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Figure 9: Talus vertical dans un milieu cohérent et frottant. H de ruine ?

5 Example de calcul a la rupture: Talus vertical

Afin de mieux comprendre 'application pratique des notions précédentes, rien de mieux qu’un example.
Prenons le cas de l'excavation d’un talus vertical dans un sol de poids ~ satisfaisant un critére de Mohr-
Coulomb (c.f. figure 9 ). Bornez la hauteur de ruine H du talus par une approche statique et cinématique.
Avant de commencer par I’approche statique, il est intéressant de faire une simple analyse dimensionelle
du probléme. La hauteur maximale du talus H (en métres - dimension [L]) dépend des paramétres suivants:

e le poids du sol v [M/L?/T?
e la cohesion ¢ [M/L/T?|
e l'angle de frottement du sol ¢ -]

Les 4 parameétres du probléme H, v, ¢, ¢ ne dépendent que de 3 dimensions ([M], [L], [T]), selon le théoreme
de Buckingham-7, la solution du probléme ne dépend donc que d’un seul paramétre adimensionel (ici ¢).
Effectivement, on peut “scaler” la hauteur comme suit

H=Sx#
e (®)

ol H(¢) est une fonction adimensionelle ne dépendant que de 'angle de frottement. On voit donc que 1'on
peut en fait résoudre le probléme pour H et on aura les solutions pour n’importe qu’elle valeur de ¢ et ~.

5.1 Approche Statique

On construit un champ statiquement admissible (S.A.) simple en 3 zones 1, 2 et 3 - cf Fig 10. On rappelle
qu'un champ S.A. doit vérifier les équations d’équilibre, les conditions aux limites en tractions et le vecteur
contraintes doit etre continu & travers une surface de discontinuité.
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Figure 10: Approche statique -

talus vertical. Champ de contraintes statiquement admissible & 3 zones
simples.
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Dans notre cas, dans le repére (z, z) de la figure , 'équilibre s’écrit

0x0gz + 0,04, =0
axawz + 8zazz =7

On choisit les champs suivants pour les différentes zones.

e Zonelx>0et z2< H
ol =0 oll=0 o) =1z

on peut vérifier qu’un tel champ est bien S.A. dans cette zone

e Zone2x>0etz>H
o2 =qz =0 oP=1

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 1 et 2 (o,
est bien continue), en revanche on peut avoir un saut de o, si celui ci ne dépend pas de z (et o,, = 0)
(lere equation d’équilibre)

e Zone3dxrx<0etz>H
o) =yz oD =0 oY =q(z-H)

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 2 et 3 (0,4
est bien continue).

Il convient maintenant de vérifier le critére de Mohr-Coulomb dans les trois zones. Comme o,, = 0 partout,
on est dans un repére de contraintes principales

e Zone 1

f=vz(1 —sing) —2ccos¢p <0

Le critére sera maximale en z = H et si on assume la rupture f =0 en z = H, alors on a f < 0 pour
tout z < H - donc le critére est verifié dans toute la zone 1 pour

ﬁ<2 cos-¢
c — 1—sing

e Zone 2

f=—2vzsingp —2ccosp <0
Le critére est vérifié partout. car en fait les 2 contraintes principales sont égales - pas de cisaillement.

e Zone 3 (z > H)
Le critére est maximale en z = H, ot 0,, = 0.

fmaa: = ’}/Z(l — sin ¢) — 26COS¢

et sera donc vérifié partout si

H 3
M, cos-qﬁ
c — 1—sing
En conclusions, on voit que 'on peut obtenir un champ de contraintes S.A. vérifiant le critére de
plasticité en tout point si

H 3

M, COb-QS
c — 1—sing
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Figure 11: Approche cinématique. Mécanisme de ruine: champ de vitesse C.A.

H
En conclusion, cette approche statique nous fournit une borne inférieure (’y) du vrai domaine de stabilité
c

H
de la structure (V) pour ’égalité de I'inégalité précedente:
c

N\ -
(1) :2%:2‘0?111(%/44-@5/2)

5 cos.(b < (W—I)
1—sing — \ ¢
5.2 Approche Cinématique

On postule un champ de vitesse C.A. pour la ruine de la structure décrit dans la figure 11. Une droite partant
du bas du talus et re-joignant la surface du sol en amont en B. On paramétrise cette surface de glissement
par 'angle a. On suppose donc que le triangle OAB se déplace en corps rigide avec un vecteur vitesse de
norme ||U|| alors que le substratum reste rigide: toute la déformation plastique est accomodée par la surface
de glissement drote AB. Comme on 'a vu en 2.2.2, pour un critére de Mohr-Coulomb le vecteur vitesse fait
un angle ¢ avec la surface de glissement. Le vecteur vitesse est constant le long de la surface de glissement
et la puissance totale dissipée est donc (c.g. subsection 2.2.2)

H .
c||U|| cos ¢

COS «x

Paiss(U) = / c||U]| cos pds = ||AB|| x ¢||U|| cos ¢ =
AB

Ici la charge est le seul poids du sol (pas de traction imposée en surface). La puissance des efforts
extérieures est donc - comme seul le triangle OAB se déplace - le poids étant une force verticale

. . ) 1 .
PO) = [ aU.ds= [ U costa+ ) dS = 3H tana x50 cos(a + )
OAB OAB
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L’application du PPV donne alors la borne supérieure suivante de la charge de ruine pour un « donné:

ﬂ_2 cos @

c sin « cos(a + @)

Il convient de minimiser cette borne supérieure par rapport & « afin d’obtenir la borne supérieure la plus
petite. Pour ce faire, on minimise g(a) = 2% , pour des angles donnant bien sur g(a) > 0, on

obtient (en utilisant par example Mathematica ou a la main ;))
™
a=——0¢/2
1

et donc finalement la borne supérieure du domaine de stabilité

<7H)+ — 4% ftan(r/a+ 6)2)

c 1—sing

En combinant les résultats obtenu par approche statique (par I'intérieur) et cinématique (par lextérieur),
on obient donc finalement les bornes suivantes du domaine de stabilité

H
9 cos.(b < () _ 4 cos‘q/)
1—sing ~ \ ¢ /= 1—sin¢
On voit que I'on a un facteur 2 entre la borne inférieure et la borne supérieure ! On notera qu’en utilisant

des méthodes plus complexe en utilisant de multiples zones (pour le cas statique) et une surface de glissement
en spirale logarithmique etc., les meilleurs estimations analytique des bornes obtenues a ce jour donnent

cos ¢ vH cos ¢
3— < | — | <383——
3731—sin¢ - < c ) *3831—sin¢

cos ¢

g ©st obtenue en considérant un mécanisme de ruine en forme de

Notamment la borne supérieure 3.83
spirale logarithmique.

On s’apercoit donc que le mécanisme de ruine utilisé lors de notre estimation de la borne supérieure
n’etait pas trop loin (4 au lieu de 3.83) alors que le champ de contraintes simple & trois zones utilisé lors du
calcul de la borne inférieure est clairement trop simpliste. En fait ici, la surface de rupture réelle est plus

proche d’une spirale logarithmique.




