
Ouvrages Geotechniques
Exercices 2020

Exercice #2
Essais de laboratoire / analyse limite 1

1 Essai de cisaillement pur

x
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Figure 1: Schéma de l’essai de cisaillement pur

L’essai de cisaillement direct est très couramment utilisé sur les sols afin de mesurer les propriétés de résistance
(friction, cohésion). On considère un tel essai sur un échantillon de limon sec ayant un angle de friction interne de 20◦
et de cohésion nulle. On considérera que ce matériau peut-être modélisé par un critère de Mohr-Coulomb plastique
parfait. De-plus dans cet essai, la déformation cisaillante se localise dans une bande de cisaillement initiallement
de 1mm d’épaisseur au centre de l’échantillon. Une contrainte normale de 100kPa est appliquée sur l’échantillon et
la contrainte de cisaillement est augmentée jusqu‘à la rupture. La valeur du coefficient de Poisson de ce sol est de
0.4. On fera l’hypothèse d’une déformation plane perpendiculairement au plan de la figure ci-dessus (direction z).

1. Montrer que la valeur de la contrainte cisaillante à la rupture est de 36.4kPa

2. Montrer que en déformation plane, on a toujours σzz = ν(σxx + σyy)

3. Montrer que les contraintes principales à la rupture sont σI = 152kPa, σII = 90.6kPa, σIII = 74.5kPa

4. Déterminer la direction des contraintes principales

5. En faisant l’hypothèse d’un écoulement plastique associé, déterminer le rapport des taux de déformations
plastiques selon les directions principales minimale et maximale.

6. Déterminer la direction du mouvement relative de la moitié supérieure de l’échantillon par rapport à la moitié
inférieure
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2 Essai triaxial consolidé non-drainé avec mesure de pression de pore
(CU+u)

Soit une argile sableuse, saturée et surconsolidée. La contrainte de préconsolidation à la profondeur du prélèvement
est égale à σp = 150kPa. On effectue trois essais triaxiaux en conditions consolidé non drainées avec mesure
de pression de interstitielle (CU+u) à trois niveau de consolidation σo différent. Le tableau ci-dessous donne les
résultats des essais

A B C
σo (kPa) 200 370 540

urupture (kPa) 70 200 360
σ1,rupture (kPa) 480 750 1042

1. Discuter la différence entre les tests consolidé non-drainé (CU) et non-consolidé non-drainé (UU)

2. Tracer les cercles de Mohr en contraintes totale et effective

3. Déterminer l’angle de frottement φ′. Peux t’on utiliser une telle estimation ?

4. Déterminer les valeurs de cohésion non-drainée cu pour les différents niveaux de consolidation σo et obtenez
λu et cou, tel que

cu = cou + λuσo

3 Talus Vertical
Déterminer les bornes inférieures et supérieures de la hauteur de ruine d’un talus vertical excavé dans un sol de
Mohr-Coulomb (c, φ) - i.e. travailler l’example du cours (la correction de cet exercice sera donnée en cours).
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Figure 2: Cercle de Mohr pour le problèm donné

Solution #2
Essais de laboratoire / analyse limite 1

1 Essai de cisaillement pur
Les propriétés du sol sont

φ = 20◦, c = 0, ν = 0.4

1.1 Contrainte de rupture
Comme on peut voir sur le dessin du cercle de Mohr (2), la contrainte cisaillant à la rupture vaut

τr = σn tan (φ) = 36.4 [kPa]

on a ici σyy = σn, car on connait la direction de la facette de rupture (la bande de cisaillement).

1.2 Déformation plane
En déformation plane les déformations (totales, plastiques et élastiques) sont concentrées dans le plan. Dans la
configuration de l’exemple donnée, on a donc εzz = 0. En reprenant la relation de comportement élastique reliant
déformations et contraintes

εeij − ε
p
ij =

1

E
[(1 + ν)σij − νσkkδij ]

De plus en déformation plane, toutes les composantes des déformations sont concentrées dans le plan: εzz =
εezz = εpzz = 0, on obtient donc

0 =
1

E
[(1 + ν)σzz − ν (σxx + σyy + σzz)]

ce qui donne, résolu pour σzz
σzz = ν(σxx + σyy)

On notera que (σxx + σyy)/2 correspond à la contrainte moyenne dans le plan 2D, et donc également calculable à
partir des contraintes principales correspondantes.

Enseignant: Brice Lecampion
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eI eIII

Figure 3: Orientation des contraintes principales et schématique du déplacement du bloc supérieure (par rapport
au bloc inférieur).

1.3 Contraintes principales
Afin de retrouver, les contraintes principales on se réfère de nouveaux à la figure 2. Calculons d’abord la contrainte
cisaillant maximale

τmax = σn
tan (φ)

cos (φ)
= 38.73 [kPa]

ce qui équivaut au rayon du cercle de Mohr (σI − σIII) /2. A partir de ceci c’est possible de trouver le centre du
Cercle de Mohr en calculant la fraction du rayon a

a = σn
tan (φ)

tan (90− φ)
= 13.25 [kPa]

et donc on peut retrouver les contraintes principales minimale et maximale comme

σI = σn + a+ τmax = 151.98 [kPa] , σIII = σn − (τmax − a) = 74.51 [kPa]

Afin de retrouver la contrainte principale intermédiaire il faut remarquer aussi le plan des contrainte principales
est conditionné par l’hypothèse des déformations planes (voir question 1.2). On peut donc retrouver la contrainte
principale intermédiaire comme étant

σII = ν (σI + σIII) = 90.60 [kPa]

1.4 Direction contraintes principales
On peut trouver les directions des contraintes principales en utilisent le cercle de Mohr. On rappelle que le passage
du plan de Mohr à l’espace physique implique une division d’angle par 2.

La direction de la facette normale à la contrainte principale maximale est donnée par la moitié de l’angle entre
l’horizontale et le point de la contrainte cisaillante de rupture et vaut donc

π

4
− φ

2

L’angle entre la direction ey de l’axe de notre système et la direction de la contrainte principale eI (cf figure
ci-dessous) est donc

θI =
π

4
− φ

2
= 35◦

et comme les contrainte principales sont orthogonales la direction de la contrainte minimale eIII est simplement
retrouvée en retirant un angle droit. L’angle θIII étant pris également avec la direction y de l’axe de notre système

θIII =
π

2
− θI = 55◦

Enseignant: Brice Lecampion
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1.5 Taux de déformations
On rappelle la condition des déformations planes (c’est-à-dire que aussi εpzz = 0) et on calcule le taux de déformations
comme dans l’exercice 1 avec

ε̇pij = λ
∂f

∂σij

avec la fonction f dans le cas d’un matériaux Mohr-Coulomb sans cohésion

f = σI − σIII − (σI + σIII) sin (φ)

ce qui donné dans les directions principales

ε̇pI = λ (1− sin (φ)) , ε̇pIII = −λ (1 + sin (φ))

et le rapport vaut donc
ε̇pI
ε̇pIII

=
1− sin (φ)

− (1 + sin (φ))
= −0.49

1.6 Direction du mouvement
On peut accéder la direction de mouvement relatif de la partie supérieure et inférieure de l’échantillon en sachant
les taux des déplacements ε̇pI , ε̇

p
III dans le repère des contraintes principales. Nous allons simplement faire un

changement de repère (rotation) afin d’exprimer le tenseur des taux de déformations entre le système des contraintes
principales et le système xy . On note ε̇pxy le tenseur 2D dans le repère xy, i.e. en notation ’matricielle’ équivalente
(cf. votre cours d’élements finis)

ε̇pxy = RT · ε̇pp ·R, avec ε̇pp =
[
ε̇pI 0
0 ε̇pIII

]
, R =

[
cos (α) sin (α)
− sin (α) cos (α)

]
avec α = θI l’angle entre la direction de la facette normale à la direction de la contrainte principale I et l’axe des x.
On applique la formule avec l’angle de rotation α = π

4 −
φ
2 et on obtient les taux de déformation correspondantes

ε̇pxy = λ cos (φ)
ε̇pyy = −2λ sin (φ)

On rappelle la définition du tenseur des taux de déformation

ε̇pij =
1

2

(
u̇pi,j + u̇pj,i

)
où l’indice avec la virgule représente la dérivée par rapport à cette direction (cf. notation du cours). Il est important
de noter que la bande de cisaillement est indépendante de la coordonnée selon x. C’est le cas car tout point doit
être à la rupture le long de la bande de cisaillement au même moment. Pour obtenir la vitesse de déplacement
relatif Ju̇iK entre le bloc supérieur et inférieur, on intègre donc cette déformation dans l’épaisseur de la bande de
cisaillement (disons entre y = −w/2 et y = +w/2 où w est l’épaisseur de la bande de cisaillement). Comme les
vitesses relatives ne dépendent pas de x (direction de la bande de cisaillement), on a

u̇px,y = 2ε̇pxy u̇py,y = ε̇pyy

et donc

Ju̇pxK =
∫ w/2

−w/2
u̇px,y dy = u̇+

x − u̇−x =

∫ w/2

−w/2
2ε̇pxy dy = 2(λ× w) cosφ

q
u̇py

y
=

∫ w/2

−w/2
ε̇pyy dy = −2(λ× w) sinφ
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On rapelle que la bande de cisaillement “localise” toute les déformations plastiques (qui sont nulles en dehors de
celle-ci). Au final, on peut obtenir l’orientation du déplacement relatif par rapport à la direction de la bande de
cisaillement (axe des x):

arctan

(
‖
u̇py
u̇px
‖
)

= arctan (tan (φ)) = φ

Il est donc visible que la bande de cisaillement se “dilate” lors du cisaillement. Le mouvement relatif s’effectue
avec un angle de dilatance (qui pour le cas associée est égal à l’angle de friction interne). [On rappelle que dans la
convention des contraintes>0 en compression et deformation >0 en contraction, les déplacements sont positif dans
le sens opposé du système de coordonnées. Ici, dans la figure ci-dessus, on a representé le déplacement du bloc
supérieur par rapport au bloc inférieur.]

Résolution alternative
En suivant les notes du cours, on aurait pu de même résoudre ce problème en considérant la rupture directement

en terme de contraintes normales et tangentielles. Dans ce cas, le critère de rupture s’écrit

f(σn, τ) = τ − c− σn tan(φ)

avec

ti = σijnj vecteurs contraintes sur SΣ

ts = τ = siσijnj contrainte de cisaillement sur SΣ

tn = σn = niσijnj contrainte normale sur SΣ

et en écrivant directement l’écoulement plastique dans le repère normale/tangentielle à la bande de cisaillement

[[u̇i]] = λb
∂f

∂ti

ce qui donne que

[[u̇n]] = λb
∂f
∂σn

= −λb tan (φ)
[[u̇s]] = λb

∂f
∂τ = λb

En comparant avec les résultats précédents, on voit par analogie que λb = 2λ× w cosφ.
On retrouve que le vecteur de vitesse discontinuité de déplacement plastique localisée sur la surface de glissement

fait toujours un angle φ par rapport à celle-ci.

‖ [[u̇n]]
[[u̇s]]

‖ = tan (φ)

2 Essai Triaxial consolidé non-drainé
Soit une argile sableuse, saturée et surconsolidée. La contrainte de préconsolidation à la profondeur du prélèvement
est égale à σ′p = 150 [kPa]. Et les résultats sont les suivantes

A B C
σo (kPa) 200 370 540

urupture (kPa) 70 200 360
σ1,rupture (kPa) 480 750 1042

2.1 Difference entre CU et UU
Dans un test consolidé non-drainée la la phase de chargement isotrope est faite avec les vannes ouvertes tel que
l’eau peut s’échappée et que la pression interstitielle reste donc nulle. C’est l’opposée à un test UU dans lequelle
déjà dans la phase de chargement isotrope, l’échantillon est déjà en conditions non-drainées et donc la pression de
pore augmente lors de la phase de chargement isotrope. La phase de cisaillement (augmentation du déviateur) est
identique dans les deux cas et se fait avec les vannes fermées.

Enseignant: Brice Lecampion
Assistants: C. Peruzzo, A. Mori, A. Sàez-Uribe
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A B C
urupture (kPa) 70 200 360
σ1,rupture (kPa) 480 750 1042
σ3,rupture (kPa) 200 370 540
σ′1,rupture (kPa) 410 550 682
σ′3,rupture (kPa) 130 170 180

Table 1: Contraintes à la rupture

Figure 4: Cercles de Mohr en contrainte totales et effectives.

2.2 Cercles de Mohr
On trace les cercles de Mohr en contrainte totale (ce qui est donnée dans l’exercice) et bien en contraintes effective
(valeurs en tableau 1)

2.3 Angle de frottement
Le sol est surconsolidée, néanmoins les contraintes après la phase isotrope sont supérieures à la contrainte de
préconsolidation (σp < σo). C’est-à-dire qu’on peut retrouver l’angle de frottement à partir de la tangente des
cercles de Mohr en contraintes effectives et que cette estimation est valable. On notera ici que cu est fonction de la
contrainte verticale effective in-situ et de l’overconsolidation ratio et devrait donc étre adapté en fonction de ceci.
Une évaluation graphique nous donne une valeur de

φ′ = 31◦

2.4 Cohésion non-drainée
La cohésion non-drainée est simplement la valeur de la contrainte cisaillante maximale et peut être retrouvée avec

cu =
σ1 − σ3

2

La forme nous indique que ce paramètre varie linéairement avec la contrainte de consolidation et nous pouvons donc
faire une régression linéaire des trois valeurs obtenues afin de trouve que

cou = 76 [kPa] , λu = 0.36

3 Talus Vertical
La corerction de cet exercice sera donnée en cours.
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Figure 5: Cercles de Mohr en contrainte totales et effectives.
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