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Chapter 1

Projet en géotechnique

1.1 Généralités

Un projet géotechnique nécessite la combinaison d’information provenant du projet d’ouvrage en lui-meme
(descentes de charges, tassements maximum authorisés etc.), du sol (stratigraphie, résistance, déformabilité
etc.) et de 'environment naturel et construit (batiments voisins, maintenance des voies de communications,
environment etc). Comme tout autre projet de génie civil, les contraintes juridiques, économiques etc. sont
également prépondérante et impacte directement les solutions techniques retenues au final.

L’ingénieur se doit de “créer” une solution technique saine respectant ces différentes contraintes.

1.2 [Etats limites ultimes / états limites de services

Pour tous les types d’ouvrages de souténement et pour chaque situation de projet déterminante, il faut vérifier
que l’état limite ultime (sécurité structurale) et I’état limite de service (aptitude au service) ne sont dépassés
4 aucun moment durant les phases de construction et d’exploitation.

1.2.1 Etat Limites Ultimes - vérification de la sécurité structurale

Une structure géotechnique ne doit pas se rompre! Lors du dimensionnement, on doit donc vérifier que aussi
bien une fois 'ouvrage terminé que pendant toute les phases de construction, aucune “ruine” de I'ouvrage ou
d’une de ses parties ne se produise. On vérifie la sécurité structurale de I'ouvrage afin d’éviter des ruptures
catastrophiques.

On divise les états limites ultimes (ELU) en

e ELU externe - ou la rupture est lié a la mobilisation de la résistance du sol.

e ELU interne - ou la rupture est lié a la mobilisation de la résistance des matériaux de 'ouvrage (par
exemple un renforcement).

En plus dans les normes Suisses (STA 267), on distingue différents type d’ELU:
1. ELU de type 1 - instabilité d’ensemble de I'ouvrage ou la résistance du sol ne jouent pas de role.

2. ELU de type 2 - la résistance ultime de I'ouvrage ou d’un de ses éléments est atteinte. Les propriétés
de la structure et du terrain jouent un roéle prépondérant.

3. ELU de type 3 - Instabilité globale du terrain, Mobilisation compléte de la résistance du terrain (c’est
le cas de la stabilité de pentes).

4. ELU de type 4 - Fatigue de l'ouvrage ou d’un de ses éléments.
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Perte d’équilibre par basculement

Figure 1.1: Exemple d’ELU de type 1.

Reésistance au glissement
atteinte a ['interface
Résistance au poingonnement du terrain atteinte

Figure 1.2: Examples d’ELU de type 2 externe.

Mobilisation compléte de la résistance au cisaillement du terrain (i.e. glissement généralisé)

Figure 1.3: Example d’ELU de type 3.
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Tassements totaux et/ou différentiels excessifs limitant ['aptitude au service de l'ouvrage

Figure 1.4: Exemple d’ELS - tassements differentiels.

1.2.2 Etat Limites de services - vérification de I’aptitude au service

Les états limites de services sont en général définit dans la convention de 'ouvrage - Il s’agit d’éviter une
dégradation de 'ouvrage. Notamment en géotechnique, limiter les déformations & long terme et leur con-
séquence sur la structure (fissures etc.).

De méme que pour les ELS, on parle d’ELS externe (mobilisation sol) et d’ELS interne (lié au matériaux
de 'ouvrage - ex. durabilité).

1.3 Conventions en mécanique des sols et des roches

Contrairement a la mécanique du solide o les contraintes sont définies positive en tractions, c’est I'inverse en
géo-mécanique: le tenseur des contraintes est positif en compression ! La raison est double: 1) les contraintes
du au poids des terres sont compressives et ainsi les contraintes en profondeur sont toujours compressives a
Pétat initial, 2) les géo-matériaux ont une résistance a la traction assez faible mais exhibite une augmentation
de leur résistance avec une augmentation de la contrainte moyenne en compression (comportement frictionel
de type Mohr-Coulomb).

Cela implique une petite “gymnastique”. Tout d’abord, dans 1’équilibre quasi-statique on doit adapter le
signe des forces de volumes! ’équation d’équilibre devient:

aijj = fi =0

(ici le tenseur des contraintes est positif en compression).
On écrit souvent la relation de comportement contraintes-déformations du type:

Oij = Cijkl€kl

ce qui implique que les déformations sont positives en “contraction” et négative en “expansion” ! Si I’on garde
la définition du tenseur des (petites) déformations comme étant

€ij = 5 (Ui +uj,)

alors le déplacement est positif dans le sens inverse du systéme de coordonnées !! Parfois, dans certains
livres, un signe ” —” est introduit dans la définition du tenseur de déformations (e;; = —(u,,; + u;,;)/2) afin
de garder un déplacement positif dans le sens des axes du systéme de coordonnée.

La convention des contraintes positives en compression change aussi le sens de rotation dans le plan de
Mohr !

8 Page 8



Chapter 2

Comportement mécanique des sols

2.1 Le sol: un milieu poreux

La taille du volume élémentaire représentatif (VER) d'un sol correspond a ’échelle macroscopique ol une
modélisation du sol comme un milieu continu s’applique. L’utilisation de la mécanique des mileux continus
repose sur une séparation d’échelle entre la microstructure du sol £,,;cr0, la taille du VER ¢y ggr qui est lui
meme beaucoup plus petit que la taille de 'ouvrage Lsiructure > LvER > bmicro- Pour des sols, un VER peut
aller de quelques millimétres (sable fins) & un métre (moraine). Il convient de garder a 'esprit ces différentes
échelles. Par expérience on a souvent: fyggr ~ 1040

Un volume élémentaire représentatif (VER) V' d’un sol est constitué d’un partie solide Vi et de vide
(pores) V,,. L’espace poral (V) peut étre rempli d’air (V,) ou d’eau (V,,). On a evidemment

V=Vs+7V, Vo =Va+Vy

Le volume élémentaire représentatif V' est 1’échelle & partir de laquelle la mécanique des mileux continus
s’applique. Il permet de définir les propriétés suivantes d’un sol:

® sa porosité
n = Vv/V

ou Vy est le volume des pores (des vides) du sol

e l'indice des vides
Va
e=—
Vs
et 'on voit donc que n =e/(1+e)
e La teneur en eau définit comme le rapport de masse d’eau et des constituents solides

w = My, /M,

e La saturation en eau S, et en air S,
Sw:Vw/‘/'U Sa:Va/‘/vzl_Sw

Dans ce cours, on ne ferra des calculs soit en conditions completement sec (S, = 0), soit completement
saturé (S, =1).

e la densité des constituent solides ps = M;/V; et d’eau p,, permet de définir la densité a sec
pa = ps(l—n)

la densité globale du sol
p=ps(1—=n)+ punSy
et leur poids correspondants
Yd = Pdg v =prg9

9
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ainsi que le poids déjaugé du sol (evidemment saturé)
!
Y =7 Yw

avec Yy, = pPug le poids de 'eau.

2.2 Comportement drainée/non-drainée

La rupture des sols est fonction du tenseur des contraintes effectives - i.e. de la contrainte agissant sur le
squellette solide. Pour un sol saturé en eau, ce tenseur des contraintes effectives s’écrit

Uéj =045 — ’LL(;ij
avec u la pression d’eau interstitielle (pression de pores) qui agit isotropiquement.

Lors de ’application soudaine d’une charge sur un élement de sol, initiallement I’eau n’as pas le temps de
s’écouler et une partie de la charge est donc reprise par I’eau des pores. On est en conditions dites non-drainées
(temps court), la pression de pore augmente d’un Awu. Ensuite, selon les conditions aux limites d’écoulement,
si le drainage est permis (ce qui est le cas pour quasiment tous les ouvrages), cette surpression de pore initiale
se dissipe (plus ou moins rapidement). Aux temps long, (si le drainage est permis) la surpression de pore
initiale disparait complétement: on est en conditions drainées. Le temps characteristique de transition entre
conditions drainées / non-drainées dépend linéairement de la perméabilité du sol. Il en résulte que pour un
sable trés perméable, les conditions non-drainées ne durent que quelque secondes, alors que pour une argile
la transition vers I’état drainé peut prendre plusieurs années/décennies.

Pour résumer:

e Conditions non-drainées (temps court): la pression de pore varie (augmente si on compresse le sol). On
vérifiera la rupture du sol en contraintes totales en utilisant un critére de Tresca avec la cohésion
non-drainée ¢, (on n’essaie pas de prédire Au).

e Conditions drainées (temps long): les surpressions de pores se sont toute dissipées. On vérifie la rupture
du sol en contraintes effectives (avec la pression de pore en place: soit hydrostatique, soit due a un
écoulement permanent) en utilisant un critére de Mohr-Coulomb (¢, ¢).

e Dépendant du type de sol, de la géométrie et du phasage de construction, les conditions drainées ou
non-drainées seront prépondérante pour la vérifications structurale.

2.3 Détermination des propriétés de rupture au laboratoire

Il existe 3 grands type d’essai triaxiaux permettant de caractériser les propriétés de rupture d’un sol en
conditions drainés et non-drainées:

1. Consolidé - drainé (CD): I’éprouvette de sol est initialement consolidée par la pression de confinement
(chargement isotrope), la pression de pore étant maintenue nulle. Ensuite, ’échantillon est cisaillé
(on augmente le déviateur des contraintes) tout en gardant des conditions de drainage de telle sorte
qu’aucune pression de pore ne se développe. En répétant ’essai pour plusieurs pression de confinement,
on obtient les paramétres de rupture drainée ¢/, ¢’. On notera que sur une argile trés peu permeable,
ce type de tests peut prendre plusieurs semaines (voir mois) afin d’assurer qu’aucune surpression ne se
développe (le chargement doit étre trés lent).

2. Consolidé - non-drainé (CU): 'éprouvette de sol (saturé) est initialement consolidée par la pression de
confinement (chargement isotrope), la pression de pore étant maintenue nulle. Ensuite, I’échantillon
est cisaillé (on augmente le déviateur) en fermant les vannes du systéme de drainage de telle sorte que
la pression de pore augmente en général. En mesurant la pression de pore, on peut déterminer ¢, ¢’
ainsi que ¢, - cette derniére dépend alors linéairement de la valeur de la pression de confinement utilisé
lors de la phase isotrope effectué en condition drainée.

3. Non-consolidé - non-drainé (UU): Péchantillon (saturé) est mis sous contraintes isotropes tout en gardant
les vannes fermées - de telle sorte que la pression de pore augmente. L’échantillon est ensuite cisaillé

10 Page 10
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tout en gardant toujours le systéme de drainage fermé. Cet essai donne les paramétres apparent de
rupture non-drainé ¢, (¢, = 0) obtenu en contraintes totales. On notera que pour ce type de test
la pression de confinement utilisée lors de la phase de chargement isotrope ne change pas la valeur de
¢y, (le cercle de Mohr en contraintes effectives est toujours le méme). En revanche, ¢, est fonction de
la contrainte verticale effective in-situ en place a la profondeur de 1’échantillon, ainsi que de 1”over-
consolidation ratio” (OCR). Une formule empirique du type ¢, = o}, , x 0.22 x OCR’® est assez bonne
pour les argiles (avec des OCR<10).

On se souviendra qu’une résistance non-drainée n’as de sens que pour des sols argileux /“impermeables” :
cela ne fait que peu de sens de parler de la cohésion non-drainée d’un sable.

Essai UU

Un peu plus de détails sur ’essai UU sur un échantillon saturé. Avec le prélévement de ’échantillon de
sol (typiquement argileux pour ce type de test) et la décompression associée, comme ce type de sol est peu
perméable, une pression de pore “negative” du a la dilatance se développe (suction). Donc avant la mise en
charge, on a un état suivant:

e Contraintes totales nulles
e Pression de pore négative
e et donc contraintes effectives positives

La premiére phase de chargement est isotrope, i.e. 0., comme ’essai est non-drainée lors de celle ci la pression
de pore augmente de Au, = Bo,. ou B est le coefficient de Skempton - qui est proche de 1 pour des sols
saturés (le sol est beaucoup plus compressible que I'eau - ce qui n’est pas le cas d’une roche). A la fin de
cette étape de chargement isotrope, on a:

e Contraintes totales
01 =09 = O¢

e Pression de pore (positive si |u,| est plus petite que o)

u = —|u,| + Bo. & —|u,| + o

e et donc les contraintes effectives ne changent pas !
o) = 0y = [u,]
Finalement, on cisaille le sol en augmentant o
01 = 0.+ Aoy 09 = 0.
de telle sorte que la pression de pore augmente de AAc; (avec A un coefficient matériaux)
u R —|uy| + o + AAoy
soit des contraintes effectives
o1 = |uo| + (1 — A) Aoy ab = |ue| — AAoy

On voit que le cercle de Mohr en contraintes effectives a la rupture ne dépend pas de la pression de confinement.
Les cercles de Mohr en contraintes totales pour différent essai effectués avec différents o. donne une réponse
d’un matériau de type Tresca.
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2.4 Lois de comportements

2.4.1 Modélisation du comportement d’un sol

Les géomatériaux ont des comportements mécanique beaucoup plus complexe que les métaux, béton etc.
Pour les sols, le comportement mécanique dépend entre autres:

e de I'historique du chargement (erosion, constriction préalable ...) - a savoir du degré de préconsolidation
- OCR. On rappelle que le degré de pré-consolidation est défini comme le rapport entre la contrainte
(vertical) maximale vécu par le sol lors de son histoire de chargement et la contrainte actuelle.

e des composants du sol (argiles, sables)
e du degré de saturation
e de la temperature, la durée de chargement (fluage) etc.

La complexité du comportement des sols est responsable de plus grands facteurs de sécurité utilisé en pratique.
Pour I'ingénieur, le degré de complexité de la loi de comportement a utiliser est directement relié a la criticalité
du projet, la phase d’étude etc.

Dans ce cours, pour la vérification des états limites ultimes, ou il s’agit de se prémunir de la ruine compléte
de la structure, on modélisera le sol comme se comportant d’une maniére rigide / plastique. A savoir, on
négligera les déformations élastiques reversibles.

En revanche, pour les vérifications des états limites de services, on est typiquement loin de la ruine, et
donc on prendra en compte les déformations élastiques du sol. Il convient de se rappeler, qu'un sol ne se
comporte pas en général méme dans le domaine élastique d’une maniére linéaire. On utilisera dans ce cours
lélasticité linéaire et non-linéaire (loi de consolidation de type log-lineaire) pour obtenir des estimations des
tassements des ouvrages. Des modeles elasto-plastique plus adéquats (Cam-Clay etc.) sont utilisés pour les
calculs aux états de services (vous verrez ces modeles lors de cours avancés au niveau Master).

2.4.2 Critéres de rupture
2.4.2.1 Conditions drainées (long terme) - Mohr-Coulomb en contraintes effectives

A long terme, le modéle de Mohr-Coulomb (avec cohesion ¢’ et angle de friction ¢') est typiquement utilisé
pour obtenir une estimation des charges ultimes (bien évidemment, des modéles plus complexes reproduisent
mieux le comportement des sols - cf le modéle de Cam-Clay que vous verrez en Master). Dans le diagramme
de Mohr, le critére de Mohr-Coulomb correspond a une droite. Il est important de souligner que ce critére de
rupture a long terme est bien sur exprimé en fonction des contraintes effectives o;; = 0;; — ud;; (contraintes
positives en compression). Pour plus de simplicité (et de clarté) dans la suite de ces notes sur le
calcul a la rupture, on ne fera pas de difference entre contraintes effectives et totales ! . Dans
lespace des contraintes principales (contraintes positives en compression), oy > o5 > oyyy, le critére s’écrit
(Fig.2.1):

floi;) = (o1 —or11) — (o1 + orrr) sing — 2C cos ¢ (2.1)

On rappelle que pour la facette dont 'orientation correspond au point touchant la droite de Mohr Coulomb
dans le diagramme de Mohr, notant o,, la contrainte normale & cette facette et 7 le cisaillement sur cette
facette, le critére de Mohr-Coulomb s’écrit simplement:

flop,7T)=7T—c—o,tand (2.2)

2.4.2.2 Conditions non-drainées (court terme) - Tresca en contraintes totales

A court terme, le critére de rupture d’un sol s’écrit en contraintes totales (& court terme i.e. en conditions
non drainées, dans un essai tri-axial, qq soit ’état initial en augmentant la charge axiale, on obtient toujours
le méme cercle de Mohr en contraintes effectives). Le critére de Tresca (matériau purement cohérent, non-
frictionnel) approxime correctement la rupture du sol a court terme (en contraintes totales):

f(oij) = (o1 —o111) — 2

1La distinction est implicite:long terme - critére de Mohr-Coulomb en contraintes effectives, court terme - critére de Tresca
en contraintes totales.
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Figure 2.1: Critére de Mohr-Coulomb (diagramme de Mohr, dans le m-plan de l’espace de contraintes prin-
cipales).

7T
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Figure 2.2: Critére de Tresca (diagramme de Mohr, & dans l’espace de 3 contraintes principales)

et classiquement en mécanique des sols on note la cohésion non-drainée ¢, (parfois s, - s pour “shear
strength”).

2.4.2.3 Propriété de convexité du critére de plasticité

Plan tangent a la surface de rupture Soit une courbe f(x, z2) (dépendant de 2 variables). Au point
(2%, 29), la normale & cette courbe est donnée par son gradient de f a ce point: (9f/0x1,0f/0x2)°. Un
développement de Taylor au premier ordre autour de (x5, x§), donne:

of of
Fona) = F(a8a9) + (@ = a) 95 Jo+ (02— 08) 21,
la tangente & f au point (x9,z9) a pour equation (z; — z9) %Jo + (22 — x9) %Jo = 0, i.e. sous forme
of

vectorielle (summation sur les indices répétes) (z; — z7) 52-|o = 0. Le gradient de f en un point sur la suface
donne la normale & celle-ci en ce point.

On peut facilement généraliser au cas d’une surface f fonction de n variables. Dans notre case, 035 = 03
de telles sorte que le critére de plasticité f(o;;) ne dépend que de 6 valeurs du tenseur des contraintes (ou
des 3 contraintes principales).

Convéxité 1l est plus simple de visualiser les choses en 2D. Prenons donc un example ot le critére ne dépend
que de 011 et o2z (cf Fig. 2.3). On voit que pour tout point of; dans le domaine élastique (f(of;) < 0),

o

of
e s N o .
i Uij) et —Jggj est inférieur a 7/2 (avec o7, un point sur la surface de rupture

30',']'

langle entre les vecteurs (o
f(og;) = 0), soit:
e ) af

gl 80'”‘
Cette propriété découle de la “convexité” de la surface de rupture. On voit bien sur la Fig.2.4 que pour
une surface concave cela n’est plus le cas en tout point. On observe expérimentalement que les critéres de
rupture ont la propriété de convexité (et on peut le comprendre physiquement en imaginant different chemins
de chargement). Cette propriété est importante pour démontrer les théorémes de I'analyse limite (borne
inférieure & supérieure de la charge limite d’une structure).

Jo’?. > 0

tJ

("fj -0
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022

Figure 2.3: Surface de rupture (f(o;;) = 0) - exemple en 2D. Illustration de la propriété de convéxité

of

(Ufj — Jf’j) ﬁjo’?j > 0.

s ) O
t t 80’1‘]'
on observe que les surface de rupture sont toujours convexe (cf Fig.2.3). Cela se comprend intuitivement
physiquement.

Figure 2.4: Example de surface concave ot 'on peut avoir (O’ Jggj < 0. Expérimentalement,
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2.5 Notions d’écoulement plastique

Remarque 1: la déformation totale d’un matériau élasto-plastique est la somme d’une partie élastique
€5 (reversible) et d’une partie plastique irréversible efj:
€ij = € + €5

La relation d’élasticité reliant contraintes (effectives pour les sols) et la partie élastique des déformations
reste valide:
0ij = Cijhi€h = Cijkt (€r1 — €3)

Remarque 2: Les déformation plastiques ne sont pas 'visqueuses’, en d’autres termes elles ne dépendent
pas du temps physique. En revanche, elles sont dépendentes de I’histoire du chargement qui est souvent ...
exprimé comme une fonction temporelle. On utilisera donc en élasto-plasticité le taux de déformation é;;
pour suivre la déformation du milieu.

Le critére de rupture exprime mathématiquement les observation expérimentales suivantes:

1. en dessous d’un seuil de contraintes la déformation est strictement élastique (réversible). Cette limite
s’écrit comme une fonction du tenseur des contraintes: f(o;;). On l'appelle alternativement limite
élastique, seuil plastique ou critére de rupture. 2

2. les contraintes ne peuvent pas aller au déla de ce critére de rupture. Par exemple si on contréle un essai
en force, tout s’écroule brutalement. C’est pour cela que 'on contréle les essais mécanique en vitesse
de déplacement en général - alors on peut établir un écoulement plastique (sous charge constante dans
le cas d’un comportement élastoplastique parfait)

On peut donc décrire I’évolution des déformations plastiques comme suit:

floi) <0 éfj =0 pas de def plastique si le critére n’est pas atteint
floij) =0 éfj #0 def plastique si le critére en contraintes est satisfait

On notera que pour beaucoup de matériaux, on observe lors d’essai mécanique soit un durcissement (c’est le
cas des métaux, de certains sols selon leur état initial- i.e. sous-consolidé) soit un radoucissement® (c’est le
cas des sols sur-consolidé). Le critére de plasticité évolue alors avec la déformation plastique. On doit alors
écrire le critére comme étant fonction des contraintes et de déformation plastiques cumulées lors de I'histoire
de chargement. On n’envisagera pas de tels cas lors de ce cours. On se réduira donc au cas élastique
parfaitement plastique pour lequel le critére n’évolue pas (dans un essai de compression/traction en
contraintes homogeénes, la contrainte “plafonne” une fois la contrainte de rupture atteinte).

Une question reste - lorsque le critére de rupture est atteint: f(o;;) = 0, comment les déformations
plastiques évoluent-elles 7 Ici, on doit s’en remettre & ’expérience afin de développer une formulation mathé-
matique consistente qui permette d’éffectuer des calculs (et de reproduire assez bien les résultats expérimen-
taux).

2.5.1 Ecoulement plastique / Analogie avec la friction

Pour un matériau parfaitement plastique associé, le taux de déformations plastiques € ; est considéré comme
étant proportionnel au gradient du critére de rupture

.pi)\(f?f

([
K 80’,‘j

(2.3)

& savoir selon le gradient de la “courbe” de niveau définit par f = 0! X est appelé multiplicateur plastique
([1/T] suivant la définition ci-dessus). C’est une quantité scalaire - qui gouverne la magnitude des defor-
mations plastiques. On verra qu’il dépend des conditions aux limites, de ’équilibre et de la géométrie du
problémes.

Les expériences confirment que l’équation (2.3) n’est pas “trop” fausse pour beaucoup de matériaux
(métaux, plastiques). Afin de comprendre pourquoi une telle forme mathématique est intéressante, faisons
un détour par le déplacement d’un bloc sur une table ayant une friction non-nulle.

2Pour un sol peu consolidé, une telle limite peut étre quasi-nulle!
Shardening vs softening en anglais
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2.5.1.1 Analogie avec la friction

Afin de l'intuiter physiquement, il est intéressant de discuter le cas du mouvement d’un bloc de masse M
reposant sur un plan prenant en compte la friction entre ce bloc et le plan. On notera p le coefficient de friction;
F, , F, les forces horizontales appliquées sur le bloc; 1, et i, les vitesses de déplacement correspondantes.

Afin de faire bouger le bloc, il convient que
\VE2+F2=puMg

F} + F; = (uMg)®

Cette expression est “similaire” a un critére de rupture (f < 0) (sauf qu’il est écrit en force). Si F7 + F; <

que l'on peut re-écrire

(,uMg)2, il n’y a pas de mouvement, sinon on a la contrainte frictionelle FZ + Fy2 = (/JMg)2 pendant le
glissement. Dans l'espace des forces horizontales (Fy, Fy)), le critére de rupture est donc un cercle. On intuite
facilement que la direction du mouvement de glissement est aligné avec la résultante des forces horizontales,
ie.
Uy Fy
Uy, By
Si on represente graphiquement les choses on voit que le vecteur de vitesse de glissement est “normal” au
critére de rupture:

& FP , U_v

-Hﬂi?/'-—ﬁmmmmr
F., v,

Mgu

‘Yield surface’

On notera en passant, qu’a vitesse déplacement constant, le bloc est a I’équilibre (somme des forces = 0,
accélération nulle). .
II est intéressant de définir le taux de travail plastique W, qui correspondant & la puissance dissipée:

W, = Fyii, + Fyi,

On voit que Wp n’est d’autre que le produit vectoriel de la force horizontale avec le vecteur de vitesse de
glissement. Il est donc “maximal” pour le cas ou ce dernier est exactement aligné avec la résultante des forces
(normal au critére de rupture).

Faisons maintenant ’expérience suivante, on préscrit la vitesse de glissement (i, et ). Quelles sont les
forces Fy, F), correspondantes? On I'obtient en trouvant le point sur le cercle de rupture tel que la résultante
est alignée avec le vecteur vitesse de glissement.

Le fait que la déformation plastique est telle que le taux de travail plastique Wp = O’ijé% (qui est lié a
Iénergie dissipée) est maximal (au cours de la déformation) est lié & la loi d’écoulement associé normale eq.
(2.3).

Remarque 1 Le fait que Wp est maximal n’aide pas vraiment a déterminer le multiplicateur plastique A ;(
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Remarque 2 L’hypothése du travail plastique maximale / normalité de la deformation plastique par rap-
port & la surface de rupture ne repose que sur une intuition. Elle n’est pas forcément vérifiée pour certains
matériaux. Notamment les milieux granulaires / sols ne sont pas trés bien modélisé par un critére de Mohr-
Coulomb associé (top de dilatance cf. exo) - il convient alors de “relacher” cette hypothése de normalité et de
prendre un critére dit non-associé avec un potentiel d’écoulement plastique g différent du critére f : on écrit

dg

Gaij

p_
eij—)\

Remarque 3 Pour un matériau élastique parfaitement plastique, dans ce cas les déformations plastiques
peuvent augmenter infiniment sans augmentation des contraintes (réponse plate dans la courbe effort-déformation).
Le plateau plastique implique qu’il n’éxiste pas de relation unique entre contraintes et deformation plastique.

En d’autre termes, la connaissance des contraintes n’implique pas connaissance des déformations. En re-
vanche, si les déformations sont imposées alors on peut calculer les contraintes. On voit donc que pour un
matériau parfaitement plastique, suivant le type de conditions aux limites il n’est pas forcément possible de
déterminer le multiplicateur plastique (cela dépend aussi de la géométrie). En revanche, le comportement
plastique parfait permet d’utiliser les théorémes de ’analyse limite pour estimer les charges de ruines des
structures géotechniques (comme on va le voir dans les semaines & venir).

2.5.2 Ecoulement plastique

Dans le cas général, le multiplicateur plastique A dépend des conditions aux limites, de la géometrie et du
critére de plasticité. On l'obtiendra en prenant en compte en plus de I’équilibre quasi-statique, l'inégalité
introduite par la plasticité, le fait que les contraintes ne peuvent pas excéder le critére:

f(O'ij) <0 6% =A=0
floij)=0 & #0 A>0

0
L’introduction de la loi de comportement élastoplastique (en taux) ¢;; = c;ijri(éi; — )\—g) dans D’égalité

80'”'
f(oi;) = 0 permet de déterminer le critére. Notamment, en 1’absence d’écrouissage, les contraintes si elles
satisfassent le critére de rupture f(o;;) = 0, alors elles doivent dans y rester, en d’autres termes f = 0, soit
(en ’absence d’écrouissage):
of .

——5;;,=0
80’@' J

on peut donc en déduire A en fonction de o5, é;; f et g. Cela se simplifie beaucoup pour des critéres de
Tresca ou Mohr-Coulomb associés (cf. Exercice semaine 1).
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Chapter 3

Caractérisation 1n-situ

“La connaissance des conditions de sol en géotechnique dépend de 'importance et de la qualité des recon-
naissances géotechniques. Cette connaissance et le controle de la qualité de réalisation des travaux sont
plus importants pour satisfaire les exigences fondamentales que la précision des modeéles de calcul et des
coefficients partiels.” (Introduction Eurocode).

3.1 Tests in-situ

3.1.1 Scissomeétre

Le scissométre est une sonde a ailettes (quatre pales) solidaire d’un train de tige. Il est applicable dans les
sols fins permet de réaliser un essai de cisaillement non drainé in-situ (on obtient donc une résistance au
cisaillement). Une fois enfoncé dans le sol, le scissométre exerce un couple de torsion sur le sol, jusqu’a la
rupture de ce dernier, autour de la sonde.

Remarques pour la mise en place du scissomeétre :

e Usuellement, la hauteur du scissomeétre vaut le double de son diamétre, soit H = 2D
e Refoulement du sol & la mise en place (délai de ~5 minutes avant ’essai)

e Ecart minimal de 0.5m entre chaque essai

e La rotation du moulinet peu précise (et effet de torsion déforme partiellement les tiges), il est donc
impossible d’obtenir un module de déformation du sol.

e La surface de rupture en phase initiale de sollicitation demeure inconnue, mais aprés cette derniére se
stabilise autour du cylindre

e Résistance au cisaillement remanié (aprés 25 tours)

Approche cinématique

Pour obtenir une relation entre le moment & la rupture et la cohésion non-drainée, on effectue une
approche de type cinématique : on equilibre la puissance des efforts extérieurs avec la puissance dissipée
interne (resistance maximale) du sol.

La puissance des efforts extérieurs est exprimée selon 1’équation 3.1. Elle est égale (selon le PPV) a la

la puissance dissipée maximale (surface de rupture cylindrique avec en plus les surfaces supérieures et
inférieures) composée de la puissance dissipée sur la surface supérieure (S. top, équation 3.3) et inférieure (S.
bot) , ainsi que la surface externe (S. perim, équation 3.4).

Pemt(¢) = Mw (31)

S. S. i
Pdissipée (’l/)) = Pdi;;ﬁ;ée + Pdsilebs?itpée + P per (32)

dissipée
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b

Figure 3.1: Schéma du test au scissométre (gauche) et courbe rotation - moment mesuré correspondante
(droite).

En supposant que la surface de rupture correspond au cylindre total extérieur (hauteur H et rayon R),
et que la resistance de cisaillement du sol est atteinte 7 =~ ¢,, on a donc pour les surfaces supérieures et
inférieures un mouvement du type g = 7'1/1, donc la puissance unitaire dissipée est curw que ’on intégre pour
obtenirs

27

R
oot se / / cyriprdrdd (3.3)
0 0

Il
n

R3
mpcu 3

S.bot
dissipée

I
NU

la puissance dissipée sur le perimetre externe de la surface de rupture correspond a l'intégrale le long du
perimétre de la puissance dissipée unitaire ¢, Ri):

H 27

Pirm = / / ¢ R R0 )
= 27rwcuH R?

On obtient donc la puissance dissipée totale Pyjssipée (1/1) =21R2%c,(H + %)w qui en appliquant le principe
des puissances virtuelles doit etre égale a la puissance des efforts extérieurs:

Pdissipée(qjj) = Pemt (T;Z})

On obtient donc au final la relation entre le moment maximal et la résistance non-drainée (avec D = 2R le
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Figure 3.2: Pénétrométres

diametre de la tige):

D? D
M=r— <H+>cu

M
‘™ TD(3H + D)

En pratique il existe des corrections car 'essai est sensible (notamment a la vitesse de rotation etc.)... du

type
cu=fxctVT

avec f un coefficient dépendant de l'indice de plasticité du sol (entre 1 et 0.6).

3.1.2 CPT/U - Pénétrométre statique

Le Cone Penetration Test (CPT) détermine la résistance qu’oppose le sol a l'enfoncement d’un cone. 1l
existe plusieurs types de pénétromeétres (voir figure 3.2). Le pénétrométre est enfoncé dans le sol & une
vitesse d’environ 2cm/s et les mesures d’efforts sont continues. On distingue les efforts sur la pointe du
pénétromeétre @Qpet les efforts de frottements du pénétrométre Q.

fs =Qy/(mHD)

dec = Qp/Sc
~ (qc - Jvo)
Cu ™ Nc

fs résistance au frottement
¢ résistance unitaire de pointe

S. surface de pointe

Pour un pénétrométre & cone mobile, les mesures sont indépendantes de g.. Le pénétrométre a point
électrique quant & lui donne des mesures indépendantes de Q et @, (via les cellules de chargement), il faut
donc répéter les mesures a la méme profondeur et le dispositif de foncage doit étre centré.

Les mesures obtenues du pénétrométre permettent d’obtenir un profilage continue du sol. La pression de
pore (CPTU) w peut étre ajoutée, ainsi que la mesure de volume V5. 1l faut toutefois prendre gare avec la
mesure de u car elle doit étre prise dans la nappe, donc jamais dans les premiers métres du sol. De plus, il
faut prendre en compte la dilatation de certains terrains. Il est aussi important de considérer le passage entre
couches (par exemple imperméable - sable) car il faut un temps d’équilibrage de pression dans la chambre de
mesure. Il existe une importante “banque de corrélation” pour obtenir la lithologie et les paramétres du sol.

3.1.3 SPT - pénétrométre dynamique

Le Standard Penetration Test (SPT) consiste a faire pénetrer répétitivement des tiges ou tubes métalliques
dans le sol, par battage. Le but est d’estimer le nombre de coups de mouton correspondant a un enfoncement
(en cm) donné.

Le SPT est un type de pénetrométre dynamique . Un tube échantillonneur est utilisé pour le battage.
Pour réaliser un essai de battage SPT, il faut prendre en compte les remarques suivantes:

e Il faut compter le nombre de coups pour s’enfoncer de 30cm, les 15 premiers centimétres sont négligés
(hauteur totale d’enfoncement: 45cm).

e [’essai permet d’avoir des informations qualitatives sur le sol.
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Mouton de
poids P

Figure 3.3: Essai de pénetration dynamique

e L’essai est surtout utilisé dans les sols sableux ou il donne une bonne indication de la compacité du sol,

pour autant qu’on ne se trouve pas sous la nappe phréatique
e Essai adapté pour les sols sableux, il met en valeur

— L’homogénéité (ou non) du site
— L’épaisseur des couches (toit du rocher)

— Des cavités si elles sont présentes

e parfois utilisation de formule de battage empirique (q_c¢ a partir de gqdynamique)

A partir des données reccueillies, des courbes nombre de coups/profondeur permettent de mieux comprendre

la disposition des couches.

L’évaluation du nombre de coups peut étre sujette & modification si les sables sont saturés, trés fins ou

limoneux, sous la nappe et que le nombre de coups N’ excéde 15:
e Terzaghi et Peck recommmande de prendre Nspr = 0.5N' + 7.5
e Bazara propose pour N’ < 15: Ngpr = 0.6N’

Une correction de profondeur est également recommandée:

350

Ngpp=N'—220
SPT 70+~ D

D: prodondeur [m]
N’: nombres de coups mesurés

7: densité apparente en kN/m? (v/si sous la nappe); vD > 280kN /m?

21

Page 21



Brice Lecampion

Va
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I

Figure 3.4: Pressiométre: schéma de la sonde (gauche), et schématique de la mesure (pression constante par
paliers, mesure du volume).

3.1.4 Pressiométre

L’essai pressiométrique charge latéralement son environnement, une fois la sonde insérée dans la zone a
étudier. La sonde est recouverte d’une membrane en caoutchouc extensible latéralement, qui infligera une
pression constante et uniforme sur la longueur de 'appareil. Cet essai s’effecture donc dans un forage
préalablement effectué, et on peut faire ’essai & différentes profondeurs.

Il existe de nombreuses formules pour établir la capacité portante de fondations superficielles ou profondes
directement depuis les paramétres déterminés au pressiomeétre (en France notamment).

Sur le schéma (cf figure), on peut remarquer la présence de trois cellules: deux cellules de garde aux
extrémités et la cellule centrale dite cellule de mesure. L’intérét des cellules de garde est d’assurer une bonne
répartition cylindrique des contraintes et des déformations au nivau de la cellule de mesure (i.e de minimiser
les perturbations aux extrémités).

L’essai s’effectue de facon suivante (pour une profondeur donnée):

1. les cellules de garde sont mises en pression, puis la cellule centrale.

2. Des paliers en pression (~0.25MPa) sont ensuite effectués. En général une dizaine. Pour chaque palier
de pression, on effectue une série de mesures des déformations volumiques de la sonde centrale au cours
du temps. On reste & minima 1 minute par palier.

Il est également recommander de procéder aprés chargement & un déchargement par paliers comme pour
la mise en pression. Différentes corrections due & la compréssibilité de 'appareil etc. sont généralement
effectuées.

Un essai pressiométrique sert la plupart du temps & définir la pression limite (p;) mais aussi un module
de déformation (F). L’interprétation de lessai s’effectue en tragant deux courbes:

1. la courbe pressiométrique en portant en abscisse le palier de pression p et en ordonnée la déformation
volumique de la chambre en fin de palier (Vgo»)

2. la courbe dite de “fluage” en portant en abscisse le palier de pression p et en ordonnée la différence
AV = Vgo» — Vao» entre la déformation volumique de la chambre en fin de palier (Vgo») et celle aprés
30” de charge.
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Figure 3.5: Interpretation de l'essai pressiomeétrique: Courbe du volume (aprés 1 minute de charge) en
fonction de la pression, et courbe de fluage (variation du volume de la chambre vs palier de pression).
L’analyse de l’essai permet d’obtenir un module élastique (linéarité de la courbe pressiométrique dans le
domaine élastique), une pression de fluage p; (correspondant au début de la plasticité) et une pression limite
pi. Cette derniére est souvent utilisé pour obtenir des corrélations (capacité portante des fondations profondes
notamment).

Aprés un rétablissement des conditions initiales dans le terrain (correspondant a la pression de “recompaction”
Do), le sol a d’abord un comportement essentiellement élastique (domaine pseudo-élastique sur la courbe
pressionmétrique) puis progressivement plastique et différée (entre py la pression de début de fluage et la
pression limite p;). L’essai est souvent répété a plusieurs profondeurs dans le forage. Il est ensuite courant
de reporter les principaux résultats (module, pression limite) en fonction de la profondeur.

Cet essai permet de determiner essentiellement deux paramétres du sol d’une maniére robuste:

e la résistance au cisaillement du sol - via la pression limite p;

e un module de déformation, le module pressiométrique typiquement noté Ey; (M pour Ménard l'inventeur
de V’essai) & partir de la pente de la courbe pressiométrique dans le domaine élastique.

De trés nombreuses régles de dimensionnement et méthodes de calculs sont basées sur les essais pres-
siométriques (calculs de capacité portantes, calculs de tassements etc.).

3.1.4.1 Modélisation mécanique

On détaille ici une modélisation mécanique permettant de relier les observables avec les proproétés mécanique
recherchées. La résolution proposée s’effectue en coordonnées polaires (géométrie cylindrique), selon les
hypothéses suivantes:

1. Axisymétrie (indépendant de 6)
2. La hauteur du pressiométre est bien plus grand que le rayon initiale, H > R,,(indépendant de z)

Résolution

Conditions limites & r = Ry,
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ti = aijnj
Orp =D
o9 =0

Conditions limites & l'infini lim w; = 0. Attention, bien sur, des contraintes initiales existent & l'infini
r——4o0

dans le sol.
On a au vue de la géométrie et symmetrie cylindrique

Uy = up(r)

U9:O

Rappel de la définition du tenseur des petites déformations pour

du,
Err = dr

U
€pp = —

r
Erg = 0

Equations a 1’équilibre en coordonnées polaires (avec indépendance selon 6)

aarr Orr — O
+

o " % _ 0 selon e,
0 2
Oor _ 290r _ 0 selon eg
or r
Elasticité du sol
On note Aoy = 045 — o*?j, et le module pressiométrique 2G = lfy.
0 E vE
ACpy = Opp — 0, = m&w + m@m + €90)
A 0 FE + vE ( + )
Ogg = Ogg — 0, = ——¢€ — (e €
00 00 "= 11, 00 A+ —20) " 00
AP=pP-P
E
Agrr - AU@@ - m(g'rr - 506’)

__F (du_u
T 14w \dr r

En réintroduisant ces valeurs dans ’équation d’équilibre, I’équation 3.5 peut-étre résolue

Py, du,  u,

dr? dr r2

ur(r) = 071 + cor (3.5)

c1 et ¢y sont des constantes d’intégration, avec co = 0 car, lorsque r tend vers Uinfini, u(r — oo) = 0.

2
En utilisant la condition limite Ao,.(r = Ry) = AP, on obtined ¢; = %’AP(I + v). Les variations de
contraintes due a la pression appliquée sont donc
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Figure 3.6: Zone plastique et élastique

r

2
AO’Q@ =—-AP x <Rw>

2
Ao, = AP X <Rw>

r
Aarr = _AGOQ

En regardant maintenant la variation de volume du puit:

AV =V -V,
Vo = HrR?
V = Hr(R,(1 +0))?
s urlr=Ry) AP AV
R, 26 W

on voit donc que dans 1I’hypothése d’un comportement élastique du sol, le pressiométe mesure

donc le module élastique de cisaillement G (via la pente de la courbe pression volume). Dans la pratique, on
reporte un module préssiométrique

Ep = 2G(1 +v)
en prenant v = 0.3(i.e on mesure 2G et on reporte E,,).

Plastification

Les directions principales sont toujours e, et eg; et dans la zone plastique, r € [Ry; R,).

Opr — 090 = AO’,-,« - AUGQ = 2cy
0Ao,., n 2¢y
or r

=0
1
Ao, =c1ln -+ co
r

Rappel des conditions limites (équation 3.6) pour trouver Ao, et Aogy.

Ao, =AP enr=R,
Aoy =c¢, enr=R, (3.6)

R
Ay = cy +2¢,In -2
,
R
Aogg = —¢y + 2¢, In =2
r

A terme est obtenu I'équation 3.7. Un lien existe également entre la variation de volume et c,.

e liens p;, — p, et ¢, empiriques

e début de la plastification py = p; + ¢, InAV/V
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3.2 Autres tests

3.2.1 Essai a la plaque
3.2.2 Dilatométre
3.2.3 Essais hydrauliques
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Chapter 4

Analyse limite et calculs a la rupture
pour la géotechnique

La vérifications des états limites ultimes (ELU - ULS) repose sur la détermination de(s) la charge(s) maximale
supportable par une structure (dans notre cas, une fondation, un mur de souténement etc.). Dans ce cadre,
I’analyse limite est trés couramment employée, notamment en géotechnique. Elle repose sur un modéle rigide
plastique du sol (en conditions drainées ou non-drainées selon que lanalyse est effectuée a long ou court
terme). Les formules “classiques” de capacité portante des fondations ont été obtenues par cette méthode
(avec plus ou moins d’approximations), idem pour la stabilité des talus. De plus, des nouveau logiciel
éléments finis (e.g. OptumG2) permettent maintenant de faire directement de Panalyse limite numeérique et
donc d’obtenir des bornes des charges maximales pour des configurations complexes rapidement (sans devoir
résoudre le probléme élastoplastique temporel complet). L’idée de ces notes est d’introduire les méthodes
d’analyse limite pour la géotechnique. Réferez vous au cours Mécanique des structures pour GC (Civil 223)
et au cours de Mécanique des milieux continus (Civil 225) pour plus de détails sur les concepts de bases.

Conventions FEn géotechnique / mécanique des sols, les contraintes sont typiquement compressives et donc
en pratique, la convention est de prendre les contraintes positives en compression. En ce qui concerne les
déformations, deux conventions sont possibles: i) soit on garde une convention d’extension positive mais cela
implique de mettre un signe — dans les lois de comportements (relation contraintes - déformation), soit ii) on
utilise la convention que les déformations de “contraction” sont positives (i.e. extension négative). On utilise
la deuxiéme convention ici. En résumé:

055 >0 en compression

€; >0 en contraction

On notera donc que comme €;; > 0 en contraction, les déplacements seront positif dans le sens opposé du
systéme de coordonnée choisi (en pratique, on retombera sur ses pieds avec un peu de sens de physique).
Egalement, pour les tractions il convient de prendre la normale “rentrante” au solide.

4.1 Le probléme rigide-plastique

Soit un domaine V' de surface S, le probléme rigide-plastique consiste en
e les équations d’équilibre (en négligeant les efforts inertiels - approche quasi-statique)
Tijj —bi =0

ou le signe moins devant les forces de volume est du & la convention de contraintes positives en com-
pression. On utilise ici la convention de sommation sur les indices répétés, et la notation suivantes pour
les dérivées partielles

hJ‘ = 8}1/833]

b; est une force de volume (en pratique le poids du sol). Le tenseur des contraintes est symmétrique
oi; = 0j; (conservation du moment angulaire).

27



Brice Lecampion

e En tout point de V, le champ de contraintes est continument différentiable. Notons que des surface de
discontinuité (de normale n;) peuvent exister, mais le vecteur contraintes T; = o;;n; doit etre continu
a travers de telles surface, soit

(05; — oi5) nj = llollng =0

ol [[o;;]] désigne donc le saut du champ de contraintes & travers d’une telle surface de discontinuitée.

e les conditions aux limites en tractions et déplacement imposés:

oin; = T donnée sur S;, de normale n;
u; = uf donnée sur Sy,

avec non intersection de Sy, et S,,,. On notera que par la suite on se restricte aux cas ot les déplacements
imposés ne varient pas en temps ¢ = 0, ott 'on note la dérivée temporelle Ju /0t = 1. On notera aussi
Sy pour la surface ou les tractions / efforts sont imposeés.

e Le tenseur des déformations
€ij = 5 (Ui +ujq)

On notera que la convention de mécanique des sols impliquent ensuite des déplacements positifs dans
le sens contraire du systéme de coordonnées. Alternativement on peut écrire €;; = —% (wi; + ujq).

e Equations de compatibilité - ici pour 1’élasticité plane:

Oyy€za + Oa€yy = 20y€ay

e Soit, le critére de plasticité f (et le potentiel d’écoulement plastique g). La loi de comportement rigide
plastique s’écrit

f(O'ij) <0 6” =0

floij) =0 &;=2A 09

ﬁaij

(4.1)

ot 'on note la dérivée temporelle du/0t = 4. Le cas de la plasticité associée correspond a f = g. On se
restrictera a ce cas ici. A est le multiplicateur plastique (A > 0) (sans dimension car f a une dimension
de contraintes). On voit donc que

)\f(aij) =0
Dans le cas de la plasticité associée (f = g), les déformations plastiques sont orientées dans la diretion
normale de la surface de rupture.

Le modéle rigide-plastique néglige les déformations élastiques du milieu par rapport aux déformations plas-
tiques: une hypothése satisfaisante lorsque ’on veut étudier la ruine d’une structure.

On rappel qu’en mécanique des milieux continus, on appelle un champ de contraintes o;; statiquement
admissible si il vérifie les équations d’équilibres et les conditions aux limites en tractions. On appelle un champ
de déplacement u; cinématiquement admissible si il vérifie les conditions aux limites en déplacement et est
régulier (i.e. ne crée pas d’ouverture ou de “trou” dans le domaine, en revanche des surfaces de glissement
peuvent apparaitre).

4.1.1 Principe des puissances virtuelles

Le principe des puissances virtuelles (PPV) est I’équivalent du principe des travaux virtuels écrit en vitesse.
Soit %; , un champ de vitesses virtuelles cinématiquement admissibles , le principe des puissances virtuelles
s’écrit (en quasi-statique - i.e. sans effet inertiels):

Pext (az) = Pint (az>
ot la puissance des efforts extérieurs Pewt(ﬁi) est définie par:

Pm(ﬁi):/(—bi)ﬁi dV+/ Td4,; dS
1% St
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Figure 4.1: Example de surface de discontinuité de déplacement Sy pour laquelle le vecteur traction est
continue: T;" + T, = 0 (soit (0;; — 0;;)n; = 0). La puissance unitaire dissipée le long d'une telle surface de
discontinuité est donnée par T; (v — ;) = T, (u; —4).

[Attention le signe — dans l’expression précédente est due a la convention de contraintes positive en com-
pression et la convention de déplacement positif dans la direction opposée au systéme de coordonnée| et la
puissance intérieure par

Pinit (i) =/ ijéij () dV+/ T (ﬁf —ﬁj) ds
V/Ss Sx

On notera Hm” le saut de vitesse virtuel a travers la surface Sy, .

Note: on peut retrouver facilement le PPV en multipliant I’équation d’équilibre par ; et intégrant sur V
et en utilisant la formule de Green ([}, h;;dV = [ hin;dS).

4.1.2 Théorémes de ’analyse limite

e Théoréme de la borne inférieure (lower bound theorem)
La ruine ne se produira pas si I’on peut trouver un état de contraintes qui réponde aux équations
d’équilibre et aux conditions aux limites de traction (champ statiquement admissible - SA) et qui est
partout inférieur ou égal au critére de rupture.

e Théoréme de la borne supérieure (upper bound theorem)
La ruine doit se produire si, pour toute déformation plastique compatible (i.e. pour lequel le champ
de déplacement est cinématiquement admissible), le taux de travail des forces externes est égal ou
supérieur au taux de dissipation d’énergie interne.
[On notera que si il y a déformation, les contraintes correspondantes doivent satisfaire le critére de
rupture. Des discontinuitées de déplacement le long de bande de cisaillement sont possibles.|

4.1.3 Parameétres de chargement / notions des domaines de charges admissibles
/ Approches du calcul a la rupture

Pour un ouvrage géotechnique, les paramétres de chargement vont typiquement étre : les charges a reprendre
par les fondations, la hauteur d’une paroi / mur de soutenement, la force d’un ancrage, la longueur d’un clou
etc.

29 Page 29



Brice Lecampion

Figure 4.2: Domaine de stabilité K d’un ouvrage dans le cas de 2 paramétres de chargement (Q1, Q2). On
bornera K par Uintérieur (approche statique) et I'extérieur (approche cinématique).

Le but d’un calcul ELU est de déterminer le domaine admissible de ces charges. Dénotons K ce domaine,
si les charges (par example @1, Q2) restent a l'interieur de K l'ouvrage est stable. Evidemment le domaine
K contient V'origine (charges nulles) - c.f. Figure 4.2.

Si les charges atteignent la frontiére du domaine K, on arrive a la ruine de 'ouvrage: on ne peut pas
avoir un champ de contraintes satisfaisant ’équation d’équilibre et le critére de plasticité simultanément en
tout point de 'ouvrage. On parle alors de ruine plastique. On peut noter que ce domaine K va dépendre:

1. de la géométrie de 'ouvrage considérée
2. du critére de plasticité utilisé
3. du chargement

En revanche, il ne dépend pas du trajet de chargement (i.e. comment la ruine peut étre atteinte) ni des
conditions initiales (qui sont a priori telles que la structure est stable en étant non-chargée).

En pratique, on va approximer K par des approches par l'intérieur (dite statique) et par 'extérieur (dite
cinématique).

e Approche statique: La philosophie de ’approche par l'intérieur consiste & trouver un champ de con-
traintes statiquement admissible en paramétrant le chargement par e.g. (Q1,Q2) = 8 x (QF, Q%) (on
Q7, Q% sont des valeurs des charges petites interieure & K) et ensuite maximiser § tout en vérifiant que
le critére de plasticité f(o;;) < 0 en tout point du domaine. Ce faisant on obtient une borne inférieure
K~ du domaine K (on démontre ce théoréme plus loin dans ces notes).

e Approche cinématique: Cette fois ci, on va postuler un mécanisme de ruine, i.e. un champ cinématique-
ment admissible décrivant la ruine plastique de 'ouvrage. Ici en plus des paramétres de chargement,
le mécanisme de ruine peut également étre paramétrisé par un nombre fini de parameétres (exemple:
Pinclinaison d’une surface de rupture). On va calculer la puissance dissipée lié & ce mécanisme de ruine
en postulant que le champ de contraintes duquel dérivent les déformations vérifie le critére de plasticité.
En utilisant le PPV, on va obtenir une borne supérieure K™ du domaine K (on démontre ce théoréme
plus loin dans ces notes). Notons que dans le cas ol le mécanismes de ruine est parametré, il convient
de minimiser la borne supérieure obtenue en fonction des paramétres du mécanisme de ruine choisi afin
d’obtenir la borne supérieure la plus proche possible du domaine K (i.e. la plus petite).
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Figure 4.3: Critére de Mohr-Coulomb (diagramme de Mohr, dans le m-plan de l’espace de contraintes prin-
cipales).

4.2 Critéres de plasticité en mécanique des sols

Rappelons briévement les critéres de résistance/plasticité classiques utilisés en mécanique des sols (note: vous
verrez des modéles de comportement plus réalistes et complets lors du cours de master de Géomécanique
notamment).

[On notera en passant que ’approche du calcul a la rupture est basée sur le comportement rigide parfaite-
ment plastique, soit sans écrouissage /radoucissement du critére de plasticité. Une approche qui est d’autant
plus valable que le matériau présente une rupture ductile. Hypotheése réaliste pour les sols.|

4.2.1 Court terme versus long terme
4.2.1.1 Conditions drainées (long terme) - Mohr-Coulomb en contraintes effectives

A long terme, le modéle de Mohr-Coulomb (avec cohesion ¢’ et angle de friction ¢') est typiquement utilisé
pour obtenir une estimation des charges ultimes (bien évidemment, des modéles plus complexes reproduisent
mieux le comportement des sols - cf le modeéle de Cam-Clay que vous verrez en Master). Dans le diagramme
de Mohr, le critére de Mohr-Coulomb correspond a une droite. Il est important de souligner que ce critére de
rupture a long terme est bien sur exprimé en fonction des contraintes effectives Ugj = 0;; — ud;; (contraintes
positives en compression). Pour plus de simplicité (et de clarté) dans la suite de ces notes sur le
calcul a la rupture, on ne fera pas de difference entre contraintes effectives et totales ' . Dans
Pespace des contraintes principales (contraintes positives en compression), oy > oy > oy, le critére s’écrit
(Fig.4.3):

f(Uij) :(0’[—(7][[)—(U[+J[]])Sin¢—QCCOS¢ (42)

On rappelle que pour la facette dont 'orientation correspond au point touchant la droite de Mohr Coulomb
dans le diagramme de Mohr, notant o, la contrainte normale & cette facette et 7 le cisaillement sur cette
facette, le critére de Mohr-Coulomb s’écrit simplement:

flon,7T)=7—c—ontane (4.3)

4.2.1.2 Conditions non-drainées (court terme) - Tresca en contraintes totales

A court terme, le critére de rupture d’un sol s’écrit en contraintes totales (& court terme i.e. en conditions
non drainées, dans un essai tri-axial, qq soit ’état initial en augmentant la charge axiale, on obtient toujours
le meme cercle de Mohr en contraintes effectives). Le critére de Tresca (matériau purement cohérent, non-
frictionnel) approxime correctement la rupture du sol a court terme (en contraintes totales):

floij) = (o1 —orr1) — 2C

(et classiquement en mécanique des sols on note la cohésion non-drainée c¢,,).

1a distinction sera implicite:long terme - critére de Mohr-Coulomb en contraintes effectives, court terme - critére de Tresca
en contraintes totales.
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Figure 4.4: Critére de Tresca (diagramme de Mohr, & dans 'espace de 3 contraintes principales)

022

Figure 4.5: Surface de rupture (f(o;;) = 0) - exemple en 2D. Illustration de la propriété de convéxité
o ey Of
(O’ij — O'ij) aaijjggj > 0.

4.2.1.3 Propriété de convexité du critére de plasticité

Plan tangent a la surface de rupture Soit une courbe f(x1, z2) (dépendant de 2 variables). Au point
(9, x9), la normale & cette courbe est donnée par son gradient de f a ce point: (9f/0x1,0f/0x2)°. Un
développement de Taylor au premier ordre autour de (x5, x§), donne:

of of
flar,w2) = f(27,25) + (21 — 1) Tleo + (22 — 23) %Jo
la tangente a f au point (x9,23) a pour equation (z1 — x9) %JO + (g — x8) %Jo = 0, i.e. sous forme

vectorielle (summation sur les indices répétes) (z; — x7) %JO = 0. Le gradient de f en un point sur la suface
donne la normale a celle-ci en ce point.

On peut facilement généraliser au cas d'une surface f fonction de n variables. Dans notre case, 0;; = 0;
de telles sorte que le critére de plasticité f(o;;) ne dépend que de 6 valeurs du tenseur des contraintes (ou
des 3 contraintes principales).

Convéxité Il est plus simple de visualiser les choses en 2D. Prenons donc un example ot le critére ne dépend
que de 011 et o9 (cf Fig. 4.5). On voit que pour tout point of; dans le domaine élastique (f(of;) < 0),

o

I'angle entre les vecteurs (o, —

f(ag;) = 0), soit:

of
0§.) et —— |0 est inférieur & 7/2 (avec of; un point sur la surface de rupture
*J Doy~ 7

(00 — o)) of Joo. >0

i~ %) gt
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on observe que les surface de rupture sont toujours convexe (cf Fig.4.5). Cela se comprend intuitivement
physiquement.

Figure 4.6: Example de surface concave ott I'on peut avoir (a Jofj < 0. Expérimentalement,

Cette propriété découle de la “convexité” de la surface de rupture. On voit bien sur la Fig.4.6 que pour
une surface concave cela n’est plus le cas en tout point. On observe expérimentalement que les critéres de
rupture ont la propriété de convexité (et on peut le comprendre physiquement en imaginant different chemins
de chargement). Cette propriété est importante pour démontrer les théorémes de l’analyse limite (borne
inférieure & supérieure de la charge limite d’une structure).

4.2.2 Déformations plastiques

Expérimentalement, on remarque que les déformations plastiques peuvent etre dérivées d’'un potentiel g
lorsque le critére de plasticité est atteint, soit:

f(O'ij) <0 éij =0

80’1‘]'

Pour les métaux etc., le potentiel g est bien approximé par le critére de rupture f: f = g (postulat dit de
Drucker qui n’est pas trop faux expérimentalement pour certains matériaux). On dit alors que la plasticité est
“associée”. Cette hypothése simplifie beaucoup les calculs et permet notamment de borner les charges limites.
En revanche pour les sols, elle n’est pas nécessairement vérifiée expérimentalement (vous re-verrez cela lors
de vos cours de Master). Pour le critére de Mohr-Coulomb, 'hypothése f = g implique que les déformations
plastiques augmentent toujours de volume (alors que le comportement des sols est plus complexe et dépend
de la pression de pre-consolidation). Néanmoins, il est usuel pour les calculs a la rupture (afin de vérifier les
ELUs) de faire les calculs sous ’hypothése de la plasticité associée: f = g. Les bornes obtenues avec cette
hypothése semblent également valable pour le cas non-associé (f # g) méme si aucune preuve mathématique
formelle n’existe.

4.2.2.1 Mohr-Coulomb - dilatance

Prenons le cas du critére de Mohr-Coulomb et raisonnons dans le repére des contraintes principales (en 2D).
Pour un critére associé (f = g), les déformations plastiques principales seront également dans le meme repére.
En utilisant eq.(4.2) et (4.1) on a pour les déformations plastiques principales:

ér = M1 —sing)
érrr = A(—1 —sing)
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Figure 4.7: Surface de glissement dans un matériau Mohr-Coulomb. Le vecteur vitesse de discontinuité de
déplacement [[i;]] = 11; — ;" est représenté ici par [[U]].

et la déformation volumique €¥ = é; + éry; peut s’exprimer en fonction de la déformation de cisaillement
Y =¢ér—énr:

€y = —7¥sin¢
A =2A

L’angle de frottement ¢ étant toujours inférieur a m/2 et le multiplicateur plastique A > 0, on a é, < 0
qui correspond dans la convention MS (compression positive, contraction positive) a une augmentation de
volume. En d’autres termes, toute déformation plastique de cisaillement est associée & une augmentation de
volume pour le critére de MC associé, ceci est partiellement vrai - en revanche il est typiquement observé qu’a
partir d’une certaine déformation plastique: le taux déformation volumique devient nul et la déformation
plastique n’est que cisaillante (on appelle cela 1'état critique en mécanique des sols). Il convient d’utiliser des
modéles plus complexe pour prendre en compte ce comportement. Encore une fois, pour le calcul ELU et
I’estimation des charges de ruines, le critére de Mohr-Coulomb est efficace.

4.2.2.2 Surface de Glissement

Il est courant dans les sols que la déformation plastique se localise et que des surfaces de glissement appa-
raissent. Imaginons le cas d’un matériau satisfaisant le critére de Mohr-Coulomb pour lequel la déformation
plastique est localisée le long d’une surface de glissement Sy. La déformation plastique localisée devient

en faite une discontinuité de déplacement: [[u;]] = u; — uj (c.f. fig.4.7). On peut obtenir simplement
[[ui]] par intégration de la déformation au travers de la surface de glissement (en utilisant la définition
€j = f%(um +u; ;) de telle sorte que les déplacements sont positifs dans le sens du systéme de coordonnées

(ce qui est plus intuitif)).
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On peut ecrire le critére de Mohr-Coulomb directement en terme de contraintes normales et tangentielles
a cette surface de glissement:
flon,7) =|7| — ¢ — op tan ¢.

avec

T, = o0;5n; vecteurs contraintes sur Sy

T, = T = s;045n; contrainte de cisaillement sur Sy,
T, = o, = n404n; contrainte normale sur Sy

ou n; est la normale & la surface de glissement Sy, et s; le vecteur tangent associé (c.f. figure 4.7).
On écrit ’écoulement plastique sous la forme

of
]l = == T;) =0
[[a:]] baTi (1)
ol \g est un multiplicateur plastique de dimensions [L/T] ici et Apf =0 et Ay > 0.
On voit donc que le rapport des vitesses de discontinuité plastiques normales et tangentielles est:

H = tan ¢

Le vecteur de discontinuité de déplacement plastique localisée sur la surface de glissement fait donc toujours
un angle ¢ par rapport a celle-ci (cf. Fig. 4.8). Il existe une “dilatance” lié au cisaillement localisé. Le raison-
nement est strictement similaire a la sous-section précedente. Notez que dans notre convention (tassement -
overlap positif / compression positive),

[itn]] = — Ao tan 6
[i]] = A sign(r)

En définissant HU H la norme du vecteur de vitesse de discontinuité de déplacement, on peut réécrire

[in]) = = [[U]] sino
[[is]] = HU” cos ¢ sign(r) (4.4)

Calcul de la puissance dissipée le long d’une surface de glissement On aura souvent a calculer la
puissance dissipée le long de la surface de glissement & la rupture:

/Sz oing [[w]] dS

Intéressons nous ici a l'intégrande
Pdiss = T [[uz”
qui dans le repére (n, s) local a la surface de glissement s’écrit donc:
Paiss = T [[Us]] + o [[tn]]

A la rupture, on a I’égalité f = 0, soit
|7 =c+ o, tan ¢

et 7signT = |7| ce qui permet d’obtenir en utilisant (4.4)
Ddiss = C HU” cos ¢ + oy, HU” sing — o, HU” sing
=c HU” cos ¢

On voit donc que la puissance dissipée le long d’une surface de glissement est nulle dans le cas d’un materiau
de cohésion nulle. Ce résultat découle directement de I’hypothése d’un écoulement plastique associé (f = g).
Le résultat est différent pour le cas non-associé (pour exercice, dérivé le cas avec un angle de dilatance 1 # ¢).
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di,

Figure 4.8: Formes des surfaces de glissement dans un matériau avec un critére de Mohr Coulomb: droite ou
spirale logarithmique.

Surface de glissement courbe ? Considérons maintenant une surface de glissement non-nécessairement
droite. En tout point, le vecteur déplacement plastique a toujours un angle ¢ par rapport & la surface de
glissement. Localement celle ci peut etre paramétrée par un rayon de courbure r (dans le cas d’un droite
r — 00), on voit que pour une rotation df autour du centre de rotation instantanné, I'incrément de rayon

étant dr, on a (cf Fig. 4.8):

dr
@ = tanqﬁ

soit aprés intégration:
r = r,exp(f tan @)

Une telle courbe correspond a une spirale logarithmique.

On en conclut donc pour un sol: en conditions drainées (¢ = ¢', contraintes effectives), les surfaces
de glissements seront soit des droites (r, — 00), soit des spirales logarithmiques. En conditions non-drainées
(¢ = 0, contraintes totales), les surfaces de glissement sont soit des droites, soit des arc de cercles.

4.2.3 Discontinuités de contraintes

Il est également possible que des discontinuités de contraintes apparaissent dans un volume se plastifiant.
Considérons une surface (de normale n;) avec de part et d’autre de celle-ci deux champs de contraintes (A&
B, cf Fig.4.9), il convient de rappeler que le vecteur traction doit étre continu entre ces 2 zones pour assurer
I’équilibre:
lloij] nj = (0} —053)n; =0

Toutefois, il peut y avoir une rotation des directions principales de contraintes ainsi qu’un saut dans les
valeurs. Considérons le cas de 2 régions A et B ayant deux états de contraintes différents et étant tous les
deux a la rupture. La continuité des tractions a travers la surface séparant A et B implique que les cercles
de Mohr des 2 regions ont un point commum X (i.e. afin de satisfaire la continuité des tractions entre les 2
zones et donc vérifier 'équilibre). On se réfere a la Fig. 4.9 ou le centre des cercles de Mohr correspondant
aux regions est noté A et B. De la région A & B, on a une changement de direction principale de contraintes
dy. Explorons le cas ott ds’ — 0, sin2d¥ ~ 2d¥, X — T, angle XBA ~ 71/2 — ¢ et BX ~ AX ~ s'sin ¢.
En appliquant la loi des sinus au triangle ABX on obtient:

¢in XBA 08¢  sinAXB  sin2dd

AX  dsing  AB ds’

on obtient alors la relation suivante entre ds’ (increment de contraintes moyenne) et di} ’'angle du changement
des directions principales entre les regions A et B (sinz ~ z pour z < 1) :

!
95 _ 9di tan o
S

;=

Si maintenant, on considére un éventail continu de discontinuité de contraintes dans une région fini
ol la rotation des directions principales de contraintes total est 9 (entre le début et la fin de I’éventail de
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Region B

Region A
do
X ’
CIRT:]
\
T
P \4
\
\
‘\
\
2d9 3
\
\
\
2d0/5

A |B a’
s’ ds’—

Figure 4.9: Discontinuité de contraintes entre 2 régions et cercles de Mohr associés (figure tirée de Lancellota’s
Geotechnical Engineering).

discontinuité), par intégration, on obtient la variation entre les cercles de Mohr au debut (contraintes moyenne
s1) et a la fin (contraintes moyenne s5) de I’éventail:

/!

s

S—,l = exp 29 tan ¢
2

[Notez que l'on retrouve une expression mathématique du type spirale logarithmique.].

4.3 Démonstration des théorémes de ’analyse limite

[Cette partie 4.3 ne sera pas détaillée en cours - je vous invite a refaire les dérivations par vous
méme]

On rappelle le PPV valable pour tout champ de vitesse C.A (quand les déplacements imposés sont constant

en temps)
V/SE S): \%4 St

Dans les deux sections qui suivent, on va démontrer les théoremes statiques et cinématiques de I'analyse
limite : bornes inférieure et supérieure de la charge de ruine. Pour plus de simplicité, on suppose qu’il n’y
a pas de surface de glissement - mais le raisonnement est strictement le méme avec (re-faites les dérivations
pour vous en convaincre).

Paramétrons le chargement de tel sorte que T; = a7 ot T correspond & la charge maximale de rupture
de la structure (a la rupture o = 1).

4.3.1 Borne inférieure statique

Soit un champ statiquement admissible oy correspondant a un parametre de chargement a* vérifiant le critére

de rupture (a savoir f(of;) < 0 ) en tout point, le PPV s’écrit pour ce champ de contraintes statiquement
admissible en prenant pour champ de vitesse le champ solution 1;

/O’%éij dV:aa/ TfuldS—l-/(—bl)ude
\%4 Sy 14
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ol 1; est le champ de vitesse solution (et €;; le champ de taux de déformation associé¢). Pour le champ de
contraintes exactes o;; a la rupture correspondant & la valeur o = 1 du parameétre de chargement, on a:

v S v

En prenant la soustraction des deux expressions précédentes, on obtient

a cr ayy Of
(1—(1 )/StTiUidS:/‘/(gij_Uij)Aao’ij dV >0

soit

a® <1
car la puissance des efforts exterieures est positive Tf1; > 0 (et peut etre d’ailleurs utilisé comme un facteur
de scaling)). La valeur a® est donc une borne inférieure du parameétre de chargement a la rupture car

of

(0ij — 0] )Aa%

>0

du fait de la convexité de la surface de rupture (et de “l’associativité” de la déformation plastique - c.f
subsection 4.2.1.3 de ces notes).

4.3.2 Borne supérieure cinématique

Prenons un champ de Vitesse cinématiquement admissible ¢ . Pour un tel champ de vitesse, correspond un
champ de contraintes O',L vérifiant le critére de rupture (mais pas forcement 1’équation d’équilibre) de telle

— \bOf of
ij 9ol

ij

J
ot A’ est le multiplicateur plastique correspondant. On peut définir le facteur de

ab/ Tfugds = / A0 O qy - /(—bi)u;’dV
S 30 A%

Pour le champ de contraintes solution o;; (& la rupture) - correspondant au paramétre de chargement
solution & =1, le PPV pour le champ test 4§ s’écrit:

/ Tfagds = / o \? a{) dv — / (=bi)ugdV
s, do v

(aab—l)/ TfuldS = /)\b —04j) 8{: dv >0
S, 0o;

ij

sorte que €

chargement

soit
b>1

encore une fois & cause de la convexité de la surface de rupture (et de “I’associativité” de la déformation
plastique - c.f subsection 4.2.1.3 de ces notes).

Le champ de vitesse u{ correspondant au parameétre de chargement o, fournit donc une borne supérieure
a®T¢ de la charge de rupture exacte 1.

4.4 Démarche pour 'obtention des bornes de la charge ultime

La démarche du calcul & la rupture (afin de déterminer la charge ultime d’une structure géotechnique) sera
donc la suivante:

1. Paramétrisation du chargement (e.g. descente de charges, forces d’ancrages)

2. Choix du critére de comportement selon que 1’on fasse un calcul a court terme (Tresca - contraintes
totales) ou long terme (Mohr-Coulomb - contraintes effectives)
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3. Approche statique (“par l'intérieur”) afin de déterminer une borne inférieure a la vrai charge ultime.

(a) Choix d’un champ de contraintes statiquement admissible (donc paramétré par le chargement)
(b) Maximisation du paramétre de chargement pour lequel le champ de contraintes vérifie le critére
de rupture: obtention d’une borne inférieure de la charge ultime
4. Approche cinématique
(a) Choix d’un champ de déplacement cinématiquement admissible - éventuellement avec des lignes
de glissement représentant le mécanisme de rupture (souvent paramétrisé)

(b) Calculs de la puissance intérieure (en supposant que le matériau vérifie le critére de plasticité dans
les zones de déplacement plastiques)

(c) Utilisation du principe des puissances virtuelles afin d’obtenir la charge ultime par minimization:
obtention d’une borne supérieure du chargement ultime
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Figure 4.10: Talus vertical dans un milieu cohérent et frottant. H de ruine 7

4.5 Example de calcul & la rupture: Talus vertical

Afin de mieux comprendre I'application pratique des notions précédentes, rien de mieux qu’'un example.
Prenons le cas de l'excavation d’un talus vertical dans un sol de poids v satisfaisant un critére de Mohr-
Coulomb (c.f. figure 4.10 ). Bornez la hauteur de ruine H du talus par une approche statique et cinématique.

Avant de commencer par I’approche statique, il est intéressant de faire une simple analyse dimensionelle
du probléme. La hauteur maximale du talus H (en métres - dimension [L]) dépend des paramétres suivants:

e le poids du sol v [M/L?/T?|
e la cohesion ¢ [M/L/T?|
e angle de frottement du sol ¢ [-]

Les 4 paramétres du probléme H, v, ¢, ¢ ne dépendent que de 3 dimensions ([M], [L], [T]), selon le théoreme
de Buckingham-7, la solution du probléme ne dépend donc que d’un seul paramétre adimensionel (ici ¢).
Effectivement, on peut dimensioner la hauteur comme suit

¢
o=°<
Fyx’H(qS)

ot H(¢) est une fonction adimensionelle ne dépendant que de 'angle de frottement du sol. On voit donc que
I’on peut en fait résoudre le probléme pour H et on aura les solutions pour n’importe qu’elle valeur de ¢ et 7.

4.5.1 Approche Statique

On construit un champ statiquement admissible (S.A.) simple en 3 zones 1, 2 et 3 - ¢f Fig 4.11. On rappelle
qu'un champ S.A. doit vérifier les équations d’équilibre, les conditions aux limites en tractions et le vecteur
contraintes doit etre continu a travers une surface de discontinuité.

Dans notre cas, dans le repére (z, z) de la figure , I’équilibre s’écrit

0200 + 0.0,, =0
8m0wz + 8z0'zz =7

On choisit les champs suivants pour les différentes zones.
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Figure 4.11: Approche statique - talus vertical. Champ de contraintes statiquement admissible & 3 zones
simples.
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e Zonelzxz>0et z< H
o) =0 ofl=0 ol)=192

on peut vérifier qu’un tel champ est bien S.A. dans cette zone

e Zone2x>0etz>H

D=z oD=0 o=3s

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 1 et 2 (o,
est bien continue), en revanche on peut avoir un saut de o, si celui ci ne dépend pas de z (et o,, = 0)
(lere equation d’équilibre)

e Zone3dx <0etz>H
o) =vz P =0 oY =1(z-H)

ce champ est bien S.A. On notera que le vecteur contrainte est bien continue entre les zones 2 et 3 (0,4
est bien continue).

Il convient maintenant de vérifier le critére de Mohr-Coulomb dans les trois zones. Comme o, = 0 partout,
on est dans un repére de contraintes principales

e Zone 1

f=7v2(1—-sin¢) —2ccosd <0

Le critére sera maximale en z = H et si on assume la rupture f =0 en z = H, alors on a f < 0 pour
tout z < H - donc le critére est verifié dans toute la zone 1 pour

ﬁ<2 cos.¢
c ~ 1-—sing

e Zone 2

f=—2vzsingp —2ccos¢p <0
Le critére est vérifié partout. car en fait les 2 contraintes principales sont égales - pas de cisaillement.

e Zone 3 (z > H)
Le critére est maximale en z = H, ot 0,, = 0.

fmaz = vH(1 —sin¢) — 2ccos ¢

et sera donc vérifié partout si

7H<2 cos.(ﬁ
c — 1—sing

En conclusions, on voit que 'on peut obtenir un champ de contraintes S.A. vérifiant le critére de
plasticité en tout point si
H
H cos-qﬁ
c = 1l—sing

H
En conclusion, cette approche statique nous fournit une borne inférieure (7) du vrai domaine de stabilité
c

H
de la structure (FY> pour 'égalité de 'inégalité précedente:
c

0\ -
(’Yc> :2%22&111(7{'/44'@6/2)

9 cos.¢> < vH
1—sing — \ ¢
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Vi Mot iyide

Figure 4.12: Approche cinématique. Mécanisme de ruine: champ de vitesse C.A.

4.5.2 Approche Cinématique

On postule un champ de vitesse C.A. pour la ruine de la structure décrit dans la figure 4.12. Une droite
partant du bas du talus et re-joignant la surface du sol en amont en B. On paramétrise cette surface de
glissement par I’angle . On suppose donc que le triangle OAB se déplace en corps rigide avec un vecteur
vitesse de norme ||U || alors que le substratum reste rigide: toute la déformation plastique est accomodée par
la surface de glissement drote AB. Comme on I’a vu en 4.2.2.2, pour un critére de Mohr-Coulomb le vecteur
vitesse fait un angle ¢ avec la surface de glissement. Le vecteur vitesse est constant le long de la surface de
glissement et la puissance totale dissipée est donc (c.g. subsection 4.2.2.2)

H )
||| cos &
COS v

Paiss(U) = / c||U]| cos pds = || AB|| x ¢||U]| cos ¢ =
AB

Ici la charge est le seul poids du sol (pas de traction imposée en surface). La puissance des efforts
extérieures est donc - comme seul le triangle OAB se déplace - le poids étant une force verticale

: . . 1 :
PU) = / ~U, dS = / YU cos(a + ¢) dS = §H2 tana X y||U]|| cos(a + &)
OAB OAB

L’application du PPV donne alors la borne supérieure suivante de la charge de ruine pour un « donné:

ﬂ—Q cos ¢

c  “sinacos(a+ ¢)
Il convient de minimiser cette borne supérieure par rapport a « afin d’obtenir la borne supérieure la plus

petite. Pour ce faire, on minimise g(a) = 2% , pour des angles donnant bien sur g(a) > 0, on

obtient (en utilisant par example Mathematica ou & la main ;))
T
== —¢/2
a=" 9
et donc finalement la borne supérieure du domaine de stabilité
+
vH cos @
( c ) 1 —sing an(m/4+¢/2)

En combinant les résultats obtenu par Papproche statique (par U'intérieur) et cinématique (par extérieur),
on obient donc finalement les bornes suivantes du domaine de stabilité

cos ¢ < <7H) <4 cos ¢

1—sing — c 1 —sing
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On voit que 'on a un facteur 2 entre la borne inférieure et la borne supérieure ! On notera qu’en utilisant
des méthodes plus complexe en utilisant de multiples zones (pour le cas statique) et une surface de glissement
en spirale logarithmique etc., les meilleurs estimations analytique des bornes obtenues & ce jour donnent

cos @ vH cos @
37— <[ — ) <383———
1—sin¢_(c>_ 1—sing

cos ¢
1—sin ¢

Notamment la borne supérieure 3.83 est obtenue en considérant un mécanisme de ruine en forme de
spirale logarithmique.

On s’apercoit donc que le mécanisme de ruine utilisé lors de notre estimation de la borne supérieure
n’etait pas trop loin (4 au lieu de 3.83) alors que le champ de contraintes simple & trois zones utilisé lors du
calcul de la borne inférieure est clairement trop simpliste. En fait ici, la surface de rupture réelle est plus

proche d’une spirale logarithmique.
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Chapter 5

Fondations superficielles

5.1 Types

5.1.1 Types de fondations superficielles
Les fondations superficielles dépendent de plusieurs facteurs:
e Qualité du massif de sol
e Contraintes fonctionnelles de 'ouvrage (niveaux de sous-sol, étanchéité, tassements)
¢ Environnement (surtout environnement construit)
e Types de force a transmettre au massif de fondation, qui sont de trois types différents

— Ponctuelles (descentes de charge par piliers ou colonnes)
— Linéaires (efforts transmis par les murs porteurs)

— Surfaciques (efforts transmis par les aires de stockages, réservoirs)

En combinant ces informations, les fondations superficielles sur la figure 5.1 peuvent étre envisagées:

5.1.2 Types d’état limite ultime

Comme pour d’autres systémes, différents états limite ultime (ELU) peuvent se produire selon le type de
fondations superficielles. Théoriquement, tous les ELU devraient étre étudiés et vérifiés. Cependant, si un
ELU prédomine sur les autres, il est envisageable de ne considérer que ce dernier.

e ELU type 1 : instabilité de l’ensemble de 'ouvrage. ELU en lien aux mécanismes de rupture, la
structure et le terrain ne jouent pas leur role (basculement, déversement, soulévement par poussée
d’Archimeéde, phénomeéne de renard).

Figures/fond_superficielles.PNG

Figure 5.1: Différents types de fondations superficielles
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Perte d’équilibre par basculement

Figure 5.2: ELU type 1 pour fondations superficielles

Résistance au glissement
atteinte a I'interface

Résistance au poingonnement du terrain atteinte

(a) Externe

Résistance ultime du matériau constitutif de la fondation atteinte
(p.ex. poingonnement de la semelle par une colonne)

(b) Interne

Figure 5.3: ELU type 2 pour fondations superficielles
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Mobilisation compléte de la résistance au cisaillement du terrain (i.e. glissement généralisé)

Figure 5.4: ELU type 3 pour fondations superficielles

e ELU type 2 : atteinte a la résistance ultime de 'ouvrage ou d’un élément de 'ouvrage (sécurité interne)
/ du sol (sécurité externe). Un ELU 2 externe correspondrait & un poingonnement massif du sol par
exemple.

e ELU type 3 : instabilité générale du massif de fondation. Il s’agit le plus souvent d’un mécanisme
de glissement une fois que la résistance compléte du terrain est atteinte. Les stabilités de talus et
glissement de terrain sont vérifiées selon cet ELU type 3.

Rapide rappel sur ’état limite de service (ELS) qui peut étre interne ou externe. L’ELS externe concerne
les tassements ou mouvements excessifs du sol qui aménenet a la ruine d’une structure (ou d’un de ces
éléments) surtout si la structure est hyperstatique. Il est préférable dans un tel cas d’également prendre
en considération ELU type 2 interne. L’ELS interne concerne la durabilité des matériaux de la fondation
superficielle.

5.2 Capacité portante

Dans cette partie, on proposera de résoudre avec deux méthodes les équations liées aux mécanismes de
rupture.

5.2.1 Critére de Tresca

Le critére de Tresca stipule que le matériau est puremetn cohérent et non frictionnel. Dans ce cas, ¢ = 0 et
la cohésion ¢ # 0. Le critére de Tresca se rapproche au mieux de la solution pour la rupture du sol a court
terme.

5.2.2 Dérivation de Prandtl

Dans un premier temps, on présentera la solution de Prandlt. On considére une approche statique sur la
borne inférieure. Le systéme est représenté sur la figure 5.6.
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Tassements totaux et/ou différentiels excessifs limitant I'aptitude au service de ['ouvrage

Figure 5.5: ELS externe

T

Z N
| >

IR VIRV
T 2

Figure 5.6: Approche statique
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——

)

Figure 5.7: Repére pour la zone II

e Zonel:0,, =0; 0,,=0; 04z =2c

e Zone II: voir figure 5.7. Si on compare les coordonnées polaires et les coordonnées cartésiennes. T,, =

ogela traction normale, 7, = 0,9. De plus, en appliquant la continuité entre les zones I et I, § = — %

T
En combinant avec le changement de coordonnées (équation 5.1), ogp = c et 0,9 = c.
o — O-ZL‘Z
06 5
o
Org = ;T (51)

Si on cherche maintenant & obtenir 1’équilibre en coordonnées polaires:

807'7' }807'9 Orr — 000

selone,., =0
== or r 00 r
] 80’,»9 1 3099 20}9 0
seloney, - =
= or r 00 r
Si on fait le choix o,, = ogg et 0,9 = constante alors
99rr _ 0
or
0o gg
o6~ 20
car o, et ggg sont indépendants de r.
Les conditions limites emtre les zones I et Il donnent en 6 = —%, 0.9 = c et 049 = ¢, d’ol:

o90(0) = —2¢0 + A — 202 tA=c
o90(0) = ¢ — 2c(0 + g) =g,
Oprc = C

Dans la zone III (voir figure 5.8), on pose o,, = 0 et on cherche les valeurs pour o, et 0,,. Les conditions

limites entre les zones II & III se retrouvent en 6 = —%T“ ot on a (en coordonnées polaires)

Orr = 0gg = (1 4+ )

Org = C
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Figure 5.8: Zone III

Zp

7 A
LN

Figure 5.9: Répartition des charges

3

En repassant en coordonnées cartésiennes 4 6 = — 1

090 = Opp SIN2 0 + 0, cos? 0

0r9 = (042 — Ozz) SN0 cos O

ogg =c(l+m) = U;x a;Z
Ozz = Ozxx
Org = C= f
0. =c(2+7)
Opy = TC
Dans la zone III
Opz = TC
.. = (247
Oz =0
g = 2+mc

Approche cinématique Triangle ABO isocéle— |AB| = |OB| =
Triangle BCD isocéle — |CD| = %

b
V2

Puissance des efforts extérieurs

Peyy = Qpr
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Figure 5.10: Ilustration des zones d’effort

O

J2o

c
N>
b ==

Figure 5.11: Puissance dissipée dans la zone de cisaillement pur

Puissance dissipée (résistance maximale) Les bandes de cisaillement sont les segments suivants:
AO+OC+CD+(OB+OE+EF). Le long de AO, CD et OC:

. ™
Pdissipée = buc(2 + 5)

Puissance dissipée dans la zone de cisaillement pur Les conditions dans la zone:uy = constante,
dT:Oa E;T:&‘éﬁzo

: V2.
ug = ———UuU

2
0ij€ij = OroEre + Ogror = 20,0610
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Figure 5.12: Sollicitations non drainées

R=b/V2

w/2 \/§
P— = 2c—1urdrdf
o Te / /0 647“ urdr
LT
:bch:PA/O\E

Puissance dissipée totale
Pdissipée totale = 2(—PAO + POC + PCD) + 2PO/B\C
— bie(2 + g) + zbuc%
= buc(2 + )

Equilibre
Pdissipée = Pext
buc(2+m) = q;bU
qf = 2+m)e
24+ mec<g, < (2+m)c

La solution exacte est trouvée car dans ce cas, la borne supérieure (cinématique) est égale a la borne inférieure
(statique) et donc g, = (2 + m)c. En pratique, pour les sollicitations non drainées, g, = (2 + m)c + ¢ avec

N.=(2+m) — Semelle Lisse
N, =5.71 — Semelle Rugueuse

5.3 Formules générales

On compare la composante normale de la résultante des actions Fy a la résistance du sol au poinconnement
R, =g, x A, ol g, est la capacité portante du sol (e.g. en Pa ou kPa) et A’ est I’aire utile de la fondation
superficielle.

5.3.1 Sollicitation drainée / Long-terme

La capacité portante d‘une semelle superficielle s’écrit (généralisation du cas de base Terzaghi (1951))

52 Page 52



Brice Lecampion

) ) 1 )
qp = ¢ Nescicbegede + ¢' Nysqigbggqdy + i'yb/N,ysvzﬂ,ngvdW
avec:

c: la cohésion drainée

¢': la surcharge effective (de part et d’autre de la fondation)

e I': la largeur utile

{N¢, Ny, Ny} : les facteurs de portance,

{Se¢, Sqs 84} ¢ coefficients correcteurs de forme,

{ic, 14,1} : coefficients correcteurs d’inclinaison de la charge,

{be,bg, by} : coefficients correcteurs d’inclinaison de la base de fondation,

{9¢c, 94,9~} : coeflicients correcteurs d’inclinaison du sol (par rappor a I'horizontale),

{dc,dq,d,} : coefficients correcteurs du & la profondeur de la fondation;

5.3.1.1 Facteurs de portance

Pour une semelle rugeuse:

(=) tan ¢’
Ny= o No= (N~ Deotd, N, = 2(N, — 1) tan g,
2 cos? (% + %)

Pour une semelle lisse:

/
N, = et tan? (Z + i) , Ne=(Ng—1)cot¢/, N, =18(N,—1)tang'.

On notera o ) in
s + sin

tan? [~ 4+ = | = —————

an <4+2> 1—sing¢/

5.3.1.2 Coefficients correcteurs de forme

Pour une semelle rectangulaire ou circulaire (cf figure 1) - selon Brinch-Hansen (1970):

v sqINg — 1 b
sqzl—l—ﬂsmqb', 80:3\@(17—1’ 57:1_0'4f20'6'

Pour une semelle filante b’ > L’:

5.3.1.3 Excentricité de la charge appliquée

Lorsque la semelle est sollicitée par une charge excentrée dans soit une seule direction ou dans les deux
directions, on calcule la largeur utile et la longueur utile comme suit (cf figure 2):

b = b — 2ey largeur utile
L' = L — 2ey, longueur utile
A" = L'V surface utile
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Figure 5.13: Semelle superficielle circulaire et rectangulaire de dimensions (b, L) et de dimensions utiles
o, L.

Figure 5.14: Excentricité de la charge par rapport au deux directions.

54 Page 54



Brice Lecampion

.. /NewMater Mﬂ“@%@smmm@m&ﬁm&mg igu

Figure 5.15: Deux cas d’inclinaison de charge horizontale

Figure 5.16: Inclinaison de la base par rapport a I’horizontale.

5.3.1.4 Inclinaison de la charge

Selon Vesic (1973), avec H composante horizontale de la résultante et V' composante

, . H " 1—iy, . H m
ig=(1- ——— le=tg— ———, Ih=|(1—-F——F77—— )
K V + A'd cot ¢/ ’ 7 N.tang¢'® 7 V + A’ cot ¢

Cas 1: H est la composante horizontale de la charge agissant dans la direction parallele a la largeur b’
de la fondation (cf figure 3)

240/
m=myp = —1 n b//L/

Pour une semelle filante: m = my;, = 2.
Cas 2: H agit dans la direction parallele a la longueur L’ de la fondation (cf figure 3)

24 L
T4y

Cas 3: H agit dans la direction formant une angle 6 avec la direction de longueur L’ de la fondation

m=my

m = mg = my, cos® 0 + my sin? 0.

5.3.1.5 Inclinaison de la base de la fondation

On considére « I'angle d’inclinaison de la base de la fondation par rapport a ’horizontale (cf figure 4) - « en
radians

1-b,

2
—m, bq:b,Y:(l—atanqﬁ') .
c

be = b,

5.3.1.6 Fondation en profondeur

On notera qu’en pratique, on ne conseille pas d’utiliser une correction pour une profondeur de 'assise de
fondation D inférieur & 2 métres.
Selon Brinch-Hansen, Vesic (1973),
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1-d,

de=da = N iang

dy=1
/ : I2D !
dq:1+2tan¢(1fsm¢)y D<b

D
dy =1+ 2tan¢’(1 — sin ¢’)2ArcTany D>V

5.3.1.7 Inclinaison du sol

Selon Brinch-Hansen (1970), pour une inclinaison w de la surface du sol.

1—g,

gczgq—m gq = (1 —tanw)® = g,
C

5.3.1.8 Présence d’une nappe

Figure 5 représente les 3 cas de présence d‘eau: I) Niveau d’eau au dessous du mécanisme de rupture, IT)
Niveau d‘eau affleurant la base de la fondation, et IIT) Niveau d’eau affleurant la surface du terrain.

5.3.2 Sollicitation non drainée / court terme
qp = culNescichede + q

avec: ¢, la cohésion non drainée, g la surcharge de part et d’autre de la fondation et N, le facteur de
portance:
N. = (2+ m) semelle lisse

N, = 5.71 semelle rugueuse
se: coefficient correctif de forme rectangulaire et circulaire

bl
F;

1 H)

‘C:— 1 17
‘ 2( + Ale,

b.: coefficient correcteur d’inclinaison de la base de fondation

Se=1+0.2

i.: coeflicient correcteur d’inclinaison de la charge

2a
247

b.=1
ge: coefficient correcteur pour une surface de sol inclinée (angle w)

2w
24w

gczl_

avec ajout d’un terme —wyb(1 — 0.40’/L’) dans l’équation de la capacité portante !
d. : coefficient correcteur pour une assise de fondation a une profondeur D

D
de=1+045  (D<V)

D
de=1+ 0.4ArcTanﬁ D>V
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Nappe phreatique au dessous du
mécanisme de rupture

Nappe phreatique au niveau
de la base de la semelle

Nappe phreatique au niveau
de la surface

Figure 5.17: Influence de la nappe phréatique.
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C D
w = Setlement
i) = Tilt
dw = Relative settlement
# = Relative rotation
a = Angular strain
A4 = Relative deflaction
% = Deflection ratio
I L |
A B c, D
- - . -
Figure 5.18: Schéma tassements
Tassements totaux
Dispositif de drainage 15430 cm
Problémes d’acceés 30460 cm
Constructions en maconnerie JaSem
Structures en cadre 5al0cm
Silos, radiers, cheminées 10430 em
Tassements différentiels
Murs en briques hauts et continus 1 mm/m
Structures en béton armé 3 mm'm
Structures métalligues simples 5 mm/m
Inclinaison
Tour ou cheminée 4 mm/m
Stockage de denrées 10 mm/m
Grue sur voie de roulement I mm'/m

Figure 5.19: Ordre de grandeurs des tassements
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5.4 Tassement des fondations superficielles

5.4.1 Ordre de grandeurs des tassements
5.4.2 Solutions de 1’élasticité
5.4.3 Consolidation primaire

n
Let consider a soil volume V' with porosity n = V,,/V and void ratio e = V,,/V; = —— intrinsic permeability
n

1—
k. The soil is fully saturated with water ( -, intrinsic weigth of water, p,, viscosity of water and g, bulk
compressibility of water). We will denote u as the pore-pressure.

Assuming first a linear elastic isotropic behavior, the strain ¢;; of the soil are related to the effective stress
O'gj = 045 — u5ij (Where 61']' =01 #] and 5” = 1)

Ugj = 2G6ij + (K - 2/3G>6U(5ij

or
1+v v

Gij = E Uij — E

where €” denotes the volumetric strain of the soil (€” = e, , summation on repeated indices). Stress taken
positive in compression, strain are positive in contraction. The “grains” of the soil are typically incompressible
compared to the void space, such that the volumetric strain of the soil is directly the reverse of the variation

of porosity:

!
Okk0ij

€' = —-An

The soil is permeable and fully saturated with water. In order to grasp the flow of water (and therefore
the variation of pore pressure), one needs to write the conservation of mass within the soil. For a unit
soil elementary volume V', the variation of fluid content has two terms: i) the fluid can change if the pore
pressure change (water compressibility) nV 8,,Au, and ii) the porosity (volume occupied by the fluid) can
also change (due to the soil elastic deformation, i.e grain contacts etc.) V An. These variations occuring over
a time increment At must balance the fluid entering minus exiting the elementary volume by fluid transport:
(Bt O

or dy 0z

) VAt. The fluid mass conservation can be written as (taking the limit):

on Ou Oq,  Ogy 0q.
ot Tt T, T s

=0

The fluid velocity (w.r. to the solid phase) is related to the pore pressure gradient (and water weitgh) via
Darcy’s law:

Kk O 0

ez = _ﬂwax(u—’—’wa)__kal'h
Kk 0 0

= ——— (u+ypz)=—k=—h
Kk O 0

= = Tnps Ut = —hgth

where k is the soil intrinsic permeability ( in square meter). Note that in soil mechanics, permeability are
referred to as k = K7,/ (in m/s) - h is the hydraulic head h = p/7y,, + 2.
5.4.3.1 Unidimensional (Oedometric) conditions

Let now consider the case where we have oedometric conditions (i.e. the soil can only compact in the z
direction, the horizontal strains are null), such that we directly have:

Oyz — U

T K+4/3G

v

€y = € My (0, — )

ie. my, =1/(K +4/3G).
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Also, fluid can only flow in z direction. The fluid mass conservation thus reduces to:

ou my 00, k 0%u

ot mq, +np Ot Yo (M + 1) 022
—_————

Cy

Let’s now look at a simple case of practical relevance: a layer of soil of height L. We will assume drained
conditions on z = 0: u(0,t) = 0 and a no flow boundary conditions at z = L: du/dz = 0 (alternatively it
can also be viewed as a symmetic boundary conditions for a layer of height H = 2L and a drained condition
at z = H). Now, let’s assume that at ¢ = 0, we apply a load 0,, = ¢ at z = 0 and that we keep this
load constant thereafter. Note that if the soil has an initial profile of vertical stress, it is just increased by
g. Similarly there may be an initial pore-pressure such that we solve for variation from that initial state.
For clarity, we take such an initial state as null: as the system is linear we can always add the initial state
afterward.

€’ =my(qg—u)

The initial strain of the soil layer and increase of pore-pressure due to the sudden loading at ¢ = 0" can
be obtained by integrating the continuity equation in time over a small time interval t. :

t 2
< kO
An = —nﬁwu—i—/ ——Z dz
0 Jw 0z
[ —
0 as te—0
as An = —€¥ = —my,(0,, —u) = —my,(g¢ — u) , we have
q

Uu=—(=

T4 nfujmy =9
we see that if water is compressible (8, ~ 0), the pore-pressure is equal to the applied load at t = 0T. (nota
1/(1 4+ nBy/m, is akin to a Skempton coefficient in oedometric conditions)

Pore-Pressure dissipation
The evolution of pore pressure in time, is governed by the following equation (as the load remains constant),
initial and boundary conditions:

Bu 92u
ot = Cvgzz
u(z =0,t) =0
ou
—(z=L,t =0
az(Z 1)
U(Z,t:0+) = W = Uy

This partial differential equation is similar to the one obtained in heat conduction. It can be solved using
separation of variables. Introducing the following scale coordinates and dimensionless time:

E=z/L  T=c,t/L?

the solution (using separation of variables and Fourier series for the spatial variation) is given as:

%;T) = Z ay, sin (kzﬁg) exp (—WZkQ 7'>

k=1,...00
U(E,T) _ 4 o km 772]{32

We see that lim, . p(§,7) = 0, i.e. the pore-pressure dissipates at large time, i.e. once all the fluid
initially pressurized has been “drained” off the layer.
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The vertical strain (=volumetric strain here) is given by

EZZ(E? 7—) = mv(q - U(f, T))
such that the settlement of that layer is given by

AH 1 [?
725/(; €zz(fv7')d§

ag_ 1 3 16 . (kn 2 . 72k
— =My - — — Xp | — T
H 4 11 nfBu/my 2k 4 PL™

k=1,3,5,...00
at large time
AH
Vs

Note that for a layered medium, under oedometric conditions, at large time, we can use the previous for
expression for each layers ¢ and sum over each layer to get the total settlement.

IMPORTANT NOTE: under a finite foundation, the state of strain is not oedometric (there is some
lateral deformation), so it is incorrect to use the previous expression if the fondation is not “wide”. Notably, if
the fondation is not wide (compared to the depth of the most compliant layer) instead of m,, = 1/(K+4/3G),
in plane strain, under a foundation the elastic constant to use (drained) is (1 — v?)/E. Note also that there
are some shape factors to accomodate the fact that the foundation is finite in the other directions -> these
factors are obtained from the integration of Boussinesq solution.

If the soil is multilayered, there is no direct solution (nota: elastic solution can be obtained using Hankel
transform but they are complicated and semi-numerical). An approximation often used, is to estimate the
vertical effective stress increment in each layer (using the elastic solution for a homogeneous half space loaded
on its surface) and then approximate the layer settlement using a uni-dimensional relation (or in oedometric
condition - no lateral deformation):

AHZ Ao’

zZz

H; E;

This is an approximation! (to do it right, one must solve the real 2D /3D problem using numerical methods).

5.4.4 Non linear primary consolidation

In practice, a soil is not linearly elastic and in odeometric condition, one has the following volumetric con-
stitutive relation

€ = =

_1+e l1+e

C. is the compression index. (Here the Log is Logl0)
i.e. the tangent modulus oedometric modulus is

A C !
¢ CLOU—/

do’ c.

Eil—l—ea

We will not derive the solution of pore-pressure dissipation in that case. However, we can obtained the
drained (long term) settlement (under the approximation of oedometric conditions), if the soil was initially
only normally consolidated, any additional load will make the soil deforms along the normal consolidation
line (given by eq. with /0! = ¢/c., in drained conditions):

G o, +4q
l1+e & o!

o

If the soil is overconsolidated (i.e. has experienced in its past a vertical effective stress o/ ..

current one at rest), the compression index is lower if the current effective stress state is lower than o
equals if larger than o), ..

Values:

larger than the
;maaﬂ
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Sol pré-consolidé:

Ae Cp ol ey
€= = — o <o
1 Ye 1 Ye ga_(,) vmazx
/ /
p Uvmaa: CC a / /
€= + Log o >0
1+e ol 1+e ol e vmazx
O./
vmax
OCR = —*
(0]
Silt
C./(14+¢€)=0.1-0.02
clay

C./(1+4¢€) =0.25—0.025

APPROXIMATION In a multilayered medium, we can approximate the state of stress “just under” the
fondation as 1D (no lateral deformation), and approximate the vertical strain in the layer AH/H using the
effective vertical stress at the middle of the layer:

/

Oy

AH = &H Log
+

/
1+e o,

where o}, is the initial stress at the middle of the layer (e.g. = 7' zmidaic if the water table is at z = 0 (and
the medium uniform)). Then we can sum the displacement of all the layers.

5.4.5 Secondary Consolidation

Settlement often continues even after the pore-pressure increases - undrained response due to the sudden
application of the load- has been released (i.e. after full drainage). Settlement are often found to creep
“logarithmically”

(03

e:€p+1+e

Logi

tp
where ¢, is the strain due to the primary consolidation, and ¢, the time at which primary consolidation
becomes negligible. The coefficient C,, is usually related to the compression index C., e.g. C,, ~2—-31072C,
- exact value is soil dependent of course. Note that we can estimate it from the response of a “long” oedometric
creep test.

If one wants to properly model such a time dependent behaviour, a proper viscoelastic or viscoplastic
model would need to be fully characterized (using long lab tests with different stress path etc.)... although
more scientifically sound, this is typically not realistic in practice. One can back-calculate the constant from
in-situ observations or long oedometric tests.

5.4.6 Approche simplifiée pour ’estimation des tassements
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Chapter 6

Fondations profondes

Pour déterminer si des fondations sont des fondations profondes, il faut répondre aux critéres de classification
suivants (issus ancienne norme SIA 191, Pieux):

e Mode de transmission des efforts au massif de fondation
e Effet sur le terrain encaissant

e Fonction mécanique

e Mode et moment de 'installation

e Mode de mise en place

e Mode de souténement de la paroi du forage

e Matériau

e Destination

6.1 Différent types

On distingue plusieurs types de pieux pour les fondations profondes:

6.1.1 Pieux battus

Les pieux battus peuvent étre en bois, acier ou béton. Pour chaque matériau, une utilisation est préconisée.
Les pieux battus ont pour principaux avantages d’étre économiques car ils sont rapidement mis en place. 11
est aussi possible de les incliner jusqu'a 30/45°, ce qui est particuliérement intéressant pour reprendre des
charges inclinées. Enfin, le refoulement du sol est favorable pour le dimmensionnement. D’un autre coté, il
faut prendre en compte les bruits et vibrations engendrées et le risque d’endommager les pieux pendant la
mise en place. La manutention est également complexe.

6.1.1.1 Bois

Les pieux battus en bois conviennent pour des sols fins sous la nappe. Ils peuvent supporter des ouvrages
provisoires ou des charges faibles: charge. Ces pieux ont une bonne résistance a la flexion et sont assez
résistant (longue durée de vie) dans des sols immergés. Leur longueur est cependant limitée et ils sont
susceptibles de se dégrader si ils sont soumis & des changemetns (immergés puis secs). Ils sont également
plus fragiles lors du battage.
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e
AL R G F Lok | S,

e S ———— T e —

Avec refoulement du sol en place | Sans refoulement du sol en place

Pieux battus  Pieux foncés @ Pieux hattus Pieux forés | | Micropieux
moulés
en bois en acier | | simple
en acier en hétan | | sous houe
| | <nbéton | | tubé
| 4 la tariére

continuc

Figure 6.1: Classification des pieux pour fondations profondes

6.1.1.2 Acier

Les pieux en aciers sont principalement utilisés dans un sol qui repose sur un substrat comact, comme des
rochers ou de la moraine. Le battage est aisé et le refoulement faible. De plus, leur résistance est élevée.
En revanche leur coiit est plus important et le risque de corrosion est élevé. Il peut également y avoir des
vibrations si les profilés utilisés sont des tubes. Il existe différents types de profilés (tubes, poutrelles -profilé
en H-, ciassons de palplanches).

6.1.1.3 Béton préfabriqué

Les pieux en béton sont le splus performants dans des sols avec faible compacité (alluvions, sol morainique &
faible compacité). Ce type de pieux peut supporter des chrages importantes et est résistant a la corrosion et
a la flexion. Toutefois, les pieux sont lourds et fragiles. Ainsi, lors de battages complexes, les tétes peuvetn
étre détrutes, sans compter le bruit occasionné et les vibrations. Il existe plusieurs types de pieux en béton
en fonction de leur dimensions et résistances.

6.1.2 Pieux forés

Tout comme les pieux battus, il existe différents types de pieux forés. On distingue les pieux forés sous boue,
les pieux forés tubés et les pieux forés a la tariére continue. Contrairement aux pieux battus, les pieux forés
n’engendrent pas ou trés peu de vibrations et bruits. Il est possible de passer des obstacles et des horizons
plus durs. Les diamétres peuvent également étre augmentés ce qui permet d’accroitre la capacité portante.
En revanche, l'inclinaison de tels pieux est plus complexe (méme impossible), 'exécution est délicate a cause
du curage/bétonnage et il est compliqué de vérifier la capacité portant a I’exécution. De plus, le rendement
de mise en oeuvre est plus faible que celui des pieux battus.

6.1.2.1 Pieux forés sous boue

Ce type de pieux est adapté pour des terrains pulvérulents (facilement friable, peut devenir de la poudre) en
dessous de la nappe phréatique. La réalisation des pieux forés sous boue s’apparente & celle des pieux forés
simples. La principale différence est liée a ’ajout de boue bentonique qui assure la stabiité du trou de forage.
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Forage Curage Introduction Bétonnage Recépage
du fond cage d’armature (de bas en de la téte

haut)

Figure 6.2: Pieux forés sous boue

6.1.2.2 Pieux forés tubés

Pour les pieux forés tubés, la stabilité du trou de forage est assurée par un tubage en métal. Ces pieux
présentent 'avantage d’étre utilisables dans tous types de terrain.

6.1.2.3 Pieux forés a la tariére continue

Cette technique se distingue sensiblement des autres. Elle suit le déroulement suivant:

1. Le forage est effectué a I’aide d’une téte de rotation (moteur hydraulique) qui entraine une tariére creuse
et un tube plongeur. Possibilités d’ancrage dans les couches dures ou mi-dures

2. Le forage terminé, le tube est bloqué. La tariére remonte légérement et le béton est injecté dans le
systéme via le tube plongeur.

3. Le bétonnage continue jusqu’a ce que le tube plongeur soit sorti.

4. Les cages d’armatures restent a étre installées dans le béton frais.

6.2 Estimation de la capacité portante d’un pieu isolé sous charge-
ment axial

6.2.1 Meécanismes de rupture et facteur influencant la capacité portante

Le mécanisme de rupture n’est aussi net que sous une fondation superficielle. De nombreux “modéles” ont
été proposés - ils sont tous assez incertains et des résultats trés différents peuvent etre obtenus: l'incertitude
sur ces modéles est plus importantes que sur les propriétés du sol !

Pour un pieu, en plus d’un terme de résistance en pointe, vient s’ajouter ’effet du frottement le long du
périmétre externe du pieu (fut). On calculera toujours le pourcentage repris en pointe et par frottement.
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Figure 6.3: Pieux forés tubés
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Figure 6.4: Pieux forés a la tarriére continue

Résistance de pointe

Un premier type de modéle estime la résistance de pointe & partir des formules des fondations superficielles.
Lorsque que la profondeur du pieu augmente, la résistance de pointe augmente donc linéairement avec ce
type de modéle. Or, en réalité, la résistance n’augmente plus au dela d’un profondeur “critique” L.. Cette
profondeur critique dépend du diameétre du pieu, de la nature et de la compacité du sol.

Un deuxiéme type de modeles de résistance de pointe (de Beer, Jaky, Meyerhoff) se basent sur un mé-
canisme de poinconnement généralisé qui se referme sur le pieu (cf. figure). Au dela d’une profondeur
critique la résistance de pointe devient constante. Des expressions analytiques et approximés de L. existent:
L.=Dexprtang’ x tann/4+ ¢'/2, 0u L. = D x (2+ ¢'/8).

Un troisiéme type de modéle de résistance de pointe se base sur un poinconnement localisé sous la pointe
de telle sorte que la résistance de pointe est indépendante de la longueur (profondeur du pieu).
6.2.1.1 Facteurs infuencant
Résistance de pointe unitaire:

e le type de sol: propriétés de rupture (¢/,¢’ - ¢,,), les contraintes initiales in-situ vertical

e les caractéristiqes due pieu: rapport diameétre/longueur (longueur critique)

e la mise en oeuvre du pieu: la modification des contraintes sous la pointe n’est pas la meme pour des
pieux forés ou battus

Reésistance de frottement latéral unitaire:
e le type de sol:

e la mise en oeuvre du pieu: avec ou sans refoulement du sol. o, = Ko, , avec K, < K < K, pour des
pieux avec refoulement, et K, < K < K, pour des pieux sans refoulement

6.2.2 DTU
6.2.2.1 Sols pulvérulents

On consideére aussi dans cette partie les sols cohérents pour le long terme.
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Ra

Figure 6.6: Capacité portante d’un pieu en sol pulvérulent

e La résistance en point unitaire g, est indépendente de la longueur/profondeur du pieu

— Nymag = 10304%an ¢ selon Tcheng
— N. = (Ngmaz — 1)cotang’
— A=1+40.3(B/D), le coefficient de forme
qp = 50Ngmaz + X - ¢ - N,
e La résistance au frottement latéral unitaire g

— Pieux forés : K, < K < K
— Pieux battus : Ko < K < K,
—5=¢

x Béton : 0 = %qb’

* Acier : § = 1¢/

/

gs = o, - K -tand

R, =Qu=Rp+ Ry = Apr + UpLQS

6.2.2.2 Sols cohérents (court terme)

e La résistance en point unitaire g,

— A=140.3(B/D), le coeflicient de forme
Gp =TA ¢y

e La résistance au frottement latéral unitaire ¢
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Figure 6.7: Facteur de profondeur, x

— Pieux forés : §=0.5+0.7
— Pieux battus : §=0.7+1.0
qs =B+ cu
Ry =Qu=Ry+ Rs = Apgp + UpLygs

6.2.3 Lang & Huder
6.2.3.1 Sols pulvérulents
On considére aussi dans cette partie les sols cohérents pour le long terme.
e La résistance en point unitaire g,
— Ny = et tan?(T 4 %/)
— N, = (Ny — 1)cotang’
— X, le facteur de forme et de profondeur

qp = (C/ : NC + U’i),pointe : NQ)X

e La résistance au frottement latéral unitaire g

— Pieux forés : Ktand’' ~ 0.4

— Pieux battus : Ktand’' ~ 0.8
qgs=c +o! <K -tand

v,moyen

R, =Qu=Rp+ Ry = ApCIp + UpLQS

6.2.3.2 Sols cohérents (court terme)
e La résistance en point unitaire g,

gp = ¢y - Ne

e La résistance au frottement latéral unitaire g

— Pieux forés : s =~ 0.6 + 0.9¢,,, adhésion pieu-sol

— Pieux battus : s =~ ¢,
Qs =S

R, =Qu=Rpy+Rs = Apr + Uqus
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Figure 6.8: N facteur de portance et profondeur

6.2.4 Formules de Battage
6.2.4.1 Formule des Hollandais

On dérive dans un premier temps la formule de battage la plus simple possible (aussi appelée formule des
hollandais). Dans ce qui suit, on note

e Pp le poids du mouton
e P. le poids du casque
e P, le poids du pieu

On s’intéresse a la relation entre ’enfoncement du pieu, que 'on note ici s, et la réaction dynamique du sol
Qdyn du au choc du mouton. Dans un premier temps, en appliquant I’équation de la dynamique au mouton,
on détermine facilement la vitesse V,, du mouton lors de 'impact avec le casque. En effet, pour une hauteur
de chute h, 'intégration de ’accéleration du mouton en chute libre

av
a9
donne
2h
h = §gti2mpact - timpact = ?
soit

[2h
Vo= gtimpact =g ? =V 29h'

Au moment de l'impact, en considérant ’hypothése d’un choc mou (sans rebond), la conservation de la
quantité de mouvement s’écrit
Pp-Vo=(Pp+ Pc+ Pp)-Vj

On notera par la suite P = Pp + Po + Pp, la vitesse aprés impact Vj est donc:

Pp Pp
VIi="Z.V,= -2 .1/20h
0 2 0 P g

. Ensuite I’équilibre du pieu (mouton, casque) s’enfoncant dans le sol, s’écrit donc:
dv _ Pdv
F=m— P - n=——
D F=mg Qayn =
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Figure 6.9: Répartition des charges sur un pieu
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Figure 6.10: Elasticité du pieu

En négligeant le poids du systéme P par rapport a la réaction dynamique du sol Qdyn (dans les forces
appliquées), on obtient - en prenant pour lorigine des temps, le moment de I'impact:
gt

1 t?
= Volt - iQdyn?
ieu s’arré _ . _ VP
Le pieu s’arréte lorsque V (t,) = 0, soit en ¢, = aymt
yn

s(ta) = s
que l'on peut re-écrire

1 VPP

et enfoncement correspondant s(t,)
B 2 deyn

h P}
Qdyn g ?
6.2.4.2 Formule générales
capacité portante statique.

En partant de la charge dynamique donnée auparavant, les formule des Hollandais permettent d’estimer la

hP?
Qdyn = D

sP

Qa = Y

n

n = 6 uniquement lorsque 1'on utilise la formule des Hollandais. Si on souhaite ré-écrire ’expression en
par Pph, I'énergie perdue vaut hPD%

PDh:Qdyn'5+hPD

. e Py . , . . . , . . .
terme ¢énergétique: Qayn s = h=% ou Qayn - s représente I'énergie utile. L’énergie de battage est représentée
P

On prend maintenant en compte 1’élasiticité du pieu. (réf figure ci-dessous)

On remplace s — % + s comme montré sur le schéma ci-dessus. Aini, Qayn (s + %) =h
Estimation du raccourcissement élastique sy

P}
.
Pour s =0 on a Qayn =

2 hPp
- S0 P
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Elasticité du pieu

570 _ Qdyn

2 APEP
2 2LhP,%_
Y ApEpP

L 2hP?
S = _— —
0 Ap EpP

Qa= % avec n = 4pour la formule de Crandall.

e F'p, module élastique du pieu

e Ap, aire du pieu

6.2.4.3 Equation générale
—e2
nPph = (Qayn — (Pp + Pc + Pc))s + nPDh(PPLp)(l) + MQiynﬁ
e nPph, énergie de battage ot ¢ correspond au rendement de battage 0.75 < 7n < 1.
¢ (Qayn — (Pp + Pc + Pc))s, Pénergie utile.
° nPDh(PPL}M, la perte d’énergie due au choc.

— e le coeflicient de résistivité du choc, e = 0 pour un choc mou. e = 1 pour un choc élastique

’ (=1 ‘ Energie utile \ Perte diie au choc | Elasticité du pieu \ n ‘
Hollandais Qdyn - 8 e =0, mou Non, =0 6
Crandall Qayn - 5 e =0, mou w=0.5 4
Stern (Qayn — P)s e#0 nw=0.5 3
QA — Qdyn

6.2.4.4 Applications

Diagramme de battage Projet pour lequel on désire un @ g4donné. On choisit la formule de Crandall,
soit Q4 = Qfly" avec n = 4.

S0 P2
Qdyn(s""_?):h%
o= I Pp_s0
Qdynp 2

. . so
On estime Qgynainsi que 3.

6.3 Essai de chargement statique
6.4 Groupe de pieux

6.5 Frottement négatif

On appelle frottemement négatif, une inversion su signe de la contrainte de cisaillement agissant le long du
fiat du pieu (par rapport a la suite initiale). Un telle inversion va se produire si le tassement du sol aux
alentours du pieu est plus grand que le tassement du pieu.
Ce phénomene se développe dans le temps lié au tassement du sol. Il est donc maximal a long terme.
La conséquence est une surcharge du pieu, notamment pour les pieux colonnes. Pour les pieux flottant,
cette surcharge induit des tassements additionels.
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6.5.1 Estimation du frottement négatif
6.5.1.1 Sur toute la hauteur de la couche compressible

Le frottement négatif s’applique sur toute la hauteur de(s) couche(s) compressibles. En notant ¢ la surcharge
sur le sol au niveau de la couche compressible (de part et d’autre du pieu mais n’agissant pas sur le pieu), le
frottement négatif unitaire ¢, est simplement donnée par la contrainte effective horizontale fois le coefficient
de friction de l'interface

qsn = 0, (2)tand = (¢ + /(2 — z.)) K (z) tan §

ou ¢ est la charge sur la couche compressible en z = z.. On integre donc en suite sur toute la couche
compressible pour obtenir l'effort (surcharge du pieu) résultant agissant sur le pieu:

ze+H
an = 7TD/ QSn(z)dZ

argiles molles/ argiles raides sables &
sol organique graves
pieu foré 0.15 0.2 0.35
foré tubé 0.1 0.15
Pieu battu 0.2 0.3 0.45

Table 6.1: Valeurs “typiques” de K tand pour I'estimation du frottement négatif

6.5.1.2 Sur une partie de la hauteur de la couche compressible

Le frottement négatif ne se développe pas forcement sur toute la hauteur de la couche compressible. On peut
estimer une profondeur sur laquelle le frottement négatif agit comme suit.

1. On estime le profil du tassement du pieu u,(z) en fonction de la charge appliquée en tete
2. le profil du tassement du sol us(z) en fonction de la charge appliquée sur le sol (mais pas sur le pieu)

La profondeur pour laquelle u,(z = h) = u,(z = h) définite la limite entre les zones de frottement négatif
(z < h,up < ug) et de frottement positif (z > h,u, > us). On estime ensuite la résultante du frottement
négatif (effort de tension dans le pieu) comme précedemment.

6.5.1.3 Effet d’accrochage du sol autour du pieu

Il y existe une zone de transition entre le pieu et le sol : la contrainte effective o}, a l'interface du sol-pieu est
plus faible que la contrainte effective “loin du pieu”. Il existe des méthodes empiriques pour prendre cet effet
en compte (correction qui tend a diminuer leffet du frottement négatif).

6.6 Meéthodes aux modules de réactions - sollicitations mixtes

Avant de passer & l’évaluation des tassements d’un pieu, on introduit la méthode dites des modules de
réactions. Cette méthode “modélise” le comportement du sol par un loi “local” de type ressort et modélise
les élements de structures avec une approche classique (théorie des poutres, plaques). Cette méthode peut
donc etre utilisée pour de nombreuses applications d’interactions sols-structures.

Cette approche permet de coupler facilement un code de calcul de mécanique des structures avec la
“réaction” du sol. En revanche, il convient de se rappeler qu’intrinséquement une telle approximation ne
prend pas en compte le fait que les déformations d’un milieu continu ne sont pas simplement “local”: les
contraintes induites se transmettent sur des longues distances.

De nombreuses “lois” empiriques pour les modules de réactions du sol ont donc été “developées” dans la
pratique.
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6.6.1 Théorie des poutres
6.6.1.1 Equilibre

On considére un élement de structure élancé (poutres, pieu etc.) droite selon ep, ayant une section S(x1)
dans un mouvement plan du type u = uq(x1,z2)e; + uz(x1,x2)es. On note N Dleffort normal, T Veffort
tranchant et M le moment fléchissant (par rapport au :

N:/0'11dS T:/O'lgdS M:/.IQO'HdS
S S S

les équations d’équilibres quasi-statique se réduisent &

dN

dy + fi(z1) =0

dT

dzy + fa(x1) =0
dM
T =0
d$1

ou fo dénote la distribution de pression appliquée sur la surface externe S de la structure élancé dans la
direction normal , et f; la distribution de pression tangentielle. Dans la méthode des modules de réactions,
on va relier ces distributions d’efforts au déplacement relatif de la structure et du sol (& un module de réaction
du sol).

6.6.1.2 Loi de comportement de la poutre

Le déplacement dans un mouvement plan est du type

u= (ul(l‘l) + 9(1‘1).%‘2)61 + UQ(xl)EQ

€11 = 57— 7 T2 €2 =5\ 53—
6$1 81‘1 2 8$1

de plus pour une poutre droite la rotation local 6 est égal a (relation géométrique)

8U1 00 1 <8UQ 0)

. 8u2

0= —=
8951

Elasticité linéaire donne les relations de comportements:

e Traction-compresssion

3u1
N=ES—*
S(“)xl

avec E le module d’élasticité.

e Flexion avec I = f S 23dS moment quadratique par rapport a x_3

80 82’[1,2
M=FI— =FI
0z ox?
e (Cigaillement 5
U2
T=2uS——=
s 8%1

On notera que la convention de la théorie des poutres est celle de la mécanique des milieux continus.

Notation usuelles en géotechniques:
On notera par la suite u; = u et us = v. De plus souvent, pour des élements type pieu ou paroi verticale,
on aura x; = z. De meme pour les distributions de forces appliquées, on notera f; = f et fo =1
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6.6.2 Reactions du sol

Prenons I'example d’un pieu dans un sol homogéne ayant une sollicitation purement horizontal en téte H,
on va modéliser la réaction horizontale du sol comme étant fonction du déplacement horizontal du pieu dans

le sol. On écrit
r(z) =r(z0(2))
Modélisant la reaction du sol en faisant I’hypothése d’élasticité:
r=kp(z) x v(2)

On peut étendre la modélisation au cas plastique en introduisant une limité d’élasticité pour cette réaction -
au dela de laquelle elle devient constante. Par exemple, pour un modéle de type elastoplastique parfait, on
écrit ensuite r = ry pour v > vy. En résumé:

. kn(2) xv(z) v <ry/kn
iy v > 1y /kn

Utilisant la théorie des poutres, la loi de comportement de la poutre, la loi de reaction du sol et les
conditions aux limites (encastrement, effort donnée etc.), on peut résoudre pour la déformée et les efforts
dans la structure.

6.7 Tassement des fondations profondes

6.7.1 Estimation basée sur les modules de réactions / cambefort-cassan
Dans le cas d’un pieu chargé seulement axialement, I’équilibre du pieu se réduit a celui de 'effort normal:

dN

—— + f(z)=0
4 f@)
la distribution de pression tangentielle au pieu provient de la résultante du frottement latéral autour du pieu
(qui agit dans le sens opposé a laxe x): f = —wDgq,. En introduisant le comportement du pieu, on obtient
mD? | d*u
TEP@ - 7TDq5 =0

Dans le domaine des charges de services, les observations faites lors d’essais de chargement statique par
Cambefort, on montré que 1’on pouvait décrire la mobilisation du frottement latéral par un ressort élastique

gs = Bu B :[Pa/L]

De la méme maniére, la réaction en pointe est décrite par un loi linéaire:

R a la dimension d’une contrainte.
En introduisant la mobilisation du frottement latéral dans I’équation d’équilibre pour I’éffort normal, on
obtient 'ODE
., 4B

F—au(x)zo a=
x

qui adment une solution homogéne sous la forme
u = Cy exp(az) + Cs exp(—azx)
Les constantes d’intégrations sont obenus a partir des conditions aux limites:

e En téte du pieu (x = 0), pour une charge compressive axial P (dans le domaine des charges de services)

_ oy By du  Epa _
P=N(z=0)= nD?/4dx  7wD?/4 (C1 =)
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e En pointe (z = L),
E, du R

—N(z=1L)= D /idr = Bu(x: L)
on obtient
Eya R
=D%/d (Crexp(aLl) — Coexp(—al)) = D (Crexp(al) + Cyexp(—al))

au final on obtient la solution dite de cassan pour le déplacement en téte du pieu

4p 1+ aTE;EP tanh(al) AB
~ 7D R+ aDE,tanh(al) © \| E,D

u(z =0)

Valeurs des coefficients de réactions:

e Pieu Foré
R =~ 4.5F,, B~ 0.42F,,

e Picu battu
R~ 13.5E,, B~ 1.25F,,

avec E,,, le module pressiométrique (obtenu & partir de la phase linéaire de 1’essai préssiométrique).
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Chapter 7

Calculs hydraulique en régime
permanent autour des ouvrages -
instabilités d’origine hydraulique

7.1 Ecoulements en régime permanent

La conservation de fluide en régime permanent s’écrit:

0q, 0q.

co=0= =&
V-4 Ox 0z

et la loi de Darcy:
oh
i = —k =k xi;
q oz, X 1
q=~ki

Dnas le cas homogene & isotrope, on obtient donec (en 2D)

0*h  9%h
A = — _— =
L ox? 022 0
eten 3D
o o
ox2  oy? 022
Dans le cas d’un sol homogéne, pour une permeabilité anisotrope, on obtient (ici en 2D)
0%h 0%h
— 4+ kvi
Ox? Oy?
0%h 0%h
3 thkas
O (ky/kn)x Jy
———
X2

X = k‘v/k’hl’

Rappels nappe libre vs captive, conditions aux limites générales
Notions d’équipotentielle et de ligne de courant. Flow-net
Flow net

0

kh =0

=0

An

AgR As

A¢

7.1.0.1 Ecoulement autour d’un puit (nappe captive)

Nappe confinée de hauteur t
hoo — h
=2kt ———
@ =2kt TR,
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7.2 Ecoulements en nappe libre - approximation de Dupuit

Qx=/qm=—k><h%

Dupuit (width )

ox
i.e. 3D -> 2D
Oh?  OR?
522 T2 =0
T dy
2D -> 1
an? _
dx?
reservoir 2 po
_ k_ 1 19
@ 2L

7.2.1 Ecoulement a travers un barrage en terres

7.2.2 Ecoulement autour d’un puit

Nappe libre Dupuit (debit >0 en production(

h2, — h?

@=mh e i

Sichardt
Reoo & 3000(hoo — hoy)VE

7.3 Ecoulement autour d’un élement de souténement

7.3.1 Rideau de palplanches infini

schéma.

Simplifications: i) perte de charge uniquement en aval (cas d’une fiche dans une couche tres permeable),
ii) aucune perte de charge (paroi fiché dans un mileu impermeable)

Solution de mandel (sol homogéne isotrope).

Attention Mandel donne la perte de charge moyennée em fonction de « (définit comme le rapport entre
la perte de charge aval et amont), a est solution de ’équation implicite suivante:

t— 1ty

tanma — o = T ——m—
hy + ty

t—ty

i >0lona la formule approchée suivante

Dans le cas

0.81
L+ /T4 (hw + tw) /(E — tw)

o~ 0.095 +

La perte de charge en amont est donnée par:

. hu} + t’u)
= 1 — _—
|Zamont| ( a) hw ¥ t
en aval
sl = a2
aval| — t_ tu;

Repartitition de la pression de pores
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En amont (coté du terrain) en prenant l’axe z vers le bas, on a alors h = u/7,, — z et donc
ou Ooh 1
9z "\ o2

on

a._ — ‘iamont|
0z

et ici

On obtient donc (pour z > zgy):

hy + tw

vt )

u(2) = Yw(z = zgwt) — (1 — @)Y
Notamment la pression de pore en pieu de paroi est
Uy = u(z = L) =y (t — to) + @y (hey + to)

on peut recrire
U

e

u(z)

(z = Zguwi)

En aval (coté excavé) on a

Oh

0z = |ia'ual|

et pour z > H +t,,, en définissant 2z’ = 2 — H

hy + ty
w(z') =y (' —tw) + a*yw%(z’ — tw)

et on a évidemment continuité des pressions en z=L, u(z’ = t) = u.,et du coté aval on peut écrire

/ /
= — tw
u() = (e~ )
7.3.2 Coffer dam
Davidenkoff - perte de charge aval (moyenne)
D,
hy = ———hy
G =3+ o,

Q1 o(dr/Th,d2/T?)

debit par métre de batardeau

k
- " h,
1 O + Dy
Enceintes fermées
e circulaire de rayon b
Dy k
By =13——2 _h, = (270)0.8——— Dy,
Ay 3(1)1_’_(1)211 Q (71-)08(1)1_’_(1)211
e carrée (demi-coté b)
Py k
hy = 1.3———=——h,, (coté =0.7Tx 8——hy
“ Q1 + Py (cote) Q D1 + Py
®,
hw =12—=—h i
ahy, B By w(coin)

e Rectangulaire B = 2b et L

k B B

81 Page 81



Brice Lecampion

O, et B, £-60 50 40 30
1RPZEP%
3 //;/ // v
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HH gt
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NNV #2z2222 55
Y ——Zaail
%z
O 01 02 03 04 05 06 07 08 09

Figure 7.1: Davidenkoff- chart

7.4 Rabbatement de nappes autour d’une excavation

Approche...
Formule de Sichardt
R~ 3000(H — h)Vk

avec k and m/s , H en m donc le prefactor 3000 est en 1/(m/s)"1/2.
note en general de I’équation de diffusion....

R =+4ct= /4 i t
X My

7.5 Instabilités d’origine hydraulique - phénoméne du renard

systemes de coordonnées z vers le haut , contraintes > 0 en compression

002y 004,
ox 0z
0oy, 00
+7=0

=0

890+8z

On récrit en contraintes effectives agj =0y +ubdi; = 045 + Yw(h — 2)0;5
la charge hydraulique est

h=— 1tz
Yw
(z vers le haut, w.r. un plan de reference) -> note au repos (sans écoulement h=0)
D’oit:
dol,  Ool, N oh 0
Ox 9 or

dol, 0o, oh

adady R — = O

o + Dz +7waz+(7 Yuw)
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Forces d’écoulement
’Ywi = _'szh

Pesanteur déjaugé:

!
— €z

Un renard hydraulique arrive lorsque le gradient hydraulique est supérieure au gradient hydraulique critique:

7;0 = 'y//’}/w

i.e. quand les forces d’écoulement sont supérieures a la force de pésanteur déjaugée.

7.6 Défaut de portance d’une paroi - renard “solide”
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Chapter 8

Stabilité des talus

8.1 Stabilité d’une pente infinie - glissement plan

8.1.1 Cas sans eau
8.1.1.1 Approche par facteur de sécurité

On se réfere a la Fig. 8.1. On étudie le cas d’un glissement plan paralléle & une surface inclinée infinie
d’inclinaison £3.

On définit le facteur de sécurité comme le rapport entre la force résistante le long du glissement Ficgistane =
T et la force motrice venant de l'inclinaison du terrain Fj,oprice -

Comme la pente est infinie on peut raisonner sur un élement unitaire L = 1 dans la direction de la pente
(cf. Fig. ). Le poids W de cet élement est simplement

W =~Ld = ~vyLH cos 8
La composante normale du poids sur la surface de glissement est donc
Wn =N =Wcosp
et la composante tangentielle qui est la force motrice
W1 = Frotrice = Wsin 3

La force résistance le long du glissement plan est obtenu en utilisant le critére de Mohr-Coulomb qui relie
la contrainte normal et tangentielle & la rupture

Fresistance =T = cL + N tan ¢

Figure 8.1: Glissement plan & une profondeur H - pente infinie.
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On obtien t donc le facteur de sécurite

F o= Fresistance o cL+W Cosﬂtand)
—

Fmotrice W sin B

que 'on peut réecrire
c tan ¢

F =
* yHsinfcosf  tanf
et on retrouve bien le résultat intuitif que pour un sol sans cohésion, I'inclinaison de la pente maximale est
égale au coefficient de friction du sol (angle au repos).

8.1.1.2 Lien avec I’analyse limite

On se propose de faire maintenant un raisonnement similaire par une approche cinématique en analyse limite
- qui nous donnera donc une borne supérieure. Ici, on fait également le calcul pour un élément unitaire le
long de la surface de rupture.

L’analyse limite est basé sur le modéle rigide plastique. On prendra tout d’abord un critére de Mohr-
Coulomb associé. On a vu (cf cours d’analyse limite), que le long d’une surface de glissement, pour un critére
de Mohr-Coulomb de type associé la discontinuité de vitesse (qui vu que seul la partie supérieure de la pente
bouge correspond ici & la vitesse de la partie supérieure de la pente qui glisse) U fait un angle égale & ¢ avec
la surface de glissement.

La puissance des efforts extérieurs dans ce cas est:

Pewt(U) = / AU,V = 4||U||sin(B — ¢) x L x H cos f3
1%
et la puissance dissipée le long de la surface de glissement (puissance résistance maximale) est
Pusen(l) = [ el cos és = e U] cosr x L
L

et on obtient en utilisant le ratio de la puissance dissipée et de la puissance extérieure et la puissance des
effort extérieurs, le coefficient de sécurité suivant:

FUB _ ccos ¢
$  yHcosBsin(f — ¢)

et pour un sol de cohésion nulle, ce facteur de sécurité est zero ! On aurait pu déja déduire ce résultat car la
puissance dissipée est facteur de c.

8.1.1.3 Ecoulement plastique non-associé

Ce résultat non-intuitif et différent de celui précedemment obtenu est du & ’hypothése d’ecoulement plastique
associée. Une telle hypothése n’est pas réaliste car le fait que le vecteur vitesse fasse un angle égal au coefficient
de friction implique une dilatance continue pendant la déformation. Expérimentalement, on observe que aprés
une certaine distance de glissement la dilatance “sature” et la vitesse de glissement devient paralléle a la surface
de glissement. Il convient donc de lever la restriction de prendre un critére de plasticité non-associé. On
introduit donc un potentiel plastique g différent du critére de rupture f- dans le repére contraintes normale
/ tangentielle & la surface de glissement plan.

flopn,7T)=7T—c—o,tane

g(0n,T) =T — op tandp
o ¢ est 'angle de dilatance (¢ < ¢) avec

t; = o;;n; vecteurs contraintes sur Sy,
ts = T = s;04jn; contrainte de cisaillement sur Sy,

tn, = on = M;04;n; contrainte normale sur Sy,
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ol n; est la normale & la surface de glissement Sy; et s; le vecteur tangent associé.

On écrira ’écoulement plastique non-associé sous la forme
99
]l = A t;) =0
([;]] d@ti f(t:)

ol A\g est un multiplicateur plastique de dimensions [L/T] ici et Agf = 0 et Ay > 0. on obtient donc

[[itn]] = —Aq tan v
[[is]] = A
soit
i)} = = [0 sine

([s]] = HUH cos 9
On peut donc calculer la puissance dissipée (unitaire) le long d’une surface de glissement pg;ss

Piss = ti [[til] = 7 [[ts]] + o [[tn]

avec la rupture f =0, i.e. 7=c+ o, tan¢

sin v

0]

Ddiss = (¢ + oy tan ¢) HUH cosy — oy,

Pour une rupture développée ayant atteint I'état critique, la dilatance devient nulle (déformation purement
cisaillante), soit ¥» = 0. On obtient alors

55, = (c+ o, tan ¢) HUH
ou le superscript C'S est une abbréviation de “critical state”.

En re-faisant a I’état critique le calcul pour cette surface de rupture plane infinie. La puissance des efforts
est également changée car la vitesse de glissement est paralléle au plan de glissement

Pront (U) = / ZU.AV = ||| sin(B) x L x H cos 3
1%
et la puissance dissipée est - comme o,, = % cos 3 = yH cos® 3

Paiss(U) = /;pdissds = (c+~H cos® Btan ¢) HUH L

et on obtient un facteur de sécurité

P c tan ¢
®  ~NHcosfsinfB tanf

On retrouve éxactement le résultat obtenu préalablement par une approche d’équilibre limite - qui faisait
Ihypothése implicite d’un écoulement non-associée (pas de dilatance). Il est important de se rappeler que
la dilatance du sol “sature” pour des déplacement suffisant et la déformation plastique s’éffectue alors sans
dilatance (sans changement de volume). L’hypothése d’un écoulement associé n’est pas réaliste pour analyser
des grand glissement. Les méthodes de stabilité des pentes se placent souvent a 1’état critique (sans dilatance
- écoulement non-associé) implicitement.

8.1.2 Présence d’eau

Faisons maintenant, le calcul pour le cas d’une nappe & une distance H,, du glissement plan. Dans ce cas,
I’écoulement d’eau est paralléle au plan de glissement et & la surface. Il convient cette fois ci d’écrire le critére
de Mohr-Coulomb en contraintes effectives. La pression d’eau u le long de la surface de glissement est ici:

U = Y H,y cos 8
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Figure 8.2: Pente infine avec écoulement paralléle

et sa résultante est ucos 8 x L. La force résistante (puissance dissipée / par la vitesse de glissement) devient
Fresistante = (C + (’7H - ’YwHw) COS2 ,8 tan ¢) L

et le facteur de sécurité est maintenant

c (A/H — 'YwHw) tan¢

Fs = n
vH sin 5 cos 8 vH tan 8

On notera que pour le cas H,, = H et un sol de cohésion nulle comme ~,, = v/2 , le facteur de sécurité
est divisé par 2 en présence d’eau !

(’VH _’VwHw) tand) ~ ltangb

F, = R~
vH tanB  2tanf

8.2 Stabilité d’un talus fini

8.2.1 Glissement plan

On se souvient que pour un talus vertical (8 = 7/2), les bornes de I’analyse limite (sup et inf) donnent (cf
semaine 2):

H
37380 _H _gog 059

" 71—sing ~ ¢ 1—sing

et on avait obtenu par un calcul par Pextérieur (cinématique) en faisant ’hypothése d’un glissement plan

(VH>+:4COS¢

c 1 —sing

On étend ici ce calcul au cas d’un talus d’inclinaison (.(sans écoulement d’eau). Les résultats seront
applicables soit & court terme (¢ = ¢,, ¢ = 0) notammant dans les argiles, soit pour le cas sans eau.

On se référe a la figure 8.3. Comme dans le cas d’un talus vertical (8 = 7/2), la puissance des efforts
extérieurs est:

Peat.(U) = / AU, dS = / Y| U|| cos(ex 4 ¢) dS
OAB OAB

. 1 1
= ||U]|| cos(a + @) x (§H2 tan o — §H2 cot )
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Figure 8.3: Talus incliné - glissement plan.

La puissance dis sipée le long de la surface de glissement (modéle associé) est identique que pour le cas
vertical:

cl|U| cos ¢

Paiss(U) =/ c||U]| cos pds =
AB

COoS &

L’application du PPV donne ’expression suivante de la borne supérieure paramétrée par a:

ﬁ 9 cos ¢ 1

¢ “cos(a+ @) (sina — cosacot 3)

Il convient donc de minimiser cette expression par rapport & o pour obtenir la borne supérieure la plus petite.
Que 'on obtient pour e.

d : _
T cos(a + ¢) (sina — cosacot ) =0
sin(2a+ B+ ¢) =0

& savoir pour

T _¢+p8
a=X_9%7TP
2 2

[On retrouve bien a = 7/4 — ¢/2 pour le cas § = 7/2]. La borne supérieure est au final:

vH 4 cos psin B

c 1—cos(B— o)
[On retrouve bien 4 cos ¢/(1 — sin ¢) pour le cas f = 7/2].
Le facteur de sécurité (rapport puissance dissipée max / puissance des efforts exterieures) est
_ < 4cos¢sin 8
"TYH1 - cos(B - 9)

Le cas ¢ = 0, se simplifie en
¢ 4sinp c 4

s vH 1= cosf3 - ~H tan 3/2

8.2.2 (Glissement circulaire

On effectue ici une approche de type equilibre limite qui est tres souvent utilisé en mécanique des sols -
attention cela différe de I'analyse limite par ’extérieur dans le sens que 1’on utilise pas le principe des travaux
virtuels.

Considérons le cas d’un talus inclinée dans un milieu purement cohérent (¢ = 0) de cohésion ¢ avec une
surface de glissement circulaire de rayon R passant par le bas de talus et ayant comme centre le haut du talus
(point O). 11 est classique de définir un coeflicient de sécurité comme le rapport entre le moment résistant
(du 4 la cohésion sur le plan de glissement) et le moment moteur du au poids du sol en mouvement. On a ici

Mresistant =cX R(’IT - ﬂ) X R
M ppoteur = WSIH(B/Q) X |OG|
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Figure 8.4: Talus inclinée - sol purement cohérent - glissement circulaire

avec le poids W de la section circulaire égal &
W =yR*(r — f)

La distance |OG| entre le centre de gravité et le centre de la section circulaire est donnée par la relation
géométrique suivante:

4Rsin(n/2 — 5/2)

OG| =
N
On en déduit
o 3cR?*(m — fB)
® 4yR3sin(B/2) sin(n/2 — 5/2)
¢ 3(r—pB)sinp
- ~NH 2sin(B)
_ ¢ 3(m=F)
- vH 2
On notera que la limite
c 3w c
li F,= ——~235—
Bomy2 SH 1 S0

est différente de la meilleure estimation obtenue par Panalyse limite qui se situe entre 3.73 et 3.83 (x 7%)'
Ce résultat est une illustration du fait que les approches de type equilibre limite ne donnent ni une borne
supérieure ni une borne inférieure. En revanche, les estimations obtenues pour des ruptures de glissements

sont assez proches et donnent des résultats plutot conservatifs.

8.2.3 Glissement circulaire avec écoulement

En pratique, pour des sols frottant, les surfaces de glissement seront des spirales logarithmiques. Une premiére
approche consiste & garder 'hypothése d’un glissement circulaire mais de relacher ’hypothése que le centre
du cercle se situe en haut du talus et que le rayon du cercle de glissement est égal & H/sin 8. Il convient
alors d’optimiser par rapport & la position du centre du cercle afin d’obtenir le coefficient de sécurité le plus
faible.

On obtient les abaques de Caquot-Kérisel...
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8.2.4 Meéthode des tranches (tiré de Lancellota)

8.19.2 Method of slices

The previous analysis is very effective in determining the safety factor when consid-
ering a homogeneous infinite slope and the failure mechanism is of the translational
type. The method of slices has been developed to analyse more complex situations,
and where more than one layer with different strength parameters is present, the
expected groundwater regime differs from simple patterns and the failure surface may
be composite.

In this method (see Figure 8.60) the soil mass is subdivided into a number of vertical
slices and the equilibrium of each slice is then considered. If a number of & slices is
considered, the unknowns are the following:

n forces NI normal to the base of each slice;

{n— 1) normal forces E and (n— 1) shear forces X; at the interface of slices;
n coordinates a to locate the normal forces N7

{n — 1) coordinates b to locate the interface forces EI.

If the further unknown of the safety factor is added (note that the safety factor gives
the possibility of expressing the shear forces at the bottom in terms of N ), then the
total number of unknowns is {57 — 2) to be compared with the number 3n of available
equilibrium eguations.

Presuming that the slices are so thin that the forces N} can be located on the cen-
troid of each slice, then there are (4m — 2} unknowns, but the problem still remains
statically undetermined. It is then necessary to introduce additional assumptions in
order to remove the extra unknowns. These assumptions usually refer to the interface
forces, and they explain the differences between various methods (see for example
Maorgenstern and Price, 1965; Sarma, 1973). In the sequel, we limit the presentation
to some approximate methods of analysis, which has been proved to give satisfactory
results.

ot E A
N

Figure 8.60 Method of slices.
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8.19.3 Simplified Bishop method

In this method {Bishop, 1955), the failure surface is represented by a circuolar sliding
surface (rotational failure). With reference to Figure 8.61, equating the moment about
O of the weight of the soil with the moment of the forces acting on the sliding surface,
the safety factor is given by:

F=R-E[ﬂf.f_.+tN_.—U‘.}tan¢f]1 (£.118)

> W

A= X

_tang’
End = E

Figure B.&1 Simplified Bishop method.
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the magnitude of the mobilized shear strength being:

¢l +(N.— U.)ta
7 Gt (N~ Ujtang’

. - (8.119)
From the vertical equilibrium of the slice:
W, — T,sina; — N;cosa; — (X, — X;) =0, (8.120)

we can derive the value of N, and, by substituting this value into {8.118), the
expression of the safety factor becomes:

E[{ab.—+ Wil —r,)tang’ +(X; — Xjy4 Jtﬂ"w*lml]

F : (8.121)
3 Wsina,
where:
tangtana,
M, = cose, (1 + w) (8.122)

and r, is the ratio which gives the pore pressure as a function of the total weight of
the column of the soil above the considered point, i.e.:

..
r,= #

(8.113)

Assuming that X; — X; ., = 0 throughout, the factor of safety can be computed by
means of the approximate expression:

kM [{.sfb,- + Wi{1 - f"}tanl;ﬂ":lML]

F=
> W.sin o,

(8.124)

where M_ is given by (8.122).

Mote that in equation (8.124) the safety factor appears within the summation on the
r.h.s. as well on the Lh.s., so that an iterative procedure is needed. An initial valoe of
the safery factor is guessed (closed to unity) and inserted in the r.h.s. and the value of
F is computed. This value is the new input on the r.h.s. and the procedure is repeated
until an almost constant value of F is attained {usually three to four iterations provide
the required convergency).
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Equilibre dans le repére normal - tangentiel & la ligne de glissement

ib; 'b; .
i + g% (W; + AX;)cosa; + AE;sine; =0

COS (&¢; COS (¢;
TRi — (Wz + AXl) sin oy — AEZ COS ¢y = 0

avec

b;
Tri = (' + o' tan ¢) /Fs
oS

et la définition du facteur de securité a partir de ’équilibre global des moments par rapport au centre du
cercle de rupture:
>+ o' tang)b;/ cos oy

Fs = n
> Wisina;

Fellenius: AX; =0 et AE; =0 alors on obtient
o'b; = Wi cos® a — u;b;

et au final
S (b + (W cos? a — u;b;) tan ¢) / cos o

F, = .
Yo Wisina

Bishop simplifié AX; =0 on obtient
AE; = Tg;/ cosa; — (W;) tan o

!
g bL Uibi
22— (W) cos a; —
COS (¢; COS (¢;

— Tgr; tan a; + (W;) tan «; sin

soit encore
tan o;

o'b; = (W; —u;b;) — (¢ + o’ tan ¢)b; =

i.e.
(' + o' tan @)b; (1 + tan o; tan ¢/ Fy) = ¢'b; + (W; — u;b;) tan ¢
d’oit on obtient le facteur de sécurité

1
/ . — . .
22(bi+ (Wi — wibi) tan g) x cosa; X (1 + tan a; tan ¢/ Fy)

Yo Wisina

F, =
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Chapter 9

Poussée - butée des terres sur les
éléments de souténements

Pousee - Butée
Mouvement relatif sol/écran

Etat au repos
oy, = K,o,

K,~1—sin¢
Ko~ (1—sing’) OCR™?

9.1 Théorie de Rankine

Implicitement, 'angle friction du sol dicte l'orientation de la résultante sur le mur (en d’autres termes, dicte
Pangle de friction mur/sol est égal a ’angle de friction du sol).

Actif -
3t
oy, = K,ol, —2d /K,
Kﬁlfsinqb’i 5 E,ﬂ
“  1+4sing/ 4 2
1 2
Pa = §7H Ka
Undrained:
2¢y,
Zog = —
Y
Passive -
Eiald



9.1.1 Cas incliné

2

033 = 1zZcos"1
013 = 1yzcosising
OM = o/,

OA =7/,
ON = OCcosi
NC = OCsini
MC = OCsin ¢/

o, ON-MN

o/~ ON+MN

cosi — /sin® ¢/ — sin? i
K, =

cosi 4 /sin? ¢/ — sin? 4

9.2 Analyse limite

Lancellota Passive with inclinaison

K - cos 0

= _ . — (0055 + +/sin¢? — sin52) 2V tan ¢
cos? — 4/sin ¢2 — sin 2

s .
2) = arcsin (sm) + arcsin (smz) +6+1
sin ¢ sin ¢

9.3 Equilibre limite du coin de Coulomb

Coulomb

T=o0,tan¢’
loi des sinus

F w

sin(@ — ¢')  sin(r/2 46 + ¢’ —0)

1
W = §7H2tan (z 70)

2
1 tan (6 — ¢')
Ft=-ypg?—~_ "/
2 T tan(9)
mazimum
9 — E + 7/
42
T /
F, = §7H2tan2 <4 - 2)
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Coulomb cas Général:
cos(¢' — \)?
- — 2
cos? A cos(A + 9) [1 + \/WJ

a =

cos(A+9) cos(A—p)
€ah = Kah’ylz
cos(¢' + \)?

2
in(¢’ —0) sin(¢’+1)
cos? A COS((S - )‘) |:1 - Scos(/\+§) cos()\fl';) :|

K_

p =

9.4 Actions sur les éléments de souténements

9.4.1 Resultante des actions sur les éléments de souténements

9.4.1.1 Court terme

9.4.1.2 Long terme

/ Etat actif
eqa = Ko(¢',8,8)0l, — (1 — Ku(¢', 8, B))c’ cot ¢’
2¢vV/Kqgcas B=6=0

€a,h = € COSO

€ap = €q SN0

Ko p = K, cosd

Etat passif
e, = K, (¢',6,8)0l, + (K,(¢',6,8) — 1) cot ¢’

2¢’y/Kp cas §=£=0

ep,h = €pCOS 0

€p,v = €psind

K, =K,cosé
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Chapter 10

Murs Poids

10.1 Types - disposition constructives
10.2 Mur poids

10.3 Mur équerre
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Chapter 11

Parois de souténement

11.1 Types - disposition constructives

11.2 Defaut de portance en fond de fouille

Renard solide

11.3 Calcul des efforts le long d’une paroi

11.4 Dimensionnement

Soit r(z) la pression normale a la paroi (somme des poussées active, passive + des efforts d’ancrages > 0 vers
le cote excave, i.e 7(z) = eq — €pn, dans le cas sans eau / sans surcharge). Le calul de Ueffort tranchant V'(z),
du moment fléchissant M (z) et de la déformée y(z) de la paroi s’apparante & un calcul de poutre. Dans la
notation (axes des V positif vers le coté non-excavé, déformé positive du coté excavé)):

dM
PP V(z)
d2y

avec I et I le module d’elasticité et moment d’inertie (par metre lineaire de paroi) de la paroi . A noter que
- en tete (z = 0), la paroi est libre.

On considére une fouille de profondeur h, cas sans eau, y poids volumique du sol. Aucune surcharge n’est
prise en compte ici dans cet exemple simple. On peut généraliser facilement aux cas multi-couhces, avec
surcharges, avec écoulement etc.

11.4.1 Sans cohésion - sans eau - sans ancrage - Paroi simplement fiché
Dans ce cas simple, on a du coté amont une poussée active des terres. egp q:

€ah = ’YKahZ

Du coté avale, la butée passive des terres vaut dans ce cas simple
eph = YKpn(z — h) z>h
Le poids de pression nulle, i.e. le point pour lequel 7(z) = eqr, — epn = 0 (dans notre convention) est
toujours sous le fond de fouille. Dans ce cas simple, il est donnée par :
Kpnh
Kph - Kah

Zo —
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sa profondeur a sous le fond de fouille est

a=2,—h= 7Kahh
¢ Kph*Kah

Effort tranchant et moment fléchissant au dessus du fond de fouille (z < h)

1
—iK,,,h'yzQ

1
M(z<h) = 6 any 2’

V(z < h)

On denotera Vj, et My, les valeurs pour z = h (juste au dessus du fond de fouille)

Effort tranchant et moment fléchissant au dessous du fond de fouille (z > h)

1
V(z>h) = Vi —vKanh(z—h)+ 5 (Kpn — Kan) y(z — h)?

1 1
M(z>h) = M, +Vi(z—h)+ 5~yKahh(z —h)? - 5 (Kpn — Kan) y(z — h)?

11.4.2 Equilibre de la paroi:

Pour obtenir la profondeur de la paroi z, (ou la profondeur de la fiche ¢ = z, — h), on force 1’équilibre de
rotation en ce point:

M(z,)=0

C’est une équation du 3ieme degrée (cubique) avec inconnue z,, . (résolu par Euler....en 1738).

L’effort tranchant & la profondeur obtenue est en général non nul. Afin de satisfaire ’équilibre horizontal
(sans changer I’équilibre de rotation), il faut compter sur une force de contre-butée centré en z,, de longueur
totale b. Cette contre-butée C'B est reliée au coefficient de poussée passive des terres (cette fois du coté
amont de la fouille - i.e. d’ou le terme de contre-butée):

CB =1V(z,)
Par ailleurs on évalue la contre-butée avec la valeur de pousée passsive (de dimensionnement)
Zw+b/2 zZw+b/2
CB = / eph,adz = / vKpnzdz = Kppyz,b
Zw—b/2 Zw—b/2

ce qui permet d’obtenir la sur-longueur de contre-butée b.

11.4.3 Paroi ancrée et butée en pied

Dans ce cas, il convient de calculer l'effort d’ancrage A (sa profondeur étant donnée) et la longeur de la paroi.
On ecrit I'équilibre (rotation et horizontal) en bas de paroi et obtient donc 2 equations pour 2 inconnues.
Dans ce cas, il n’y a pas de contre-butée: d’ou I'appelation ancrée et butée en pied.

Il convient d’ajouter 'effet de 'effort d’ancrage dans les expressions précédentes de l'effort tranchant et
du moment fléchissant.

Effet de ’ancrage Soit une force d’ancrage ponctuelle (ou de button) & la profondeur z, et de valeur A
(exercé dans la direction du coté amont de la fouille). Dans ce cas, U'effort tranchant et moment fléchissant
du a Pancrage (en dessous de z,) sont:

Valz) = A z >z
Ma(z) = —A(z—z,) z > 7z

(et bien sur nul pour z < z,, la paroi étant libre en téte).
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11.4.4 Paroi ancrée et encastrée en pied

Dans ce cas, on veut assurer un encastrement en pied et donc on laisse une contre-butée se développer. Nous
avons donc 3 inconnues (effort d’ancrage, longueur totale de la paroi et la surlongeur de contre-butée). Il
convient donc de se fixer une des inconnues (par exemple, la longueur totale de la paroi) et de calculer les 2
autres en résolvant ’équilibre de la paroi.

11.4.5 Meéthode de la poutre équivalente - (Méthode de Blum)

Dans cette méthode -dite de la poutre équivalente - on fixe que le moment fléchissant soit nul au point de
pression nulle (ot 7(z) = 0). On résout donc I’équilibre de la poutre supérieure afin de déterminer effort
d’ancrage A et Ueffort tranchant V' (z,) au point de pression nul.

Dans un deuxiéme temps, on résout l’équilibre de la poutre inférieure. On a deux équations pour 2
inconnues: la longueur totale de la paroi et la sur-longueur de contre-butée. Il est plus simple d’exprimer
tout cela en fonction des resultantes des pressions qui s’applique sur la paroi

Dans le cas sans eau - sol homogéne - sans surcharge additionnelle discuté auparavant, on a donc:

1. Poutre supérieure:
V(20) + A= E4+ Eqp,

avec B, = %*thKah (h hauteur de l’excavation) qui s’applique en h/3 depuis le bas de l'excavation, et
Eup, = 2yKanh X (2,—h) s’appliquant & une distance (z,—h)/3 sous le fond de 'excavation. L’equilibre
du moment s’écrit donc - en fixant le moment M (z,) a zero:

A(zo — 24) = Eqg X (W34 25 — h) 4+ Eqp % %(zo —h)

On détermine donc facilement Peffort d’ancrage A et ensuite Peffort tranchant V' (z,).

2. Poutre inférieure: en notant t,, la distance entre le point d’encastrement et le point de pression nulle
2o

1

CB+V(z,) = Q’Y(Kph — Kt
1

V(ZO)tw = EV(KPh - Kah)tfu

avec
CB = Kppy(zo + tw)b

On détermine donc facilement ¢,, puis b. La longueur totale de la paroi est donc z, + t,, + b/2
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