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Coordonnées cartésiennes
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Coordonnées cylindriques
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Coordonnées cylindriques
changement de |u; = u,cos§ — ugsinf
coordonnées Uy = U, sinf + ug cos f
pour un vecteur i |uz = u,
U = Uy cosf + upsind
ug = —u;sinf + ug cosf
u; = ug
changement de |eyy = ¢, cos® @ + egosin® 6 — 2¢,4 sinf cos §
coordonnées €22 = €,r SIN° 8 + €59 cOS® O + 2¢.95infcos b
pour un tenseur |é33 = ¢€,;
du second ordre |€12 = (¢,r — €pp)sinfcosf + ¢,4(cos” 8 — sin? 8)
symétrique € €13 = €. 058 —¢€g.sinb
€93 = €p: 5N + ¢4, cos @
| Cr = €11 €052 0 + €308in° 0 + 2612 5in 6 cos O
lrap = €11 8In7 0+ €99 cos2 f — 2610 sin A cos @
(20 = ¢33
€rg = (€02 — €11)sinfcosf + €ya(cos” 6 — sin” 8)
l€r: = €13C088 + ¢agsinf
! €9: = —€138IN8 + ¢agcos
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Coordonnées sphériques
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Coordonnées sphériques
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laplacien d’un
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u =div (grad u) |[+(Aug + 7 sn’s ) = zin;:? - )es
u, cos g Uy N
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e r¥sin“0 Op  r2sin’f G  p2 sin‘f))ew

champ de tenseurs
du second ordre T

T=T..6 ® ér + Treér © €9 + Trge—r & e,

+Tor€0 Q& + Toafo @ € + Too6s CE,
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changement de
coordonnées pour les
vecteurs de base

€, = sin 8 cos p&; + sin @ sin € + cos §é;
€9 = cos b cos pé] + cos fsin P€s — sin O
€0 = — sin Y€} + cos pés
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[

1 = sin f cos pé, + cos § cos &y — sin PE,

Il

= sin §sin €, + cos fsin &y + cos Pe,

3 = cos &, — sin féy
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Coordonnées sphériques

changement [uy = u,sinfcosp + ugcosfcosp — u, siny
de ty = u, sinfsinp 4 ug cosfsinp + u, cos ¢
coordonnées |uz = u, cosé — uysinf
pour un U, = u) sin @ cos  + us sin d sin y + ug cosl
vecteur © |up = uj cosfcosp + upcosfsinp — uzsind
U, = —u) Sin @ + ua cos
‘2 2 2 2 ‘2
changement |¢;; = €., sin” 0cos” @ + €gg cOs™ 0 cOS™  + €, SIN" @
. bl . . .
de +2¢,95in 0 cosl cos™ p — 2¢,,5In O sinp cos p — 2¢4, cosOsinpcosyp
d ; _ ‘n? Psin? 2 gain? 2
coordonnées |¢uy = ¢, 8iN" 038in~ p + €4y €08~ §8in~ ¢ + ¢, €O8”
. T . . .
pour un +2¢cqsin 0 cossin” ¢ + 2¢,, sin Osin  cos p + 2¢4,, cos f sin  cos

tenseur du
second
ordre
symétrique
€

bl 1 .
€rrcos” 0 + €gpsin~ 0 — 2¢,.9sin 0 cos

€33
€12 = €, sin2 0sin  cos p + €g¢ OS> 05in Y COS P — €y SN P COS P
+2¢,45in 0 cos 0 sin i cos p + (€74 5in 0 + €9, cos 0)(cos? p — sin? p)
€13 = (€7 — €9)sinf cos 0 cos @ + €,4(cos’ § — sin® 8) cos
—¢rpcosfsinp + €5, sindsiny
€03 = (€,r — €4)sin 0 cos Osin @ + €,4(cos® 0 — sin? ) sin
¢ cOs 0 cOS — €5, 8N 0 cos e

€rr = €11 5in° 008> @ + €228in° Osin’ p + €33 cos” 0
+9¢125in° 0sin @ cos p + 2e135in 0 cos 0 cos ¢ + 2¢a3 sin f cos Osin v
€96 = €17 cos” 0 cos® © + €29 cOs® #sin® v+ €aa sin® 0
+2€10 cos” 0 sin ¢ cos p — 2€13sin 0 cos 0 cos ¢ — 2¢€a3 sin 0 cos sin ¢
€op = €11 sin’ @ + €99 cos? @ — 2€125in @ cos ¢
€9 = €11 5in 0 cos cos® @ + €ansinfcosOsin® o — €33 sin 0 cos 0
+2¢12sin 0 cos 0 sin ¢ cosp + (€13 ¢08 @ + €ag sin ¢)(cos? 0 —sin® 0)
€rp = (€22 — €11)sinf@sinpcos + ¢rasin f(cos’ p — sin” )
—é€13cosPsinp + €agcosfcosyp
€9p = (€22 — €11) cos @ sinpcosp + €12 cost?(cos"’ w— sin ®)
+é€13sindsinp — €agsinfcosp
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