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1 Stabilité d’une pente infinie - glissement plan

1.1 Cas sans eau
1.1.1 Approche par facteur de sécurité

On se réfere à la Fig. 1. On étudie le cas d’un glissement plan parallèle à une surface inclinée infinie
d’inclinaison β.

On définit le facteur de sécurité comme le rapport entre la force résistante le long du glissement Fresistanc =
T et la force motrice venant de l’inclinaison du terrain Fmotrice .

Comme la pente est infinie on peut raisonner sur un élement unitaire L ≡ 1 dans la direction de la pente
(cf. Fig. ). Le poids W de cet élement est simplement

W = γLd = γLH cosβ

La composante normale du poids sur la surface de glissement est donc

WN = N = W cosβ

et la composante tangentielle qui est la force motrice

WT = Fmotrice = W sinβ

La force résistance le long du glissement plan est obtenu en utilisant le critère de Mohr-Coulomb qui relie
la contrainte normal et tangentielle à la rupture

Fresistance = T = cL+N tanφ

On obtien t donc le facteur de sécurite

Fs =
Fresistance
Fmotrice

=
cL+W cosβ tanφ

W sinβ

que l’on peut réecrire

Fs =
c

γH sinβ cosβ
+

tanφ

tanβ

et on retrouve bien le résultat intuitif que pour un sol sans cohésion, l’inclinaison de la pente maximale est
égale au coefficient de friction du sol (angle au repos).

1.1.2 Lien avec l’analyse limite

On se propose de faire maintenant un raisonnement similaire par une approche cinématique en analyse limite
- qui nous donnera donc une borne supérieure. Ici, on fait également le calcul pour un élément unitaire le
long de la surface de rupture.

L’analyse limite est basé sur le modèle rigide plastique. On prendra tout d’abord un critère de Mohr-
Coulomb associé. On a vu (cf cours d’analyse limite), que le long d’une surface de glissement, pour un critère
de Mohr-Coulomb de type associé la discontinuité de vitesse (qui vu que seul la partie supérieure de la pente
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Figure 1: Glissement plan à une profondeur H - pente infinie.

bouge correspond ici à la vitesse de la partie supérieure de la pente qui glisse) U̇ fait un angle égale à φ avec
la surface de glissement.

La puissance des efforts extérieurs dans ce cas est:

Pext(U̇) =

∫
V

γU̇zdV = γ‖U̇‖ sin(β − φ)× L×H cosβ

et la puissance dissipée le long de la surface de glissement (puissance résistance maximale) est

Pdiss(U̇) =

∫
L

c‖U̇‖ cosφds = c‖U̇‖ cosφ× L

et on obtient en utilisant le ratio de la puissance dissipée et de la puissance extérieure et la puissance des
effort extérieurs, le coefficient de sécurité suivant:

FUBs =
c cosφ

γH cosβ sin(β − φ)

et pour un sol de cohésion nulle, ce facteur de sécurité est zero ! On aurait pu déjà déduire ce résultat car la
puissance dissipée est facteur de c.

1.1.3 Ecoulement plastique non-associé

Ce résultat non-intuitif et différent de celui précedemment obtenu est du à l’hypothèse de plasticité associée.
Une telle hypothèse n’est pas réaliste car le fait que le vecteur vitesse fait un angle égal au coefficient de
friction implique une dilatance continue pendant la déformation. Expérimentalement, on observe que après
une certaine distance de glissement la dilatance “sature” et la vitesse de glissement devient parallèle à la
surface de glissement. Il convient donc de lever la restriction de prendre un critère de plasticité non-associé.
On introduit donc un potentiel plastique g différent du critère de rupture f - dans le repère contraintes normale
/ tangentielle à la surface de glissement plan.

f(σn, τ) = τ − c− σn tanφ

g(σn, τ) = τ − σn tanψ

où ψ est l’angle de dilatance (ψ < φ) avec

ti = σijnj vecteurs contraintes sur SΣ

ts = τ = siσijnj contrainte de cisaillement sur SΣ

tn = σn = niσijnj contrainte normale sur SΣ
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où nj est la normale à la surface de glissement SΣ et si le vecteur tangent associé.
On écrira l’écoulement plastique non-associé sous la forme

[[u̇i]] = λd
∂g

∂ti
f(ti) = 0

où λd est un multiplicateur plastique de dimensions [L/T ] ici et λdf = 0 et λd ≥ 0. on obtient donc

[[u̇n]] = −λd tanψ

[[u̇s]] = λd

soit

[[u̇n]] = −
∥∥∥U̇∥∥∥ sinψ

[[u̇s]] =
∥∥∥U̇∥∥∥ cosψ

On peut donc calculer la puissance dissipée (unitaire) le long d’une surface de glissement pdiss

pdiss = ti [[u̇i]] = τ [[u̇s]] + σn [[u̇n]]

avec la rupture f = 0, i.e. τ = c+ σn tanφ

pdiss = (c+ σn tanφ)
∥∥∥U̇∥∥∥ cosψ − σn

∥∥∥U̇∥∥∥ sinψ

Pour une rupture développée ayant atteint l’état critique, la dilatance devient nulle (déformation purement
cisaillante), i.e. ψ = 0. On obtient alors

pCSdiss = (c+ σn tanφ)
∥∥∥U̇∥∥∥

où le superscript CS est une abbréviation de “critical state”.
En re-faisant à l’état critique le calcul pour cette surface de rupture plane infinie. La puissance des efforts

est également changée car la vitesse de glissement est parallèle au plan de glissement

Pext(U̇) =

∫
V

γU̇zdV = γ‖U̇‖ sin(β)× L×H cosβ

et la puissance dissipée est - comme σn = W
L cosβ = γH cos2 β

Pdiss(U̇) =

∫
L

pdissds =
(
c+ γH cos2 β tanφ

) ∥∥∥U̇∥∥∥L
et on obtient un facteur de sécurité

Fs =
c

γH cosβ sinβ
+

tanφ

tanβ

On retrouve éxactement le résultat obtenu préalablement par une approche d’équilibre limite - qui faisait
l’hypothèse implicite d’un écoulement non-associée (pas de dilatance). Il est important de se rappeler que
la dilatance du sol “sature” pour des déplacement suffisant et la déformation plastique s’éffectue alors sans
dilatance (sans changement de volume). L’hypothèse d’un écoulement associé n’est pas réaliste pour analyser
des grand glissement. Les méthodes de stabilité des pentes se placent souvent à l’état critique (sans dilatance
- écoulement non-associé) implicitement.

1.2 Présence d’eau
Faisons maintenant, le calcul pour le cas d’une nappe à une distance hw du glissement plan. Dans ce cas
l’écoulement d’eau est parallèle au plan de glissement et à la surface. Il convient cette fois ci d’écrire le critère
de Mohr-Coulomb en contraintes effectives. La pression d’eau u le long de la surface de glissement est ici:

u = γwHw cosβ
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Figure 2: Pente infine avec écoulement parallèle

et sa résultante est u cosβ×L. La force résistante (puissance dissipée / par la vitesse de glissement) devient

Fresistante =
(
c+ (γH − γwHw) cos2 β tanφ

)
L

et le facteur de sécurité est maintenant

Fs =
c

γH sinβ cosβ
+

(γH − γwHw)

γH

tanφ

tanβ

On notera que pour le cas Hw = H et un sol de cohésion nulle comme γw ≈ γ/2 , le facteur de sécurité
est divisé par 2 en présence d’eau !

Fs =
(γH − γwHw)

γH

tanφ

tanβ
≈ 1

2

tanφ

tanβ

2 Stabilité d’un talus fini

2.1 Glissement plan
On se souvient que pour un talus vertical (β = π/2), les bornes de l’analyse limite (sup et inf) donnent (cf
semaine 2):

3.73
cosφ

1− sinφ
≤ γH

c
≤ 3.83

cosφ

1− sinφ

et on avait obtenu par un calcul par l’extérieur (cinématique) en faisant l’hypothèse d’un glissement plan(
γH

c

)+

= 4
cosφ

1− sinφ

On étend ici ce calcul au cas d’un talus d’inclinaison β.(sans écoulement d’eau). Les résultats seront
applicables soit à court terme (c = cu, φ = 0) notammant dans les argiles, soit pour le cas sans eau.

On se référe à la figure 3. Comme dans le cas d’un talus vertical (β = π/2), la puissance des efforts
extérieurs est:

Pext.(U̇) =

∫
OAB

γU̇z dS =

∫
OAB

γ‖U̇‖ cos(α+ φ) dS

= γ‖U̇‖ cos(α+ φ)× (
1

2
H2 tanα− 1

2
H2 cotβ)
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Figure 3: Talus incliné - glissement plan.

La puissance dissipée le long de la surface de glissement (modèle associé) est identique que pour le cas
vertical:

Pdiss(U̇) =

∫
AB

c‖U̇‖ cosφds =
H

cosα
c‖U̇‖ cosφ

L’application du PPV donne l’expression suivante de la borne supérieure paramétrée par α:

γH

c
= 2

cosφ

cos(α+ φ)

1

(sinα− cosα cotβ)

Il convient donc de minimiser cette expression par rapport à α pour obtenir la borne supérieure la plus petite.
Que l’on obtient pour e.

d

dα
cos(α+ φ) (sinα− cosα cotβ) = 0

sin(2α+ β + φ) = 0

à savoir pour

α =
π

2
− φ+ β

2

[On retrouve bien α = π/4− φ/2 pour le cas β = π/2]. La borne supérieure est au final:

γH

c
=

4 cosφ sinβ

1− cos(β − φ)

[On retrouve bien 4 cosφ/(1− sinφ) pour le cas β = π/2].
Le facteur de sécurité (rapport puissance dissipée max / puissnace des efforts exterieures) est

Fs =
c

γH

4 cosφ sinβ

1− cos(β − φ)

Le cas φ = 0, se simplifie en

Fs =
c

γH

4 sinβ

1− cosβ
=

c

γH

4

tanβ/2

2.2 Glissement circulaire
On effectue ici une approche de type equilibre limite qui est tres souvent utilisé en mécanique des sols -
attention cela diffère de l’analyse limite par l’extérieur dans le sens que l’on utilise pas le principe des travaux
virtuels.

Considérons le cas d’un talus inclinée dans un milieu purement cohérent (φ = 0) de cohésion c avec une
surface de glissement circulaire de rayon R passant par le bas de talus et ayant comme centre le haut du talus
(point O). Il est classique de définir un coefficient de sécurité comme le rapport entre le moment résistant
(du à la cohésion sur le plan de glissement) et le moment moteur du au poids du sol en mouvement. On a ici

Mresistant = c×R(π − β)×R
Mmoteur = W sin(β/2)× |OG|
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Figure 4: Talus inclinée - sol purement cohérent - glissement circulaire

avec le poids W de la section circulaire égal à

W = γR2(π − β)

La distance |OG| entre le centre de gravité et le centre de la section circulaire est donnée par

|OG| = 2R sin(π − β)

3(π − β)

On en déduit

Fs =
3cR2(π − β)

2γR3 sin(β/2) sin(π − β)

=
c

γH

3(π − β) sinβ

2 sin(β/2) sin(β)

=
c

γH

3(π − β)

2 sin(β/2)

On notera que la limite

lim
β→π/2

Fs =
c

γH

3π

2
√

2
≈ 3.332

c

γH

est différente de la meilleure estimation obtenue par l’analyse limite qui se situe entre 3.73 et 3.83 (× c
γH )!

Ce résultat est une illustration du fait que les approches de type equilibre limite ne donnent ni une borne
sup ou inf. En revanche les estimations obtenues pour des ruptures de glissements sont assez proches et
donnent des résultats conservatifs.

2.3 Glissement circulaire avec écoulement
En pratique,pour des sols frottant, surfaces de glisement seront des spirales logarithmiques. Une première
approche consiste à garder l’hypothèse d’un glissement circulaire mais de relacher l’hypothèse que le centre
du cercle se situe en haut du talus et que le rayon du cercle de glissement est égal à H/ sinβ. Il convient
alors d’optimiser par rapport à la position du centre du cercle afin d’obtenir le coefficient de sécurité le plus
faible.

Abaques de Caquot-Kérisel
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2.4 Méthode des tranches (tiré de Lancellota)
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Equilibre dans le repère normal - tangentiel à la ligne de glissement

uibi
cosαi

+
σ′bi

cosαi
− (Wi + ∆Xi) cosαi + ∆Ei sinαi = 0

TRi − (Wi + ∆Xi) sinαi −∆Ei cosαi = 0

avec
TRi = (c′ + σ′ tanφ)

bi
cosαi

/Fs

et la définition du facteur de securité à partir de l’équilibre global des moments par rapport au centre du
cercle de rupture:

Fs =

∑
i(c

′ + σ′ tanφ)bi/ cosαi∑
iWi sinαi

Fellenius: ∆Xi = 0 et ∆Ei = 0 alors on obtient

σ′bi = Wi cos2 α− uibi

et au final

Fs =

∑
i(c

′bi +
(
Wi cos2 α− uibi

)
tanφ)/ cosα∑

iWi sinα

Bishop simplifié ∆Xi = 0 on obtient

∆Ei = TRi/ cosαi − (Wi) tanαi

σ′bi
cosαi

= (Wi) cosαi −
uibi

cosαi
− TRi tanαi + (Wi) tanαi sinαi

soit encore
σ′bi = (Wi − uibi)− (c′ + σ′ tanφ)bi

tanαi
Fs

i.e.
(c′ + σ′ tanφ)bi(1 + tanαi tanφ/Fs) = c′bi + (Wi − uibi) tanφ

d’où on obtient le facteur de sécurité

Fs =

∑
i(c

′bi + (Wi − uibi) tanφ)× 1

cosαi × (1 + tanαi tanφ/Fs)∑
iWi sinα
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