Im Falle eines Konfliktes wird die Applikation resp. der Benutzer informiert. Dieser
kann sich dann entscheiden, ob er die Anderungen trotzdem vornehmen will oder
nicht. Zu beachten ist fur dieses Vorgehen aber, dass die Daten sich nochmals
andern kénnen, wahrend der Benutzer tber den Abbruch entscheidet.

= Anstelle eines Zeitstempels werden die urspriinglich von der Applikation gelesenen
Daten aufbewahrt (Nebst den vorgenommenen Modifikationen). Zum Zeitpunkt
des Zurickschreibens wird gepruft ob die urspriunglich gelesenen Daten noch mit
den aktuellen in der Datenbank tbereinstimmen. Der Vorteil liegt darin, dass die
Datenbank in keiner Weise mit Hilfsinformationen wie Zeitstempeln "verschmutzt"
wird. Der Nachteil liegt im erhdhten Speicher- und Zeitbedarf fur das Aufbewahren
und Vergleichen der urspringlichen Daten.

= Anstelle eines Zeitstempels werden ganz spezifische Konfliktprifungsregeln
angewendet. Beispielsweise kdnnte es erlaubt sein, dass zwei Benutzer gleichzeitig
eine Reservation einfiigen (Anderung einer Reservationstabelle durch Einfiigen
eines neuen Datensatzes), sofern sich die beiden eingefligten Datensatze bezlglich
von- und bis-Datum der Reservation nicht Uberschneiden.

Arno Schmidhauser Juni 2006 Seite 128

Kurs Datenbanken

Transaktion vs. Verbindung

Eine kurze Transaktion wird immer Uber eine Verbindung
abgewickelt.

Uber eine Verbindung kénnen mehrere Transaktionen
abgewickelt werden, aber immer nur nacheinander.
Kurze Transaktionen kénnen die zugrundeliegende
Verbindung nicht Uberdauern.

Ein Verbindungsabbruch hat immer einen Transaktions-
abbruch zur Folge.

Lange Transaktionen beinhalten unter Umstanden einen
gewollten oder ungewollten Unterbruch der Verbindung:
Sie mussen in der Regel selber implementiert werden.

Der wesentliche Vorteil einer Transaktion, die im Rahmen einer Verbindung ablauft ist,

Arno Schmidhauser

dass das Datenbanksystem selber entscheiden kann, wann die Transaktion

zwangsléufig abgebrochen werden muss: Beim Verbindungsabbruch und damit
auch bei einem allfélligen Servercrash. Kann oder muss eine Transaktion einen
Verbindungsunterbruch tiberdauern, muss das Datenbanksystem in der Lage sein,
alle Hilfsdaten der Transaktion (zum Beispiel Transaktionsname und gesetzte
Locks) dauerhaft aufzubewahren. Dies ist bei allen gadngigen Datenbank-Produkten

aber nicht der Fall.

Juni 2006

Seite 129

Kurs Datenbanken

Unterstutzung fur lange Transaktionen

 Das Zeitstempelverfahren erlaubt das Abwickeln langer

Transaktionen (READ COMMITTED-Garantie und
Vermeidung von Lost Updates) innerhalb einer
technischen Transaktion/Verbindung.

e Das Versionenverfahren von Oracle erlaubt das Abwickeln

langer Lesetransaktionen (Daten mit REPEATABLE READ
Garantie) innerhalb einer technischen
Transaktion/Verbindung.

Arno Schmidhauser

Juni 2006

Seite 130

Kurs Datenbanken

Zusammenfassung

Generische Basismechanismen fur das Concurreny Control
werden von der Datenbank zur Verfugung gestellt.

Fur kurze Transaktionen und niedrig belastete
Datenbanken kann generell mit dem héchstem
Isolationsgrad gearbeitet werden.

Bei hoher Datenbankbelastung muss eine schwachere
Einstellung des Isolationsgrades gepruft werden.
Lange Transaktionen erfordern immer eine

problembezogene Vorgehensweise um Performance- und
Korrektheit der Daten unter einen Hut zu bringen.

Arno Schmidhauser

Juni 2006

Seite 131

Kurs Datenbanken

Recovery

Aufgaben
Fehlerarten
Logging
Fehlerbehebung

Arno Schmidhauser

Juni 2006

Seite 132

Kurs Datenbanken

Arno Schmidhauser Juni 2006 Seite 133

Kurs Datenbanken

Das Recovery-System

Das Recovery-System eines DBMS enthalt alle Hilfsmittel zum
Wiederherstellen eines korrekten Datenbank-zustandes nach

— Transaktionsfehlern
— Systemfehlern
— Plattenfehlern

Das Recovery-System garantiert die Atomaritat und Dauerhaftigkeit
einer Transaktion (ACID Regel).

Das Recovery-Systems basiert auf dem Fuhren eines Lodfiles, in
welchem Anderungen protokolliert werden.

Abschatzen und Uberwachen der Grosse und Festlegen des
Speicherortes fur das Logdfile sind zwei wichtige Aufgaben der
Datenbank-Administration

Das Recovery-System bestimmt wesentlich die Performance eines Datenbanksystems.
Eine Faustregel geht von 10-100 Transaktionen pro Sekunde aus. Die Zahl ergibt
sich dadurch, dass spatestens bei Transaktionsende fur jede Anderungstransaktion
einige 1/0-Pages ungepuffert auf das Logfile geschrieben werden missen.

Bei hoher Transaktionslast kann die Anzahl Transaktionen pro Sekunde z.B.

Arno Schmidhauser

wesentlich erhéht werden, wenn die Anderungen mehrerer Transaktionen
zusammen auf das Lodfile geschrieben werden kdnnen ("grouped commit").

Juni 2006

Seite 134

Kurs Datenbanken

Fehlerarten

- Transaktionsfehler
— Rollback-Befehl durch Applikation
— Verletzung von Integritatsbedingungen
— Verletzung von Zugriffsrechten
— Deadlock
— Verbindungsunterbruch oder Client-Crash

e Systemfehler
— Stromausfall, Hardware- oder Memory-Fehler

e Plattenfehler

— Speichermedium wird physisch defekt, Fehlfunktionen
des Controllers

Transaktionsfehler sind relativ haufig und mussen effizient gehandhabt werden. Die
Aufgabe der Datenbank ist es, den Zustand der Daten wie vor der Transaktion
wieder herzustellen.

Bei Systemfehlern (auf Serverseite) gehen laufende Transaktionen und alle Memory-
Inhalte des Servers verloren. Die Aufgabe des Datenbanksystems beim Restart ist
es, den jungsten korrekten Zustand der Datenbank wieder herzustellen. Dazu
mussen die Anderungen aller zum Fehlerzeitpunkt laufenden Transaktionen
riickgangig gemacht werden. Die Anderungen aller zum Fehlerzeitpunkt korrekt
abgeschlossenen Transaktionen, welche aber nur im Memory abgelegt waren,
muissen anhand des Lodfiles rekonstruiert werden.

Bei Plattenfehlern hilft nur eine Wiederherstellung der Datenbank aus speziellen
Backup-Kopien (On-Line-Backups). Die Aufgabe der Datenbank besteht darin,
regelmassig solche Backups herzustellen.

Arno Schmidhauser Juni 2006 Seite 135

Kurs Datenbanken

Beachte, dass eine wegen einem Deadlock abgebrochene Transaktion nicht durch das
DBMS wiederholt werden kann! Beispiel:

begin transaction

select lohn from Mitarbeiter where mitarbld = 9

// Applikation berechnet: neuer_lohn = f(lohn)

update Mitarbeiter set lohn = neuer_lohn where mitarbld = 9
// hier beispielsweise Deadlock ...

Durch den Abbruch der Transaktion werden die Sperren auf dem Mitarbeiter-Datensatz
freigegeben. Das DBMS kann also nicht garantieren, dass das Attribut 1ohn noch
denselben Wert hat wie beim ersten select. Da es die Funktion f nicht kennt,
kann es nicht entscheiden, ob der update nochmals durchgefuhrt werden darf oder
nicht.

Arno Schmidhauser Juni 2006 Seite 136

Kurs Datenbanken

Ablauf von Modifikationsbefehlen

SQL-Befehl eines Clients

2. Neue Datenwerte

1. R
Alte und neue Workspace
Datenwerte

Checkpoint (Gelegentlich)

DB-Storage

Im Logfile werden die Datensétze mit ihrem neuen und alten Zustand abgelegt. Damit
ist grundséatzlich eine Wiederherstellbarkeit der Datenbank nach vorwarts wie nach
rickwarts gewahrleistet.

Der Workspace ist ein von der Datenbank vollstandig kontrollierter Cache der
permanenten Datenbank (DB-Storage). Hier befinden sich alle in Gebrauch
stehenden Datensétze. Der Workspace wird zu bestimmten Zeitpunkten auf die
permanente Datenbank zuriickgeschrieben.

Die Bewirtschaftung des Logdfiles kann nach zwei Strategien erfolgen:

1. Jeder SQL-Befehl wird sofort und ungepuffert protokolliert. Damit besteht
keine Abhéngigkeit vom Status des Workspace und des Ausfiihrens eines
Checkpoints. Gleichzeitig ist diese Variante aus Performance-Sicht etwas
langsam.

2. Das Logfile hat einen eigenen Cache. Dieser muss jedoch spatestens beim
Commit-Befehl oder vor einem Checkpoint in das permanente Lodfile
ubertragen werden. Vorteil: mehrere commit-willige Transaktionen kénnen
zusammengefasst werden und deren Anderungen in einem Durchlauf vom
Cache des Logfiles in das permanente Logfile geschrieben werden. Nachteil:
Schwieriger zu implementieren fur den DB-Hersteller. Eine Applikation muss
eventuell auf den Commit-Befehl etwas langer warten.

Die Variante 2 ist aus globaler Sicht effizienter, aus lokaler Applikationssicht
kann sie schlechter sein.

Arno Schmidhauser Juni 2006 Seite 137

Kurs Datenbanken

Logging, Beispiel
M11
T1 DO —
M21 M22
T2 — I~
M31 M32
T3 = L }
M41 M42
T4 —0 =
Zeit
Checkpoint Systemfehler
fwlzllolle][zl[el[zl[el[z][®|[m|[z]lollz][=]|[=]
IRIE R EREIRIYISIRI RIS
—|H—|—|H—|»—‘4»—‘(£9N—|NXN
= 2| & s 3113 d 3
~ I~
Logfile — K;' K)‘
]
w |l
5|E
RN

Das hier vorgestellte Logging dient der Behebung von Transaktions- und
Systemfehlern. Es gibt verschiedenste Varianten in der Logging-Technik. Die hier
prasentierte entspricht einem "guten Durchschnitt" der bekannten DB-Systeme,
ohne allzu stark auf Details einzugehen. Sehr genaue Informationen sind in [3] zu
finden.

Das Lodfile

« Jeder Eintrag im Lodfile ist mit einer LSN (Log Sequence Number) eindeutig
identifiziert. Die LSN entspricht der Adresse des Eintrages. Alle Eintrage einer
bestimmten Transaktion sind untereinander ruckwartsverkettet, damit eine
effiziente Behandlung von Transaktionsfehlern mdglich ist.

Alle Eintrage im Logfile mussen permanent sein. Das Schreiben in das Logdfile darf
nicht gepuffert sein.

- Jede Anderung am Transaktionsstatus eines Client-Prozesses wird im Logfile
festgehalten. Es wird also der Beginn einer Transaktion (BOT), der Commit (CMT)
oder Rollback (RBK) festgehalten. Ein Rollback-Eintrag wird durch das
Datenbanksystem auch erzeugt, wenn der Transaktionsabbruch erzwungen ist, z.B.
durch einen Deadlock.

« Bei jedem SQL-Befehl, der Anderungen am Datenbestand zur Folge hat, werden die
alten und neuen Datenwerte, inkl. Transaktionsnummer und Verweis auf die
zugehorige Datenadresse in der Hauptdatenbank, protokolliert. In der Regel
werden ganze 1I/0-Page in das Lodfile geschrieben (physisches Logging). Die
Platzverschwendung steht dabei einer effizienten Wiederherstellung der Datenbank
gegeniber.

Eine 1/0-Page mit den alten Werten ("'Before-lmage") wird fur die Wieder-
herstellung des Datenbankzustandes bei nicht korrekt abgeschlossenen
Transaktionen verwendet. Eine 1/0-Page mit neuen Werten ("After-lmage™) wird
zur Wiederherstellung nach Systemfehlern bendétigt, wenn eine Transaktion zwar
korrekt beendet wurde, deren neue Datenwerte aber noch nicht vom Datenbank-
Buffer in die physische Datenbank (Festplatte) geschrieben werden konnte.

Arno Schmidhauser Juni 2006

Seite 138

Kurs Datenbanken

« Jeder Checkpoint (siehe unten) mit Verweisen auf die laufenden Transaktionen
wird ebenfalls im Lodfile festgehalten.

Checkpoint

Als Checkpoint bezeichnet man den Zeitpunkt, an dem modifizierte 1/0-Pages im
Workspace der Datenbank auf das Speichermedium (Festplatte) geschrieben
werden. Aus der Sicht von Benutzerprozessen méchte man méglichst wenige
Checkpoints durchfiihren, da diese die Performance negativ beeinflussen. Aus Sicht
einer raschen Wiederherstellung der Datenbank nach einem Crash méchte man
moglichst viele Checkpoints durchfihren. Zwingend wird ein Checkpoint, wenn der
Workspace fir alle modifizierten Seite zu klein wird. Nach dem Checkpoint kdnnen
alte, nicht mehr bendtigte 1/0-Pages, ob geandert oder nicht, entfernt werden.

Grasse des Lodfiles
jede Anderung eines Datensatzes erfordert die Speicherung des alten und des
neuen ganzen Datensatzes im Lodfile. Eingefligte resp. geléschte Datensatze
erfordern das Abspeichern des Datensatzes im Log. Die Grdsse des Logdfiles wéachst
also proportional zur Anzahl Anderungen. Da das Logfile haufig fur inkrementelle
Backups verwendet wird, muss geniigend Platz fur alle Anderungen zwischen zwei
Backups vorhanden sein:

Grosse=a*(((m*g*2)divp)+p)

a = Anzahl Transaktionen, die im Logfile aufbewahrt werden missen
m = Anzahl geanderte Datenséatze pro Transaktion

g = Grosse eines geanderten Datensatzes

div = Ganzzahl-Division, (3 div 2 ist also beispielsweise 0)

p = Seitengrésse der Datenbank (typischerweise ca. 2048 Bytes)

Beispiel: 1000 * ((10 * 2 * 1000) div 2048 + 2048) = 200 MB

Eine exakte Berechnung ist schwierig, da weitere Hilfsinformationen im Lodfile
abgelegt werden, was die Grosse erhoht. Eventuell kénnen Transaktionen
zusammengefasst werden, wenn sie zeitlich sehr nahe beeinanderliegen, was die
Grosse verkleinert. Gewisse Datenbanken bewahren nur die neuen Datenwerte auf,
weil die alten ausschliesslich im Cache gehalten werden. Dann entfallt der Faktor 2.

Arno Schmidhauser Juni 2006 Seite 139

Kurs Datenbanken

Behebung von Transaktionsfehlern

Bei einem Transaktionsfehler werden aus den ruckwarts
verketteten Transaktionseintrdgen im Lodfile die alten
Daten (Before Images) in den Cache Ubertragen.

Das Datenbanksystem fuhrt hierzu fur jede laufende
Transaktion einen Verweis auf den letzten Log- Eintrag
mit. Der Transaktionsabbruch wird im Logfile ebenfalls
protokolliert.

Beispiel: Fur Transaktion T3 mussen die Before-Images
von M31 und M32 zurickgeladen werden.

Arno Schmidhauser

Juni 2006

Seite 140

Kurs Datenbanken

Behebung von Systemfehlern

e Gewinner- und Verlierer-Transaktionen ermitteln

e Verlierer-Transaktionen mit Hilfe der Before-Images
zurucksetzen

» Gewinner-Transaktionen mit Hilfe der After-lmages noch
einmal durchfuhren

 Checkpoint durchfiihren
* Beispiel

— Gewinner: T2 -> M22 nachspielen.
— Verlierer: T3 und T4 -> M31, M41 zuricksetzen.

Bei

Arno Schmidhauser

m Restart des Datenbanksystems wird folgendes Recovery-Prozedere angewendet:

Ausgehend vom letzten Checkpoint werden Gewinner- und Verlierer-Transaktionen
ermittelt. Gewinner sind alle, fur die ein Commit-Eintrag existiert. Verlierer sind
alle, fur die ein Rollback oder gar kein Eintrag vorliegt.

In einem Redo-Lauf werden alle 1/0-Pages in den Workspace zuriickgeladen. Es
mussen nur 1/0-Pages berucksichtigt werden, die jinger als der letzte Checkpoint
sind.

In einem Undo-Lauf werden von den Verlierer-Transaktionen alle 1/0-Pages mit
den alten Datenwerten ("Before-Images") in den Workspace zurlickgeladen. Das
Logdfile wird hierzu ruckwarts abgearbeitet. Die Logdfile-Eintrage missen
zuruckreichen bis zum Beginn der &altesten beim letzten Checkpoint noch laufenden
Transaktion.

Beachte, dass bei Verlierer-Transaktionen auch alle 'Before-Images' vor dem
Checkpoint bendtigt werden. Wurde nédmlich eine Verlierer-Transaktion bei einem
Rollback (nach dem Checkpoint) bereits einmal zuriickgesetzt, ist diese
Rucksetzung durch den Systemfehler ev. zunichte, wenn noch kein weiterer
Checkpoint stattgefunden hat.

Anschliessend an das Recovery wird ein Checkpoint ausgel6st und die Datenbank
far den Multiuser-Betrieb freigegeben.

Juni 2006

Seite 141

Kurs Datenbanken

Neuere Datenbanktechnologien (Objektdatenbanken) verfolgen einen Pure-Redo
Strategie. Diese geht davon aus, dass samtliche Anderungen einer Transaktion bis
zum commit-Befehl, rollback-Befehl oder Transaktionsabbruch im Speicher des
Benutzerprozesses, rsp. in einem fiur ihn reservierten, privaten Workspace der
Datebank gehalten werden kdnnen. Bei einem Transaktionsabbruch wird einfach
dieser Workspace freigegeben. Das DBMS muss lediglich noch den Abbruch der
Transaktion notieren und allfallige Sperren freigeben. Bei korrektem Abschluss der
Transaktion mit einem commit-Befehl werden alle modifizierten Daten (After-
Images) zum DBMS ubertragen, dort in das Logfile geschrieben und anschliessend
in die Datenbank Ubertragen. Bei einem Crash des DBMS muss bei der
Wiederherstellung lediglich der Inhalt des Lodfiles seit dem letzten Checkpoint
nochmals auf die Datenbank Ubertragen werden (Redo-Lauf).

Arno Schmidhauser Juni 2006 Seite 142

Kurs Datenbanken

Plattenfehler

1. Massnahme: Ausfallrate von Platten verkleinern durch
— Plattenspiegelung (via Datenbanksystem)
— RAID System (via Betriebssystem)

2. Massnahme: On-Line Backup erstellen. Nur On-Line
Backups garantieren die Wiederherstellbarkeit einer
Datenbank nach Plattenfehlern.

Betriebssystem-Backups sind ungeeignet!

Plattenspiegelung vom Datenbanksystem selbst (Sybase) zur Verfugung gestelit.
Plattenspiegelung ist sehr effizient: Die Zeit flr den Schreibzugriff wird nicht
erhoht, da parallel geschrieben werden kann. Lesezugriffe werden bei guter DB-
Software sogar schneller, da beide Platten fur unterschiedliche Lesezugriffe benutzt
werden kénnen.

Beim RAID-5 Verfahren werden die Daten parallel auf zwei Disks geschrieben und
gleichzeitig wird Zusatzinformation fur die Korrektur kleinerer Fehler auf den
Platten gespeichert. RAID-5 besitzt eine sehr hohe Performance. Nachteil: Der
Ausfall einer Platte verlangsamt den Zugriff bis zur vollstandigen Rekonstruktion.
Defekte Controller kbnnen das beste RAID- System unbrauchbar machen.

Betriebssystem-Backups sind ungeeignet fur die Sicherung von Datenbanken, da sie
inkonsistente Datenbanken speichern. Mit Dateien aus einem Betriebssystem-
Backup kann eine abgesturzte Datenbank in der Regel nicht wieder hochgefahren
werden. Beispiel eines inkonsistenten Ablaufes des Betriebssystem-Backups (BB)
und des Datenbankservers (DB):

1. BB mach Backup von X1, 2: DB &ndert A nach A’ und B nach B’, 3. BB macht
Backup von X2. Beim Zurickladen des Backups wiirde B' auf nicht mehr existentes
A zeigen.

Arno Schmidhauser Juni 2006 Seite 143

Kurs Datenbanken

On-Line Backup

< Anforderungen

— Es wird ein konsistenter Datenbankzustand gesichert
oder es kann ein solcher aus dem Backup
rekonstruiert werden.

— Der Datenbankbetrieb muss wahrend dem Backup
weiterlaufen.

— Im Extremfall gilt: Jede bestéatigte Transaktion muss
bei einem Plattfehler rekonstruiert werden konnen.

e Schritte
1. Voller Backup
2. Inkrementeller Backup

Full Backup

1. Beginn des Backups im Logfile markieren.

2. Checkpoint durchfiihren, danach bis Backup-Ende keinen weiteren Checkpoint
durchfuhren.

3. Alle zur Datenbank gehdrenden Seiten (Dateien) sichern.

4. Als letztes die Before-Images aller beim Checkpoint laufenden Transaktionen in den
Backup Ubertragen.

5. Ende des Backups im Logfile markieren.

Effekt

Der Backup gilt fur den Zeitpunkt des Checkpoints, abzlglich der zu diesem
Zeitpunkt noch laufenden Transaktionen, und abzuglich der wahrend dem Backup
gestarteten Transaktionen.

Logfile kiirzen

Alle vor dem Checkpoint beendeten Transaktionen (commit oder rollback) kdnnen
nach dem Backup aus dem Logdfile geléscht werden.

Inkrementeller Backup

1.
2.
3.

Im Logdfile den Beginn des inkrementellen Backups markieren.
Checkpoint durchfuhren.

Alle After-Images der beim letzten Backup-Checkpoint laufenden und aller danach
gestarteten Transaktionen und bis zum jetzigen Checkpoint abgeschlossenen
Transaktionen sichern.

Ende des Backups im Logdfile markieren.
Das Lodfile kann anschliessend um die gesicherten Transaktionen gekirzt werden.

Arno Schmidhauser Juni 2006

Seite 144

Kurs Datenbanken

Ablaufbeispiel On-Line Backup

Tl T2 T3 B Logfile Kommentar

insert x insert x T1

backup database

TB wartet auf Commits aller bei BR laufenden
Transaktionen.

commit

TB fiihrt nun Checkpoint durch. Danach kein
Checkpoint mehr bis Backup-Ende.

Backup lauft nun ...

insert z nur im Memory, nicht auf DB Dateien

commit
insert y1 nur im Memory, nicht auf DB Dateien
insert y2 insert y2 T2
commit commit T2

TB schreibt die Before-Images der beim Checkpoint
laufenden Transaktionen auf den Backup

Backup ist beendet

Restore

Sic

Full Backup zurtckspielen.
Alle inkrementellen Backups nachspielen.

herung gegen Verluste zwischen zwei Backups (volle oder inkrementelle)

Full- und Incrementell-Backup schitzen nicht vor Verlusten zwischen zwei
Backups. Hier hilft nur das Fuhren einer gespiegelten oder zusatzlichen Logdatei
auf einem zweiten physischen Medium, damit die Logdatei sicher nicht verloren
gehen kann. Alternativ gibt es auch Systeme mit Log-Servern. Jede fertige
Transaktion wird im Rahmen des commit-Befehles an diesen Log-Server
weitergeleitet, der eines oder mehrerer Lodfiles auf unterschiedlichen Medien
fuhrt.

Varianten

Arno Schmidhauser

Es gibt zahlreiche Modifikationen und Untervarianten dieses Verfahrens.
Beispielsweise konnen wahrend dem Full-Backup weitere Checkpoints mdaglich
sein, um Memory-Probleme zu verhindern. Dann mussen aber die Before-Images
aller bei Backup-Beginn laufenden und aller spater erdffneten Transaktionen
aufgezeichnet, und spater dem Backup mitgegeben werden. Der Backup,
Uberspielt mit diesen Before-Images, wiederspiegelt dann einen konsistenten
Zustand zum Zeitpunkt des Backup-Beginnes.

Juni 2006

Seite 145

Kurs Datenbanken

Zugriffsoptimierung

e Zielsetzung

e Indexierung von Daten
e SQL Ausfuhrungsplan
e Optimierungshinweise

Fur eine gute Performance sind verschiedenste Software- und Hardware-
Komponenten verantwortlich. Oft kbnnen Mangel im Software-Bereich durch eine
schnellere CPU, grdssere Disk, mehr Memory usw. ausgeglichen werden.

Bei Datenbanken ist die Komplexitat einer schlecht optimierten Abfrage proportional
zum Produkt der Tabellengréssen. Die folgende Join-Abfrage Uber zwei Tabellen mit
je 10'000 Eintragen kann im schlimmsten Fall 108 Vergleichs- und
Verknupfungsoperationen zur Folge haben, im besten Fall kbnnen es weniger als
10°5. sein.

select name, vorname, strasse
from person, adresse
where person.persnr = adresse.persnr

Ein zentraler Aspekt bei der Performance-Optimierung ist die Art, wie das
Datenbanksystem eine Abfrage durchfihrt. Dabei spielen Indices eine wichtige
Rolle, aber auch gewisse Formulierungen im where-Teil eines SQL-Befehles. Diese
beiden Themen werden deshalb im Folgenden besprochen.

Weitere wichtige Aspekte der Optimierung sind:

e Clustering von Tabellen: Welche Tabellen sind physisch auf denselben 1/0-Pages zu
speichern, weil sie haufig in Joins gebraucht werden?

- Flllfaktor von Tabellen: Fihren grosser werdende Datensatze zu einer
Reorganisation der 1/0-Page?

« Parallelisierung von 1/0: Kénnen Logdfile, Metadaten und eigentliche Datentabellen
auf getrennten 1I/0O-Geréaten plaziert werden?

« Vermeidung von Wartezustanden im Multiuser-Betrieb!

Arno Schmidhauser Juni 2006

Seite 146

Kurs Datenbanken

Zielsetzung

e Ein zentrales Ziel der Abfrageoptimierung ist die Minimierung
des Zugriffs auf 1/0-Pages.

= Eine I/0-Page ist ein Datenblock fester Grosse, der am Stick
von einem Speichermedium gelesen oder darauf geschrieben
wird.

* Ein Query Optimizer erzeugt einen Query Execution Plan (QEP),
der den Ablauf einer Abfrage festlegt.

= Die Hilfsinformation fur die Planung einer Abfrage sind
verschiedenste Statistiken.

e Das primare Hilfsmittel fir die Durchfiihrung einer Abfrage ist
ein Index.

Die Grosse einer 10-Page ist abhdngig vom Produkt oder kann allenfalls bei der
Initialisierung einer Datenbank angegeben werden. Die Grosse liegt haufig bei 2
oder 4 KB. Bei konfigurierbaren Produkten kann etwa im Bereich von 2 — 32 KB
gewahlt werden.

Arno Schmidhauser Juni 2006 Seite 147

Kurs Datenbanken

Indexierung von Daten

e Ein Index ist eine Hilfsstruktur zum schnelleren Auffinden
von Datensatzen.

< Indices werden immer fur ein, allenfalls mehrere Attribute
einer Tabelle erzeugt.

e FUr Primér- und FremdschlUssel erzeugt das DMBS meist
selbststandig einen Index.

- Fur Attribute, die in Suchbedingungen oder Sortierklauseln
vorkommen, werden zusatzliche Indices erstellt mit:
create index ixname on table (attrl [,attrn]...)

e Indices haben meist die Struktur eines verzweigten,
ausgeglichenen Baumes (B*).

Indices werden durch den Datenbankadministrator rsp. Tabellenbesitzer erzeugt. Sie
dienen dem schnelleren Zugriff auf Datenséatze bei bestimmten Formen der where-
Klausel eines select-, update- oder delete-Befehles. Beispielsweise ist ein Index
Uber dem Namen einer Person sehr effizient einsetzbar fur das Auffinden von
Datensatzen, wenn die Suchbedingung lautet: where name = "Meier". Indices
werden auch benitzt, um die Eindeutigkeit von Priméar- und Sekundarschlisseln
festzustellen. Wenn eine SQL-Tabellendefinition eine primary key-Definition
enthalt, wird bei manchen Datenbanksystemen automatisch ein Index auf den
SchluUsselattributen erstelit.

Indices verschnellern unter vielen Umstanden die Abfrage von Daten, verlangsamen
aber auch Anderungsoperationen, weil bei jeder Anderung die Indexdaten
nachgefuhrt werden missen.

Indizes werden fast immer als zusétzliche Struktur neben den eigentlichen Tabellen
erstellt und verwaltet. In grésseren Datenbanksystemen kdnnen aber auch die
Basistabellen selbst nach einer Indexstruktur abgelegt sein.

Achtung: uUber die Verwendung eines Index entscheidet immer das Datenbanksystem!
Der Benutzer setzt lediglich einen SQL-Befehl Uber Tabellen ab.

Indices kénnen wesentlich mehr physikalischen Platz beanspruchen als die
eigentlichen Nutzdaten. Ein Faktor 10 ist durchaus nicht ungewdhnlich.

Indices kénnen nur auf "kurzen" Datentypen wie varchar, integer, float, date etc
erstellt werden.

Arno Schmidhauser Juni 2006 Seite 148

Kurs Datenbanken

Index-Typen

B*-Baume sind heute der haufigste Indextyp in Datenbanksystemen. Die Zugriffszeit
auf bestimmte Datensatze wéachst nur logarithmisch mit der Anzahl vorhandener
Datensatze und nicht proportional wie das ohne Index der Fall wére. B*-Baume
erlauben die indexunterstutzte Suche nach Daten, wenn die Suchbedingungen
einen oder mehrere Vergleichsoperatoren =, >, <, >=, <= und like enthalt.
Ausserdem kénnen sie fur die sortierte Ausgabe von Datensatzen eingesetzt

werden.

Hash-Tabellen als Indices erlauben einen extrem schnellen Zugriff auf einzelne
Datensatze. Die Zugriffszeit ist konstant und unabh&ngig von der Anzahl
Datensatze! Jedoch kénnen Hash-Tabellen nur fir Suchbedingungen mit dem
Operator = eingesetzt werden und Sie sind nicht fur die sortierte Ausgabe von

Daten geeignet.

Juni 2006 Seite 149

Arno Schmidhauser

Kurs Datenbanken

B*-Index

| Z, |W1| z, ‘WZI z, | freier Platz | Knoten (1/0-Page)

|

2z, W, |z, |W,|z,| freierplaz || || z,|w,|z, |[w,|z,| freierplatz |

IP S, | D, | S, |D,| freier Platz NﬂP S, | D, | S, | D, | freier Platz NI

5
Q
%
o
)
5
RERNIRBRERBR RR R, RZIR3IR4IR5IR6IR7I
Zo, Z4, Zy Zeiger auf Knoten
W,, W, Wegweiser-Schlissel (fiktive Schlissel)
S, S, Effektive Schllssel (entsprechen Daten)
D,, D, Zeiger auf Datensatze
P, N Zeiger auf Vorganger- resp. Nachfolge-Knoten
Ri, R, Datensatze

Ein Knoten entspricht einer 1/0-Page. Jeder Knoten enthélt eine Anzahl
Wegweiserschlussel. Innerhalb des Knotens sind die WegweiserschlUssel sortiert,
und auf jeder Ebene von Knoten liegen die Wegweiserschlissel von links nach
rechts ebenfall sortiert vor. Vor jedem Wegweiserschlissel W; weist ein Zeiger auf
einen Knoten, dessen Wegweiserschlussel kleiner als W, sind. Nach dem letzten
Wegweiserschlissel W, in einem Knoten weist ein Zeiger auf einen Knoten, dessen
Wegweiserschlissel grosser oder gleich als W, sind. In den Blattern des Baumes
sind die tatsachlich in der Datenbank existierenden Schlusselwerte abgelegt,
zusammen mit einem Zeiger auf den eigentlichen Datensatz. Die Blattknoten sind
untereinander als lineare Liste verbunden.

Die Wegweiserschlussel kbnnen tatsachlichen Schlusselwerten entsprechen oder
Abkirzungen sein.

Der Zugriff auf einen Datensatz mit einem bestimmten Schlisselwert benétigt rund
w+1109(N/k) + 1 + 1 Zugriffe auf 1/0-Pages. k bedeutet hier die Anzahl Schlussel
pro Knoten, N die Anzahl Schlussel (rsp. Datensatze in der zugehdrigen
Basistabelle). Fur das Auffinden jedes weiteren Datensatzes der dem Schlusselwert
genugt sind dann hdchstens noch zwei Zugriffe notwendig, weil die Schlusselwerte
uber alle Blattknoten sortiert vorliegen.

In praktischen Fallen, wo die Anzahl Schlissel pro Knoten typischerweise grosser als
10 ist (h&aufig sogar grdsser als 100), kann einfach gerechnet werden:

Anzahl Knotenzugriffe, um einen Datensatz zu finden = \log(N/k) + 1 + 1, bei
1'000'000 Datensatzen und 100 Schlisseln pro Indexknoten also beispielsweise 4
Zugriffe.

Arno Schmidhauser Juni 2006 Seite 150

Kurs Datenbanken

B*-Index, Beispiel

Index

L

| ; '
cCl|D E|E G| G K|L N | O P|R T| X
al a dlm a| o ulo [t e|lo|_ |lhle
rin gli b|n r|r c|h t] | o|n
m| i all it t|e o |m e | f m| o
e | el r h n I'la r a
n r z a r s

Daten

Xeno Emil

Mdller Huber

Waldstr. 8 Schlosswegl

Dieser Index enthélt 2 Schlusselwerte pro Knoten.

Von jedem Knoten gehen daher 3 Zeiger auf weitere Knoten aus. Der
Verzweigungsgrad ist daher 3. Pro Ebene multipliziert sich die Anzahl Knoten um
3. Die unterste Ebene mit den Blattknoten muss breit genug sein, um alle
vorkommenden Schlisselwerte aufzunehmen. In diesem Beispiel gabe es also fir
eine Tabelle mit 1000 Eintragen gesamthaft 6 Ebenen: 3% Knoten * 2 Eintrage pro
Knoten = 1458 Eintrége.

Der Zugriff auf einen Datensatz via Index benétigt also: 3log(1000/2) +2 =8
Zugriffe auf Knoten.

Verzweigungsgrad = Anzahl ausgehende Zeiger von jedem Knoten = Anzahl Schlussel
pro Knoten + 1.

Arno Schmidhauser Juni 2006

Seite 151

Kurs Datenbanken

Anwendungsmaglichkeiten B*

e Auffinden einzelner Datensatzen eines bestimmten
Schlusselwertes. Beispiel:
where name = “Meyer*

« Auffinden von Datensatzen in einem bestimmten
Schlusselbereich.Beispiel:
where gebdatum between "1.1.2000° and 1.1.2001

e Sortierte Ausgabe von Daten. Beispiel:
order by name

e Auffinden von Datensatzen wenn nur der Anfang des

Schlussels bekannt ist. Beispiel:
where name like "M%*"

Mit einem B*-Indices auf dem Attribut att kdnnen Datensatze gesucht werden, fir die
Bedingungen der folgenden Art gelten

where att op wert (op ist dabei einer der Operatoren =, >, <, >=, <=, like)
where att > wertl and att < wert2

order by att

Weil die Zeiger auf die eigentlichen Daten und die effektiven Schllisselwerte erst in
den Blattknoten vorkommen, kdnnen die inneren Knoten wesentlich starker
gepackt werden, also mehr Zeiger und Wegweiser-Schliussel enthalten. Damit ist
die Tiefe des Baumes kleiner und das Auffinden einzelner Datensatze ist noch
effizienter als bei der in Algorithmen-Blchern haufig beschriebene B-Baumen.
Letztere enthalten in jedem Knoten vollstandige Schlisselwerte und Zeiger auf
Datensatze.

Arno Schmidhauser Juni 2006 Seite 152

Kurs Datenbanken

Join-Bildung

e Joins sind ein zentrales Konstrukt in SQL. Sie werden
hauptsachlich in drei Varianten durchgefuhrt.

— Kartesisches Produkt
e Doppelte Schlaufe zur Abarbeitung der Tabellen
e Aufwand M/k; * N/k,

— Lookup Join
- Aussere Tabelle durchlaufen, fir innere Tabelle Index verwenden.
« Aufwand M/k; * (,log(N/k,)+2)

— Sort-Merge
= Beide Tabellen sortieren, dann abgleichen
= Aufwand M*,log(M) + N*,,log(N) + (M/k,+N/k,)

Kartesisches Produkt
Beide Tabellen werden in einer doppelten Schlaufe abgearbeitet. Es werden keine
bestehenden Indices benétigt. Das kartesische Produkte wird angewendet bei sehr
kleinen Tabellen (wenige 1/0-Pages), wo eine Sortierung oder temporére
Indexbildung nicht lohnenswert ist.

Lookup-Join
FUr jeden Datensatz in der &usseren Tabelle wird via einen Index der inneren
Tabelle der zugehérige Datensatz ermittelt. Lookup-Joins sind effizient, wenn die
aussere Tabelle wesentlich kleiner ist als die innere. Die aussere Tabelle kann
dabei einer realen Tabelle entsprechen, oder das Zwischenresultat einer bereits
ermittelten Abfragebedingung auf dieser sein.

Sort-Merge Join
Beide zu verbindenden Tabellen werden zuerst nach dem Join-Attribut sortiert.
Anschliessend werden die sortierten Tabellen gegeneinander abgeglichen (Merge).
Die Sortierung der einen oder anderen Tabelle kann entfallen, wenn fir das zu
sortierende Attribut ein Index besteht. Sort-Merge Joins sind sehr effizient, wenn
beide beteiligten Tabellen etwa gleich gross sind. Wenn fur beide Tabellen ein
Index auf dem Join-Attribut vorhanden ist, besteht der Aufwand lediglich im
Mischen der Blatter der beiden Indexe. Das Verfahren ist dann extrem effizient.

Es gibt viele weitere Algorithmen und Varianten der obengenannten Verfahren zur
Join-Bildung. Zu erwadhnen ist hier noch der in letzter Zeit haufiger anzutreffende
Hash-Join: Aus jedem Datensatz wird fur den Wert der Join-Attribute ein Hashwert
berechnet. Datensatze mit gleichem Hashwert aus den beiden Tabellen kommen in
einen Bucket pro Hash-Adresse. Am Schluss wird der Inhalt jedes Buckets durch
Verknupfen der Datensatze der linken und rechten Tabelle verarbeitet und
ausgegeben.

Arno Schmidhauser Juni 2006

Seite 153

Kurs Datenbanken

Ausfuhrungsplan

e Eine Ausfuhrungsplan (QEP) bestimmt, mit welchen
Indexzugriffen, mit welchen Join-Methoden usw. eine
Abfrage durchgefuhrt wird.

e Das DBMS kann fur den ermittelten Ausfihrungsplan
Informationen anzeigen Uber

— Verwendete Basistabellen, Indices, Hilfstabellen
— Angewendete Operationen
— Bendtige Anzahl 1/0-Operationen und CPU-Zeit

« Anhand des Ausfuhrungsplanes kdnnen kritische Teile
einer Abfrage identifiziert und ev. umformuliert oder neue
Indices definiert werden.

Die Ermittlung des Ausfuhrungsplanes ist eine sehr komplexe Aufgabe, die viel Zeit in
Anspruch nehmen kann. Fir die Anwendungspraxis ist es meist ausreichend, die
wichtigsten Faktoren zu kennen, welche eine Abfrage schnell oder langsam
machen. Entsprechend sind dann die Abfragen zu formulieren oder Indices auf
Tabellen zu setzen. Die Besichtigung des Ausfuhrungsplanes mit den effektiven
benétigten 1/0-Operationen dient der Uberpriifung der Performance.

Ein Datenbanksystem ist ohne weiteres in der Lage, eine Abfrage Uber eine grosse
Anzahl Tabellen (>10) hinweg vernunftig zu optimieren.

In Sybase wird die Anzeige des Ausfihrungsplanes und der 1/0-Statistik mit set
showplan on, set statistics time on und set statistics io on aktiviert.

Arno Schmidhauser Juni 2006 Seite 154

Kurs Datenbanken

Optimierungshinweise

Auf Primar- und Fremdschliisselattributen einen Index
erstellen.

Fur Attribute, die haufig in der order by Klausel
auftreten, einen Index erstellen.

Indices beschleunigen Abfragen, aber verlangsamen
Anderungen.

Der Boolsche Operator NOT und der Vergleichsoperator
<> sind nicht optimierbar.

Ausdriucke mit dem Vergleichsoperator LIKE sind nur
optimierbar, wenn allféllige Wildcards nicht am Anfang
des Suchmusters stehen.

Ausdricke mit einem Funktionsaufruf Gber einem
Attribut sind nicht optimierbar.

Where-Klausel als optimierbaren Ausdruck gestalten:

Optimierbarer Ausdruck = Indexiertes Attribut VglOp Einfacher Ausdruck

Ein einfacher Ausdruck enthalt Attribute, Konstanten und Funktionen davon.

Optimierbarer Ausdruck = Optimierbarer Ausdruck BoolOp Ausdruck

Vglop & { <, >, <=, >=, =, LIKE, BETWEEN }

BoolOp «{ AND, OR }

Arno Schmidhauser

Juni 2006

Seite 155

