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1 Stabilité d’une pente infinie - glissement plan

1.1 Cas sans eau
1.1.1 Approche par facteur de sécurité

On se réfere a la Fig. 1. On étudie le cas d’'un glissement plan paralléle & une surface inclinée infinie
d’inclinaison 8.

On définit le facteur de sécurité comme le rapport entre la force résistante le long du glissement Fi.cgistane =
T et la force motrice venant de l'inclinaison du terrain Fj,oprice -

Comme la pente est infinie on peut raisonner sur un élement unitaire L = 1 dans la direction de la pente
(cf. Fig. ). Le poids W de cet élement est simplement

W =~Ld =~vyLH cos 8
La composante normale du poids sur la surface de glissement est donc
Wn =N =Wcosp
et la composante tangentielle qui est la force motrice
W1 = Frotrice = Wsin 3

La force résistance le long du glissement plan est obtenu en utilisant le critére de Mohr-Coulomb qui relie
la contrainte normal et tangentielle a la rupture

Fresistance =T =cL+ Ntan gb

On obtien t donc le facteur de sécurite

Fresistance - cL+W Cosﬂtangb
Fmotrice W sin B

F@Z

que 'on peut réecrire
c tan ¢

F =
* yHsinfcosf  tanf
et on retrouve bien le résultat intuitif que pour un sol sans cohésion, I'inclinaison de la pente maximale est
égale au coeflicient de friction du sol (angle au repos).

1.1.2 Lien avec ’analyse limite

On se propose de faire maintenant un raisonnement similaire par une approche cinématique en analyse limite
- qui nous donnera donc une borne supérieure. Ici, on fait également le calcul pour un élément unitaire le
long de la surface de rupture.

L’analyse limite est basé sur le modéle rigide plastique. On prendra tout d’abord un critére de Mohr-
Coulomb associé. On a vu (cf cours d’analyse limite), que le long d’une surface de glissement, pour un critére
de Mohr-Coulomb de type associé la discontinuité de vitesse (qui vu que seul la partie supérieure de la pente



Figure 1: Glissement plan & une profondeur H - pente infinie.

bouge correspond ici a la vitesse de la partie supérieure de la pente qui glisse) U fait un angle égale & ¢ avec
la surface de glissement.
La puissance des efforts extérieurs dans ce cas est:

Pewt(U) = / AU,dV = ~||U||sin(3 — ¢) x L x H cos 8
v
et la puissance dissipée le long de la surface de glissement (puissance résistance maximale) est
Pres (1) = / || U]| cos gds = || T cos é x L
L

et on obtient en utilisant le ratio de la puissance dissipée et de la puissance extérieure et la puissance des
effort extérieurs, le coefficient de sécurité suivant:

FUB _ ccos o
*  ~HcosBsin(3 — ¢)

et pour un sol de cohésion nulle, ce facteur de sécurité est zero ! On aurait pu déja déduire ce résultat car la
puissance dissipée est facteur de c.

1.1.3 Ecoulement plastique non-associé

Ce résultat non-intuitif et différent de celui précedemment obtenu est du & I’hypothése de plasticité associée.
Une telle hypothése n’est pas réaliste car le fait que le vecteur vitesse fait un angle égal au coefficient de
friction implique une dilatance continue pendant la déformation. Expérimentalement, on observe que aprés
une certaine distance de glissement la dilatance “sature” et la vitesse de glissement devient paralléle a la
surface de glissement. Il convient donc de lever la restriction de prendre un critére de plasticité non-associé.
On introduit donc un potentiel plastique g différent du critére de rupture f- dans le repére contraintes normale
/ tangentielle a la surface de glissement plan.

flon,7)=7—c—op,tan¢

g(on,7) =T — op tanyh
o 1 est 'angle de dilatance (¢ < ¢) avec

t; = o;;n; vecteurs contraintes sur Sy,
ts = T = s;04jn; contrainte de cisaillement sur Sy,

tn, = on = n;04;n; contrainte normale sur Sy,



ol n; est la normale & la surface de glissement Sy; et s; le vecteur tangent associé.

On écrira ’écoulement plastique non-associé sous la forme
99
]l = A t;) =0
([;]] d@ti f(t:)

ol A\g est un multiplicateur plastique de dimensions [L/T] ici et Agf = 0 et Ay > 0. on obtient donc

[[itn]] = —Aq tan v
[[is]] = A
soit
i)} = = [0 sine

([s]] = HUH cos 9
On peut donc calculer la puissance dissipée (unitaire) le long d’une surface de glissement pg;ss

Piss = ti [[til] = 7 [[ts]] + o [[tn]

avec la rupture f =0, i.e. 7=c+ o, tan¢

Daiss = (¢ + oy, tan @) HUH cos — o, sin 1)

0]

Pour une rupture développée ayant atteint I'état critique, la dilatance devient nulle (déformation purement
cisaillante), i.e. 1) = 0. On obtient alors

55, = (c+ o, tan ¢) HUH
ou le superscript C'S est une abbréviation de “critical state”.

En re-faisant a I’état critique le calcul pour cette surface de rupture plane infinie. La puissance des efforts
est également changée car la vitesse de glissement est paralléle au plan de glissement

Pront (U) = / ZU.AV = ||| sin(B) x L x H cos 3
1%
et la puissance dissipée est - comme o,, = % cos 3 = yH cos® 3

Paiss(U) = /Lpdissds = (c+~H cos® Btan ¢) ”UH L

et on obtient un facteur de sécurité

P c tan ¢
®  ~NHcosfsinfB tanf

On retrouve éxactement le résultat obtenu préalablement par une approche d’équilibre limite - qui faisait
Ihypothése implicite d’un écoulement non-associée (pas de dilatance). Il est important de se rappeler que
la dilatance du sol “sature” pour des déplacement suffisant et la déformation plastique s’éffectue alors sans
dilatance (sans changement de volume). L’hypothése d’un écoulement associé n’est pas réaliste pour analyser
des grand glissement. Les méthodes de stabilité des pentes se placent souvent a 1’état critique (sans dilatance
- écoulement non-associé) implicitement.

1.2 Présence d’eau

Faisons maintenant, le calcul pour le cas d’une nappe a une distance h,, du glissement plan. Dans ce cas
I’écoulement d’eau est paralléle au plan de glissement et & la surface. Il convient cette fois ci d’écrire le critére
de Mohr-Coulomb en contraintes effectives. La pression d’eau u le long de la surface de glissement est ici:

U = Y H,y cos 8



Figure 2: Pente infine avec écoulement paralléle

et sa résultante est ucos 8 x L. La force résistante (puissance dissipée / par la vitesse de glissement) devient
Fresistante = (C + ('7H - ’VwHw) COS2 B tan ¢) L

et le facteur de sécurité est maintenant

c (7H - ’YwHw) tan¢

Fs = N
vH sin 3 cos 8 vH tan

On notera que pour le cas H,, = H et un sol de cohésion nulle comme ,, = /2 , le facteur de sécurité
est divisé par 2 en présence d’eau !

(YH — ywHy) tang _ 1tang

F, = ~ =
vH tanB  2tanf

2 Stabilité d’un talus fini

2.1 Glissement plan

On se souvient que pour un talus vertical (8 = 7/2), les bornes de I’analyse limite (sup et inf) donnent (cf
semaine 2):
37300 gy 050

1 —sing c 1 —sing

et on avait obtenu par un calcul par Pextérieur (cinématique) en faisant ’hypotheése d’un glissement plan

vH * _ 4 cos ¢
c T 1—sing
On étend ici ce calcul au cas d’un talus d’inclinaison [.(sans écoulement d’eau). Les résultats seront
applicables soit & court terme (¢ = ¢,, ¢ = 0) notammant dans les argiles, soit pour le cas sans eau.

On se référe a la figure 3. Comme dans le cas d’un talus vertical (8 = 7/2), la puissance des efforts
extérieurs est:

Peat.(U) = / AU, dS = / Y| U|| cos(ex 4 ¢) dS
OAB OAB

. 1 1
=4||U|| cos(ax + ¢) x (§H2 tan o — 5[—[2 cot )



Figure 3: Talus incliné - glissement plan.

La puissance dissipée le long de la surface de glissement (modéle associé) est identique que pour le cas
vertical:

Paies (U) = / ol[U7] cos gds = —2—e|[T7] cos ¢
AB

cos (v
L’application du PPV donne ’expression suivante de la borne supérieure paramétrée par a:

ﬂ—Q cos ¢ 1
¢ “cos(a+ @) (sina — cosacot 3)

Il convient donc de minimiser cette expression par rapport 4 o pour obtenir la borne supérieure la plus petite.
Que 'on obtient pour e.

d . _
= cos(av + ¢) (sina — cosacot ) =0
sin(2a+ B8+ ¢) =0

& savoir pour

o+ 5

2
[On retrouve bien a = w/4 — ¢/2 pour le cas 8 = 7/2]. La borne supérieure est au final:

us
2

vH 4 cos psin 8

¢ 1—cos(f—9)

[On retrouve bien 4 cos ¢/(1 — sin ¢) pour le cas 8 = 7/2].
Le facteur de sécurité (rapport puissance dissipée max / puissnace des efforts exterieures) est

¢ 4dcosgsinf
* T NYH 1 —cos(B — ¢)

Le cas ¢ = 0, se simplifie en
c 4sinp c 4

s ~YH1—cosB ﬁtanﬁﬂ

2.2 Glissement circulaire

On effectue ici une approche de type equilibre limite qui est tres souvent utilisé en mécanique des sols -
attention cela différe de I'analyse limite par I’extérieur dans le sens que 1’on utilise pas le principe des travaux
virtuels.

Considérons le cas d’un talus inclinée dans un milieu purement cohérent (¢ = 0) de cohésion ¢ avec une
surface de glissement circulaire de rayon R passant par le bas de talus et ayant comme centre le haut du talus
(point O). 11 est classique de définir un coefficient de sécurité comme le rapport entre le moment résistant
(du a la cohésion sur le plan de glissement) et le moment moteur du au poids du sol en mouvement. On a ici

Mresistant =cX R(’IT - ﬂ) X R
M ppoteur = WSIH(B/Q) X |OG|



Figure 4: Talus inclinée - sol purement cohérent - glissement circulaire

avec le poids W de la section circulaire égal &
W = ~yR*(r — f)

La distance |OG]| entre le centre de gravité et le centre de la section circulaire est donnée par

_ 2Rsin(m — B)
01 = "5 —p)
On en déduit
3cR?(m — j3)

s 2vR3sin(8/2) sin(m — )
¢ 3(m—p)sinp

T NH?2 sin(8/2) sin(B)
_ ¢ 3(—-h)
~ ~H 2sin(3/2)
On notera que la limite
c 3 c
lim Fy=——+ ~3332—
B /2 vH 2V/2 vH

est différente de la meilleure estimation obtenue par analyse limite qui se situe entre 3.73 et 3.83 (
Ce résultat est une illustration du fait que les approches de type equilibre limite ne donnent ni une
sup ou inf. En revanche les estimations obtenues pour des ruptures de glissements sont assez proches et

donnent des résultats conservatifs.

2.3 Glissement circulaire avec écoulement

En pratique,pour des sols frottant, surfaces de glisement seront des spirales logarithmiques. Une premiére
approche consiste & garder 'hypothése d’un glissement circulaire mais de relacher ’hypothése que le centre
du cercle se situe en haut du talus et que le rayon du cercle de glissement est égal & H/sin 8. Il convient
alors d’optimiser par rapport & la position du centre du cercle afin d’obtenir le coefficient de sécurité le plus

faible.
Abaques de Caquot-Kérisel



2.4 Méthode des tranches (tiré de Lancellota)

8.19.2 Method of slices

The previous analysis is very effective in determining the safety factor when consid-
ering a homogeneous infinite slope and the failure mechanism is of the translational
type. The method of slices has been developed to analyse more complex situations,
and where more than one layer with different strength parameters is present, the
expected groundwater regime differs from simple patterns and the failure surface may
be composite.

In this method (see Figure 8.60) the soil mass is subdivided into a number of vertical
slices and the equilibrium of each slice is then considered. If a number of & slices is
considered, the unknowns are the following:

n forces NI normal to the base of each slice;

{n— 1) normal forces E and (n— 1) shear forces X; at the interface of slices;
n coordinates a to locate the normal forces N7

{n — 1) coordinates b to locate the interface forces EI.

If the further unknown of the safety factor is added (note that the safety factor gives
the possibility of expressing the shear forces at the bottom in terms of N ), then the
total number of unknowns is {57 — 2) to be compared with the number 3n of available
equilibrium eguations.

Presuming that the slices are so thin that the forces N} can be located on the cen-
troid of each slice, then there are (4m — 2} unknowns, but the problem still remains
statically undetermined. It is then necessary to introduce additional assumptions in
order to remove the extra unknowns. These assumptions usually refer to the interface
forces, and they explain the differences between various methods (see for example
Maorgenstern and Price, 1965; Sarma, 1973). In the sequel, we limit the presentation
to some approximate methods of analysis, which has been proved to give satisfactory
results.

ot E A
N

Figure 8.60 Method of slices.



8.19.3 Simplified Bishop method

In this method {Bishop, 1955), the failure surface is represented by a circuolar sliding
surface (rotational failure). With reference to Figure 8.61, equating the moment about
O of the weight of the soil with the moment of the forces acting on the sliding surface,
the safety factor is given by:

R ¥ [eth. 4 (N, — U.)tang’|

g.118
W, : :I

_tang’
End = E

Figure B.&1 Simplified Bishop method.



the magnitude of the mobilized shear strength being:

¢l +(N.— U.)ta
7 Gt (N~ Ujtang’

. - (8.119)
From the vertical equilibrium of the slice:
W, — T,sina; — N;cosa; — (X, — X;) =0, (8.120)

we can derive the value of N, and, by substituting this value into {8.118), the
expression of the safety factor becomes:

E[{ab.—+ Wil —r,)tang’ +(X; — Xjy4 Jtﬂ"w*lml]

F : (8.121)
3 Wsina,
where:
tangtana,
M, = cose, (1 + w) (8.122)

and r, is the ratio which gives the pore pressure as a function of the total weight of
the column of the soil above the considered point, i.e.:

..
r,= #

(8.113)

Assuming that X; — X; ., = 0 throughout, the factor of safety can be computed by
means of the approximate expression:

kM [{.sfb,- + Wi{1 - f"}tanl;ﬂ":lML]

F=
> W.sin o,

(8.124)

where M_ is given by (8.122).

Mote that in equation (8.124) the safety factor appears within the summation on the
r.h.s. as well on the Lh.s., so that an iterative procedure is needed. An initial valoe of
the safery factor is guessed (closed to unity) and inserted in the r.h.s. and the value of
F is computed. This value is the new input on the r.h.s. and the procedure is repeated
until an almost constant value of F is attained {usually three to four iterations provide
the required convergency).



Equilibre dans le repére normal - tangentiel & la ligne de glissement

ib; 'b; .
i + g% (W; + AX;)cosa; + AE;sine; =0

COS (&¢; COS «¢;
TRi — (Wz + AXl) sin oy — AEZ COS ¢y = 0

avec

b;
Tri = (' + o' tan ¢) /Fs
oS

et la définition du facteur de securité & partir de 1’équilibre global des moments par rapport au centre du
cercle de rupture:
>+ o' tang)b;/ cos oy
Zi Wi sin (77

F, =

Fellenius: AX; =0 et AE; =0 alors on obtient
o'b; = Wi cos® a — u;b;
et au final
S (b + (W cos? a — u;b;) tan ¢) / cos o
Yo Wisina

F, =

Bishop simplifié AX; =0 on obtient
AE; = Tg;/ cosa; — (W;) tan o

!
g bz Uibi
22— (W) cos a; —
COS (¢; COS (¢;

— Tgr; tan a; + (W;) tan «; sin

soit encore
tan o;

o'b; = (W; —u;b;) — (¢ + o’ tan ¢)b; =

i.e.
(' + o' tan ¢)b; (1 + tan o; tan ¢/ Fy) = ¢'b; + (W; — u;b;) tan ¢
d’oit on obtient le facteur de sécurité

1
/ . — . .
22(bit (Wi — wibi) tan g) x cosa; X (1 + tan a; tan ¢/ Fy)

Yo Wisina

F, =

10



