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Chapter 1

Projet en géotechnique

1.1 Généralités
Un projet géotechnique nécessite la combinaison d’information provenant du projet d’ouvrage en lui-meme
(descentes de charges, tassements maximum authorisés etc.), du sol (stratigraphie, résistance, déformabilité
etc.) et de l’environment naturel et construit (batiments voisins, maintenance des voies de communications,
environment etc). Comme tout autre projet de génie civil, les contraintes juridiques, économiques etc. sont
également prépondérante et impacte directement les solutions techniques retenues au final.

L’ingénieur se doit de “créer” une solution technique saine respectant ces différentes contraintes.

1.2 Etats limites ultimes / états limites de services
Pour tous les types d’ouvrages de soutènement et pour chaque situation de projet déterminante, il faut vérifier
que l’état limite ultime (sécurité structurale) et l’état limite de service (aptitude au service) ne sont dépassés
à aucun moment durant les phases de construction et d’exploitation.

1.2.1 Etat Limites Ultimes - vérification de la sécurité structurale
Une structure géotechnique ne doit pas se rompre! Lors du dimensionnement, on doit donc vérifier que aussi
bien une fois l’ouvrage terminé que pendant toute les phases de construction, aucune “ruine” de l’ouvrage ou
d’une de ses parties ne se produise. On vérifie la sécurité structurale de l’ouvrage afin d’éviter des ruptures
catastrophiques.

On divise les états limites ultimes (ELU) en

• ELU externe - où la rupture est lié à la mobilisation de la résistance du sol.

• ELU interne - où la rupture est lié à la mobilisation de la résistance des matériaux de l’ouvrage (par
exemple un renforcement).

En plus dans les normes Suisses (SIA 267), on distingue différents type d’ELU:

1. ELU de type 1 - instabilité d’ensemble de l’ouvrage où la résistance du sol ne jouent pas de rôle.

2. ELU de type 2 - la résistance ultime de l’ouvrage ou d’un de ses éléments est atteinte. Les propriétés
de la structure et du terrain jouent un rôle prépondérant.

3. ELU de type 3 - Instabilité globale du terrain, Mobilisation complète de la résistance du terrain (c’est
le cas de la stabilité de pentes).

4. ELU de type 4 - Fatigue de l’ouvrage ou d’un de ses éléments.
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Figure 1.1: Exemple d’ELU de type 1.

Figure 1.2: Examples d’ELU de type 2 externe.

Figure 1.3: Example d’ELU de type 3.
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Figure 1.4: Exemple d’ELS - tassements differentiels.

1.2.2 Etat Limites de services - vérification de l’aptitude au service
Les états limites de services sont en général définit dans la convention de l’ouvrage - Il s’agit d’éviter une
dégradation de l’ouvrage. Notamment en géotechnique, limiter les déformations à long terme et leur con-
séquence sur la structure (fissures etc.).

De même que pour les ELS, on parle d’ELS externe (mobilisation sol) et d’ELS interne (lié au matériaux
de l’ouvrage - ex. durabilité).

1.3 Conventions en mécanique des sols et des roches
Contrairement à la mécanique du solide où les contraintes sont définies positive en tractions, c’est l’inverse en
géo-mécanique: le tenseur des contraintes est positif en compression ! La raison est double: 1) les contraintes
du au poids des terres sont compressives et ainsi les contraintes en profondeur sont toujours compressives à
l’état initial, 2) les géo-matériaux ont une résistance à la traction assez faible mais exhibite une augmentation
de leur résistance avec une augmentation de la contrainte moyenne en compression (comportement frictionel
de type Mohr-Coulomb).

Cela implique une petite “gymnastique”. Tout d’abord, dans l’équilibre quasi-statique on doit adapter le
signe des forces de volumes! l’équation d’équilibre devient:

σij,j − fi = 0

(ici le tenseur des contraintes est positif en compression).
On écrit souvent la relation de comportement contraintes-déformations du type:

σij = cijklεkl

ce qui implique que les déformations sont positives en “contraction” et négative en “expansion” ! Si l’on garde
la définition du tenseur des (petites) déformations comme étant

εij =
1

2
(ui,j + uj,i)

alors le déplacement est positif dans le sens inverse du système de coordonnées !! Parfois, dans certains
livres, un signe ”− ” est introduit dans la définition du tenseur de déformations (εij = −(ui,j + uj,i)/2) afin
de garder un déplacement positif dans le sens des axes du système de coordonnée.

La convention des contraintes positives en compression change aussi le sens de rotation dans le plan de
Mohr !
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Chapter 2

Comportement mécanique des sols

2.1 Le sol: un milieu poreux
La taille du volume élémentaire représentatif (VER) d’un sol correspond à l’échelle macroscopique où une
modélisation du sol comme un milieu continu s’applique. L’utilisation de la mécanique des mileux continus
repose sur une séparation d’échelle entre la microstructure du sol `micro, la taille du VER `V ER qui est lui
meme beaucoup plus petit que la taille de l’ouvrage `structure � `V ER � `micro. Pour des sols, un VER peut
aller de quelques millimètres (sable fins) à un mètre (moraine). Il convient de garder à l’esprit ces différentes
échelles. Par expérience on a souvent: `V ER ∼ 10`micro.

Un volume élémentaire représentatif (VER) V d’un sol est constitué d’un partie solide Vs et de vide
(pores) Vv. L’espace poral (Vv) peut être rempli d’air (Va) ou d’eau (Vw). On a evidemment

V = Vs + Vv Vv = Va + Vw

Le volume élémentaire représentatif V est l’échelle à partir de laquelle la mécanique des mileux continus
s’applique. Il permet de définir les propriétés suivantes d’un sol:

• sa porosité
n = VV /V

où VV est le volume des pores (des vides) du sol

• l’indice des vides
e =

Vv
Vs

et l’on voit donc que n = e/(1 + e)

• La teneur en eau définit comme le rapport de masse d’eau et des constituents solides

w = Mw/Ms

• La saturation en eau Sw et en air Sa

Sw = Vw/Vv Sa = Va/Vv = 1− Sw

Dans ce cours, on ne ferra des calculs soit en conditions completement sec (Sw = 0), soit completement
saturé (Sw = 1).

• la densité des constituent solides ρs = Ms/Vs et d’eau ρw permet de définir la densité à sec

ρd = ρs(1− n)

la densité globale du sol
ρ = ρs(1− n) + ρwnSw

et leur poids correspondants
γd = ρdg γ = ρg
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ainsi que le poids déjaugé du sol (evidemment saturé)

γ′ = γ − γw

avec γw = ρwg le poids de l’eau.

2.2 Comportement drainée/non-drainée
La rupture des sols est fonction du tenseur des contraintes effectives - i.e. de la contrainte agissant sur le
squellette solide. Pour un sol saturé en eau, ce tenseur des contraintes effectives s’écrit

σ′ij = σij − uδij

avec u la pression d’eau interstitielle (pression de pores) qui agit isotropiquement.
Lors de l’application soudaine d’une charge sur un élement de sol, initiallement l’eau n’as pas le temps de

s’écouler et une partie de la charge est donc reprise par l’eau des pores. On est en conditions dites non-drainées
(temps court), la pression de pore augmente d’un ∆u. Ensuite, selon les conditions aux limites d’écoulement,
si le drainage est permis (ce qui est le cas pour quasiment tous les ouvrages), cette surpression de pore initiale
se dissipe (plus ou moins rapidement). Aux temps long, (si le drainage est permis) la surpression de pore
initiale disparait complétement: on est en conditions drainées. Le temps characteristique de transition entre
conditions drainées / non-drainées dépend linéairement de la perméabilité du sol. Il en résulte que pour un
sable très perméable, les conditions non-drainées ne durent que quelque secondes, alors que pour une argile
la transition vers l’état drainé peut prendre plusieurs années/décennies.

Pour résumer:

• Conditions non-drainées (temps court): la pression de pore varie (augmente si on compresse le sol). On
vérifiera la rupture du sol en contraintes totales en utilisant un critère de Tresca avec la cohésion
non-drainée cu (on n’essaie pas de prédire ∆u).

• Conditions drainées (temps long): les surpressions de pores se sont toute dissipées. On vérifie la rupture
du sol en contraintes effectives (avec la pression de pore en place: soit hydrostatique, soit due à un
écoulement permanent) en utilisant un critère de Mohr-Coulomb (c′, φ′).

• Dépendant du type de sol, de la géométrie et du phasage de construction, les conditions drainées ou
non-drainées seront prépondérante pour la vérifications structurale.

2.3 Détermination des propriétés de rupture au laboratoire
Il existe 3 grands type d’essai triaxiaux permettant de caractériser les propriétés de rupture d’un sol en
conditions drainés et non-drainées:

1. Consolidé - drainé (CD): l’éprouvette de sol est initialement consolidée par la pression de confinement
(chargement isotrope), la pression de pore étant maintenue nulle. Ensuite, l’échantillon est cisaillé
(on augmente le déviateur des contraintes) tout en gardant des conditions de drainage de telle sorte
qu’aucune pression de pore ne se développe. En répétant l’essai pour plusieurs pression de confinement,
on obtient les paramètres de rupture drainée c′, φ′. On notera que sur une argile très peu permeable,
ce type de tests peut prendre plusieurs semaines (voir mois) afin d’assurer qu’aucune surpression ne se
développe (le chargement doit être très lent).

2. Consolidé - non-drainé (CU): l’éprouvette de sol (saturé) est initialement consolidée par la pression de
confinement (chargement isotrope), la pression de pore étant maintenue nulle. Ensuite, l’échantillon
est cisaillé (on augmente le déviateur) en fermant les vannes du système de drainage de telle sorte que
la pression de pore augmente en général. En mesurant la pression de pore, on peut déterminer c′, φ′
ainsi que cu - cette dernière dépend alors linéairement de la valeur de la pression de confinement utilisé
lors de la phase isotrope effectué en condition drainée.

3. Non-consolidé - non-drainé (UU): l’échantillon (saturé) est mis sous contraintes isotropes tout en gardant
les vannes fermées - de telle sorte que la pression de pore augmente. L’échantillon est ensuite cisaillé
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tout en gardant toujours le système de drainage fermé. Cet essai donne les paramètres apparent de
rupture non-drainé cu (φu = 0) obtenu en contraintes totales. On notera que pour ce type de test
la pression de confinement utilisée lors de la phase de chargement isotrope ne change pas la valeur de
cu (le cercle de Mohr en contraintes effectives est toujours le même). En revanche, cu est fonction de
la contrainte verticale effective in-situ en place à la profondeur de l’échantillon, ainsi que de l’”over-
consolidation ratio” (OCR). Une formule empirique du type cu ≈ σ′v,o× 0.22×OCR0.8 est assez bonne
pour les argiles (avec des OCR<10).

On se souviendra qu’une résistance non-drainée n’as de sens que pour des sols argileux /“impermeables” :
cela ne fait que peu de sens de parler de la cohésion non-drainée d’un sable.

Essai UU
Un peu plus de détails sur l’essai UU sur un échantillon saturé. Avec le prélèvement de l’échantillon de
sol (typiquement argileux pour ce type de test) et la décompression associée, comme ce type de sol est peu
perméable, une pression de pore “negative” du à la dilatance se développe (suction). Donc avant la mise en
charge, on a un état suivant:

• Contraintes totales nulles
σ1 = σ2 = 0

• Pression de pore négative
u = −|uo|

• et donc contraintes effectives positives
σ′1 = σ′2 = |uo|

La première phase de chargement est isotrope, i.e. σc, comme l’essai est non-drainée lors de celle ci la pression
de pore augmente de ∆uc = Bσc où B est le coefficient de Skempton - qui est proche de 1 pour des sols
saturés (le sol est beaucoup plus compressible que l’eau - ce qui n’est pas le cas d’une roche). A la fin de
cette étape de chargement isotrope, on a:

• Contraintes totales
σ1 = σ2 = σc

• Pression de pore (positive si |uo| est plus petite que σc)

u = −|uo|+Bσc ≈ −|uo|+ σc

• et donc les contraintes effectives ne changent pas !

σ′1 = σ′2 = |uo|

Finalement, on cisaille le sol en augmentant σ1

σ1 = σc + ∆σ1 σ2 = σc

de telle sorte que la pression de pore augmente de A∆σ1 (avec A un coefficient matériaux)

u ≈ −|uo|+ σc +A∆σ1

soit des contraintes effectives

σ′1 = |uo|+ (1−A)∆σ1 σ′2 = |uo| −A∆σ1

On voit que le cercle de Mohr en contraintes effectives à la rupture ne dépend pas de la pression de confinement.
Les cercles de Mohr en contraintes totales pour différent essai effectués avec différents σc donne une réponse
d’un matériau de type Tresca.
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2.4 Lois de comportements

2.4.1 Modélisation du comportement d’un sol
Les géomatériaux ont des comportements mécanique beaucoup plus complexe que les métaux, béton etc.
Pour les sols, le comportement mécanique dépend entre autres:

• de l’historique du chargement (erosion, constriction préalable ...) - à savoir du degré de préconsolidation
- OCR. On rappelle que le degré de pré-consolidation est défini comme le rapport entre la contrainte
(vertical) maximale vécu par le sol lors de son histoire de chargement et la contrainte actuelle.

• des composants du sol (argiles, sables)

• du degré de saturation

• de la temperature, la durée de chargement (fluage) etc.

La complexité du comportement des sols est responsable de plus grands facteurs de sécurité utilisé en pratique.
Pour l’ingénieur, le degré de complexité de la loi de comportement à utiliser est directement relié à la criticalité
du projet, la phase d’étude etc.

Dans ce cours, pour la vérification des états limites ultimes, où il s’agit de se prémunir de la ruine complète
de la structure, on modélisera le sol comme se comportant d’une manière rigide / plastique. A savoir, on
négligera les déformations élastiques reversibles.

En revanche, pour les vérifications des états limites de services, on est typiquement loin de la ruine, et
donc on prendra en compte les déformations élastiques du sol. Il convient de se rappeler, qu’un sol ne se
comporte pas en général même dans le domaine élastique d’une manière linéaire. On utilisera dans ce cours
l’élasticité linéaire et non-linéaire (loi de consolidation de type log-lineaire) pour obtenir des estimations des
tassements des ouvrages. Des modèles elasto-plastique plus adéquats (Cam-Clay etc.) sont utilisés pour les
calculs aux états de services (vous verrez ces modèles lors de cours avancés au niveau Master).

2.4.2 Critères de rupture
2.4.2.1 Conditions drainées (long terme) - Mohr-Coulomb en contraintes effectives

A long terme, le modèle de Mohr-Coulomb (avec cohesion c′ et angle de friction φ′) est typiquement utilisé
pour obtenir une estimation des charges ultimes (bien évidemment, des modèles plus complexes reproduisent
mieux le comportement des sols - cf le modèle de Cam-Clay que vous verrez en Master). Dans le diagramme
de Mohr, le critère de Mohr-Coulomb correspond a une droite. Il est important de souligner que ce critère de
rupture à long terme est bien sur exprimé en fonction des contraintes effectives σ′ij = σij − uδij (contraintes
positives en compression). Pour plus de simplicité (et de clarté) dans la suite de ces notes sur le
calcul à la rupture, on ne fera pas de difference entre contraintes effectives et totales 1 . Dans
l’espace des contraintes principales (contraintes positives en compression), σI > σII > σIII , le critère s’écrit
(Fig.2.1):

f(σij) = (σI − σIII)− (σI + σIII) sinφ− 2C cosφ (2.1)

On rappelle que pour la facette dont l’orientation correspond au point touchant la droite de Mohr Coulomb
dans le diagramme de Mohr, notant σn la contrainte normale à cette facette et τ le cisaillement sur cette
facette, le critère de Mohr-Coulomb s’écrit simplement:

f(σn, τ) = τ − c− σn tanφ (2.2)

2.4.2.2 Conditions non-drainées (court terme) - Tresca en contraintes totales

A court terme, le critère de rupture d’un sol s’écrit en contraintes totales (à court terme i.e. en conditions
non drainées, dans un essai tri-axial, qq soit l’état initial en augmentant la charge axiale, on obtient toujours
le même cercle de Mohr en contraintes effectives). Le critère de Tresca (matériau purement cohérent, non-
frictionnel) approxime correctement la rupture du sol à court terme (en contraintes totales):

f(σij) = (σI − σIII)− 2c

1La distinction est implicite:long terme - critère de Mohr-Coulomb en contraintes effectives, court terme - critère de Tresca
en contraintes totales.
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Figure 2.1: Critère de Mohr-Coulomb (diagramme de Mohr, dans le π-plan de l’espace de contraintes prin-
cipales).

Figure 2.2: Critère de Tresca (diagramme de Mohr, & dans l’espace de 3 contraintes principales)

et classiquement en mécanique des sols on note la cohésion non-drainée cu (parfois su - s pour “shear
strength”).

2.4.2.3 Propriété de convexité du critère de plasticité

Plan tangent à la surface de rupture Soit une courbe f(x1, x2) (dépendant de 2 variables). Au point
(xo1, x

o
2), la normale à cette courbe est donnée par son gradient de f à ce point: (∂f/∂x1, ∂f/∂x2)o. Un

développement de Taylor au premier ordre autour de (xo1, x
o
2), donne:

f(x1, x2) = f(xo1, x
o
2) + (x1 − xo1)

∂f

∂x1
co + (x2 − xo2)

∂f

∂x2
co

la tangente à f au point (xo1, x
o
2) a pour equation (x1 − xo1) ∂f

∂x1
co + (x2 − xo2) ∂f

∂x2
co = 0, i.e. sous forme

vectorielle (summation sur les indices répétes) (xi − xoi ) ∂f
∂xi
co = 0. Le gradient de f en un point sur la suface

donne la normale à celle-ci en ce point.
On peut facilement généraliser au cas d’une surface f fonction de n variables. Dans notre case, σij = σji

de telles sorte que le critère de plasticité f(σij) ne dépend que de 6 valeurs du tenseur des contraintes (ou
des 3 contraintes principales).

Convéxité Il est plus simple de visualiser les choses en 2D. Prenons donc un example où le critère ne dépend
que de σ11 et σ22 (cf Fig. 2.3). On voit que pour tout point σeij dans le domaine élastique (f(σeij) < 0),

l’angle entre les vecteurs (σoij−σeij) et
∂f

∂σij
cσoij est inférieur à π/2 (avec σoij un point sur la surface de rupture

f(σoij) = 0), soit: (
σoij − σeij

) ∂f

∂σij
cσoij > 0

Cette propriété découle de la “convexité” de la surface de rupture. On voit bien sur la Fig.2.4 que pour
une surface concave cela n’est plus le cas en tout point. On observe expérimentalement que les critères de
rupture ont la propriété de convexité (et on peut le comprendre physiquement en imaginant different chemins
de chargement). Cette propriété est importante pour démontrer les théorèmes de l’analyse limite (borne
inférieure & supérieure de la charge limite d’une structure).
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∂f

∂σij
σo
ij

σe
ij

σo
ij

σ11

σ22

f(σij) = 0

Figure 2.3: Surface de rupture (f(σij) = 0) - exemple en 2D. Illustration de la propriété de convéxité(
σoij − σeij

) ∂f

∂σij
cσoij > 0.

∂f

∂σij
σo
ij

σe
ij

σo
ij

σ11

σ22

f(σij) = 0

Figure 2.4: Example de surface concave où l’on peut avoir
(
σoij − σeij

) ∂f

∂σij
cσoij < 0. Expérimentalement,

on observe que les surface de rupture sont toujours convexe (cf Fig.2.3). Cela se comprend intuitivement
physiquement.
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2.5 Notions d’écoulement plastique
Remarque 1: la déformation totale d’un matériau élasto-plastique est la somme d’une partie élastique
εeij (reversible) et d’une partie plastique irréversible εpij :

εij = εeij + εpij

La relation d’élasticité reliant contraintes (effectives pour les sols) et la partie élastique des déformations
reste valide:

σij = cijklε
e
kl = cijkl (εkl − εpkl)

Remarque 2: Les déformation plastiques ne sont pas ’visqueuses’, en d’autres termes elles ne dépendent
pas du temps physique. En revanche, elles sont dépendentes de l’histoire du chargement qui est souvent ...
exprimé comme une fonction temporelle. On utilisera donc en élasto-plasticité le taux de déformation ε̇ij
pour suivre la déformation du milieu.

Le critère de rupture exprime mathématiquement les observation expérimentales suivantes:

1. en dessous d’un seuil de contraintes la déformation est strictement élastique (réversible). Cette limite
s’écrit comme une fonction du tenseur des contraintes: f(σij). On l’appelle alternativement limite
élastique, seuil plastique ou critère de rupture. 2

2. les contraintes ne peuvent pas aller au délà de ce critère de rupture. Par exemple si on contrôle un essai
en force, tout s’écroule brutalement. C’est pour cela que l’on contrôle les essais mécanique en vitesse
de déplacement en général - alors on peut établir un écoulement plastique (sous charge constante dans
le cas d’un comportement élastoplastique parfait)

On peut donc décrire l’évolution des déformations plastiques comme suit:

f(σij) < 0 ε̇pij = 0 pas de def plastique si le critère n’est pas atteint

f(σij) = 0 ε̇pij 6= 0 def plastique si le critère en contraintes est satisfait

On notera que pour beaucoup de matériaux, on observe lors d’essai mécanique soit un durcissement (c’est le
cas des métaux, de certains sols selon leur état initial- i.e. sous-consolidé) soit un radoucissement3 (c’est le
cas des sols sur-consolidé). Le critère de plasticité évolue alors avec la déformation plastique. On doit alors
écrire le critère comme étant fonction des contraintes et de déformation plastiques cumulées lors de l’histoire
de chargement. On n’envisagera pas de tels cas lors de ce cours. On se réduira donc au cas élastique
parfaitement plastique pour lequel le critère n’évolue pas (dans un essai de compression/traction en
contraintes homogènes, la contrainte “plafonne” une fois la contrainte de rupture atteinte).

Une question reste - lorsque le critère de rupture est atteint: f(σij) = 0, comment les déformations
plastiques évoluent-elles ? Ici, on doit s’en remettre à l’expérience afin de développer une formulation mathé-
matique consistente qui permette d’éffectuer des calculs (et de reproduire assez bien les résultats expérimen-
taux).

2.5.1 Ecoulement plastique / Analogie avec la friction
Pour un matériau parfaitement plastique associé, le taux de déformations plastiques ε̇pij est considéré comme
étant proportionnel au gradient du critère de rupture

ε̇pij = λ
∂f

∂σij
(2.3)

à savoir selon le gradient de la “courbe” de niveau définit par f = 0 ! λ est appelé multiplicateur plastique
([1/T] suivant la définition ci-dessus). C’est une quantité scalaire - qui gouverne la magnitude des defor-
mations plastiques. On verra qu’il dépend des conditions aux limites, de l’équilibre et de la géométrie du
problèmes.

Les expériences confirment que l’équation (2.3) n’est pas “trop” fausse pour beaucoup de matériaux
(métaux, plastiques). Afin de comprendre pourquoi une telle forme mathématique est intéressante, faisons
un détour par le déplacement d’un bloc sur une table ayant une friction non-nulle.

2Pour un sol peu consolidé, une telle limite peut être quasi-nulle!
3hardening vs softening en anglais
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2.5.1.1 Analogie avec la friction

Afin de l’intuiter physiquement, il est intéressant de discuter le cas du mouvement d’un bloc de masse M
reposant sur un plan prenant en compte la friction entre ce bloc et le plan. On notera µ le coefficient de friction;
Fx , Fy les forces horizontales appliquées sur le bloc; u̇x et u̇y les vitesses de déplacement correspondantes.
Afin de faire bouger le bloc, il convient que √

F 2
x + F 2

y = µMg

que l’on peut re-écrire
F 2
x + F 2

y = (µMg)
2

Cette expression est “similaire” à un critère de rupture (f ≤ 0) (sauf qu’il est écrit en force). Si F 2
x + F 2

y <

(µMg)
2, il n’y a pas de mouvement, sinon on a la contrainte frictionelle F 2

x + F 2
y = (µMg)

2 pendant le
glissement. Dans l’espace des forces horizontales (Fx, Fy), le critère de rupture est donc un cercle. On intuite
facilement que la direction du mouvement de glissement est aligné avec la résultante des forces horizontales,
i.e.

u̇x
u̇y

=
Fx
Fy

Si on represente graphiquement les choses on voit que le vecteur de vitesse de glissement est “normal” au
critère de rupture:

On notera en passant, qu’à vitesse déplacement constant, le bloc est à l’équilibre (somme des forces = 0,
accélération nulle).

Il est intéressant de définir le taux de travail plastique Ẇp, qui correspondant à la puissance dissipée:

Ẇp = Fxu̇x + Fyu̇y

On voit que Ẇp n’est d’autre que le produit vectoriel de la force horizontale avec le vecteur de vitesse de
glissement. Il est donc “maximal” pour le cas où ce dernier est exactement aligné avec la résultante des forces
(normal au critère de rupture).

Faisons maintenant l’expérience suivante, on préscrit la vitesse de glissement (u̇x et u̇y). Quelles sont les
forces Fx, Fy correspondantes? On l’obtient en trouvant le point sur le cercle de rupture tel que la résultante
est alignée avec le vecteur vitesse de glissement.

Le fait que la déformation plastique est telle que le taux de travail plastique Ẇp = σij ε̇
p
ij (qui est lié à

l’énergie dissipée) est maximal (au cours de la déformation) est lié à la loi d’écoulement associé normale eq.
(2.3).

Remarque 1 Le fait que Ẇp est maximal n’aide pas vraiment à déterminer le multiplicateur plastique λ ;(
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Remarque 2 L’hypothèse du travail plastique maximale / normalité de la deformation plastique par rap-
port à la surface de rupture ne repose que sur une intuition. Elle n’est pas forcèment vérifiée pour certains
matériaux. Notamment les milieux granulaires / sols ne sont pas très bien modélisé par un critère de Mohr-
Coulomb associé (top de dilatance cf. exo) - il convient alors de “relacher” cette hypothèse de normalité et de
prendre un critère dit non-associé avec un potentiel d’écoulement plastique g différent du critère f : on écrit

ε̇pij = λ
∂g

∂σij

Remarque 3 Pour un matériau élastique parfaitement plastique, dans ce cas les déformations plastiques
peuvent augmenter infiniment sans augmentation des contraintes (réponse plate dans la courbe effort-déformation).
Le plateau plastique implique qu’il n’éxiste pas de relation unique entre contraintes et deformation plastique.
En d’autre termes, la connaissance des contraintes n’implique pas connaissance des déformations. En re-
vanche, si les déformations sont imposées alors on peut calculer les contraintes. On voit donc que pour un
matériau parfaitement plastique, suivant le type de conditions aux limites il n’est pas forcèment possible de
déterminer le multiplicateur plastique (cela dépend aussi de la géométrie). En revanche, le comportement
plastique parfait permet d’utiliser les théorèmes de l’analyse limite pour estimer les charges de ruines des
structures géotechniques (comme on va le voir dans les semaines à venir).

2.5.2 Ecoulement plastique
Dans le cas général, le multiplicateur plastique λ dépend des conditions aux limites, de la géometrie et du
critère de plasticité. On l’obtiendra en prenant en compte en plus de l’équilibre quasi-statique, l’inégalité
introduite par la plasticité, le fait que les contraintes ne peuvent pas excéder le critère:

f(σij) < 0 ε̇pij = λ = 0

f(σij) = 0 ε̇pij 6= 0 λ > 0

L’introduction de la loi de comportement élastoplastique (en taux) σ̇ij = cijkl(ε̇ij − λ
∂g

∂σij
) dans l’égalité

f(σij) = 0 permet de déterminer le critère. Notamment, en l’absence d’écrouissage, les contraintes si elles
satisfassent le critère de rupture f(σij) = 0, alors elles doivent dans y rester, en d’autres termes ḟ = 0, soit
(en l’absence d’écrouissage):

∂f

∂σij
σ̇ij = 0

on peut donc en déduire λ en fonction de σij , ε̇ij f et g. Cela se simplifie beaucoup pour des critères de
Tresca ou Mohr-Coulomb associés (cf. Exercice semaine 1).
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Chapter 3

Caractérisation in-situ

“La connaissance des conditions de sol en géotechnique dépend de l’importance et de la qualité des recon-
naissances géotechniques. Cette connaissance et le contrôle de la qualité de réalisation des travaux sont
plus importants pour satisfaire les exigences fondamentales que la précision des modèles de calcul et des
coefficients partiels.” (Introduction Eurocode).

3.1 Tests in-situ

3.1.1 Scissomètre
Le scissomètre est une sonde à ailettes (quâtre pales) solidaire d’un train de tige. Il est applicable dans les
sols fins permet de réaliser un essai de cisaillement non drainé in-situ (on obtient donc une résistance au
cisaillement). Une fois enfoncé dans le sol, le scissomètre exerce un couple de torsion sur le sol, jusqu’à la
rupture de ce dernier, autour de la sonde.

Remarques pour la mise en place du scissomètre :

• Usuellement, la hauteur du scissomètre vaut le double de son diamètre, soit H = 2D

• Refoulement du sol à la mise en place (délai de ~5 minutes avant l’essai)

• Écart minimal de 0.5m entre chaque essai

• La rotation du moulinet peu précise (et l’effet de torsion déforme partiellement les tiges), il est donc
impossible d’obtenir un module de déformation du sol.

• La surface de rupture en phase initiale de sollicitation demeure inconnue, mais après cette dernière se
stabilise autour du cylindre

• Résistance au cisaillement remanié (après 25 tours)

Approche cinématique
Pour obtenir une relation entre le moment à la rupture et la cohésion non-drainée, on effectue une

approche de type cinématique : on equilibre la puissance des efforts extérieurs avec la puissance dissipée
interne (resistance maximale) du sol.

La puissance des efforts extérieurs est exprimée selon l’équation 3.1. Elle est égale (selon le PPV) à la

la puissance dissipée maximale (surface de rupture cylindrique avec en plus les surfaces supérieures et
inférieures) composée de la puissance dissipée sur la surface supérieure (S. top, équation 3.3) et inférieure (S.
bot) , ainsi que la surface externe (S. perim, équation 3.4).

Pext(ψ̇) = Mψ̇ (3.1)

Pdissipée(ψ̇) = PS.topdissipée + PS.botdissipée + PS.perimdissipée (3.2)
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Figure 3.1: Schéma du test au scissomètre (gauche) et courbe rotation - moment mesuré correspondante
(droite).

En supposant que la surface de rupture correspond au cylindre total extérieur (hauteur H et rayon R),
et que la resistance de cisaillement du sol est atteinte τ ≈ cu, on a donc pour les surfaces supérieures et
inférieures un mouvement du type u̇θ = rψ̇, donc la puissance unitaire dissipée est curψ̇ que l’on intègre pour
obtenirs

PS.topdissipée =

R̂

0

2πˆ

0

curψ̇rdrdθ (3.3)

= 2πψ̇cu
R3

3

= PS.botdissipée

la puissance dissipée sur le perimetre externe de la surface de rupture correspond à l’intégrale le long du
perimètre de la puissance dissipée unitaire cuRψ̇:

PS.perimdissipée =

Ĥ

0

2πˆ

0

cuRψ̇Rdθdz (3.4)

= 2πψ̇cuHR
2

On obtient donc la puissance dissipée totale Pdissipée(ψ̇) = 2πR2cu(H + 2R
3 )ψ̇ qui en appliquant le principe

des puissances virtuelles doit etre égale à la puissance des efforts extérieurs:

Pdissipée(ψ̇) = Pext(ψ̇)

On obtient donc au final la relation entre le moment maximal et la résistance non-drainée (avec D = 2R le
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Figure 3.2: Pénétromètres

diamètre de la tige):

M = π
D2

2

(
H +

D

3

)
cu

cu ≈
6M

πD2(3H +D)

En pratique il existe des corrections car l’essai est sensible (notamment à la vitesse de rotation etc.)... du
type

cu = f × cFV Tu

avec f un coefficient dépendant de l’indice de plasticité du sol (entre 1 et 0.6).

3.1.2 CPT/U - Pénétromètre statique
Le Cone Penetration Test (CPT) détermine la résistance qu’oppose le sol à l’enfoncement d’un cône. Il
existe plusieurs types de pénétromètres (voir figure 3.2). Le pénétromètre est enfoncé dans le sol à une
vitesse d’environ 2cm/s et les mesures d’efforts sont continues. On distingue les efforts sur la pointe du
pénétromètre Qpet les efforts de frottements du pénétromètre Qf .

fs = Qf/(πHD)

qc = Qp/Sc

cu ≈
(qc − σvo)

Nc

fs résistance au frottement

qc résistance unitaire de pointe

Sc surface de pointe

Pour un pénétromètre à cône mobile, les mesures sont indépendantes de qc. Le pénétromètre à point
électrique quant à lui donne des mesures indépendantes de Qfet Qp (via les cellules de chargement), il faut
donc répéter les mesures à la même profondeur et le dispositif de fonçage doit être centré.

Les mesures obtenues du pénétromètre permettent d’obtenir un profilage continue du sol. La pression de
pore (CPTU) u peut être ajoutée, ainsi que la mesure de volume Vs. Il faut toutefois prendre gare avec la
mesure de u car elle doit être prise dans la nappe, donc jamais dans les premiers mètres du sol. De plus, il
faut prendre en compte la dilatation de certains terrains. Il est aussi important de considérer le passage entre
couches (par exemple imperméable - sable) car il faut un temps d’équilibrage de pression dans la chambre de
mesure. Il existe une importante “banque de corrélation” pour obtenir la lithologie et les paramètres du sol.

3.1.3 SPT - pénétromètre dynamique
Le Standard Penetration Test (SPT) consiste à faire pénetrer répétitivement des tiges ou tubes métalliques
dans le sol, par battage. Le but est d’estimer le nombre de coups de mouton correspondant à un enfoncement
(en cm) donné.

Le SPT est un type de pénetromètre dynamique . Un tube échantillonneur est utilisé pour le battage.
Pour réaliser un essai de battage SPT, il faut prendre en compte les remarques suivantes:

• Il faut compter le nombre de coups pour s’enfoncer de 30cm, les 15 premiers centimètres sont négligés
(hauteur totale d’enfoncement: 45cm).

• L’essai permet d’avoir des informations qualitatives sur le sol.
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Figure 3.3: Essai de pénetration dynamique

• L’essai est surtout utilisé dans les sols sableux où il donne une bonne indication de la compacité du sol,
pour autant qu’on ne se trouve pas sous la nappe phréatique

• Essai adapté pour les sols sableux, il met en valeur

– L’homogénéité (ou non) du site

– L’épaisseur des couches (toit du rocher)

– Des cavités si elles sont présentes

• parfois utilisation de formule de battage empirique (q_c a partir de qdynamique)

À partir des données reccueillies, des courbes nombre de coups/profondeur permettent de mieux comprendre
la disposition des couches.

L’évaluation du nombre de coups peut être sujette à modification si les sables sont saturés, très fins ou
limoneux, sous la nappe et que le nombre de coups N ′ excède 15:

• Terzaghi et Peck recommmande de prendre NSPT = 0.5N ′ + 7.5

• Bazara propose pour N ′ < 15: NSPT = 0.6N ′

Une correction de profondeur est également recommandée:

NSPT = N ′
350

70 + γ ·D

D: prodondeur [m]

N’: nombres de coups mesurés

γ: densité apparente en kN/m3 (γ′si sous la nappe); γD ≥ 280kN/m2

21 Page 21



Brice Lecampion

Figure 3.4: Pressiomètre: schéma de la sonde (gauche), et schématique de la mesure (pression constante par
paliers, mesure du volume).

3.1.4 Pressiomètre
L’essai pressiométrique charge latéralement son environnement, une fois la sonde insérée dans la zone à
étudier. La sonde est recouverte d’une membrane en caoutchouc extensible latéralement, qui infligera une
pression constante et uniforme sur la longueur de l’appareil. Cet essai s’effecture donc dans un forage
préalablement effectué, et on peut faire l’essai à différentes profondeurs.

Il existe de nombreuses formules pour établir la capacité portante de fondations superficielles ou profondes
directement depuis les paramètres déterminés au pressiomètre (en France notamment).

Sur le schéma (cf figure), on peut remarquer la présence de trois cellules: deux cellules de garde aux
extrémités et la cellule centrale dite cellule de mesure. L’intérêt des cellules de garde est d’assurer une bonne
répartition cylindrique des contraintes et des déformations au nivau de la cellule de mesure (i.e de minimiser
les perturbations aux extrémités).

L’essai s’effectue de facon suivante (pour une profondeur donnée):

1. les cellules de garde sont mises en pression, puis la cellule centrale.

2. Des paliers en pression (~0.25MPa) sont ensuite effectués. En général une dizaine. Pour chaque palier
de pression, on effectue une série de mesures des déformations volumiques de la sonde centrale au cours
du temps. On reste à minima 1 minute par palier.

Il est également recommander de procéder après chargement à un déchargement par paliers comme pour
la mise en pression. Différentes corrections due à la compréssibilité de l’appareil etc. sont généralement
effectuées.

Un essai pressiométrique sert la plupart du temps à définir la pression limite (pl) mais aussi un module
de déformation (E). L’interprétation de l’essai s’effectue en traçant deux courbes:

1. la courbe pressiométrique en portant en abscisse le palier de pression p et en ordonnée la déformation
volumique de la chambre en fin de palier (V60”)

2. la courbe dite de “fluage” en portant en abscisse le palier de pression p et en ordonnée la différence
∆V = V60” − V30” entre la déformation volumique de la chambre en fin de palier (V60”) et celle après
30” de charge.
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Figure 3.5: Interpretation de l’essai pressiomètrique: Courbe du volume (après 1 minute de charge) en
fonction de la pression, et courbe de fluage (variation du volume de la chambre vs palier de pression).
L’analyse de l’essai permet d’obtenir un module élastique (linéarité de la courbe pressiométrique dans le
domaine élastique), une pression de fluage pf (correspondant au début de la plasticité) et une pression limite
pl. Cette dernière est souvent utilisé pour obtenir des corrélations (capacité portante des fondations profondes
notamment).

Après un rétablissement des conditions initiales dans le terrain (correspondant à la pression de “recompaction”
po), le sol a d’abord un comportement essentiellement élastique (domaine pseudo-élastique sur la courbe
pressionmétrique) puis progressivement plastique et différée (entre pf la pression de début de fluage et la
pression limite pl). L’essai est souvent répété à plusieurs profondeurs dans le forage. Il est ensuite courant
de reporter les principaux résultats (module, pression limite) en fonction de la profondeur.

Cet essai permet de determiner essentiellement deux paramètres du sol d’une manière robuste:

• la résistance au cisaillement du sol - via la pression limite pl

• un module de déformation, le module pressiométrique typiquement noté EM (M pour Ménard l’inventeur
de l’essai) à partir de la pente de la courbe pressiométrique dans le domaine élastique.

De très nombreuses règles de dimensionnement et méthodes de calculs sont basées sur les essais pres-
siométriques (calculs de capacité portantes, calculs de tassements etc.).

3.1.4.1 Modélisation mécanique

On détaille ici une modélisation mécanique permettant de relier les observables avec les proproétés mécanique
recherchées. La résolution proposée s’effectue en coordonnées polaires (géométrie cylindrique), selon les
hypothèses suivantes:

1. Axisymétrie (indépendant de θ)

2. La hauteur du pressiomètre est bien plus grand que le rayon initiale, H � Rw(indépendant de z)

Résolution

Conditions limites à r = Rw
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ti = σijnj

σrr = p

σrθ = 0

Conditions limites à l’infini lim
r→+∞

ui = 0. Attention, bien sur, des contraintes initiales existent à l’infini
dans le sol.

On a au vue de la géométrie et symmetrie cylindrique

ur = ur(r)

uθ = 0

Rappel de la définition du tenseur des petites déformations pour

εrr =
dur
dr

εθθ =
ur
r

εrθ = 0

Équations à l’équilibre en coordonnées polaires (avec indépendance selon θ)

∂σrr
∂r

+
σrr − σθθ

r
= 0 selon er

∂σθr
∂r
− 2σθr

r
= 0 selon eθ

Élasticité du sol
On note ∆σij = σij − σ0

ij , et le module pressiométrique 2G = E
1+ν .

∆σrr = σrr − σ
0

n =
E

1 + ν
εrr +

νE

(1 + ν)(1− 2ν)
(εrr + εθθ)

∆σθθ = σθθ − σ
0

n =
E

1 + ν
εθθ +

νE

(1 + ν)(1− 2ν)
(εrr + εθθ)

∆P = P − P 0

∆σrr −∆σθθ =
E

1 + ν
(εrr − εθθ)

=
E

1 + ν

(
du

dr
− u

r

)
En réintroduisant ces valeurs dans l’équation d’équilibre, l’équation 3.5 peut-être résolue

d2ur
dr2

+
dur
dr
− ur
r2

= 0

ur(r) =
c1
r

+ c2r (3.5)

c1 et c2 sont des constantes d’intégration, avec c2 = 0 car, lorsque r tend vers l’infini, u(r → ∞) = 0.
En utilisant la condition limite ∆σrr(r = Rw) = ∆P , on obtined c1 =

−R2
w∆P
E (1 + ν). Les variations de

contraintes due à la pression appliquée sont donc
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Figure 3.6: Zone plastique et élastique

∆σrr = ∆P ×
(
Rw
r

)2

∆σθθ = −∆P ×
(
Rw
r

)2

∆σrr = −∆σθθ

En regardant maintenant la variation de volume du puit:

∆V = V − V0

V0 = HπR2
w

V = Hπ(Rw(1 + δ))2

δ =
ur(r = Rw)

Rw
=

∆P

2G
=

∆V

V0

on voit donc que dans l’hypothèse d’un comportement élastique du sol, le pressiomète mesure
donc le module élastique de cisaillement G (via la pente de la courbe pression volume). Dans la pratique, on
reporte un module préssiométrique

Em = 2G(1 + ν)

en prenant ν = 0.3(i.e on mesure 2G et on reporte Em).

Plastification
Les directions principales sont toujours er et eθ; et dans la zone plastique, r ∈ [Rw;Rp].

σrr − σθθ = ∆σrr −∆σθθ = 2cu

∂∆σrr
∂r

+
2cu
r

= 0

∆σrr = c1 ln
1

r
+ c2

Rappel des conditions limites (équation 3.6) pour trouver ∆σrr et ∆σθθ.

∆σrr = ∆P en r = Rw

∆σrr = cu en r = Rp (3.6)

∆σrr = cu + 2cu ln
Rp
r

∆σθθ = −cu + 2cu ln
Rp
r

À terme est obtenu l’équation 3.7. Un lien existe également entre la variation de volume et cu.

Rp
Rw

= e
∆P−cu

2cu (3.7)

∆V

V
=
cu
G

(
Rp
Rw

)2

• liens pL − po et cu empiriques

• début de la plastification pf = pl + culn∆V/V
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3.2 Autres tests

3.2.1 Essai à la plaque

3.2.2 Dilatomètre

3.2.3 Essais hydrauliques

26 Page 26



Chapter 4

Analyse limite et calculs à la rupture
pour la géotechnique

La vérifications des états limites ultimes (ELU - ULS) repose sur la détermination de(s) la charge(s) maximale
supportable par une structure (dans notre cas, une fondation, un mur de soutènement etc.). Dans ce cadre,
l’analyse limite est très couramment employée, notamment en géotechnique. Elle repose sur un modèle rigide
plastique du sol (en conditions drainées ou non-drainées selon que l’analyse est effectuée à long ou court
terme). Les formules “classiques” de capacité portante des fondations ont été obtenues par cette méthode
(avec plus ou moins d’approximations), idem pour la stabilité des talus. De plus, des nouveau logiciel
éléments finis (e.g. OptumG2) permettent maintenant de faire directement de l’analyse limite numérique et
donc d’obtenir des bornes des charges maximales pour des configurations complexes rapidement (sans devoir
résoudre le problème élastoplastique temporel complet). L’idée de ces notes est d’introduire les méthodes
d’analyse limite pour la géotechnique. Réferez vous au cours Mécanique des structures pour GC (Civil 223)
et au cours de Mécanique des milieux continus (Civil 225) pour plus de détails sur les concepts de bases.

Conventions En géotechnique / mécanique des sols, les contraintes sont typiquement compressives et donc
en pratique, la convention est de prendre les contraintes positives en compression. En ce qui concerne les
déformations, deux conventions sont possibles: i) soit on garde une convention d’extension positive mais cela
implique de mettre un signe − dans les lois de comportements (relation contraintes - déformation), soit ii) on
utilise la convention que les déformations de “contraction” sont positives (i.e. extension négative). On utilise
la deuxième convention ici. En résumé:

σij > 0 en compression
εij > 0 en contraction

On notera donc que comme εij > 0 en contraction, les déplacements seront positif dans le sens opposé du
système de coordonnée choisi (en pratique, on retombera sur ses pieds avec un peu de sens de physique).
Egalement, pour les tractions il convient de prendre la normale “rentrante” au solide.

4.1 Le problème rigide-plastique
Soit un domaine V de surface S, le problème rigide-plastique consiste en

• les équations d’équilibre (en négligeant les efforts inertiels - approche quasi-statique)

σij,j − bi = 0

où le signe moins devant les forces de volume est du à la convention de contraintes positives en com-
pression. On utilise ici la convention de sommation sur les indices répétés, et la notation suivantes pour
les dérivées partielles

h,j = ∂h/∂xj

bi est une force de volume (en pratique le poids du sol). Le tenseur des contraintes est symmétrique
σij = σji (conservation du moment angulaire).
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• En tout point de V , le champ de contraintes est continument différentiable. Notons que des surface de
discontinuité (de normale nj) peuvent exister, mais le vecteur contraintes Ti = σijnj doit etre continu
à travers de telles surface, soit (

σ−ij − σ+
ij

)
nj = [[σij ]]nj = 0

où [[σij ]] désigne donc le saut du champ de contraintes à travers d’une telle surface de discontinuitée.

• les conditions aux limites en tractions et déplacement imposés:

σijnj = T di donnée sur Sti de normale nj
ui = udi donnée sur Sui

avec non intersection de Sti et Sui . On notera que par la suite on se restricte aux cas où les déplacements
imposés ne varient pas en temps u̇di = 0, où l’on note la dérivée temporelle ∂u/∂t = u̇. On notera aussi
St pour la surface où les tractions / efforts sont imposés.

• Le tenseur des déformations
εij =

1

2
(ui,j + uj,i)

On notera que la convention de mécanique des sols impliquent ensuite des déplacements positifs dans
le sens contraire du système de coordonnées. Alternativement on peut écrire εij = − 1

2 (ui,j + uj,i).

• Equations de compatibilité - ici pour l’élasticité plane:

∂yyεxx + ∂xxεyy = 2∂xyεxy

• Soit, le critère de plasticité f (et le potentiel d’écoulement plastique g). La loi de comportement rigide
plastique s’écrit

f(σij) < 0 ε̇ij = 0

f(σij) = 0 ε̇ij = λ
∂g

∂σij
(4.1)

où l’on note la dérivée temporelle ∂u/∂t = u̇. Le cas de la plasticité associée correspond à f = g. On se
restrictera à ce cas ici. λ est le multiplicateur plastique (λ ≥ 0) (sans dimension car f a une dimension
de contraintes). On voit donc que

λf(σij) = 0

Dans le cas de la plasticité associée (f = g), les déformations plastiques sont orientées dans la diretion
normale de la surface de rupture.

Le modèle rigide-plastique néglige les déformations élastiques du milieu par rapport aux déformations plas-
tiques: une hypothèse satisfaisante lorsque l’on veut étudier la ruine d’une structure.

On rappel qu’en mécanique des milieux continus, on appelle un champ de contraintes σij statiquement
admissible si il vérifie les équations d’équilibres et les conditions aux limites en tractions. On appelle un champ
de déplacement ui cinématiquement admissible si il vérifie les conditions aux limites en déplacement et est
régulier (i.e. ne crée pas d’ouverture ou de “trou” dans le domaine, en revanche des surfaces de glissement
peuvent apparaitre).

4.1.1 Principe des puissances virtuelles
Le principe des puissances virtuelles (PPV) est l’équivalent du principe des travaux virtuels écrit en vitesse.
Soit ˆ̇ui , un champ de vitesses virtuelles cinématiquement admissibles , le principe des puissances virtuelles
s’écrit (en quasi-statique - i.e. sans effet inertiels):

Pext( ˙̂ui) = Pint( ˙̂ui)

où la puissance des efforts extérieurs Pext( ˙̂ui) est définie par:

Pext( ˙̂ui) =

ˆ
V

(−bi) ˙̂ui dV +

ˆ
St

T di
˙̂ui dS

28 Page 28



Brice Lecampion

Figure 4.1: Example de surface de discontinuité de déplacement SΣ pour laquelle le vecteur traction est
continue: T+

i + T−i = 0 (soit (σ−ij − σ+
ij)n

−
j = 0). La puissance unitaire dissipée le long d’une telle surface de

discontinuité est donnée par T+
i (u̇+

i − u̇−i ) = T−i (u̇−i − u̇+
i ).

[Attention le signe − dans l’expression précédente est due à la convention de contraintes positive en com-
pression et la convention de déplacement positif dans la direction opposée au système de coordonnée] et la
puissance intérieure par

Pint( ˙̂ui) =

ˆ
V/SΣ

σij ε̇ij( ˙̂ui) dV +

ˆ
SΣ

T−i

(
˙̂u−i − ˙̂u+

i

)
dS

On notera
[[

˙̂ui

]]
le saut de vitesse virtuel à travers la surface SΣ .

Note: on peut retrouver facilement le PPV en multipliant l’équation d’équilibre par ˆ̇ui et intégrant sur V
et en utilisant la formule de Green (

´
V
hi,idV =

´
S
hinidS).

4.1.2 Théorèmes de l’analyse limite
• Théorème de la borne inférieure (lower bound theorem)

La ruine ne se produira pas si l’on peut trouver un état de contraintes qui réponde aux équations
d’équilibre et aux conditions aux limites de traction (champ statiquement admissible - SA) et qui est
partout inférieur ou égal au critère de rupture.

• Théorème de la borne supérieure (upper bound theorem)
La ruine doit se produire si, pour toute déformation plastique compatible (i.e. pour lequel le champ
de déplacement est cinématiquement admissible), le taux de travail des forces externes est égal ou
supérieur au taux de dissipation d’énergie interne.
[On notera que si il y a déformation, les contraintes correspondantes doivent satisfaire le critère de
rupture. Des discontinuitées de déplacement le long de bande de cisaillement sont possibles.]

4.1.3 Paramètres de chargement / notions des domaines de charges admissibles
/ Approches du calcul à la rupture

Pour un ouvrage géotechnique, les paramètres de chargement vont typiquement être : les charges à reprendre
par les fondations, la hauteur d’une paroi / mur de soutenement, la force d’un ancrage, la longueur d’un clou
etc.
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Figure 4.2: Domaine de stabilité K d’un ouvrage dans le cas de 2 paramètres de chargement (Q1, Q2). On
bornera K par l’intérieur (approche statique) et l’extérieur (approche cinématique).

Le but d’un calcul ELU est de déterminer le domaine admissible de ces charges. Dénotons K ce domaine,
si les charges (par example Q1, Q2) restent à l’interieur de K l’ouvrage est stable. Evidemment le domaine
K contient l’origine (charges nulles) - c.f. Figure 4.2.

Si les charges atteignent la frontière du domaine K, on arrive à la ruine de l’ouvrage: on ne peut pas
avoir un champ de contraintes satisfaisant l’équation d’équilibre et le critère de plasticité simultanément en
tout point de l’ouvrage. On parle alors de ruine plastique. On peut noter que ce domaine K va dépendre:

1. de la géométrie de l’ouvrage considérée

2. du critère de plasticité utilisé

3. du chargement

En revanche, il ne dépend pas du trajet de chargement (i.e. comment la ruine peut être atteinte) ni des
conditions initiales (qui sont a priori telles que la structure est stable en étant non-chargée).

En pratique, on va approximer K par des approches par l’intérieur (dite statique) et par l’extérieur (dite
cinématique).

• Approche statique: La philosophie de l’approche par l’intérieur consiste à trouver un champ de con-
traintes statiquement admissible en paramétrant le chargement par e.g. (Q1, Q2) = β × (Q∗1, Q

∗
2) (où

Q∗1, Q
∗
2 sont des valeurs des charges petites interieure à K) et ensuite maximiser β tout en vérifiant que

le critère de plasticité f(σij) ≤ 0 en tout point du domaine. Ce faisant on obtient une borne inférieure
K− du domaine K (on démontre ce théorème plus loin dans ces notes).

• Approche cinématique: Cette fois ci, on va postuler un mécanisme de ruine, i.e. un champ cinématique-
ment admissible décrivant la ruine plastique de l’ouvrage. Ici en plus des paramètres de chargement,
le mécanisme de ruine peut également être paramétrisé par un nombre fini de paramètres (exemple:
l’inclinaison d’une surface de rupture). On va calculer la puissance dissipée lié à ce mécanisme de ruine
en postulant que le champ de contraintes duquel dérivent les déformations vérifie le critère de plasticité.
En utilisant le PPV, on va obtenir une borne supérieure K+ du domaine K (on démontre ce théorème
plus loin dans ces notes). Notons que dans le cas où le mécanismes de ruine est parametré, il convient
de minimiser la borne supérieure obtenue en fonction des paramètres du mécanisme de ruine choisi afin
d’obtenir la borne supérieure la plus proche possible du domaine K (i.e. la plus petite).
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Figure 4.3: Critère de Mohr-Coulomb (diagramme de Mohr, dans le π-plan de l’espace de contraintes prin-
cipales).

4.2 Critères de plasticité en mécanique des sols
Rappelons brièvement les critères de résistance/plasticité classiques utilisés en mécanique des sols (note: vous
verrez des modèles de comportement plus réalistes et complets lors du cours de master de Géomécanique
notamment).

[On notera en passant que l’approche du calcul à la rupture est basée sur le comportement rigide parfaite-
ment plastique, soit sans écrouissage/radoucissement du critère de plasticité. Une approche qui est d’autant
plus valable que le matériau présente une rupture ductile. Hypothèse réaliste pour les sols.]

4.2.1 Court terme versus long terme
4.2.1.1 Conditions drainées (long terme) - Mohr-Coulomb en contraintes effectives

A long terme, le modèle de Mohr-Coulomb (avec cohesion c′ et angle de friction φ′) est typiquement utilisé
pour obtenir une estimation des charges ultimes (bien évidemment, des modèles plus complexes reproduisent
mieux le comportement des sols - cf le modèle de Cam-Clay que vous verrez en Master). Dans le diagramme
de Mohr, le critère de Mohr-Coulomb correspond a une droite. Il est important de souligner que ce critère de
rupture à long terme est bien sur exprimé en fonction des contraintes effectives σ′ij = σij − uδij (contraintes
positives en compression). Pour plus de simplicité (et de clarté) dans la suite de ces notes sur le
calcul à la rupture, on ne fera pas de difference entre contraintes effectives et totales 1 . Dans
l’espace des contraintes principales (contraintes positives en compression), σI > σII > σIII , le critère s’écrit
(Fig.4.3):

f(σij) = (σI − σIII)− (σI + σIII) sinφ− 2C cosφ (4.2)

On rappelle que pour la facette dont l’orientation correspond au point touchant la droite de Mohr Coulomb
dans le diagramme de Mohr, notant σn la contrainte normale à cette facette et τ le cisaillement sur cette
facette, le critère de Mohr-Coulomb s’écrit simplement:

f(σn, τ) = τ − c− σn tanφ (4.3)

4.2.1.2 Conditions non-drainées (court terme) - Tresca en contraintes totales

A court terme, le critère de rupture d’un sol s’écrit en contraintes totales (à court terme i.e. en conditions
non drainées, dans un essai tri-axial, qq soit l’état initial en augmentant la charge axiale, on obtient toujours
le meme cercle de Mohr en contraintes effectives). Le critère de Tresca (matériau purement cohérent, non-
frictionnel) approxime correctement la rupture du sol à court terme (en contraintes totales):

f(σij) = (σI − σIII)− 2C

(et classiquement en mécanique des sols on note la cohésion non-drainée cu).
1la distinction sera implicite:long terme - critère de Mohr-Coulomb en contraintes effectives, court terme - critère de Tresca

en contraintes totales.
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Figure 4.4: Critère de Tresca (diagramme de Mohr, & dans l’espace de 3 contraintes principales)

∂f

∂σij
σo
ij

σe
ij

σo
ij

σ11

σ22

f(σij) = 0

Figure 4.5: Surface de rupture (f(σij) = 0) - exemple en 2D. Illustration de la propriété de convéxité(
σoij − σeij

) ∂f

∂σij
cσoij > 0.

4.2.1.3 Propriété de convexité du critère de plasticité

Plan tangent à la surface de rupture Soit une courbe f(x1, x2) (dépendant de 2 variables). Au point
(xo1, x

o
2), la normale à cette courbe est donnée par son gradient de f à ce point: (∂f/∂x1, ∂f/∂x2)o. Un

développement de Taylor au premier ordre autour de (xo1, x
o
2), donne:

f(x1, x2) = f(xo1, x
o
2) + (x1 − xo1)

∂f

∂x1
co + (x2 − xo2)

∂f

∂x2
co

la tangente à f au point (xo1, x
o
2) a pour equation (x1 − xo1) ∂f

∂x1
co + (x2 − xo2) ∂f

∂x2
co = 0, i.e. sous forme

vectorielle (summation sur les indices répétes) (xi − xoi ) ∂f
∂xi
co = 0. Le gradient de f en un point sur la suface

donne la normale à celle-ci en ce point.
On peut facilement généraliser au cas d’une surface f fonction de n variables. Dans notre case, σij = σji

de telles sorte que le critère de plasticité f(σij) ne dépend que de 6 valeurs du tenseur des contraintes (ou
des 3 contraintes principales).

Convéxité Il est plus simple de visualiser les choses en 2D. Prenons donc un example où le critère ne dépend
que de σ11 et σ22 (cf Fig. 4.5). On voit que pour tout point σeij dans le domaine élastique (f(σeij) < 0),

l’angle entre les vecteurs (σoij−σeij) et
∂f

∂σij
cσoij est inférieur à π/2 (avec σoij un point sur la surface de rupture

f(σoij) = 0), soit: (
σoij − σeij

) ∂f

∂σij
cσoij > 0
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∂σij
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f(σij) = 0

Figure 4.6: Example de surface concave où l’on peut avoir
(
σoij − σeij

) ∂f

∂σij
cσoij < 0. Expérimentalement,

on observe que les surface de rupture sont toujours convexe (cf Fig.4.5). Cela se comprend intuitivement
physiquement.

Cette propriété découle de la “convexité” de la surface de rupture. On voit bien sur la Fig.4.6 que pour
une surface concave cela n’est plus le cas en tout point. On observe expérimentalement que les critères de
rupture ont la propriété de convexité (et on peut le comprendre physiquement en imaginant different chemins
de chargement). Cette propriété est importante pour démontrer les théorèmes de l’analyse limite (borne
inférieure & supérieure de la charge limite d’une structure).

4.2.2 Déformations plastiques
Expérimentalement, on remarque que les déformations plastiques peuvent etre dérivées d’un potentiel g
lorsque le critère de plasticité est atteint, soit:

f(σij) < 0 ε̇ij = 0

f(σij) = 0 ε̇ij = λ
∂g

∂σij

Pour les métaux etc., le potentiel g est bien approximé par le critère de rupture f : f = g (postulat dit de
Drucker qui n’est pas trop faux expérimentalement pour certains matériaux). On dit alors que la plasticité est
“associée”. Cette hypothèse simplifie beaucoup les calculs et permet notamment de borner les charges limites.
En revanche pour les sols, elle n’est pas nécessairement vérifiée expérimentalement (vous re-verrez cela lors
de vos cours de Master). Pour le critère de Mohr-Coulomb, l’hypothèse f = g implique que les déformations
plastiques augmentent toujours de volume (alors que le comportement des sols est plus complexe et dépend
de la pression de pre-consolidation). Néanmoins, il est usuel pour les calculs à la rupture (afin de vérifier les
ELUs) de faire les calculs sous l’hypothèse de la plasticité associée: f = g. Les bornes obtenues avec cette
hypothèse semblent également valable pour le cas non-associé (f 6= g) même si aucune preuve mathématique
formelle n’existe.

4.2.2.1 Mohr-Coulomb - dilatance

Prenons le cas du critère de Mohr-Coulomb et raisonnons dans le repère des contraintes principales (en 2D).
Pour un critère associé (f = g), les déformations plastiques principales seront également dans le meme repère.
En utilisant eq.(4.2) et (4.1) on a pour les déformations plastiques principales:

ε̇I = λ(1− sinφ)

ε̇III = λ(−1− sinφ)
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Figure 4.7: Surface de glissement dans un matériau Mohr-Coulomb. Le vecteur vitesse de discontinuité de
déplacement [[u̇i]] = u̇−i − u̇+

i est représenté ici par [[U̇ ]].

et la déformation volumique ε̇v = ε̇I + ε̇III peut s’exprimer en fonction de la déformation de cisaillement
γ̇ = ε̇I − ε̇III :

ε̇v = −γ̇ sinφ

γ̇ = 2λ

L’angle de frottement φ étant toujours inférieur à π/2 et le multiplicateur plastique λ > 0, on a ε̇v < 0
qui correspond dans la convention MS (compression positive, contraction positive) a une augmentation de
volume. En d’autres termes, toute déformation plastique de cisaillement est associée à une augmentation de
volume pour le critère de MC associé, ceci est partiellement vrai - en revanche il est typiquement observé qu’à
partir d’une certaine déformation plastique: le taux déformation volumique devient nul et la déformation
plastique n’est que cisaillante (on appelle cela l’état critique en mécanique des sols). Il convient d’utiliser des
modèles plus complexe pour prendre en compte ce comportement. Encore une fois, pour le calcul ELU et
l’estimation des charges de ruines, le critère de Mohr-Coulomb est efficace.

4.2.2.2 Surface de Glissement

Il est courant dans les sols que la déformation plastique se localise et que des surfaces de glissement appa-
raissent. Imaginons le cas d’un matériau satisfaisant le critère de Mohr-Coulomb pour lequel la déformation
plastique est localisée le long d’une surface de glissement SΣ. La déformation plastique localisée devient
en faite une discontinuité de déplacement: [[ui]] = u−i − u+

i (c.f. fig.4.7). On peut obtenir simplement
[[ui]] par intégration de la déformation au travers de la surface de glissement (en utilisant la définition
εij = − 1

2 (ui,j + uj,i) de telle sorte que les déplacements sont positifs dans le sens du système de coordonnées
(ce qui est plus intuitif)).
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On peut ecrire le critère de Mohr-Coulomb directement en terme de contraintes normales et tangentielles
à cette surface de glissement:

f(σn, τ) = |τ | − c− σn tanφ.

avec

T−i = σijnj vecteurs contraintes sur SΣ

Ts = τ = siσijnj contrainte de cisaillement sur SΣ

Tn = σn = niσijnj contrainte normale sur SΣ

où nj est la normale à la surface de glissement SΣ et si le vecteur tangent associé (c.f. figure 4.7).
On écrit l’écoulement plastique sous la forme

[[u̇i]] = λb
∂f

∂Ti
f(Ti) = 0

où λd est un multiplicateur plastique de dimensions [L/T ] ici et λbf = 0 et λb ≥ 0.
On voit donc que le rapport des vitesses de discontinuité plastiques normales et tangentielles est:∥∥∥∥ [[u̇n]]

[[u̇s]]

∥∥∥∥ = tanφ

Le vecteur de discontinuité de déplacement plastique localisée sur la surface de glissement fait donc toujours
un angle φ par rapport à celle-ci (cf. Fig. 4.8). Il existe une “dilatance” lié au cisaillement localisé. Le raison-
nement est strictement similaire à la sous-section précedente. Notez que dans notre convention (tassement -
overlap positif / compression positive),

[[u̇n]] = −λb tanφ

[[u̇s]] = λb sign(τ)

En définissant
[[
U̇
]]

la norme du vecteur de vitesse de discontinuité de déplacement, on peut réécrire

[[u̇n]] = −
[[
U̇
]]

sinφ

[[u̇s]] =
[[
U̇
]]

cosφ sign(τ) (4.4)

Calcul de la puissance dissipée le long d’une surface de glissement On aura souvent à calculer la
puissance dissipée le long de la surface de glissement à la rupture:

ˆ
SΣ

σijnj [[u̇i]] dS

Intéressons nous ici à l’intégrande
pdiss = σijnj [[u̇i]]

qui dans le repère (n, s) local à la surface de glissement s’écrit donc:

pdiss = τ [[u̇s]] + σn [[u̇n]]

A la rupture, on a l’égalité f = 0, soit
|τ | = c+ σn tanφ

et τsignτ = |τ | ce qui permet d’obtenir en utilisant (4.4)

pdiss = c
[[
U̇
]]

cosφ+ σn

[[
U̇
]]

sinφ− σn
[[
U̇
]]

sinφ

= c
[[
U̇
]]

cosφ

On voit donc que la puissance dissipée le long d’une surface de glissement est nulle dans le cas d’un materiau
de cohésion nulle. Ce résultat découle directement de l’hypothèse d’un écoulement plastique associé (f = g).
Le résultat est différent pour le cas non-associé (pour exercice, dérivé le cas avec un angle de dilatance ψ 6= φ).

35 Page 35



Brice Lecampion

n

du̇ndu̇τ

φ

r

drrdθ

dθ

φ

Figure 4.8: Formes des surfaces de glissement dans un matériau avec un critère de Mohr Coulomb: droite ou
spirale logarithmique.

Surface de glissement courbe ? Considérons maintenant une surface de glissement non-nécessairement
droite. En tout point, le vecteur déplacement plastique a toujours un angle φ par rapport à la surface de
glissement. Localement celle ci peut etre paramètrée par un rayon de courbure r (dans le cas d’un droite
r → ∞), on voit que pour une rotation dθ autour du centre de rotation instantanné, l’incrément de rayon
étant dr, on a (cf Fig. 4.8):

dr
rdθ

= tanφ

soit après intégration:
r = ro exp(θ tanφ)

Une telle courbe correspond à une spirale logarithmique.
On en conclut donc pour un sol: en conditions drainées (φ = φ′, contraintes effectives), les surfaces

de glissements seront soit des droites (ro →∞), soit des spirales logarithmiques. En conditions non-drainées
(φ = 0, contraintes totales), les surfaces de glissement sont soit des droites, soit des arc de cercles.

4.2.3 Discontinuités de contraintes
Il est également possible que des discontinuités de contraintes apparaissent dans un volume se plastifiant.
Considérons une surface (de normale ni) avec de part et d’autre de celle-ci deux champs de contraintes (A&
B, cf Fig.4.9), il convient de rappeler que le vecteur traction doit être continu entre ces 2 zones pour assurer
l’équilibre:

[[σij ]]nj =
(
σBij − σAij

)
nj = 0

Toutefois, il peut y avoir une rotation des directions principales de contraintes ainsi qu’un saut dans les
valeurs. Considérons le cas de 2 régions A et B ayant deux états de contraintes différents et étant tous les
deux à la rupture. La continuité des tractions à travers la surface séparant A et B implique que les cercles
de Mohr des 2 regions ont un point commum X (i.e. afin de satisfaire la continuité des tractions entre les 2
zones et donc vérifier l’équilibre). On se réfère à la Fig. 4.9 où le centre des cercles de Mohr correspondant
aux regions est noté A et B. De la région A à B, on a une changement de direction principale de contraintes
dϑ. Explorons le cas où ds′ → 0, sin 2dϑ ≈ 2dϑ, X → T , l’angle X̂BA ≈ π/2 − φ et BX ≈ AX ≈ s′ sinφ.
En appliquant la loi des sinus au triangle ABX on obtient:

AX

sin X̂BA
=
s′ sinφ

cosφ
=

AB

sinÂXB
=

ds′

sin 2dϑ

on obtient alors la relation suivante entre ds′ (increment de contraintes moyenne) et dϑ l’angle du changement
des directions principales entre les regions A et B (sinx ≈ x pour x� 1) :

ds′

s′
= 2dϑ tanφ

Si maintenant, on considère un éventail continu de discontinuité de contraintes dans une région fini
où la rotation des directions principales de contraintes total est ϑ (entre le début et la fin de l’éventail de
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Figure 4.9: Discontinuité de contraintes entre 2 régions et cercles de Mohr associés (figure tirée de Lancellota’s
Geotechnical Engineering).

discontinuité), par intégration, on obtient la variation entre les cercles de Mohr au debut (contraintes moyenne
s′1) et à la fin (contraintes moyenne s′2) de l’éventail:

s′1
s′2

= exp 2ϑ tanφ

[Notez que l’on retrouve une expression mathématique du type spirale logarithmique.].

4.3 Démonstration des théorèmes de l’analyse limite
[Cette partie 4.3 ne sera pas détaillée en cours - je vous invite à refaire les dérivations par vous
même]

On rappelle le PPV valable pour tout champ de vitesse C.A (quand les déplacements imposés sont constant
en temps) ˆ

V/SΣ

σij ε̇ij( ˙̂ui) dV +

ˆ
SΣ

σijnj

[[
˙̂ui

]]
dS =

ˆ
V

(−bi) ˙̂ui dV +

ˆ
St

tdi
˙̂ui dS

Dans les deux sections qui suivent, on va démontrer les thèoremes statiques et cinématiques de l’analyse
limite : bornes inférieure et supérieure de la charge de ruine. Pour plus de simplicité, on suppose qu’il n’y
a pas de surface de glissement - mais le raisonnement est strictement le même avec (re-faites les dérivations
pour vous en convaincre).

Paramétrons le chargement de tel sorte que Ti = αT ci où T ci correspond à la charge maximale de rupture
de la structure (à la rupture α = 1).

4.3.1 Borne inférieure statique
Soit un champ statiquement admissible σaij correspondant à un paramètre de chargement αa vérifiant le critère
de rupture (à savoir f(σaij) ≤ 0 ) en tout point, le PPV s’écrit pour ce champ de contraintes statiquement
admissible en prenant pour champ de vitesse le champ solution u̇iˆ

V

σaij ε̇ij dV = αa
ˆ
St

T ci u̇idS +

ˆ
V

(−bi)u̇idV
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où u̇i est le champ de vitesse solution (et ε̇ij le champ de taux de déformation associé). Pour le champ de
contraintes exactes σij à la rupture correspondant à la valeur α = 1 du paramètre de chargement, on a:

ˆ
V

σij ε̇ij dV = 1

ˆ
St

T ci u̇idS +

ˆ
V

(−bi)u̇idV

En prenant la soustraction des deux expressions précédentes, on obtient

(1− αa)

ˆ
St

T ci u̇idS =

ˆ
V

(σij − σaij)λ
∂f

∂σij
dV > 0

soit
αa < 1

car la puissance des efforts exterieures est positive T ci u̇i > 0 (et peut etre d’ailleurs utilisé comme un facteur
de scaling)). La valeur αa est donc une borne inférieure du paramètre de chargement à la rupture car

(σij − σaij)λ̇
∂f

∂σij
> 0

du fait de la convexité de la surface de rupture (et de “l’associativité” de la déformation plastique - c.f
subsection 4.2.1.3 de ces notes).

4.3.2 Borne supérieure cinématique
Prenons un champ de vitesse cinématiquement admissible u̇ai . Pour un tel champ de vitesse, correspond un
champ de contraintes σbij vérifiant le critère de rupture (mais pas forcement l’équation d’équilibre) de telle
sorte que ε̇aij = λb ∂f

∂σbij
où λb est le multiplicateur plastique correspondant. On peut définir le facteur de

chargement

αab
ˆ
St

T ci u̇
a
i dS =

ˆ
V

(σbij)λ
b ∂f

∂σbij
dV −

ˆ
V

(−bi)u̇ai dV

Pour le champ de contraintes solution σij (à la rupture) - correspondant au paramètre de chargement
solution α = 1 , le PPV pour le champ test u̇ai s’écrit:

ˆ
St

T ci u̇
a
i dS =

ˆ
V

σijλ
b ∂f

∂σbij
dV −

ˆ
V

(−bi)u̇ai dV

d’où
(αab − 1)

ˆ
St

T ci u̇
a
i dS =

ˆ
V

λb(σbij − σij)
∂f

∂σbij
dV > 0

soit
αab > 1

encore une fois à cause de la convexité de la surface de rupture (et de “l’associativité” de la déformation
plastique - c.f subsection 4.2.1.3 de ces notes).

Le champ de vitesse u̇ai correspondant au paramètre de chargement αab fournit donc une borne supérieure
αabT ci de la charge de rupture exacte T ci .

4.4 Démarche pour l’obtention des bornes de la charge ultime
La démarche du calcul à la rupture (afin de déterminer la charge ultime d’une structure géotechnique) sera
donc la suivante:

1. Paramétrisation du chargement (e.g. descente de charges, forces d’ancrages)

2. Choix du critère de comportement selon que l’on fasse un calcul à court terme (Tresca - contraintes
totales) ou long terme (Mohr-Coulomb - contraintes effectives)
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3. Approche statique (“par l’intérieur”) afin de déterminer une borne inférieure à la vrai charge ultime.

(a) Choix d’un champ de contraintes statiquement admissible (donc paramétré par le chargement)

(b) Maximisation du paramètre de chargement pour lequel le champ de contraintes vérifie le critère
de rupture: obtention d’une borne inférieure de la charge ultime

4. Approche cinématique

(a) Choix d’un champ de déplacement cinématiquement admissible - éventuellement avec des lignes
de glissement représentant le mécanisme de rupture (souvent paramétrisé)

(b) Calculs de la puissance intérieure (en supposant que le matériau vérifie le critère de plasticité dans
les zones de déplacement plastiques)

(c) Utilisation du principe des puissances virtuelles afin d’obtenir la charge ultime par minimization:
obtention d’une borne supérieure du chargement ultime
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Figure 4.10: Talus vertical dans un milieu cohérent et frottant. H de ruine ?

4.5 Example de calcul à la rupture: Talus vertical
Afin de mieux comprendre l’application pratique des notions précédentes, rien de mieux qu’un example.
Prenons le cas de l’excavation d’un talus vertical dans un sol de poids γ satisfaisant un critère de Mohr-
Coulomb (c.f. figure 4.10 ). Bornez la hauteur de ruine H du talus par une approche statique et cinématique.

Avant de commencer par l’approche statique, il est intéressant de faire une simple analyse dimensionelle
du problème. La hauteur maximale du talus H (en mètres - dimension [L]) dépend des paramètres suivants:

• le poids du sol γ [M/L2/T2]

• la cohesion c [M/L/T2]

• l’angle de frottement du sol φ [-]

Les 4 paramètres du problème H, γ, c, φ ne dépendent que de 3 dimensions ([M], [L], [T]), selon le thèoreme
de Buckingham-π, la solution du problème ne dépend donc que d’un seul paramètre adimensionel (ici φ).
Effectivement, on peut dimensioner la hauteur comme suit

H =
c

γ
×H(φ)

où H(φ) est une fonction adimensionelle ne dépendant que de l’angle de frottement du sol. On voit donc que
l’on peut en fait résoudre le problème pour H et on aura les solutions pour n’importe qu’elle valeur de c et γ.

4.5.1 Approche Statique
On construit un champ statiquement admissible (S.A.) simple en 3 zones 1, 2 et 3 - cf Fig 4.11. On rappelle
qu’un champ S.A. doit vérifier les équations d’équilibre, les conditions aux limites en tractions et le vecteur
contraintes doit etre continu à travers une surface de discontinuité.

Dans notre cas, dans le repère (x, z) de la figure , l’équilibre s’écrit

∂xσxx + ∂zσxz = 0

∂xσxz + ∂zσzz = γ

On choisit les champs suivants pour les différentes zones.
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Figure 4.11: Approche statique - talus vertical. Champ de contraintes statiquement admissible à 3 zones
simples.
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• Zone 1 x ≥ 0 et z ≤ H
σ(1)
xx = 0 σ(1)

xz = 0 σ(1)
zz = γz

on peut vérifier qu’un tel champ est bien S.A. dans cette zone

• Zone 2 x ≥ 0 et z > H
σ(2)
xx = γz σ(2)

xz = 0 σ(2)
zz = γz

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 1 et 2 (σzz
est bien continue), en revanche on peut avoir un saut de σxx si celui ci ne dépend pas de x (et σxz = 0)
(1ere equation d’équilibre)

• Zone 3 x < 0 et z > H
σ(3)
xx = γz σ(3)

xz = 0 σ(3)
zz = γ(z −H)

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 2 et 3 (σxx
est bien continue).

Il convient maintenant de vérifier le critère de Mohr-Coulomb dans les trois zones. Comme σxz = 0 partout,
on est dans un repère de contraintes principales

• Zone 1

f = γz(1− sinφ)− 2c cosφ ≤ 0

Le critère sera maximale en z = H et si on assume la rupture f = 0 en z = H, alors on a f < 0 pour
tout z < H - donc le critère est verifié dans toute la zone 1 pour

γH

c
≤ 2

cosφ

1− sinφ

• Zone 2

f = −2γz sinφ− 2c cosφ < 0

Le critère est vérifié partout. car en fait les 2 contraintes principales sont égales - pas de cisaillement.

• Zone 3 (z > H)
Le critère est maximale en z = H, où σzz = 0.

fmax = γH(1− sinφ)− 2c cosφ

et sera donc vérifié partout si
γH

c
≤ 2

cosφ

1− sinφ

En conclusions, on voit que l’on peut obtenir un champ de contraintes S.A. vérifiant le critère de
plasticité en tout point si

γH

c
≤ 2

cosφ

1− sinφ

En conclusion, cette approche statique nous fournit une borne inférieure
(
γH

c

)−
du vrai domaine de stabilité

de la structure
(
γH

c

)
pour l’égalité de l’inégalité précedente:

(
γH

c

)−
= 2

cosφ

1− sinφ
= 2 tan(π/4 + φ/2)

2
cosφ

1− sinφ
≤
(
γH

c

)
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Figure 4.12: Approche cinématique. Mécanisme de ruine: champ de vitesse C.A.

4.5.2 Approche Cinématique
On postule un champ de vitesse C.A. pour la ruine de la structure décrit dans la figure 4.12. Une droite
partant du bas du talus et re-joignant la surface du sol en amont en B. On paramètrise cette surface de
glissement par l’angle α. On suppose donc que le triangle OAB se déplace en corps rigide avec un vecteur
vitesse de norme ‖U̇‖ alors que le substratum reste rigide: toute la déformation plastique est accomodée par
la surface de glissement drote AB. Comme on l’a vu en 4.2.2.2, pour un critère de Mohr-Coulomb le vecteur
vitesse fait un angle φ avec la surface de glissement. Le vecteur vitesse est constant le long de la surface de
glissement et la puissance totale dissipée est donc (c.g. subsection 4.2.2.2)

Pdiss(U̇) =

ˆ
AB

c‖U̇‖ cosφds = ‖AB‖ × c‖U̇‖ cosφ =
H

cosα
c‖U̇‖ cosφ

Ici la charge est le seul poids du sol (pas de traction imposée en surface). La puissance des efforts
extérieures est donc - comme seul le triangle OAB se déplace - le poids étant une force verticale

P(U̇) =

ˆ
OAB

γU̇z dS =

ˆ
OAB

γ‖U̇‖ cos(α+ φ) dS =
1

2
H2 tanα× γ‖U̇‖ cos(α+ φ)

L’application du PPV donne alors la borne supérieure suivante de la charge de ruine pour un α donné:

γH

c
= 2

cosφ

sinα cos(α+ φ)

Il convient de minimiser cette borne supérieure par rapport à α afin d’obtenir la borne supérieure la plus
petite. Pour ce faire, on minimise g(α) = 2 cosφ

sinα cos(α+φ) , pour des angles donnant bien sur g(α) > 0, on
obtient (en utilisant par example Mathematica ou à la main ;))

α =
π

4
− φ/2

et donc finalement la borne supérieure du domaine de stabilité(
γH

c

)+

= 4
cosφ

1− sinφ
= 4 tan(π/4 + φ/2)

En combinant les résultats obtenu par l’approche statique (par l’intérieur) et cinématique (par l’extérieur),
on obient donc finalement les bornes suivantes du domaine de stabilité

2
cosφ

1− sinφ
≤
(
γH

c

)
≤ 4

cosφ

1− sinφ
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On voit que l’on a un facteur 2 entre la borne inférieure et la borne supérieure ! On notera qu’en utilisant
des méthodes plus complexe en utilisant de multiples zones (pour le cas statique) et une surface de glissement
en spirale logarithmique etc., les meilleurs estimations analytique des bornes obtenues à ce jour donnent

3.73
cosφ

1− sinφ
≤
(
γH

c

)
≤ 3.83

cosφ

1− sinφ

Notamment la borne supérieure 3.83 cosφ
1−sinφ est obtenue en considérant un mécanisme de ruine en forme de

spirale logarithmique.
On s’apercoit donc que le mécanisme de ruine utilisé lors de notre estimation de la borne supérieure

n’etait pas trop loin (4 au lieu de 3.83) alors que le champ de contraintes simple à trois zones utilisé lors du
calcul de la borne inférieure est clairement trop simpliste. En fait ici, la surface de rupture réelle est plus
proche d’une spirale logarithmique.
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Chapter 5

Fondations superficielles

5.1 Types

5.1.1 Types de fondations superficielles
Les fondations superficielles dépendent de plusieurs facteurs:

• Qualité du massif de sol

• Contraintes fonctionnelles de l’ouvrage (niveaux de sous-sol, étanchéité, tassements)

• Environnement (surtout environnement construit)

• Types de force à transmettre au massif de fondation, qui sont de trois types différents

– Ponctuelles (descentes de charge par piliers ou colonnes)

– Linéaires (efforts transmis par les murs porteurs)

– Surfaciques (efforts transmis par les aires de stockages, réservoirs)

En combinant ces informations, les fondations superficielles sur la figure 5.1 peuvent être envisagées:

5.1.2 Types d’état limite ultime
Comme pour d’autres systèmes, différents états limite ultime (ELU) peuvent se produire selon le type de
fondations superficielles. Théoriquement, tous les ELU devraient être étudiés et vérifiés. Cependant, si un
ELU prédomine sur les autres, il est envisageable de ne considérer que ce dernier.

• ELU type 1 : instabilité de l’ensemble de l’ouvrage. ELU en lien aux mécanismes de rupture, la
structure et le terrain ne jouent pas leur rôle (basculement, déversement, soulèvement par poussée
d’Archimède, phénomène de renard).

Figures/fond_superficielles.PNG

Figure 5.1: Différents types de fondations superficielles
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Figure 5.2: ELU type 1 pour fondations superficielles

(a) Externe

(b) Interne

Figure 5.3: ELU type 2 pour fondations superficielles

46 Page 46



Brice Lecampion

Figure 5.4: ELU type 3 pour fondations superficielles

• ELU type 2 : atteinte à la résistance ultime de l’ouvrage ou d’un élément de l’ouvrage (sécurité interne)
/ du sol (sécurité externe). Un ELU 2 externe correspondrait à un poinçonnement massif du sol par
exemple.

• ELU type 3 : instabilité générale du massif de fondation. Il s’agit le plus souvent d’un mécanisme
de glissement une fois que la résistance complète du terrain est atteinte. Les stabilités de talus et
glissement de terrain sont vérifiées selon cet ELU type 3.

Rapide rappel sur l’état limite de service (ELS) qui peut être interne ou externe. L’ELS externe concerne
les tassements ou mouvements excessifs du sol qui amènenet à la ruine d’une structure (ou d’un de ces
éléments) surtout si la structure est hyperstatique. Il est préférable dans un tel cas d’également prendre
en considération l’ELU type 2 interne. L’ELS interne concerne la durabilité des matériaux de la fondation
superficielle.

5.2 Capacité portante
Dans cette partie, on proposera de résoudre avec deux méthodes les équations liées aux mécanismes de
rupture.

5.2.1 Critère de Tresca
Le critère de Tresca stipule que le matériau est puremetn cohérent et non frictionnel. Dans ce cas, φ = 0 et
la cohésion c 6= 0. Le critère de Tresca se rapproche au mieux de la solution pour la rupture du sol à court
terme.

5.2.2 Dérivation de Prandtl
Dans un premier temps, on présentera la solution de Prandlt. On considère une approche statique sur la
borne inférieure. Le système est représenté sur la figure 5.6.
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Figure 5.5: ELS externe

Figure 5.6: Approche statique
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Figure 5.7: Repère pour la zone II

• Zone I: σzz = 0; σxz = 0; σxx = 2c

• Zone II: voir figure 5.7. Si on compare les coordonnées polaires et les coordonnées cartésiennes. Tn =
σθθla traction normale, τs = σrθ. De plus, en appliquant la continuité entre les zones I et II, θ = −π4 .
En combinant avec le changement de coordonnées (équation 5.1), σθθ = c et σrθ = c.

σθθ =
σxx
2

σrθ =
σxx
2

(5.1)

Si on cherche maintenant à obtenir l’équilibre en coordonnées polaires:

seloner,
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
σrr − σθθ

r
= 0

seloneθ,
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
2σrθ
r

= 0

Si on fait le choix σrr = σθθ et σrθ = constante alors

∂σrr
∂r

= 0

∂σθθ
∂θ

= −2σrθ

car σrr et σθθ sont indépendants de r.
Les conditions limites emtre les zones I et II donnent en θ = −π4 , σrθ = c et σθθ = c, d’où:

σθθ(θ) = −2cθ +A→ 2c
π

4
+A = c

σθθ(θ) = c− 2c(θ +
π

4
) = σrr

σrc = c

Dans la zone III (voir figure 5.8), on pose σxz = 0 et on cherche les valeurs pour σxx et σzz. Les conditions
limites entre les zones II & III se retrouvent en θ = − 3π

4 où on a (en coordonnées polaires)

σrr = σθθ = c(1 + π)

σrθ = c
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Figure 5.8: Zone III

Figure 5.9: Répartition des charges

En repassant en coordonnées cartésiennes à θ = − 3π
4

σθθ = σxx sin2 θ + σzz cos2 θ

σrθ = (σzz − σxx) sin θ cos θ

σθθ = c(1 + π) =
σxx
2

+
σzz
2

σrθ = c =
σzz − σxx

2
σzz = c(2 + π)

σxx = πc

Dans la zone III

σxx = πc

σzz = (2 + π)c

σxz = 0

qp = (2 + π)c

Approche cinématique Triangle ABO isocèle→ |AB| = |OB| = b√
2

Triangle BCD isocèle → |CD| = b√
2

Puissance des efforts extérieurs

Pext = qpbU̇
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Figure 5.10: Illustration des zones d’effort

Figure 5.11: Puissance dissipée dans la zone de cisaillement pur

Puissance dissipée (résistance maximale) Les bandes de cisaillement sont les segments suivants:
AO+OC+CD+(OB+OE+EF). Le long de AO, CD et OC:

PAO(U̇) =

ˆ

AO

∑
[u̇i]tids =

√
2

2
u̇c · b√

2
=
bu̇c

2

PCD(U̇) =

√
2

2
u̇c · |CD| = bu̇c

2

POC(U̇) =

π/2ˆ

θ=0

√
2

2
u̇c · b√

2
dθ = bu̇c

π

4

Pdissipée = bu̇c(2 +
π

2
)

Puissance dissipée dans la zone de cisaillement pur Les conditions dans la zone:u̇θ = constante,
u̇r = 0, ˙εrr = ˙εθθ = 0

˙εrθ = − u̇θ
2r

=

√
2

4r
u̇

u̇θ = −
√

2

2
u̇

σij ε̇ij = σrθ ε̇rθ + σθr ε̇θr = 2σrθ ε̇rθ
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Figure 5.12: Sollicitations non drainées

P
ÔBC

=

R=b/
√

2ˆ

0

ˆ π/2

0

2c

√
2

4r
u̇rdrdθ

= bu̇c
π

4
= P

ÂOE

Puissance dissipée totale

Pdissipée totale = 2(PAO + POC + PCD) + 2P
ÔBC

= bu̇c(2 +
π

2
) + 2bu̇c

π

4
= bu̇c(2 + π)

Équilibre

Pdissipée = Pext

bu̇c(2 + π) = q+
p bU̇

q+
p = (2 + π)c

(2 + π)c ≤qp ≤ (2 + π)c

La solution exacte est trouvée car dans ce cas, la borne supérieure (cinématique) est égale à la borne inférieure
(statique) et donc qp = (2 + π)c. En pratique, pour les sollicitations non drainées, qp = (2 + π)c+ q avec

Nc = (2 + π) → Semelle Lisse
Nc = 5.71 → Semelle Rugueuse

5.3 Formules générales
On compare la composante normale de la résultante des actions EN à la résistance du sol au poinconnement
Rs = qp × A′, où qp est la capacité portante du sol (e.g. en Pa ou kPa) et A′ est l’aire utile de la fondation
superficielle.

5.3.1 Sollicitation drainée / Long-terme
La capacité portante d‘une semelle superficielle s’écrit (généralisation du cas de base Terzaghi (1951))
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q′p = c′Ncscicbcgcdc + q′Nqsqiqbqgqdq +
1

2
γb′Nγsγiγbγgγdγ

avec:

• c′: la cohésion drainée

• q′: la surcharge effective (de part et d’autre de la fondation)

• b′: la largeur utile

• {Nc, Nq, Nγ} : les facteurs de portance,

• {sc, sq, sγ} : coefficients correcteurs de forme,

• {ic, iq, iγ} : coefficients correcteurs d’inclinaison de la charge,

• {bc, bq, bγ} : coefficients correcteurs d’inclinaison de la base de fondation,

• {gc, gq, gγ} : coefficients correcteurs d’inclinaison du sol (par rappor à l’horizontale),

• {dc, dq, dγ} : coefficients correcteurs du à la profondeur de la fondation;

5.3.1.1 Facteurs de portance

Pour une semelle rugeuse:

Nq =
e( 3π

2 −φ
′) tanφ′

2 cos2
(
π
4 + φ′

2

) , Nc = (Nq − 1) cotφ′, Nγ = 2(Nq − 1) tanφ′.

Pour une semelle lisse:

Nq = eπ tanφ′ tan2

(
π

4
+
φ′

2

)
, Nc = (Nq − 1) cotφ′, Nγ = 1.8(Nq − 1) tanφ′.

On notera
tan2

(
π

4
+
φ′

2

)
=

1 + sinφ′

1− sinφ′

5.3.1.2 Coefficients correcteurs de forme

Pour une semelle rectangulaire ou circulaire (cf figure 1) - selon Brinch-Hansen (1970):

sq = 1 +
b′

L′
sinφ′, sc =

sqNq − 1

Nq − 1
, sγ = 1− 0.4

b′

L′
≥ 0.6.

Pour une semelle filante b′ � L′:

sq = 1, sc = 1, sγ = 1.

5.3.1.3 Excentricité de la charge appliquée

Lorsque la semelle est sollicitée par une charge excentrée dans soit une seule direction ou dans les deux
directions, on calcule la largeur utile et la longueur utile comme suit (cf figure 2):

b′ = b− 2eb largeur utile

L′ = L− 2eL longueur utile

A′ = L′b′ surface utile
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Figure 5.13: Semelle superficielle circulaire et rectangulaire de dimensions (b, L) et de dimensions utiles
(b′, L′).

Figure 5.14: Excentricité de la charge par rapport au deux directions.
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Figure 5.15: Deux cas d’inclinaison de charge horizontale

Figure 5.16: Inclinaison de la base par rapport à l’horizontale.

5.3.1.4 Inclinaison de la charge

Selon Vesic (1973), avec H composante horizontale de la résultante et V composante

iq =

(
1− H

V +A′c′ cotφ′

)m
, ic = iq −

1− iq
Nc tanφ′

, iγ =

(
1− H

V +A′c′ cotφ′

)m+1

.

Cas 1: H est la composante horizontale de la charge agissant dans la direction parallele à la largeur b′
de la fondation (cf figure 3)

m = mb =
2 + b′/L′

1 + b′/L′

Pour une semelle filante: m = mb = 2.
Cas 2: H agit dans la direction parallele à la longueur L′ de la fondation (cf figure 3)

m = mL =
2 + L′/b′

1 + L′/b′

Cas 3: H agit dans la direction formant une angle θ avec la direction de longueur L′ de la fondation

m = mθ = mL cos2 θ +mb sin2 θ.

5.3.1.5 Inclinaison de la base de la fondation

On considère α l’angle d’inclinaison de la base de la fondation par rapport à l’horizontale (cf figure 4) - α en
radians

bc = bq −
1− bq
Nc tanφ′

, bq = bγ = (1− α tanφ′)
2
.

5.3.1.6 Fondation en profondeur

On notera qu’en pratique, on ne conseille pas d’utiliser une correction pour une profondeur de l’assise de
fondation D inférieur à 2 mètres.

Selon Brinch-Hansen, Vesic (1973),
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dc = dq −
1− dq
Nc tanφ′

dγ = 1

dq = 1 + 2 tanφ′(1− sinφ′)2D

b′
D ≤ b′

dq = 1 + 2 tanφ′(1− sinφ′)2ArcTan
D

b′
D > b′

5.3.1.7 Inclinaison du sol

Selon Brinch-Hansen (1970), pour une inclinaison ω de la surface du sol.

gc = gq −
1− gq
Nc tanφ′

gq = (1− tanω)2 = gγ

5.3.1.8 Présence d’une nappe

Figure 5 reprèsente les 3 cas de présence d‘eau: I) Niveau d’eau au dessous du mécanisme de rupture, II)
Niveau d‘eau affleurant la base de la fondation, et III) Niveau d’eau affleurant la surface du terrain.

5.3.2 Sollicitation non drainée / court terme
qp = cuNcscicbcdc + q

avec: cu la cohésion non drainée, q la surcharge de part et d’autre de la fondation et Nc le facteur de
portance:

Nc = (2 + π) semelle lisse

Nc = 5.71 semelle rugueuse

sc: coefficient correctif de forme rectangulaire et circulaire

sc = 1 + 0.2
b′

L′
;

ic: coefficient correcteur d’inclinaison de la charge

ic =
1

2

(
1 +

√
1− H

A′cu

)
;

bc: coefficient correcteur d’inclinaison de la base de fondation

bc = 1− 2α

2 + π
.

gc: coefficient correcteur pour une surface de sol inclinée (angle ω)

gc = 1− 2ω

2 + π

avec ajout d’un terme −ωγb(1− 0.4b′/L′) dans l’équation de la capacité portante !
dc : coefficient correcteur pour une assise de fondation à une profondeur D

dc = 1 + 0.4
D

b′
(D ≤ b′)

dc = 1 + 0.4ArcTan
D

b′
D > b′
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Nappe phreatique au dessous du 
mécanisme de rupture 

Nappe phreatique au niveau 
de la base de la semelle  

Nappe phreatique au niveau
 de la surface 

Figure 5.17: Influence de la nappe phréatique.
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Figure 5.18: Schéma tassements

Figure 5.19: Ordre de grandeurs des tassements
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5.4 Tassement des fondations superficielles

5.4.1 Ordre de grandeurs des tassements

5.4.2 Solutions de l’élasticité

5.4.3 Consolidation primaire

Let consider a soil volume V with porosity n = Vv/V and void ratio e = Vv/Vs =
n

1− n , intrinsic permeability

κ. The soil is fully saturated with water ( γw intrinsic weigth of water, µw viscosity of water and βw bulk
compressibility of water). We will denote u as the pore-pressure.

Assuming first a linear elastic isotropic behavior, the strain εij of the soil are related to the effective stress
σ′ij = σij − uδij (where δij = 0 i 6= j and δii = 1):

σ′ij = 2Gεij + (K − 2/3G)εvδij

or
εij =

1 + ν

E
σ′ij −

ν

E
σ′kkδij

where εv denotes the volumetric strain of the soil (εv = εkk , summation on repeated indices). Stress taken
positive in compression, strain are positive in contraction. The “grains” of the soil are typically incompressible
compared to the void space, such that the volumetric strain of the soil is directly the reverse of the variation
of porosity:

εv = −∆n

The soil is permeable and fully saturated with water. In order to grasp the flow of water (and therefore
the variation of pore pressure), one needs to write the conservation of mass within the soil. For a unit
soil elementary volume V , the variation of fluid content has two terms: i) the fluid can change if the pore
pressure change (water compressibility) nV βw∆u, and ii) the porosity (volume occupied by the fluid) can
also change (due to the soil elastic deformation, i.e grain contacts etc.) V∆n. These variations occuring over
a time increment ∆t must balance the fluid entering minus exiting the elementary volume by fluid transport:

−
(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
V∆t. The fluid mass conservation can be written as (taking the limit):

∂n

∂t
+ nβw

∂u

∂t
+
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

= 0

The fluid velocity (w.r. to the solid phase) is related to the pore pressure gradient (and water weitgh) via
Darcy’s law:

qx = − κ

µw

∂

∂x
(u+ γwz) = −k ∂

∂x
h

qy = − κ

µw

∂

∂y
(u+ γwz) = −k ∂

∂y
h

qz = − κ

µw

∂

∂z
(u+ γwz) = −k ∂

∂z
h

where κ is the soil intrinsic permeability ( in square meter). Note that in soil mechanics, permeability are
referred to as k = κγw/µw (in m/s) - h is the hydraulic head h = p/γw + z.

5.4.3.1 Unidimensional (Oedometric) conditions

Let now consider the case where we have oedometric conditions (i.e. the soil can only compact in the z
direction, the horizontal strains are null), such that we directly have:

εzz = εv =
σzz − u
K + 4/3G

= mv(σzz − u)

i.e. mv = 1/(K + 4/3G).
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Also, fluid can only flow in z direction. The fluid mass conservation thus reduces to:

∂u

∂t
=

mv

mv + nβ

∂σzz
∂t

+
k

γw(mv + nβ)︸ ︷︷ ︸
cv

∂2u

∂z2

Let’s now look at a simple case of practical relevance: a layer of soil of height L. We will assume drained
conditions on z = 0: u(0, t) = 0 and a no flow boundary conditions at z = L: ∂u/∂z = 0 (alternatively it
can also be viewed as a symmetic boundary conditions for a layer of height H = 2L and a drained condition
at z = H). Now, let’s assume that at t = 0, we apply a load σzz = q at z = 0 and that we keep this
load constant thereafter. Note that if the soil has an initial profile of vertical stress, it is just increased by
q. Similarly there may be an initial pore-pressure such that we solve for variation from that initial state.
For clarity, we take such an initial state as null: as the system is linear we can always add the initial state
afterward.

εv = mv(q − u)

The initial strain of the soil layer and increase of pore-pressure due to the sudden loading at t = 0+ can
be obtained by integrating the continuity equation in time over a small time interval tε :

∆n = −nβwu+

ˆ tε

0

k

γw

∂2u

∂z2
dz︸ ︷︷ ︸

0 as tε→0

as ∆n = −εv = −mv(σzz − u) = −mv(q − u) , we have

u =
q

1 + nβw/mv
(≈ q)

we see that if water is compressible (βw ≈ 0), the pore-pressure is equal to the applied load at t = 0+. (nota
1/(1 + nβw/mv is akin to a Skempton coefficient in oedometric conditions)

Pore-Pressure dissipation
The evolution of pore pressure in time, is governed by the following equation (as the load remains constant),

initial and boundary conditions:

∂u

∂t
= cv

∂2u
∂z2

u(z = 0, t) = 0

∂u

∂z
(z = L, t) = 0

u(z, t = 0+) = q
1+nβw/mv

= uu

This partial differential equation is similar to the one obtained in heat conduction. It can be solved using
separation of variables. Introducing the following scale coordinates and dimensionless time:

ξ = z/L τ = cvt/L
2

the solution (using separation of variables and Fourier series for the spatial variation) is given as:

u(ξ, τ)

uu
=

∑
k=1,...∞

ak sin

(
kπ

2
ξ

)
exp

(
−π

2k2

4
τ

)

u(ξ, τ)

uu
=

∑
k=1,3,5,...∞

4

πk
sin

(
kπ

2
ξ

)
exp

(
−π

2k2

4
τ

)
We see that limτ→∞ p(ξ, τ) = 0, i.e. the pore-pressure dissipates at large time, i.e. once all the fluid

initially pressurized has been “drained” off the layer.
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The vertical strain (=volumetric strain here) is given by

εzz(ξ, τ) = mv(q − u(ξ, τ))

such that the settlement of that layer is given by

∆H

H
=

1

2

ˆ 2

0

εzz(ξ, τ)dξ

∆H

H
= mvq

1− 1

1 + nβw/mv

∑
k=1,3,5,...∞

16

π2k2
sin

(
kπ

4

)2

exp

(
−π

2k2

4
τ

)
at large time

∆H

H
= mvq

Note that for a layered medium, under oedometric conditions, at large time, we can use the previous for
expression for each layers i and sum over each layer to get the total settlement.

IMPORTANT NOTE: under a finite foundation, the state of strain is not oedometric (there is some
lateral deformation), so it is incorrect to use the previous expression if the fondation is not “wide”. Notably, if
the fondation is not wide (compared to the depth of the most compliant layer) instead of mv = 1/(K+4/3G),
in plane strain, under a foundation the elastic constant to use (drained) is (1− ν2)/E. Note also that there
are some shape factors to accomodate the fact that the foundation is finite in the other directions -> these
factors are obtained from the integration of Boussinesq solution.

If the soil is multilayered, there is no direct solution (nota: elastic solution can be obtained using Hankel
transform but they are complicated and semi-numerical). An approximation often used, is to estimate the
vertical effective stress increment in each layer (using the elastic solution for a homogeneous half space loaded
on its surface) and then approximate the layer settlement using a uni-dimensional relation (or in oedometric
condition - no lateral deformation):

∆Hi

Hi
=

∆σ′zz
Ei

This is an approximation! (to do it right, one must solve the real 2D/3D problem using numerical methods).

5.4.4 Non linear primary consolidation
In practice, a soil is not linearly elastic and in odeometric condition, one has the following volumetric con-
stitutive relation

ε = − ∆e

1 + e
=

Cc
1 + e

Log
σ′

σ′o

Cc is the compression index. (Here the Log is Log10)
i.e. the tangent modulus oedometric modulus is

dσ′

dε
=

Cc
1 + e

σ′

We will not derive the solution of pore-pressure dissipation in that case. However, we can obtained the
drained (long term) settlement (under the approximation of oedometric conditions), if the soil was initially
only normally consolidated, any additional load will make the soil deforms along the normal consolidation
line (given by eq. with σ′/σ′o = q/σ′o in drained conditions):

ε =
Cc

1 + e
Log

σ′o + q

σ′o

If the soil is overconsolidated (i.e. has experienced in its past a vertical effective stress σ′vmax larger than the
current one at rest), the compression index is lower if the current effective stress state is lower than σ′vmax,
equals if larger than σ′vmax.

Values:
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Sol pré-consolidé:

ε = − ∆e

1 + e
=

Cp
1 + e

Log
σ′

σ′o
σ′ < σ′vmax

ε =
Cp

1 + e
Log

σ′vmax
σ′o

+
Cc

1 + e
Log

σ′

σ′vmax
σ′ > σ′vmax

OCR =
σ′vmax
σ′o

Silt
Cc/(1 + e) = 0.1− 0.02

clay
Cc/(1 + e) = 0.25− 0.025

APPROXIMATION In a multilayered medium, we can approximate the state of stress “just under” the
fondation as 1D (no lateral deformation), and approximate the vertical strain in the layer ∆H/H using the
effective vertical stress at the middle of the layer:

∆H =
Cc

1 + e
H Log

σ′v
σ′vo

where σ′vo is the initial stress at the middle of the layer (e.g. = γ′zmiddle if the water table is at z = 0 (and
the medium uniform)). Then we can sum the displacement of all the layers.

w =
∑
i

∆Hi

5.4.5 Secondary Consolidation
Settlement often continues even after the pore-pressure increases - undrained response due to the sudden
application of the load- has been released (i.e. after full drainage). Settlement are often found to creep
“logarithmically”:

ε = εp +
Cα

1 + e
Log

t

tp

where εp is the strain due to the primary consolidation, and tp the time at which primary consolidation
becomes negligible. The coefficient Cα is usually related to the compression index Cc, e.g. Cα ≈ 2−310−2Cc
- exact value is soil dependent of course. Note that we can estimate it from the response of a “long” oedometric
creep test.

If one wants to properly model such a time dependent behaviour, a proper viscoelastic or viscoplastic
model would need to be fully characterized (using long lab tests with different stress path etc.)... although
more scientifically sound, this is typically not realistic in practice. One can back-calculate the constant from
in-situ observations or long oedometric tests.

5.4.6 Approche simplifiée pour l’estimation des tassements
...
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Chapter 6

Fondations profondes

Pour déterminer si des fondations sont des fondations profondes, il faut répondre aux critères de classification
suivants (issus ancienne norme SIA 191, Pieux):

• Mode de transmission des efforts au massif de fondation

• Effet sur le terrain encaissant

• Fonction mécanique

• Mode et moment de l’installation

• Mode de mise en place

• Mode de soutènement de la paroi du forage

• Matériau

• Destination

6.1 Différent types
On distingue plusieurs types de pieux pour les fondations profondes:

6.1.1 Pieux battus
Les pieux battus peuvent être en bois, acier ou béton. Pour chaque matériau, une utilisation est préconisée.
Les pieux battus ont pour principaux avantages d’être économiques car ils sont rapidement mis en place. Il
est aussi possible de les incliner jusqu’à 30/45°, ce qui est particulièrement intéressant pour reprendre des
charges inclinées. Enfin, le refoulement du sol est favorable pour le dimmensionnement. D’un autre côté, il
faut prendre en compte les bruits et vibrations engendrées et le risque d’endommager les pieux pendant la
mise en place. La manutention est également complexe.

6.1.1.1 Bois

Les pieux battus en bois conviennent pour des sols fins sous la nappe. Ils peuvent supporter des ouvrages
provisoires ou des charges faibles: charge. Ces pieux ont une bonne résistance à la flexion et sont assez
résistant (longue durée de vie) dans des sols immergés. Leur longueur est cependant limitée et ils sont
susceptibles de se dégrader si ils sont soumis à des changemetns (immergés puis secs). Ils sont également
plus fragiles lors du battage.
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Figure 6.1: Classification des pieux pour fondations profondes

6.1.1.2 Acier

Les pieux en aciers sont principalement utilisés dans un sol qui repose sur un substrat comact, comme des
rochers ou de la moraine. Le battage est aisé et le refoulement faible. De plus, leur résistance est élevée.
En revanche leur coût est plus important et le risque de corrosion est élevé. Il peut également y avoir des
vibrations si les profilés utilisés sont des tubes. Il existe différents types de profilés (tubes, poutrelles -profilé
en H-, ciassons de palplanches).

6.1.1.3 Béton préfabriqué

Les pieux en béton sont le splus performants dans des sols avec faible compacité (alluvions, sol morainique à
faible compacité). Ce type de pieux peut supporter des chrages importantes et est résistant à la corrosion et
à la flexion. Toutefois, les pieux sont lourds et fragiles. Ainsi, lors de battages complexes, les têtes peuvetn
être détrutes, sans compter le bruit occasionné et les vibrations. Il existe plusieurs types de pieux en béton
en fonction de leur dimensions et résistances.

6.1.2 Pieux forés
Tout comme les pieux battus, il existe différents types de pieux forés. On distingue les pieux forés sous boue,
les pieux forés tubés et les pieux forés à la tarière continue. Contrairement aux pieux battus, les pieux forés
n’engendrent pas ou très peu de vibrations et bruits. Il est possible de passer des obstacles et des horizons
plus durs. Les diamètres peuvent également être augmentés ce qui permet d’accroître la capacité portante.
En revanche, l’inclinaison de tels pieux est plus complexe (même impossible), l’exécution est délicate à cause
du curage/bétonnage et il est compliqué de vérifier la capacité portant à l’exécution. De plus, le rendement
de mise en oeuvre est plus faible que celui des pieux battus.

6.1.2.1 Pieux forés sous boue

Ce type de pieux est adapté pour des terrains pulvérulents (facilement friable, peut devenir de la poudre) en
dessous de la nappe phréatique. La réalisation des pieux forés sous boue s’apparente à celle des pieux forés
simples. La principale différence est liée à l’ajout de boue bentonique qui assure la stabiité du trou de forage.
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Figure 6.2: Pieux forés sous boue

6.1.2.2 Pieux forés tubés

Pour les pieux forés tubés, la stabilité du trou de forage est assurée par un tubage en métal. Ces pieux
présentent l’avantage d’être utilisables dans tous types de terrain.

6.1.2.3 Pieux forés à la tarière continue

Cette technique se distingue sensiblement des autres. Elle suit le déroulement suivant:

1. Le forage est effectué à l’aide d’une tête de rotation (moteur hydraulique) qui entraine une tarière creuse
et un tube plongeur. Possibilités d’ancrage dans les couches dures ou mi-dures

2. Le forage terminé, le tube est bloqué. La tarière remonte légèrement et le béton est injecté dans le
système via le tube plongeur.

3. Le bétonnage continue jusqu’à ce que le tube plongeur soit sorti.

4. Les cages d’armatures restent à être installées dans le béton frais.

6.2 Estimation de la capacité portante d’un pieu isolé sous charge-
ment axial

6.2.1 Mécanismes de rupture et facteur influencant la capacité portante
Le mécanisme de rupture n’est aussi net que sous une fondation superficielle. De nombreux “modèles” ont
été proposés - ils sont tous assez incertains et des résultats très différents peuvent etre obtenus: l’incertitude
sur ces modèles est plus importantes que sur les propriétés du sol !

Pour un pieu, en plus d’un terme de résistance en pointe, vient s’ajouter l’effet du frottement le long du
périmètre externe du pieu (fut). On calculera toujours le pourcentage repris en pointe et par frottement.
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Figure 6.3: Pieux forés tubés
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Figure 6.4: Pieux forés à la tarrière continue

Résistance de pointe
Un premier type de modèle estime la résistance de pointe à partir des formules des fondations superficielles.

Lorsque que la profondeur du pieu augmente, la résistance de pointe augmente donc linéairement avec ce
type de modèle. Or, en réalité, la résistance n’augmente plus au dela d’un profondeur “critique” Lc. Cette
profondeur critique dépend du diamètre du pieu, de la nature et de la compacité du sol.

Un deuxième type de modèles de résistance de pointe (de Beer, Jaky, Meyerhoff) se basent sur un mé-
canisme de poinconnement généralisé qui se referme sur le pieu (cf. figure). Au dela d’une profondeur
critique la résistance de pointe devient constante. Des expressions analytiques et approximés de Lc existent:
Lc = D expπ tanφ′ × tanπ/4 + φ′/2, ou Lc ≈ D × (2 + φ′/8).

Un troisième type de modèle de résistance de pointe se base sur un poinconnement localisé sous la pointe
de telle sorte que la résistance de pointe est indépendante de la longueur (profondeur du pieu).

6.2.1.1 Facteurs infuencant

Résistance de pointe unitaire:

• le type de sol: propriétés de rupture (c′,φ′ - cu), les contraintes initiales in-situ vertical

• les caractéristiqes due pieu: rapport diamètre/longueur (longueur critique)

• la mise en oeuvre du pieu: la modification des contraintes sous la pointe n’est pas la meme pour des
pieux forés ou battus

Résistance de frottement latéral unitaire:

• le type de sol:

• la mise en oeuvre du pieu: avec ou sans refoulement du sol. σ′h = Kσ′v , avec Ko < K < Kp pour des
pieux avec refoulement, et Ka < K < Ko pour des pieux sans refoulement

6.2.2 DTU
6.2.2.1 Sols pulvérulents

On considère aussi dans cette partie les sols cohérents pour le long terme.
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Figure 6.5: Mécanismes: de poinconnement généralisé se refermant autour du pieu (à gauche), poinconnement
local en pointe (milieu et droite).
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Figure 6.6: Capacité portante d’un pieu en sol pulvérulent

• La résistance en point unitaire qp est indépendente de la longueur/profondeur du pieu

– Nqmax = 103.04 tanφ′ selon Tcheng

– Nc = (Nqmax − 1)cotanφ′

– λ = 1 + 0.3(B/D), le coefficient de forme

qp = 50Nqmax + λ · c′ ·Nc

• La résistance au frottement latéral unitaire qs

– Pieux forés : Ka < K < K0

– Pieux battus : K0 < K < Kp

– δ = φ′

∗ Béton : δ = 2
3φ
′

∗ Acier : δ = 1
2φ
′

qs = σ′v ·K · tan δ

Ra = Qu = Rb +Rs = Apqp + UpLqs

6.2.2.2 Sols cohérents (court terme)

• La résistance en point unitaire qp

– λ = 1 + 0.3(B/D), le coefficient de forme

qp = 7λ · cu

• La résistance au frottement latéral unitaire qs
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Figure 6.7: Facteur de profondeur, χ

– Pieux forés : β = 0.5÷ 0.7

– Pieux battus : β = 0.7÷ 1.0

qs = β · cu
Ra = Qu = Rb +Rs = Apqp + UpLqs

6.2.3 Lang & Huder
6.2.3.1 Sols pulvérulents

On considère aussi dans cette partie les sols cohérents pour le long terme.

• La résistance en point unitaire qp

– Nq = eπ tanφ′ tan2(π4 + φ′

2 )

– Nc = (Nq − 1)cotanφ′

– χ, le facteur de forme et de profondeur

qp = (c′ ·Nc + σ′v,pointe ·Nq)χ

• La résistance au frottement latéral unitaire qs

– Pieux forés : K tan δ′ ≈ 0.4

– Pieux battus : K tan δ′ ≈ 0.8

qs = c′ + σ′v,moyen ·K · tan δ

Ra = Qu = Rb +Rs = Apqp + UpLqs

6.2.3.2 Sols cohérents (court terme)

• La résistance en point unitaire qp

qp = cu ·Nc

• La résistance au frottement latéral unitaire qs

– Pieux forés : s ≈ 0.6÷ 0.9cu, adhésion pieu-sol
– Pieux battus : s ≈ cu

qs = s̄

Ra = Qu = Rb +Rs = Apqp + UpLqs
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Figure 6.8: Ncfacteur de portance et profondeur

6.2.4 Formules de Battage
6.2.4.1 Formule des Hollandais

On dérive dans un premier temps la formule de battage la plus simple possible (aussi appelée formule des
hollandais). Dans ce qui suit, on note

• PD le poids du mouton

• Pc le poids du casque

• Pp le poids du pieu

On s’intéresse à la relation entre l’enfoncement du pieu, que l’on note ici s, et la réaction dynamique du sol
Qdyn du au choc du mouton. Dans un premier temps, en appliquant l’équation de la dynamique au mouton,
on détermine facilement la vitesse Vo du mouton lors de l’impact avec le casque. En effet, pour une hauteur
de chute h, l’intégration de l’accéleration du mouton en chute libre

dV

dt
= g

donne

h =
1

2
gt2impact → timpact =

√
2h

g

soit

V0 = gtimpact = g

√
2h

g
=
√

2gh.

Au moment de l’impact, en considérant l’hypothèse d’un choc mou (sans rebond), la conservation de la
quantité de mouvement s’écrit

PD · V0 = (PD + PC + PP ) · V ′0
On notera par la suite P̄ = PD + PC + PP , la vitesse après impact V ′0 est donc:

V ′0 =
PD
P̄
· V0 =

PD
P̄
·
√

2gh

. Ensuite l’équilibre du pieu (mouton, casque) s’enfoncant dans le sol, s’écrit donc:

∑
F = m

dV
dt

P̄ −Qdyn =
P̄

g

dV
dt
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Figure 6.9: Répartition des charges sur un pieu
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Figure 6.10: Élasticité du pieu

En négligeant le poids du système P̄ par rapport à la réaction dynamique du sol Qdyn (dans les forces
appliquées), on obtient - en prenant pour l’origine des temps, le moment de l’impact:

V (t) = V ′0 −Qdyn
gt

P̄

s(t) = V ′0t−
1

2
Qdyn

gt2

P̄

Le pieu s’arrête lorsque V (ta) = 0, soit en ta =
V
′
0 P̄

Qdyng
, et l’enfoncement correspondant s(ta)

s(ta) = s =
1

2

V ′20 P̄

gQdyn

que l’on peut re-écrire

Qdyn =
h

s

P 2
D

P̄

6.2.4.2 Formule générales

En partant de la charge dynamique donnée auparavant, les formule des Hollandais permettent d’estimer la
capacité portante statique.

Qdyn =
hP 2

D

sP̄

QA =
Qdyn
n

n = 6 uniquement lorsque l’on utilise la formule des Hollandais. Si on souhaite ré-écrire l’expression en
terme énergétique: Qdyn · s = h

P 2
D

P̄
où Qdyn · s représente l’énergie utile. L’énergie de battage est représentée

par PDh, l’énergie perdue vaut hPD P̄−PD
P̄

.

PDh = Qdyn · s+ hPD
P̄−PD
P̄

On prend maintenant en compte l’élasiticité du pieu. (réf figure ci-dessous)
On remplace s→ s0

2 + s comme montré sur le schéma ci-dessus. Aini, Qdyn(s+ S0

2 ) = h
P 2
D

P̄
.

Estimation du raccourcissement élastique s0 Pour s = 0 on a Qdyn = 2
s0

hP 2
D

P̄

73 Page 73



Brice Lecampion

Elasticité du pieu

s0

2
=

Qdyn
APEP

s2
0 =

2LhP 2
D

APEP P̄

s0 =

√
L

AP
· 2hP 2

D

EP P̄

• EP , module élastique du pieu

• AP , aire du pieu

QA =
Qdyn
n avec n = 4pour la formule de Crandall.

6.2.4.3 Équation générale

ηPDh = (Qdyn − (PD + PC + PC))s+ ηPDh
(PP+PC)(1−e2)

P̄
+ µQ2

dyn
L

ApEp

• ηPDh, énergie de battage où ζ correspond au rendement de battage 0.75 ≤ η ≤ 1.

• (Qdyn − (PD + PC + PC))s, l’énergie utile.

• ηPDh
(PP+PC)(1−e2)

P̄
, la perte d’énergie due au choc.

– e le coefficient de résistivité du choc, e = 0 pour un choc mou. e = 1 pour un choc élastique

ζ = 1 Énergie utile Perte dûe au choc Élasticité du pieu n

Hollandais Qdyn · s e = 0, mou Non, µ = 0 6
Crandall Qdyn · s e = 0, mou µ = 0.5 4
Stern (Qdyn − P̄ )s e 6= 0 µ = 0.5 3

QA =
Qdyn
n

6.2.4.4 Applications

Diagramme de battage Projet pour lequel on désire un QAdonné. On choisit la formule de Crandall,
soit QA =

Qdyn
n avec n = 4.

Qdyn(s+
s0

3
) = h · P

2
P

P̄

s =
h

Qdyn

P 2
P

P̄
− s0

2

On estime Qdynainsi que s0
2 .

6.3 Essai de chargement statique

6.4 Groupe de pieux

6.5 Frottement négatif
On appelle frottemement négatif, une inversion su signe de la contrainte de cisaillement agissant le long du
fût du pieu (par rapport à la suite initiale). Un telle inversion va se produire si le tassement du sol aux
alentours du pieu est plus grand que le tassement du pieu.

Ce phénomene se développe dans le temps lié au tassement du sol. Il est donc maximal à long terme.
La conséquence est une surcharge du pieu, notamment pour les pieux colonnes. Pour les pieux flottant,

cette surcharge induit des tassements additionels.
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6.5.1 Estimation du frottement négatif
6.5.1.1 Sur toute la hauteur de la couche compressible

Le frottement négatif s’applique sur toute la hauteur de(s) couche(s) compressibles. En notant q la surcharge
sur le sol au niveau de la couche compressible (de part et d’autre du pieu mais n’agissant pas sur le pieu), le
frottement négatif unitaire qsn est simplement donnée par la contrainte effective horizontale fois le coefficient
de friction de l’interface

qsn = σ′h(z) tan δ = (q + γ′(z − zc))K(z) tan δ

où q est la charge sur la couche compressible en z = zc. On integre donc en suite sur toute la couche
compressible pour obtenir l’effort (surcharge du pieu) résultant agissant sur le pieu:

Qsn = πD

ˆ zc+H

zc

qsn(z)dz

argiles molles/
sol organique

argiles raides sables &
graves

pieu foré 0.15 0.2 0.35
foré tubé 0.1 0.15
Pieu battu 0.2 0.3 0.45

Table 6.1: Valeurs “typiques” de K tan δ pour l’estimation du frottement négatif

6.5.1.2 Sur une partie de la hauteur de la couche compressible

Le frottement négatif ne se développe pas forcement sur toute la hauteur de la couche compressible. On peut
estimer une profondeur sur laquelle le frottement négatif agit comme suit.

1. On estime le profil du tassement du pieu up(z) en fonction de la charge appliquée en tete

2. le profil du tassement du sol us(z) en fonction de la charge appliquée sur le sol (mais pas sur le pieu)

La profondeur pour laquelle up(z = h) = uz(z = h) définite la limite entre les zones de frottement négatif
(z < h, up < us) et de frottement positif (z > h, up > us). On estime ensuite la résultante du frottement
négatif (effort de tension dans le pieu) comme précedemment.

6.5.1.3 Effet d’accrochage du sol autour du pieu

Il y existe une zone de transition entre le pieu et le sol : la contrainte effective σ′h a l’interface du sol-pieu est
plus faible que la contrainte effective “loin du pieu”. Il existe des méthodes empiriques pour prendre cet effet
en compte (correction qui tend à diminuer l’effet du frottement négatif).

6.6 Méthodes aux modules de réactions - sollicitations mixtes
Avant de passer à l’évaluation des tassements d’un pieu, on introduit la méthode dites des modules de
réactions. Cette méthode “modélise” le comportement du sol par un loi “local” de type ressort et modélise
les élements de structures avec une approche classique (théorie des poutres, plaques). Cette méthode peut
donc etre utilisée pour de nombreuses applications d’interactions sols-structures.

Cette approche permet de coupler facilement un code de calcul de mécanique des structures avec la
“réaction” du sol. En revanche, il convient de se rappeler qu’intrinsèquement une telle approximation ne
prend pas en compte le fait que les déformations d’un milieu continu ne sont pas simplement “local”: les
contraintes induites se transmettent sur des longues distances.

De nombreuses “lois” empiriques pour les modules de réactions du sol ont donc été “developées” dans la
pratique.

75 Page 75



Brice Lecampion

6.6.1 Théorie des poutres
6.6.1.1 Equilibre

On considère un élement de structure élancé (poutres, pieu etc.) droite selon e1, ayant une section S(x1)
dans un mouvement plan du type u = u1(x1, x2)e1 + u2(x1, x2)e2. On note N l’effort normal, T l’effort
tranchant et M le moment fléchissant (par rapport au :

N =

ˆ
S

σ11dS T =

ˆ
S

σ12dS M =

ˆ
S

x2σ11dS

les équations d’équilibres quasi-statique se réduisent à

dN
dx1

+ f1(x1) = 0

dT
dx1

+ f2(x1) = 0

dM
dx1

+ T = 0

où f2 dénote la distribution de pression appliquée sur la surface externe S de la structure élancé dans la
direction normal , et f1 la distribution de pression tangentielle. Dans la méthode des modules de réactions,
on va relier ces distributions d’efforts au déplacement relatif de la structure et du sol (& un module de réaction
du sol).

6.6.1.2 Loi de comportement de la poutre

Le déplacement dans un mouvement plan est du type

u = (u1(x1) + θ(x1)x2)e1 + u2(x1)e2

i.e.
ε11 =

∂u1

∂x1
+

∂θ

∂x1
x2 ε12 =

1

2

(
∂u2

∂x1
+ θ

)
de plus pour une poutre droite la rotation local θ est égal à (relation géométrique)

θ =
∂u2

∂x1

Elasticité linéaire donne les relations de comportements:

• Traction-compresssion

N = ES
∂u1

∂x1

avec E le module d’élasticité.

• Flexion avec I =
´
S
x2

2dS moment quadratique par rapport à x_3

M = EI
∂θ

∂x1
= EI

∂2u2

∂x2
1

• Cisaillement
T = 2µS

∂u2

∂x1

On notera que la convention de la théorie des poutres est celle de la mécanique des milieux continus.

Notation usuelles en géotechniques:
On notera par la suite u1 = u et u2 = v. De plus souvent, pour des élements type pieu ou paroi verticale,

on aura x1 = z. De meme pour les distributions de forces appliquées, on notera f1 = f et f2 = r
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6.6.2 Reactions du sol
Prenons l’example d’un pieu dans un sol homogène ayant une sollicitation purement horizontal en tête H,
on va modéliser la réaction horizontale du sol comme étant fonction du déplacement horizontal du pieu dans
le sol. On écrit

r(z) ≡ r(z, v(z))

Modélisant la reaction du sol en faisant l’hypothèse d’élasticité:

r = kn(z)× v(z)

On peut étendre la modélisation au cas plastique en introduisant une limité d’élasticité pour cette réaction -
au dela de laquelle elle devient constante. Par exemple, pour un modèle de type elastoplastique parfait, on
écrit ensuite r = rY pour v > vL. En résumé:

r =

{
kn(z)× v(z) v < rY /kn

rY v > rY /kn

Utilisant la théorie des poutres, la loi de comportement de la poutre, la loi de reaction du sol et les
conditions aux limites (encastrement, effort donnée etc.), on peut résoudre pour la déformée et les efforts
dans la structure.

6.7 Tassement des fondations profondes

6.7.1 Estimation basée sur les modules de réactions / cambefort-cassan
Dans le cas d’un pieu chargé seulement axialement, l’équilibre du pieu se réduit à celui de l’effort normal:

dN
dx

+ f(x) = 0

la distribution de pression tangentielle au pieu provient de la résultante du frottement latéral autour du pieu
(qui agit dans le sens opposé à l’axe x): f = −πDqs. En introduisant le comportement du pieu, on obtient

πD2

4
Ep

d2u

dx2
− πDqs = 0

Dans le domaine des charges de services, les observations faites lors d’essais de chargement statique par
Cambefort, on montré que l’on pouvait décrire la mobilisation du frottement latéral par un ressort élastique

qs = Bu B : [Pa/L]

De la même manière, la réaction en pointe est décrite par un loi linéaire:

Rp = −N(x = L) =
R

D
u(x = L).

R a la dimension d’une contrainte.
En introduisant la mobilisation du frottement latéral dans l’équation d’équilibre pour l’éffort normal, on

obtient l’ODE
d2u

dx2
− a2u(x) = 0 a =

√
4B

EpD

qui adment une solution homogène sous la forme

u = C1 exp(ax) + C2 exp(−ax)

Les constantes d’intégrations sont obenus à partir des conditions aux limites:

• En tête du pieu (x = 0), pour une charge compressive axial P (dans le domaine des charges de services)

−P = N(x = 0) =
Ep

πD2/4

du
dx

=
Epa

πD2/4
(C1 − C2)
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• En pointe (x = L),

−N(x = L) =
Ep

πD2/4

du
dx

=
R

D
u(x = L)

on obtient
Epa

πD2/4
(C1 exp(aL)− C2 exp(−aL)) =

R

D
(C1 exp(aL) + C2 exp(−aL))

au final on obtient la solution dite de cassan pour le déplacement en tête du pieu

u(x = 0) =
4P

πD

1 + R
aDEp

tanh(aL)

R+ aDEp tanh(aL)
a =

√
4B

EpD

Valeurs des coefficients de réactions:

• Pieu Foré
R ≈ 4.5Em B ≈ 0.42Em

• Pieu battu
R ≈ 13.5Em B ≈ 1.25Em

avec Em le module pressiomètrique (obtenu à partir de la phase linéaire de l’essai préssiomètrique).
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Chapter 7

Calculs hydraulique en régime
permanent autour des ouvrages -
instabilités d’origine hydraulique

7.1 Ecoulements en régime permanent
La conservation de fluide en régime permanent s’écrit:

∇ · q = 0 =
∂qx
∂x

+
∂qz
∂z

et la loi de Darcy:

qi = −k ∂h
∂xi

= k × ii

q = ki

Dnas le cas homogene & isotrope, on obtient donc (en 2D)

∆h =
∂2h

∂x2
+
∂2h

∂z2
= 0

et en 3 D
∂2h

∂x2
+
∂2h

∂y2
+
∂2h

∂z2
= 0

Dans le cas d’un sol homogène, pour une permeabilité anisotrope, on obtient (ici en 2D)

kh
∂2h

∂x2
+ kv

∂2h

∂y2
= 0

∂2h

∂ (kv/kh)x2︸ ︷︷ ︸
X2

+ kv
∂2h

∂y2
= 0

X =
√
kv/khx

Rappels nappe libre vs captive, conditions aux limites générales
Notions d’équipotentielle et de ligne de courant. Flow-net
Flow net

∆q ≈ ∆n

∆s
∆φ

7.1.0.1 Ecoulement autour d’un puit (nappe captive)

Nappe confinée de hauteur t

Q = 2πkt
h∞ − h

lnR∞/Rw
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7.2 Ecoulements en nappe libre - approximation de Dupuit
Dupuit (width )

Qx =

ˆ
z

qx = −k × h∂h
∂x

i.e. 3D -> 2D
∂h2

∂x2
+
∂h2

∂y2
= 0

2D -> 1
dh2

dx2
= 0

reservoir

Q = k
h2

1 − h2
2

2L

7.2.1 Ecoulement à travers un barrage en terres

7.2.2 Ecoulement autour d’un puit
Nappe libre Dupuit (debit >0 en production(

Q = πk
h2
∞ − h2

w

lnR∞/Rw

Sichardt
R∞ ≈ 3000(h∞ − hw)

√
k

7.3 Ecoulement autour d’un élement de soutènement

7.3.1 Rideau de palplanches infini
schéma.

Simplifications: i) perte de charge uniquement en aval (cas d’une fiche dans une couche tres permeable),
ii) aucune perte de charge (paroi fiché dans un mileu impermeable)

Solution de mandel (sol homogène isotrope).
Attention Mandel donne la perte de charge moyennée em fonction de α (définit comme le rapport entre

la perte de charge aval et amont), α est solution de l’équation implicite suivante:

tanπα− πα = π
t− tw
hw + tw

Dans le cas t−tw
hw+tw

> 0.1 on a la formule approchée suivante

α ≈ 0.095 +
0.81

1 +
√

1 + (hw + tw)/(t− tw)

La perte de charge en amont est donnée par:

|iamont| = (1− α)
hw + tw
hw + t

en aval
|iaval| = α

hw + tw
t− tw

Repartitition de la pression de pores
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En amont (coté du terrain) en prenant l’axe z vers le bas, on a alors h = u/γw − z et donc

∂u

∂z
= γw

(
∂h

∂z
+ 1

)
et ici

∂h

∂z
= −|iamont|

On obtient donc (pour z > zgwl):

u(z) = γw(z − zgwl)− (1− α)γw
hw + tw
hw + t

(z − zgwl)

Notamment la pression de pore en pieu de paroi est

u∗ = u(z = L) = γw(t− tw) + αγw(hw + tw)

on peut recrire
u(z) =

u∗
hw + t

(z − zgwl)

En aval (côté excavé) on a
∂h

∂z
= |iaval|

et pour z > H + tw, en définissant z′ = z −H

u(z′) = γw(z′ − tw) + αγw
hw + tw
t− tw

(z′ − tw)

et on a évidemment continuité des pressions en z=L, u(z′ = t) = u∗,et du coté aval on peut écrire

u(z′) =
u∗

t− tw
(z′ − tw)

7.3.2 Coffer dam
Davidenkoff - perte de charge aval (moyenne)

αhw =
Φ2

Φ1 + Φ2
hw

Φ1,2(d1/T1, d2/T2)

debit par mètre de batardeau

q =
k

Φ1 + Φ2
hw

Enceintes fermées

• circulaire de rayon b

αhw = 1.3
Φ2

Φ1 + Φ2
hw Q = (2πb)0.8

k

Φ1 + Φ2
hw

• carrée (demi-coté b)

αhw = 1.3
Φ2

Φ1 + Φ2
hw (coté) Q = 0.7× 8b

k

Φ1 + Φ2
hw

αhw = 1.2
Φ2

Φ1 + Φ2
hw(coin)

• Rectangulaire B = 2b et L

Q = 2
k

Φ1 + Φ2
hwL

(
1 +

B

L

)(
1− 0.3

B

L

)
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Figure 7.1: Davidenkoff- chart

7.4 Rabbatement de nappes autour d’une excavation
Approche...

Formule de Sichardt
R ≈ 3000(H − h)

√
k

avec k and m/s , H en m donc le prefactor 3000 est en 1/(m/s)^1/2.
note en general de l’équation de diffusion....

R =
√

4ct =

√
4

k

µ×mv
t

7.5 Instabilités d’origine hydraulique - phénomène du renard
systemes de coordonnées z vers le haut , contraintes > 0 en compression

∂σxx
∂x

+
∂σxz
∂z

= 0

∂σxz
∂x

+
∂σzz
∂z

+ γ = 0

On récrit en contraintes effectives σ′ij = σij + uδij = σij + γw(h− z)δij
la charge hydraulique est

h =
u

γw
+ z

(z vers le haut, w.r. un plan de reference) -> note au repos (sans écoulement h=0)
D’où:

∂σ′xx
∂x

+
∂σ′xz
∂z

+ γw
∂h

∂x
= 0

∂σ′xz
∂x

+
∂σ′zz
∂z

+ γw
∂h

∂z
+ (γ − γw) = 0
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Forces d’écoulement
γwi = −γw∇h

Pesanteur déjaugé:

−γ′ez
Un renard hydraulique arrive lorsque le gradient hydraulique est supérieure au gradient hydraulique critique:

ic = γ′/γw

i.e. quand les forces d’écoulement sont supérieures à la force de pésanteur déjaugée.

7.6 Défaut de portance d’une paroi - renard “solide”
....
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Chapter 8

Stabilité des talus

8.1 Stabilité d’une pente infinie - glissement plan

8.1.1 Cas sans eau
8.1.1.1 Approche par facteur de sécurité

On se réfere à la Fig. 8.1. On étudie le cas d’un glissement plan parallèle à une surface inclinée infinie
d’inclinaison β.

On définit le facteur de sécurité comme le rapport entre la force résistante le long du glissement Fresistanc =
T et la force motrice venant de l’inclinaison du terrain Fmotrice .

Comme la pente est infinie on peut raisonner sur un élement unitaire L ≡ 1 dans la direction de la pente
(cf. Fig. ). Le poids W de cet élement est simplement

W = γLd = γLH cosβ

La composante normale du poids sur la surface de glissement est donc

WN = N = W cosβ

et la composante tangentielle qui est la force motrice

WT = Fmotrice = W sinβ

La force résistance le long du glissement plan est obtenu en utilisant le critère de Mohr-Coulomb qui relie
la contrainte normal et tangentielle à la rupture

Fresistance = T = cL+N tanφ

β
H d T

N

L ≡ 1

W

Figure 8.1: Glissement plan à une profondeur H - pente infinie.
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On obtien t donc le facteur de sécurite

Fs =
Fresistance
Fmotrice

=
cL+W cosβ tanφ

W sinβ

que l’on peut réecrire

Fs =
c

γH sinβ cosβ
+

tanφ

tanβ

et on retrouve bien le résultat intuitif que pour un sol sans cohésion, l’inclinaison de la pente maximale est
égale au coefficient de friction du sol (angle au repos).

8.1.1.2 Lien avec l’analyse limite

On se propose de faire maintenant un raisonnement similaire par une approche cinématique en analyse limite
- qui nous donnera donc une borne supérieure. Ici, on fait également le calcul pour un élément unitaire le
long de la surface de rupture.

L’analyse limite est basé sur le modèle rigide plastique. On prendra tout d’abord un critère de Mohr-
Coulomb associé. On a vu (cf cours d’analyse limite), que le long d’une surface de glissement, pour un critère
de Mohr-Coulomb de type associé la discontinuité de vitesse (qui vu que seul la partie supérieure de la pente
bouge correspond ici à la vitesse de la partie supérieure de la pente qui glisse) U̇ fait un angle égale à φ avec
la surface de glissement.

La puissance des efforts extérieurs dans ce cas est:

Pext(U̇) =

ˆ
V

γU̇zdV = γ‖U̇‖ sin(β − φ)× L×H cosβ

et la puissance dissipée le long de la surface de glissement (puissance résistance maximale) est

Pdiss(U̇) =

ˆ
L

c‖U̇‖ cosφds = c‖U̇‖ cosφ× L

et on obtient en utilisant le ratio de la puissance dissipée et de la puissance extérieure et la puissance des
effort extérieurs, le coefficient de sécurité suivant:

FUBs =
c cosφ

γH cosβ sin(β − φ)

et pour un sol de cohésion nulle, ce facteur de sécurité est zero ! On aurait pu déjà déduire ce résultat car la
puissance dissipée est facteur de c.

8.1.1.3 Ecoulement plastique non-associé

Ce résultat non-intuitif et différent de celui précedemment obtenu est du à l’hypothèse d’ecoulement plastique
associée. Une telle hypothèse n’est pas réaliste car le fait que le vecteur vitesse fasse un angle égal au coefficient
de friction implique une dilatance continue pendant la déformation. Expérimentalement, on observe que après
une certaine distance de glissement la dilatance “sature” et la vitesse de glissement devient parallèle à la surface
de glissement. Il convient donc de lever la restriction de prendre un critère de plasticité non-associé. On
introduit donc un potentiel plastique g différent du critère de rupture f - dans le repère contraintes normale
/ tangentielle à la surface de glissement plan.

f(σn, τ) = τ − c− σn tanφ

g(σn, τ) = τ − σn tanψ

où ψ est l’angle de dilatance (ψ < φ) avec

ti = σijnj vecteurs contraintes sur SΣ

ts = τ = siσijnj contrainte de cisaillement sur SΣ

tn = σn = niσijnj contrainte normale sur SΣ
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où nj est la normale à la surface de glissement SΣ et si le vecteur tangent associé.
On écrira l’écoulement plastique non-associé sous la forme

[[u̇i]] = λd
∂g

∂ti
f(ti) = 0

où λd est un multiplicateur plastique de dimensions [L/T ] ici et λdf = 0 et λd ≥ 0. on obtient donc

[[u̇n]] = −λd tanψ

[[u̇s]] = λd

soit

[[u̇n]] = −
∥∥∥U̇∥∥∥ sinψ

[[u̇s]] =
∥∥∥U̇∥∥∥ cosψ

On peut donc calculer la puissance dissipée (unitaire) le long d’une surface de glissement pdiss

pdiss = ti [[u̇i]] = τ [[u̇s]] + σn [[u̇n]]

avec la rupture f = 0, i.e. τ = c+ σn tanφ

pdiss = (c+ σn tanφ)
∥∥∥U̇∥∥∥ cosψ − σn

∥∥∥U̇∥∥∥ sinψ

Pour une rupture développée ayant atteint l’état critique, la dilatance devient nulle (déformation purement
cisaillante), soit ψ = 0. On obtient alors

pCSdiss = (c+ σn tanφ)
∥∥∥U̇∥∥∥

où le superscript CS est une abbréviation de “critical state”.
En re-faisant à l’état critique le calcul pour cette surface de rupture plane infinie. La puissance des efforts

est également changée car la vitesse de glissement est parallèle au plan de glissement

Pext(U̇) =

ˆ
V

γU̇zdV = γ‖U̇‖ sin(β)× L×H cosβ

et la puissance dissipée est - comme σn = W
L cosβ = γH cos2 β

Pdiss(U̇) =

ˆ
L

pdissds =
(
c+ γH cos2 β tanφ

) ∥∥∥U̇∥∥∥L
et on obtient un facteur de sécurité

Fs =
c

γH cosβ sinβ
+

tanφ

tanβ

On retrouve éxactement le résultat obtenu préalablement par une approche d’équilibre limite - qui faisait
l’hypothèse implicite d’un écoulement non-associée (pas de dilatance). Il est important de se rappeler que
la dilatance du sol “sature” pour des déplacement suffisant et la déformation plastique s’éffectue alors sans
dilatance (sans changement de volume). L’hypothèse d’un écoulement associé n’est pas réaliste pour analyser
des grand glissement. Les méthodes de stabilité des pentes se placent souvent à l’état critique (sans dilatance
- écoulement non-associé) implicitement.

8.1.2 Présence d’eau
Faisons maintenant, le calcul pour le cas d’une nappe à une distance Hw du glissement plan. Dans ce cas,
l’écoulement d’eau est parallèle au plan de glissement et à la surface. Il convient cette fois ci d’écrire le critère
de Mohr-Coulomb en contraintes effectives. La pression d’eau u le long de la surface de glissement est ici:

u = γwHw cosβ
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βH d
T

N

L ≡ 1

W
Hw

Figure 8.2: Pente infine avec écoulement parallèle

et sa résultante est u cosβ×L. La force résistante (puissance dissipée / par la vitesse de glissement) devient

Fresistante =
(
c+ (γH − γwHw) cos2 β tanφ

)
L

et le facteur de sécurité est maintenant

Fs =
c

γH sinβ cosβ
+

(γH − γwHw)

γH

tanφ

tanβ

On notera que pour le cas Hw = H et un sol de cohésion nulle comme γw ≈ γ/2 , le facteur de sécurité
est divisé par 2 en présence d’eau !

Fs =
(γH − γwHw)

γH

tanφ

tanβ
≈ 1

2

tanφ

tanβ

8.2 Stabilité d’un talus fini

8.2.1 Glissement plan
On se souvient que pour un talus vertical (β = π/2), les bornes de l’analyse limite (sup et inf) donnent (cf
semaine 2):

3.73
cosφ

1− sinφ
≤ γH

c
≤ 3.83

cosφ

1− sinφ

et on avait obtenu par un calcul par l’extérieur (cinématique) en faisant l’hypothèse d’un glissement plan(
γH

c

)+

= 4
cosφ

1− sinφ

On étend ici ce calcul au cas d’un talus d’inclinaison β.(sans écoulement d’eau). Les résultats seront
applicables soit à court terme (c = cu, φ = 0) notammant dans les argiles, soit pour le cas sans eau.

On se référe à la figure 8.3. Comme dans le cas d’un talus vertical (β = π/2), la puissance des efforts
extérieurs est:

Pext.(U̇) =

ˆ
OAB

γU̇z dS =

ˆ
OAB

γ‖U̇‖ cos(α+ φ) dS

= γ‖U̇‖ cos(α+ φ)× (
1

2
H2 tanα− 1

2
H2 cotβ)
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γ
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Figure 8.3: Talus incliné - glissement plan.

La puissance dis sipée le long de la surface de glissement (modèle associé) est identique que pour le cas
vertical:

Pdiss(U̇) =

ˆ
AB

c‖U̇‖ cosφds =
H

cosα
c‖U̇‖ cosφ

L’application du PPV donne l’expression suivante de la borne supérieure paramétrée par α:

γH

c
= 2

cosφ

cos(α+ φ)

1

(sinα− cosα cotβ)

Il convient donc de minimiser cette expression par rapport à α pour obtenir la borne supérieure la plus petite.
Que l’on obtient pour e.

d

dα
cos(α+ φ) (sinα− cosα cotβ) = 0

sin(2α+ β + φ) = 0

à savoir pour

α =
π

2
− φ+ β

2

[On retrouve bien α = π/4− φ/2 pour le cas β = π/2]. La borne supérieure est au final:

γH

c
=

4 cosφ sinβ

1− cos(β − φ)

[On retrouve bien 4 cosφ/(1− sinφ) pour le cas β = π/2].
Le facteur de sécurité (rapport puissance dissipée max / puissance des efforts exterieures) est

Fs =
c

γH

4 cosφ sinβ

1− cos(β − φ)

Le cas φ = 0, se simplifie en

Fs =
c

γH

4 sinβ

1− cosβ
=

c

γH

4

tanβ/2

8.2.2 Glissement circulaire
On effectue ici une approche de type equilibre limite qui est tres souvent utilisé en mécanique des sols -
attention cela diffère de l’analyse limite par l’extérieur dans le sens que l’on utilise pas le principe des travaux
virtuels.

Considérons le cas d’un talus inclinée dans un milieu purement cohérent (φ = 0) de cohésion c avec une
surface de glissement circulaire de rayon R passant par le bas de talus et ayant comme centre le haut du talus
(point O). Il est classique de définir un coefficient de sécurité comme le rapport entre le moment résistant
(du à la cohésion sur le plan de glissement) et le moment moteur du au poids du sol en mouvement. On a ici

Mresistant = c×R(π − β)×R
Mmoteur = W sin(β/2)× |OG|
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H

β

0

W
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c

Figure 8.4: Talus inclinée - sol purement cohérent - glissement circulaire

avec le poids W de la section circulaire égal à

W = γR2(π − β)

La distance |OG| entre le centre de gravité et le centre de la section circulaire est donnée par la relation
géométrique suivante:

|OG| = 4R sin(π/2− β/2)

3(π − β)

On en déduit

Fs =
3cR2(π − β)

4γR3 sin(β/2) sin(π/2− β/2)

=
c

γH

3(π − β) sinβ

2 sin(β)

=
c

γH

3(π − β)

2

On notera que la limite

lim
β→π/2

Fs =
c

γH

3π

4
≈ 2.35

c

γH

est différente de la meilleure estimation obtenue par l’analyse limite qui se situe entre 3.73 et 3.83 (× c
γH )!

Ce résultat est une illustration du fait que les approches de type equilibre limite ne donnent ni une borne
supérieure ni une borne inférieure. En revanche, les estimations obtenues pour des ruptures de glissements
sont assez proches et donnent des résultats plutôt conservatifs.

8.2.3 Glissement circulaire avec écoulement
En pratique, pour des sols frottant, les surfaces de glissement seront des spirales logarithmiques. Une première
approche consiste à garder l’hypothèse d’un glissement circulaire mais de relacher l’hypothèse que le centre
du cercle se situe en haut du talus et que le rayon du cercle de glissement est égal à H/ sinβ. Il convient
alors d’optimiser par rapport à la position du centre du cercle afin d’obtenir le coefficient de sécurité le plus
faible.

On obtient les abaques de Caquot-Kérisel...
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8.2.4 Méthode des tranches (tiré de Lancellota)
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Equilibre dans le repère normal - tangentiel à la ligne de glissement

uibi
cosαi

+
σ′bi

cosαi
− (Wi + ∆Xi) cosαi + ∆Ei sinαi = 0

TRi − (Wi + ∆Xi) sinαi −∆Ei cosαi = 0

avec
TRi = (c′ + σ′ tanφ)

bi
cosαi

/Fs

et la définition du facteur de securité à partir de l’équilibre global des moments par rapport au centre du
cercle de rupture:

Fs =

∑
i(c
′ + σ′ tanφ)bi/ cosαi∑

iWi sinαi

Fellenius: ∆Xi = 0 et ∆Ei = 0 alors on obtient

σ′bi = Wi cos2 α− uibi

et au final

Fs =

∑
i(c
′bi +

(
Wi cos2 α− uibi

)
tanφ)/ cosα∑

iWi sinα

Bishop simplifié ∆Xi = 0 on obtient

∆Ei = TRi/ cosαi − (Wi) tanαi

σ′bi
cosαi

= (Wi) cosαi −
uibi

cosαi
− TRi tanαi + (Wi) tanαi sinαi

soit encore
σ′bi = (Wi − uibi)− (c′ + σ′ tanφ)bi

tanαi
Fs

i.e.
(c′ + σ′ tanφ)bi(1 + tanαi tanφ/Fs) = c′bi + (Wi − uibi) tanφ

d’où on obtient le facteur de sécurité

Fs =

∑
i(c
′bi + (Wi − uibi) tanφ)× 1

cosαi × (1 + tanαi tanφ/Fs)∑
iWi sinα
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Chapter 9

Poussée - butée des terres sur les
éléments de soutènements

Pousee - Butée
Mouvement relatif sol/écran

Etat au repos
σ′h = Koσ

′
v

Ko ≈ 1− sinφ′

Ko ≈ (1− sinφ′)OCRsinφ′

9.1 Théorie de Rankine
Implicitement, l’angle friction du sol dicte l’orientation de la résultante sur le mur (en d’autres termes, dicte
l’angle de friction mur/sol est égal à l’angle de friction du sol).

Actif
π

2
+ φ′

σ′h = Kaσ
′
v − 2c′

√
Ka

Ka =
1− sinφ′

1 + sinφ′
= tan2

(
π

4
− φ′

2

)
Pa =

1

2
γH2Ka

Undrained:
zo =

2cu
γ

Passive
π

2
− φ′

σ′h = Kpσ
′
v + 2c′

√
Kp

Kp =
1 + sinφ′

1− sinφ′
= tan2

(
π

4
+
φ′

2

)
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9.1.1 Cas incliné

σ33 = γz cos2 i

σ13 = γz cos i sin i

OM = σ′v

OA = σ′a

ON = OC cos i

NC = OC sin i

MC = OC sinφ′

σ′a
σ′v

=
ON−MN
ON + MN

Ka =
cos i−

√
sin2 φ′ − sin2 i

cos i+
√

sin2 φ′ − sin2 i

9.2 Analyse limite
Lancellota Passive with inclinaison

Kp =
cos δ

cos i−
√

sinφ2 − sin i2

(
cos δ +

√
sinφ2 − sin δ2

)
e2V tanφ

2V = arcsin

(
sin δ

sinφ

)
+ arcsin

(
sin i

sinφ

)
+ δ + i

9.3 Equilibre limite du coin de Coulomb
Coulomb

τ = σn tanφ′

loi des sinus
F

sin(θ − φ′) =
W

sin(π/2 + δ + φ′ − θ)

W =
1

2
γH2 tan

(π
2
− θ
)

F+ =
1

2
γH2 tan (θ − φ′)

tan(θ)

mazimum
θ =

π

4
+
φ′

2

Fa =
1

2
γH2 tan2

(
π

4
− φ′

2

)
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Coulomb cas Général:

Ka =
cos(φ′ − λ)2

cos2 λ cos(λ+ δ)
[
1 +

√
sin(δ+φ′) sin(φ′−β)
cos(λ+δ) cos(λ−β)

]2
eah = Kahγ

′z

Kp =
cos(φ′ + λ)2

cos2 λ cos(δ − λ)
[
1−

√
sin(φ′−δ) sin(φ′+i)
cos(λ+δ) cos(λ−β)

]2
9.4 Actions sur les éléments de soutènements

9.4.1 Resultante des actions sur les éléments de soutènements
9.4.1.1 Court terme

Ea = (
1

2
γH2 + qH)×

(
1−m4cu

γH

)
︸ ︷︷ ︸

K

m ≈ 0.8− 1

Ep = (
1

2
γH2 + qH)×

(
1 +

4cu
γH

)
9.4.1.2 Long terme

/ Etat actif
ea = Ka(φ′, δ, β)σ′v − (1−Ka(φ′, δ, β))c′ cotφ′︸ ︷︷ ︸

2c
√
Ka cas β = δ = 0

ea,h = ea cos δ

ea,v = ea sin δ

Ka,h = Ka cos δ

Etat passif
ep = Kp(φ

′, δ, β)σ′v + (Kp(φ
′, δ, β)− 1)c′ cotφ′︸ ︷︷ ︸

2c′
√
Kp cas δ=β=0

ep,h = ep cos δ

ep,v = ep sin δ

Kp,h = Kp cos δ
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Chapter 10

Murs Poids

10.1 Types - disposition constructives

10.2 Mur poids

10.3 Mur équerre
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Chapter 11

Parois de soutènement

11.1 Types - disposition constructives

11.2 Defaut de portance en fond de fouille
Renard solide

11.3 Calcul des efforts le long d’une paroi

11.4 Dimensionnement
Soit r(z) la pression normale à la paroi (somme des poussées active, passive + des efforts d’ancrages > 0 vers
le cote excave, i.e r(z) = eah− eph dans le cas sans eau / sans surcharge). Le calul de l’effort tranchant V (z),
du moment fléchissant M(z) et de la déformée y(z) de la paroi s’apparante à un calcul de poutre. Dans la
notation (axes des V positif vers le coté non-excavé, déformé positive du coté excavé)):

dV
dz

= r(z)

dM
dz

= V (z)

M(z) = EI
d2y

dz2

avec E et I le module d’elasticité et moment d’inertie (par metre lineaire de paroi) de la paroi . A noter que
- en tete (z = 0), la paroi est libre.

On considère une fouille de profondeur h, cas sans eau, γ poids volumique du sol. Aucune surcharge n’est
prise en compte ici dans cet exemple simple. On peut généraliser facilement aux cas multi-couhces, avec
surcharges, avec écoulement etc.

11.4.1 Sans cohésion - sans eau - sans ancrage - Paroi simplement fiché
Dans ce cas simple, on a du coté amont une poussée active des terres. eah,d:

eah = γKahz

Du coté avale, la butée passive des terres vaut dans ce cas simple

eph = γKph(z − h) z ≥ h
Le poids de pression nulle, i.e. le point pour lequel r(z) = eah − eph = 0 (dans notre convention) est

toujours sous le fond de fouille. Dans ce cas simple, il est donnée par :

zo =
Kphh

Kph −Kah

98



Brice Lecampion

sa profondeur a sous le fond de fouille est

a = zo − h =
Kahh

Kph −Kah

Effort tranchant et moment fléchissant au dessus du fond de fouille (z < h)

V (z < h) = −1

2
Kahγz

2

M(z < h) =
1

6
Kahγz

3

On denotera Vh et Mh les valeurs pour z = h (juste au dessus du fond de fouille)

Effort tranchant et moment fléchissant au dessous du fond de fouille (z > h)

V (z > h) = Vh − γKahh(z − h) +
1

2
(Kph −Kah) γ(z − h)2

M(z > h) = Mh + Vh(z − h) +
1

2
γKahh(z − h)2 − 1

6
(Kph −Kah) γ(z − h)3

11.4.2 Equilibre de la paroi:
Pour obtenir la profondeur de la paroi zω (ou la profondeur de la fiche t = zω − h), on force l’équilibre de
rotation en ce point:

M(zω) = 0

C’est une équation du 3ieme degrée (cubique) avec inconnue zω . (résolu par Euler....en 1738).
L’effort tranchant à la profondeur obtenue est en général non nul. Afin de satisfaire l’équilibre horizontal

(sans changer l’équilibre de rotation), il faut compter sur une force de contre-butée centré en zw de longueur
totale b. Cette contre-butée CB est reliée au coefficient de poussée passive des terres (cette fois du coté
amont de la fouille - i.e. d’ou le terme de contre-butée):

CB = V (zω)

Par ailleurs on évalue la contre-butée avec la valeur de pousée passsive (de dimensionnement)

CB =

ˆ zw+b/2

zw−b/2
eph,ddz =

ˆ zw+b/2

zw−b/2
γKphzdz = Kphγzωb

ce qui permet d’obtenir la sur-longueur de contre-butée b.

11.4.3 Paroi ancrée et butée en pied
Dans ce cas, il convient de calculer l’effort d’ancrage A (sa profondeur étant donnée) et la longeur de la paroi.
On ecrit l’équilibre (rotation et horizontal) en bas de paroi et obtient donc 2 equations pour 2 inconnues.
Dans ce cas, il n’y a pas de contre-butée: d’où l’appelation ancrée et butée en pied.

Il convient d’ajouter l’effet de l’effort d’ancrage dans les expressions précédentes de l’effort tranchant et
du moment fléchissant.

Effet de l’ancrage Soit une force d’ancrage ponctuelle (ou de button) à la profondeur za et de valeur A
(exercé dans la direction du coté amont de la fouille). Dans ce cas, l’effort tranchant et moment fléchissant
du à l’ancrage (en dessous de za) sont:

VA(z) = A z > za

MA(z) = −A(z − za) z > za

(et bien sur nul pour z < za, la paroi étant libre en tête).
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11.4.4 Paroi ancrée et encastrée en pied
Dans ce cas, on veut assurer un encastrement en pied et donc on laisse une contre-butée se développer. Nous
avons donc 3 inconnues (effort d’ancrage, longueur totale de la paroi et la surlongeur de contre-butée). Il
convient donc de se fixer une des inconnues (par exemple, la longueur totale de la paroi) et de calculer les 2
autres en résolvant l’équilibre de la paroi.

11.4.5 Méthode de la poutre équivalente - (Méthode de Blum)
Dans cette méthode -dite de la poutre équivalente - on fixe que le moment fléchissant soit nul au point de
pression nulle (où r(z) = 0). On résout donc l’équilibre de la poutre supérieure afin de déterminer l’effort
d’ancrage A et l’effort tranchant V (zo) au point de pression nul.

Dans un deuxième temps, on résout l’équilibre de la poutre inférieure. On a deux équations pour 2
inconnues: la longueur totale de la paroi et la sur-longueur de contre-butée. Il est plus simple d’exprimer
tout cela en fonction des resultantes des pressions qui s’applique sur la paroi

Dans le cas sans eau - sol homogène - sans surcharge additionnelle discuté auparavant, on a donc:

1. Poutre supérieure:
V (zo) +A = Ea + Eap1

avec Ea = 1
2γh

2Kah (h hauteur de l’excavation) qui s’applique en h/3 depuis le bas de l’excavation, et
Eap1

= 1
2γKahh×(zo−h) s’appliquant à une distance (zo−h)/3 sous le fond de l’excavation. L’equilibre

du moment s’écrit donc - en fixant le moment M(zo) à zero:

A(zo − za) = Ea × (h/3 + zo − h) + Eap ×
2

3
(zo − h)

On détermine donc facilement l’effort d’ancrage A et ensuite l’effort tranchant V (zo).

2. Poutre inférieure: en notant tw la distance entre le point d’encastrement et le point de pression nulle
zo

CB + V (zo) =
1

2
γ(Kph −Kah)t2w

V (zo)tw =
1

6
γ(Kph −Kah)t3w

avec
CB = Kphγ(zo + tw)b

On détermine donc facilement tw puis b. La longueur totale de la paroi est donc zo + tw + b/2
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Chapter 12

Parois Clouées
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Appendix A

Rappels de mécanique des milieux
continus
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