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Figure 9: Talus vertical dans un milieu cohérent et frottant. H de ruine ?

5 Example de calcul à la rupture: Talus vertical
Afin de mieux comprendre l’application pratique des notions précédentes, rien de mieux qu’un example.
Prenons le cas de l’excavation d’un talus vertical dans un sol de poids γ satisfaisant un critère de Mohr-
Coulomb (c.f. figure 9 ). Bornez la hauteur de ruine H du talus par une approche statique et cinématique.

Avant de commencer par l’approche statique, il est intéressant de faire une simple analyse dimensionelle
du problème. La hauteur maximale du talus H (en mètres - dimension [L]) dépend des paramètres suivants:

• le poids du sol γ [M/L2/T2]

• la cohesion c [M/L/T2]

• l’angle de frottement du sol φ [-]

Les 4 paramètres du problème H, γ, c, φ ne dépendent que de 3 dimensions ([M], [L], [T]), selon le thèoreme
de Buckingham-π, la solution du problème ne dépend donc que d’un seul paramètre adimensionel (ici φ).
Effectivement, on peut “scaler” la hauteur comme suit

H =
c

γ
×H(φ)

où H(φ) est une fonction adimensionelle ne dépendant que de l’angle de frottement. On voit donc que l’on
peut en fait résoudre le problème pour H et on aura les solutions pour n’importe qu’elle valeur de c et γ.

5.1 Approche Statique
On construit un champ statiquement admissible (S.A.) simple en 3 zones 1, 2 et 3 - cf Fig 10. On rappelle
qu’un champ S.A. doit vérifier les équations d’équilibre, les conditions aux limites en tractions et le vecteur
contraintes doit etre continu à travers une surface de discontinuité.
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Figure 10: Approche statique - talus vertical. Champ de contraintes statiquement admissible à 3 zones
simples.
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Dans notre cas, dans le repère (x, z) de la figure , l’équilibre s’écrit

∂xσxx + ∂zσxz = 0

∂xσxz + ∂zσzz = γ

On choisit les champs suivants pour les différentes zones.

• Zone 1 x ≥ 0 et z ≤ H
σ(1)
xx = 0 σ(1)

xz = 0 σ(1)
zz = γz

on peut vérifier qu’un tel champ est bien S.A. dans cette zone

• Zone 2 x ≥ 0 et z > H
σ(2)
xx = γz σ(2)

xz = 0 σ(2)
zz = γz

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 1 et 2 (σzz
est bien continue), en revanche on peut avoir un saut de σxx si celui ci ne dépend pas de x (et σxz = 0)
(1ere equation d’équilibre)

• Zone 3 x < 0 et z > H
σ(3)
xx = γz σ(3)

xz = 0 σ(3)
zz = γ(z −H)

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 2 et 3 (σxx
est bien continue).

Il convient maintenant de vérifier le critère de Mohr-Coulomb dans les trois zones. Comme σxz = 0 partout,
on est dans un repère de contraintes principales

• Zone 1

f = γz(1− sinφ)− 2c cosφ ≤ 0

Le critère sera maximale en z = H et si on assume la rupture f = 0 en z = H, alors on a f < 0 pour
tout z < H - donc le critère est verifié dans toute la zone 1 pour

γH

c
≤ 2

cosφ

1− sinφ

• Zone 2

f = −2γz sinφ− 2c cosφ < 0

Le critère est vérifié partout. car en fait les 2 contraintes principales sont égales - pas de cisaillement.

• Zone 3 (z > H)
Le critère est maximale en z = H, où σzz = 0.

fmax = γz(1− sinφ)− 2c cosφ

et sera donc vérifié partout si
γH

c
≤ 2

cosφ

1− sinφ

En conclusions, on voit que l’on peut obtenir un champ de contraintes S.A. vérifiant le critère de
plasticité en tout point si

γH

c
≤ 2

cosφ

1− sinφ
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Figure 11: Approche cinématique. Mécanisme de ruine: champ de vitesse C.A.

En conclusion, cette approche statique nous fournit une borne inférieure
(
γH

c

)−
du vrai domaine de stabilité

de la structure
(
γH

c

)
pour l’égalité de l’inégalité précedente:

(
γH

c

)−
= 2

cosφ

1− sinφ
= 2 tan(π/4 + φ/2)

2
cosφ

1− sinφ
≤
(
γH

c

)

5.2 Approche Cinématique
On postule un champ de vitesse C.A. pour la ruine de la structure décrit dans la figure 11. Une droite partant
du bas du talus et re-joignant la surface du sol en amont en B. On paramètrise cette surface de glissement
par l’angle α. On suppose donc que le triangle OAB se déplace en corps rigide avec un vecteur vitesse de
norme ‖U̇‖ alors que le substratum reste rigide: toute la déformation plastique est accomodée par la surface
de glissement drote AB. Comme on l’a vu en 2.2.2, pour un critère de Mohr-Coulomb le vecteur vitesse fait
un angle φ avec la surface de glissement. Le vecteur vitesse est constant le long de la surface de glissement
et la puissance totale dissipée est donc (c.g. subsection 2.2.2)

Pdiss(U̇) =

∫
AB

c‖U̇‖ cosφds = ‖AB‖ × c‖U̇‖ cosφ =
H

cosα
c‖U̇‖ cosφ

Ici la charge est le seul poids du sol (pas de traction imposée en surface). La puissance des efforts
extérieures est donc - comme seul le triangle OAB se déplace - le poids étant une force verticale

P(U̇) =

∫
OAB

γU̇z dS =

∫
OAB

γ‖U̇‖ cos(α+ φ) dS =
1

2
H2 tanα× γ‖U̇‖ cos(α+ φ)
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L’application du PPV donne alors la borne supérieure suivante de la charge de ruine pour un α donné:

γH

c
= 2

cosφ

sinα cos(α+ φ)

Il convient de minimiser cette borne supérieure par rapport à α afin d’obtenir la borne supérieure la plus
petite. Pour ce faire, on minimise g(α) = 2 cosφ

sinα cos(α+φ) , pour des angles donnant bien sur g(α) > 0, on
obtient (en utilisant par example Mathematica ou à la main ;))

α =
π

4
− φ/2

et donc finalement la borne supérieure du domaine de stabilité(
γH

c

)+

= 4
cosφ

1− sinφ
= 4 tan(π/4 + φ/2)

En combinant les résultats obtenu par l’approche statique (par l’intérieur) et cinématique (par l’extérieur),
on obient donc finalement les bornes suivantes du domaine de stabilité

2
cosφ

1− sinφ
≤
(
γH

c

)
≤ 4

cosφ

1− sinφ

On voit que l’on a un facteur 2 entre la borne inférieure et la borne supérieure ! On notera qu’en utilisant
des méthodes plus complexe en utilisant de multiples zones (pour le cas statique) et une surface de glissement
en spirale logarithmique etc., les meilleurs estimations analytique des bornes obtenues à ce jour donnent

3.73
cosφ

1− sinφ
≤
(
γH

c

)
≤ 3.83

cosφ

1− sinφ

Notamment la borne supérieure 3.83 cosφ
1−sinφ est obtenue en considérant un mécanisme de ruine en forme de

spirale logarithmique.
On s’apercoit donc que le mécanisme de ruine utilisé lors de notre estimation de la borne supérieure

n’etait pas trop loin (4 au lieu de 3.83) alors que le champ de contraintes simple à trois zones utilisé lors du
calcul de la borne inférieure est clairement trop simpliste. En fait ici, la surface de rupture réelle est plus
proche d’une spirale logarithmique.


