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La vérifications des états limites ultimes (ELU - ULS) repose sur la détermination de(s) la charge(s)
maximale supportable par une structure (dans notre cas, une fondation, un mur de soutènement etc.). Dans
ce cadre, l’analyse limite est très couramment employée, notamment en géotechnique. Elle repose sur un
modèle rigide plastique du sol (en conditions drainées ou non-drainées selon que l’analyse est effectuée à long
ou court terme). Les formules “classiques” de capacité portante des fondations ont été obtenues par cette
méthode (avec plus ou moins d’approximations), idem pour la stabilité des talus. De plus, des nouveau logiciel
éléments finis (e.g. OptumG2) permettent maintenant de faire directement de l’analyse limite numérique et
donc d’obtenir des bornes des charges maximales pour des configurations complexes rapidement (sans devoir
résoudre le problème élastoplastique temporel complet). L’idée de ces notes est d’introduire les méthodes
d’analyse limite pour la géotechnique. Réferez vous au cours Mécanique des structures pour GC (Civil 223)
et au cours de Mécanique des milieux continus (Civil 225) pour plus de détails sur les concepts de bases.

Conventions En géotechnique / mécanique des sols, les contraintes sont typiquement compressives et donc
en pratique, la convention est de prendre les contraintes positives en compression. En ce qui concerne les
déformations, deux conventions sont possibles: i) soit on garde une convention d’extension positive mais cela
implique de mettre un signe − dans les lois de comportements (relation contraintes - déformation), soit ii) on
utilise la convention que les déformations de “contraction” sont positives (i.e. extension négative). On utilise
la deuxième convention ici. En résumé:

σij > 0 en compression
εij > 0 en contraction

On notera donc que comme εij > 0 en contraction, les déplacements seront positif dans le sens opposé du
système de coordonnée choisi (en pratique, on retombera sur ses pieds avec un peu de sens de physique).

1 Le problème rigide-plastique
Soit un domaine V de surface S, le problème rigide-plastique consiste en

• les équations d’équilibre (en négligeant les efforts inertiels - approche quasi-statique)

σij,j − bi = 0

où le signe moins devant les forces de volume est du à la convention de contraintes positives. On
utilise ici la convention de sommation sur les indices répétés, et la notation suivantes pour les dérivées
partielles

h,j = ∂h/∂xj

bi est une force de volume (en pratique le poids du sol). Le tenseur des contraintes est symmétrique
σij = σji (conservation du moment angulaire).

1
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• En tout point de V , le champ de contraintes est continument différentiable. Notons que des surface de
discontinuité (de normal nj) peuvent exister, mais le vecteur contraintes Ti = σijnj doit etre continu à
travers de telles surface, soit (

σ−ij − σ
+
ij

)
nj = [[σij ]]nj = 0

où [σij ] désigne donc le saut du champ de contraintes à travers d’une telle surface de discontinuitée.

• les conditions aux limites en tractions et déplacement imposés:

σijnj = tdi donnée sur Sti de normale nj
ui = udi donnée sur Sui

avec non intersection de Sti et Sui
. On notera que par la suite on se restricte aux cas où les déplacements

imposés ne varient pas en temps u̇di = 0, où l’on note la dérivée temporelle ∂u/∂t = u̇. On notera aussi
St pour la surface où les tractions / efforts sont imposés.

• Le tenseur des déformations
εij =

1

2
(ui,j + uj,i)

• Equations de compatibilité - ici pour l’élasticité plane:

∂yyεxx + ∂xxεyy = 2∂xyεxy

• Soit, le critère de plasticité f (et le potentiel d’écoulement plastique g). La loi de comportement rigide
plastique s’écrit

f(σij) < 0 ε̇ij = 0

f(σij) = 0 ε̇ij = λ
∂g

∂σij
(1)

où l’on note la dérivée temporelle ∂u/∂t = u̇. Le cas de la plasticité associée correspond à f = g. On se
restrictera à ce cas ici. λ est le multiplicateur plastique (λ ≥ 0) (sans dimension car f a une dimension
de contraintes). On voit donc que

λf(σij) = 0

Dans le cas de la plasticité associée (f = g), les déformations plastiques sont orientées dans la diretion
normale de la surface de rupture.

Le modèle rigide-plastique néglige les déformations élastiques du milieu par rapport aux déformations plas-
tiques: une hypothèse satisfaisante lorsque l’on veut étudier la ruine d’une structure.

On rappel qu’en mécanique des milieux continus, on appelle un champ de contraintes σij statiquement
admissible si il vérifie les équations d’équilibres et les conditions aux limites en tractions. On appelle un champ
de déplacement ui cinématiquement admissible si il vérifie les conditions aux limites en déplacement et est
régulier (i.e. ne crée pas d’ouverture ou de “trou” dans le domaine, en revanche des surfaces de glissement
peuvent apparaitre).

1.1 Principe des puissances virtuelles
Le principe des puissances virtuelles (PPV) est l’équivalent du principe des travaux virtuels écrit en vitesse.
Soit ˆ̇ui , un champ de vitesses virtuelles cinématiquement admissibles , le principe des puissances virtuelles
s’écrit (en quasi-statique - i.e. sans effet inertiels):

Pext(ˆ̇ui) = Pint(ˆ̇ui)
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où la puissance des efforts extérieurs Pext(ˆ̇ui) est définie par:

Pext(ˆ̇ui) =

∫
V

(−bi)ˆ̇ui dV +

∫
St

tdi ˆ̇ui dS

[Attention le signe − dans l’expression précédente est due à la convention de contraintes positive en
compression et la convention de déplacement positif dans la direction opposée au système de coordonnée] et
la puissance intérieure par

Pint(ˆ̇ui) =

∫
V/SΣ

σij ε̇ij(ˆ̇ui) dV +

∫
SΣ

σijnj

[[
ˆ̇ui

]]
dS

où
[[

ˆ̇ui

]]
dénote le saut de vitesse virtuel à travers la surface SΣ .

Note: on peut retrouver facilement le PPV en multipliant l’équation d’équilibre par ˆ̇ui et intégrant sur V
et en utilisant la formule de Green (

∫
V
hi,idV =

∫
S
hinidS).

1.2 Théorèmes de l’analyse limite
• Théorème de la borne inférieure (lower bound theorem)

La ruine ne se produira pas si l’on peut trouver un état de contraintes qui réponde aux équations
d’équilibre et aux conditions aux limites de traction (champ statiquement admissible - SA) et qui est
partout inférieur ou égal au critère de rupture.

• Théorème de la borne supérieure (upper bound theorem)
La ruine doit se produire si, pour toute déformation plastique compatible (i.e. pour lequel le champ
de déplacement est cinématiquement admissible), le taux de travail des forces externes est égal ou
supérieur au taux de dissipation d’énergie interne.
[On notera que si il y a déformation, les contraintes correspondantes doivent satisfaire le critère de
rupture. Des discontinuitées de déplacement le long de bande de cisaillement sont possibles.]

1.3 Paramètres de chargement / notions des domaines de charges admissibles
/ Approches du calcul à la rupture

Pour un ouvrage géotechnique, les paramètres de chargement vont typiquement être : les charges à reprendre
par les fondations, la hauteur d’une paroi / mur de soutenement, la force d’un ancrage, la longueur d’un clou
etc.

Le but d’un calcul ELU est de déterminer le domaine admissible de ces charges. Dénotons K ce domaine,
si les charges (par example Q1, Q2) restent à l’interieur de K l’ouvrage est stable. Evidemment le domaine
K contient l’origine (charges nulles) - c.f. Figure 1.

Si les charges atteignent la frontière du domaine K, on arrive à la ruine de l’ouvrage: on ne peut pas
avoir un champ de contraintes satisfaisant l’équation d’équilibre et le critère de plasticité simultanément en
tout point de l’ouvrage. On parle alors de ruine plastique. On peut noter que ce domaine K va dépendre:

1. de la géométrie de l’ouvrage considérée

2. du critère de plasticité utilisé

3. du chargement

En revanche, il ne dépend pas du trajet de chargement (i.e. comment la ruine peut être atteinte) ni des
conditions initiales (qui sont a priori telles que la structure est stable en étant non-chargée).

En pratique, on va approximer K par des approches par l’intérieur (dite statique) et par l’extérieur (dite
cinématique).
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Figure 1: Domaine de stabilité K d’un ouvrage dans le cas de 2 paramètres de chargement (Q1, Q2). On
bornera K par l’intérieur (approche statique) et l’extérieur (approche cinématique).

• Approche statique: La philosophie de l’approche par l’intérieur consiste à trouver un champ de con-
traintes statiquement admissible en paramétrant le chargement par e.g. (Q1, Q2) = β × (Q∗1, Q

∗
2) (où

Q∗1, Q
∗
2 sont des valeurs des charges petites interieure à K) et ensuite maximiser β tout en vérifiant que

le critère de plasticité f(σij) ≤ 0 en tout point du domaine. Ce faisant on obtient une borne inférieure
K− du domaine K (on démontre ce théorème plus loin dans ces notes).

• Approche cinématique: Cette fois ci, on va postuler un mécanisme de ruine, i.e. un champ cinématique-
ment admissible décrivant la ruine plastique de l’ouvrage. Ici en plus des paramètres de chargement,
le mécanisme de ruine peut également être paramétrisé par un nombre fini de paramètres (exemple:
l’inclinaison d’une surface de rupture). On va calculer la puissance dissipée lié à ce mécanisme de ruine
en postulant que le champ de contraintes duquel dérivent les déformations vérifie le critère de plasticité.
En utilisant le PPV, on va obtenir une borne supérieure K+ du domaine K (on démontre ce théorème
plus loin dans ces notes). Notons que dans le cas où le mécanismes de ruine est parametré, il convient
de minimiser la borne supérieure obtenue en fonction des paramètres du mécanisme de ruine choisi afin
d’obtenir la borne supérieure la plus proche possible du domaine K (i.e. la plus petite).

2 Critères de plasticité en mécanique des sols
Rappelons brièvement les critères de résistance/plasticité classiques utilisés en mécanique des sols (note: vous
verrez des modèles de comportement plus réalistes et complets lors du cours de master de Géomécanique
notamment).

[On notera en passant que l’approche du calcul à la rupture est basée sur le comportement rigide parfaite-
ment plastique, soit sans écrouissage/radoucissement du critère de plasticité. Une approche qui est d’autant
plus valable que le matériau présente une rupture ductile. Hypothèse réaliste pour les sols.]
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Figure 2: Critère de Mohr-Coulomb (diagramme de Mohr, dans le π-plan de l’espace de contraintes princi-
pales).

2.1 Court terme - long termes
2.1.1 Conditions drainées (long terme) - Mohr-Coulomb en contraintes effectives

A long terme, le modèle de Mohr-Coulomb (avec cohesion c′ et angle de friction φ′) est typiquement utilisé
pour obtenir une estimation des charges ultimes (bien évidemment, des modèles plus complexes reproduisent
mieux le comportement des sols - cf le modèle de Cam-Clay que vous verrez en Master). Dans le diagramme
de Mohr, le critère de Mohr-Coulomb correspond a une droite. Il est important de souligner que ce critère de
rupture à long terme est bien sur exprimé en fonction des contraintes effectives σ′ij = σij − uδij (contraintes
positives en compression). Pour plus de simplicité (et de clarté) dans la suite de ces notes sur le
calcul à la rupture, on ne fera pas de difference entre contraintes effectives et totales 1 . Dans
l’espace des contraintes principales (contraintes positives en compression), σI > σII > σIII , le critère s’écrit
(Fig.2):

f(σij) = (σI − σIII)− (σI + σIII) sinφ− 2C cosφ (2)

On rappelle que pour la facette dont l’orientation correspond au point touchant la droite de Mohr Coulomb
dans le diagramme de Mohr, notant σn la contrainte normale à cette facette et τ le cisaillement sur cette
facette, le critère de Mohr-Coulomb s’écrit simplement:

f(σn, τ) = τ − c− σn tanφ (3)

2.1.2 Conditions non-drainées (court terme) - Tresca en contraintes totales

A court terme, le critère de rupture d’un sol s’écrit en contraintes totales (à court terme i.e. en conditions
non drainées, dans un essai tri-axial, qq soit l’état initial en augmentant la charge axiale, on obtient toujours
le meme cercle de Mohr en contraintes effectives). Le critère de Tresca (matériau purement cohérent, non-
frictionnel) approxime correctement la rupture du sol à court terme (en contraintes totales):

f(σij) = (σI − σIII)− 2C

(et classiquement en mécanique des sols on note la cohésion non-drainée cu).

2.1.3 Propriété de convexité du critère de plasticité

Plan tangent à la surface de rupture Soit une courbe f(x1, x2) (dépendant de 2 variables). Au point
(xo1, x

o
2), la normale à cette courbe est donnée par son gradient de f à ce point: (∂f/∂x1, ∂f/∂x2)o. Un

développement de Taylor au premier ordre autour de (xo1, x
o
2), donne:

1la distinction sera implicite:long terme - critère de Mohr-Coulomb en contraintes effectives, court terme - critère de Tresca
en contraintes totales.
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Figure 3: Critère de Tresca (diagramme de Mohr, & dans l’espace de 3 contraintes principales)

∂f

∂σij
σo
ij

σe
ij

σo
ij

σ11

σ22

f(σij) = 0

Figure 4: Surface de rupture (f(σij) = 0) - exemple en 2D. Illustration de la propriété de convéxité(
σoij − σeij

) ∂f

∂σij
cσo

ij
> 0.

f(x1, x2) = f(xo1, x
o
2) + (x1 − xo1)

∂f

∂x1
co + (x2 − xo2)

∂f

∂x2
co

la tangente à f au point (xo1, x
o
2) a pour equation (x1 − xo1) ∂f

∂x1
co + (x2 − xo2) ∂f

∂x2
co = 0, i.e. sous forme

vectorielle (summation sur les indices répétes) (xi − xoi )
∂f
∂xi
co = 0. Le gradient de f en un point sur la suface

donne la normale à celle-ci en ce point.
On peut facilement généraliser au cas d’une surface f fonction de n variables. Dans notre case, σij = σji

de telles sorte que le critère de plasticité f(σij) ne dépend que de 6 valeurs du tenseur des contraintes (ou
des 3 contraintes principales).

Convéxité Il est plus simple de visualiser les choses en 2D. Prenons donc un example où le critère ne
dépend que de σ11 et σ22 (cf Fig. 4). On voit que pour tout point σeij dans le domaine élastique (f(σeij) < 0),

l’angle entre les vecteurs (σoij−σeij) et
∂f

∂σij
cσo

ij
est inférieur à π/2 (avec σoij un point sur la surface de rupture

f(σoij) = 0), soit: (
σoij − σeij

) ∂f

∂σij
cσo

ij
> 0



EPFL-ENAC-IIC-GEL Ouvrages Géotechniques Calcul à la rupture 7

∂f

∂σij
σo
ij

σe
ij

σo
ij

σ11
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Figure 5: Example de surface concave où l’on peut avoir
(
σoij − σeij

) ∂f

∂σij
cσo

ij
< 0. Expérimentalement,

on observe que les surface de rupture sont toujours convexe (cf Fig.4). Cela se comprend intuitivement
physiquement.

Cette propriété découle de la “convexité” de la surface de rupture. On voit bien sur la Fig.5 que pour
une surface concave cela n’est plus le cas en tout point. On observe expérimentalement que les critères de
rupture ont la propriété de convexité (et on peut le comprendre physiquement en imaginant different chemins
de chargement). Cette propriété est importante pour démontrer les théorèmes de l’analyse limite (borne
inférieure & supérieure de la charge limite d’une structure).

2.2 Déformations plastiques
Expérimentalement, on remarque que les déformations plastiques peuvent etre dérivées d’un potentiel g
lorsque le critère de plasticité est atteint, soit:

f(σij) < 0 ε̇ij = 0

f(σij) = 0 ε̇ij = λ
∂g

∂σij

Pour les métaux etc., le potentiel g est bien approximé par le critère de rupture f : f = g (postulat dit de
Drucker qui n’est pas trop faux expérimentalement pour certains matériaux). On dit alors que la plasticité est
“associée”. Cette hypothèse simplifie beaucoup les calculs et permet notamment de borner les charges limites.
En revanche pour les sols, elle n’est pas nécessairement vérifiée expérimentalement (vous re-verrez cela lors
de vos cours de Master). Pour le critère de Mohr-Coulomb, l’hypothèse f = g implique que les déformations
plastiques augmentent toujours de volume (alors que le comportement des sols est plus complexe et dépend
de la pression de pre-consolidation). Néanmoins, il est usuel pour les calculs à la rupture (afin de vérifier les
ELUs) de faire les calculs sous l’hypothèse de la plasticité associée: f = g. Les bornes obtenues avec cette
hypothèse semblent également valable pour le cas non-associé (f 6= g) même si aucune preuve mathématique
formelle n’existe.

2.2.1 Mohr-Coulomb - dilatance

Prenons le cas du critère de Mohr-Coulomb et raisonnons dans le repère des contraintes principales (en 2D).
Pour un critère associé (f = g), les déformations plastiques principales seront également dans le meme repère.
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Figure 6: Surface de glissement dans un matériau Mohr-Coulomb. Le vecteur vitesse de discontinuité de
déplacement [[ui]] = u−i − u

+
i est représenté ici par U̇ dans le cas u+

i = 0.

En utilisant eq.(2) et (1) on a pour les déformations plastiques principales:

ε̇I = λ(1− sinφ)

ε̇III = λ(−1− sinφ)

et la déformation volumique ε̇v = ε̇I + ε̇III peut s’exprimer en fonction de la déformation de cisaillement
γ̇ = ε̇I − ε̇III :

ε̇v = −γ̇ sinφ

γ̇ = 2λ

L’angle de frottement φ étant toujours inférieur à π/2 et le multiplicateur plastique λ > 0, on a ε̇v < 0
qui correspond dans la convention MS (compression positive, contraction positive) a une augmentation de
volume. En d’autres termes, toute déformation plastique de cisaillement est associée à une augmentation de
volume pour le critère de MC associé, ceci est partiellement vrai - en revanche il est typiquement observé qu’à
partir d’une certaine déformation plastique: le taux déformation volumique devient nul et la déformation
plastique n’est que cisaillante (on appelle cela l’état critique en mécanique des sols). Il convient d’utiliser des
modèles plus complexe pour prendre en compte ce comportement. Encore une fois, pour le calcul ELU et
l’estimation des charges de ruines, le critère de Mohr-Coulomb est efficace.

2.2.2 Surface de Glissement

Il est courant dans les sols que la déformation plastique se localise et que des surfaces de glissement appa-
raissent. Imaginons le cas d’un matériau satisfaisant le critère de Mohr-Coulomb pour lequel la déformation
plastique est localisée sur une surface de glissement Σ. La déformation plastique localisée devient en faite
une discontinuité de déplacement: [[ui]] = u−i − u

+
i (c.f. fig.6).

On peut ecrire le critère de Mohr-Coulomb directement en terme de contraintes normales et tangentielles
à cette surface de glissement:

f(σn, τ) = τ − c− σn tanφ.

avec

ti = σijnj vecteurs contraintes sur SΣ

ts = τ = siσijnj contrainte de cisaillement sur SΣ

tn = σn = niσijnj contrainte normale sur SΣ
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où nj est la normale à la surface de glissement SΣ et si le vecteur tangent associé.
On écrira l’écoulement plastique sous la forme

[[u̇i]] = λd
∂f

∂ti
f(ti) = 0

où λd est un multiplicateur plastique de dimensions [L/T ] ici et λdf = 0 et λd ≥ 0.
On voit donc que le rapport des vitesses de discontinuité plastiques normales et tangentielles est:

‖ [[u̇n]]

[[u̇s]]
‖ = tanφ

Le vecteur de discontinuité de déplacement plastique localisée sur la surface de glissement fait donc toujours un
angle φ par rapport à celle-ci (cf. Fig. 7). Il existe une “dilatance” lié au cisaillement localisé. Le raisonnement
est strictement similaire à la sous-section précedente. Notez que dans notre convention (tassement - overlap
positif / compression positive),

[[u̇n]] = −λ tanφ

[[u̇s]] = λ

En définissant
[[
U̇
]]

la norme du vecteur de vitesse de discontinuité de déplacement, on peut réécrire

[[u̇n]] = −
[[
U̇
]]

sinφ

[[u̇s]] =
[[
U̇
]]

cosφ (4)

Calcul de la puissance dissipée le long d’une surface de glissement On aura souvent à calculer la
puissance dissipée le long de la surface de glissement à la rupture:∫

SΣ

σijnj [[u̇i]] dS

Intéressons nous ici à l’intégrande
pdiss = σijnj [[u̇i]]

qui dans le repère (n, s) local à la surface de glissement s’écrit donc:

pdiss = τ [[u̇s]] + σn [[u̇n]]

A la rupture, on a l’égalité f = 0, soit
τ = c+ σn tanφ

ce qui permet d’obtenir en utilisant (4)

pdiss = c
[[
U̇
]]

cosφ+ σn

[[
U̇
]]

sinφ− σn
[[
U̇
]]

sinφ

= c
[[
U̇
]]

cosφ

On voit donc que la puissance dissipée le long d’une surface de glissement est nulle dans le cas d’un materiau
de cohésion nulle. Ce résultat découle directement de l’hypothèse d’un écoulement plastique associé (f = g).
Le résultat est différent pour le cas non-associé (en exercice, dérivé le cas avec un angle de dilatance ψ 6= φ).
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Figure 7: Formes des surfaces de glissement dans un matériau avec un critère de Mohr Coulomb: droite ou
spirale logarithmique.

Surface de glissement courbe ? Considérons maintenant une surface de glissement non-nécessairement
droite. En tout point, le vecteur déplacement plastique a toujours un angle φ par rapport à la surface de
glissement. Localement celle ci peut etre paramètrée par un rayon de courbure r (dans le cas d’un droite
r → ∞), on voit que pour une rotation dθ autour du centre de rotation instantanné, l’incrément de rayon
étant dr, on a (cf Fig. 7):

dr
rdθ

= tanφ

soit après intégration:
r = ro exp(θ tanφ)

Une telle courbe correspond à une spirale logarithmique.
On en conclut donc pour un sol: en conditions drainées (φ = φ′, contraintes effectives), les surfaces

de glissements seront soit des droites (ro →∞), soit des spirales logarithmiques. En conditions non-drainées
(φ = 0, contraintes totales), les surfaces de glissement sont soit des droites, soit des arc de cercles.

2.3 Discontinuités de contraintes
Il est également possible que des discontinuités de contraintes apparaissent dans un volume se plastifiant.
Considérons une surface (de normale n) avec de part et d’autre de celle-ci deux champs de contraintes (A&
B, cf Fig.8), il convient de rappeler que le vecteur de tractions doit être continu entre ces 2 zones, i.e.

[[σij ]]nj =
(
σBij − σAij

)
nj = 0

Toutefois, il peut y avoir une rotation des directions principales de contraintes ainsi qu’un saut dans les
valeurs. Considérons le cas de 2 régions A et B ayant deux états de contraintes différents et étant tous les
deux à la rupture. La continuité des tractions à travers la surface séparant A et B implique que les cercles
de Mohr des 2 regions ont un point commum X (i.e. afin de satisfaire la continuité des tractions entre les 2
zones et donc vérifier l’équilibre). On se réfère à la Fig. 8 où le centre des cercles de Mohr correspondant
aux regions est noté A et B. De la région A à B, on a une changement de direction principale de contraintes
dϑ. Explorons le cas où ds′ → 0, sin 2dϑ ≈ 2dϑ, X → T , l’angle X̂BA ≈ π/2 − φ et BX ≈ AX ≈ s′ sinφ.
En appliquant la loi des sinus au triangle ABX on obtient:

AX

sin X̂BA
=
s′ sinφ

cosφ
=

AB

sinÂXB
=

ds′

sin 2dϑ
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Figure 8: Discontinuité de contraintes entre 2 régions et cercles de Mohr associés.

on obtient alors la relation suivante entre ds′ (increment de contraintes moyenne) et dϑ l’angle du changement
des directions principales entre les regions A et B (sinx ≈ x pour x� 1) :

ds′

s′
= 2dϑ tanφ

Si maintenant, on considère un éventail continu de discontinuité de contraintes dans une région fini
où la rotation des directions principales de contraintes total est ϑ (entre le début et la fin de l’éventail de
discontinuité), par intégration, on obtient la variation entre les cercles de Mohr au debut (contraintes moyenne
s′1) et à la fin (contraintes moyenne s′2) de l’éventail:

s′1
s′2

= exp 2ϑ tanφ

[Notez que l’on retrouve une expression mathématique du type spirale logarithmique.].

3 Démonstration des théorèmes de l’analyse limite
[Cette partie 3 ne sera pas détaillée en cours - je vous invite à refaire les dérivations par vous même]

On rappelle le PPV valable pour tout champ de vitesse C.A (quand les déplacements imposés sont constant
en temps) ∫

V/SΣ

σij ε̇ij(ˆ̇ui) dV +

∫
SΣ

σijnj

[[
ˆ̇ui

]]
dS =

∫
V

(−bi)ˆ̇ui dV +

∫
St

tdi ˆ̇ui dS

Dans les deux sections qui suivent, on va démontrer les thèoremes statiques et cinématiques de l’analyse
limite : bornes inf et sup de la charge de ruine. Pour plus de simplicité, on suppose qu’il n’y a pas de surface
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de glissement - mais le raisonnement est strictement le meme avec (re-faites les dérivations pour vous en
convaincre).

Paramétrons le chargement de tel sorte que ti = αtci où tci correspond à la charge maximale de rupture
de la structure (à la rupture α = 1).

3.1 Borne inférieure statique
Soit un champ statiquement admissible σaij correspondant à un paramètre de chargement αa vérifiant le critère
de rupture (à savoir f(σaij) ≤ 0 ) en tout point, le PPV s’écrit pour ce champ de contraintes statiquement
admissible en prenant pour champ de vitesse le champ solution u̇i∫

V

σaij ε̇ij dV = αa
∫
St

tci u̇idS +

∫
V

(−bi)u̇idV

où u̇i est le champ de vitesse solution (et ε̇ij le champ de taux de déformation associé). Pour le champ de
contraintes exactes σij à la rupture correspondant à la valeur α = 1 du paramètre de chargement, on a:∫

V

σij ε̇ij dV = 1

∫
St

tci u̇idS +

∫
V

(−bi)u̇idV

En prenant la soustraction des deux expressions précédentes, on obtient

(1− αa)

∫
St

tci u̇idS =

∫
V

(σij − σaij)λ
∂f

∂σij
dV > 0

soit
αa < 1

car la puissance des efforts exterieures est positive tci u̇i > 0 (et peut etre d’ailleurs utilisé comme un facteur
de scaling)). La valeur αa est donc une borne inférieure du paramètre de chargement à la rupture car

(σij − σaij)λ̇
∂f

∂σij
> 0

du fait de la convexité de la surface de rupture (et de “l’associativité” de la déformation plastique - c.f
subsection 2.1.3 de ces notes).

3.2 Borne supérieure cinématique
Prenons un champ de déplacement cinématiquement admissible u̇ai . Pour un tel champ de déplacement, cor-
respond un champ de contraintes σbij vérifiant le critère de rupture (mais pas forcement l’équation d’équilibre)
de telle sorte que ε̇aij = λb ∂f

∂σb
ij

où λb est le multiplicateur plastique correspondant. On peut définir le facteur
de chargement

αab

∫
St

tci u̇
a
i dS =

∫
V

(σbij)λ
b ∂f

∂σbij
dV −

∫
V

(−bi)u̇ai dV

Pour le champ de contraintes solution σij (à la rupture) - correspondant au paramètre de chargement
solution α = 1 , le PPV pour le champ test u̇ai s’écrit:∫

St

tci u̇
a
i dS =

∫
V

σijλ
b ∂f

∂σbij
dV −

∫
V

(−bi)u̇ai dV

d’où
(αab − 1)

∫
St

tci u̇
a
i dS =

∫
V

λb(σbij − σij)
∂f

∂σbij
dV > 0
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soit
αab > 1

encore une fois à cause de la convexité de la surface de rupture (et de “l’associativité” de la déformation
plastique - c.f subsection 2.1.3 de ces notes).

Le champ de déplacement u̇ai correspondant au paramètre de chargement αab fournit donc une borne
supérieure αabtci de la charge de rupture exacte tci .

4 Démarche pour l’obtention des bornes de la charge ultime
La démarche du calcul à la rupture (afin de déterminer la charge ultime d’une structure géotechnique) sera
donc la suivante:

1. Paramétrisation du chargement (e.g. descente de charges, forces d’ancrages)

2. Choix du critère de comportement selon que l’on fasse un calcul à court terme (Tresca - contraintes
totales) ou long terme (Mohr-Coulomb - contraintes effectives)

3. Approche statique (“par l’intérieur”) afin de déterminer une borne inférieure à la vrai charge ultime.

(a) Choix d’un champ de contraintes statiquement admissible (donc paramétré par le chargement)

(b) Maximisation du paramètre de chargement pour lequel le champ de contraintes vérifie le critère
de rupture: obtention d’une borne inférieure de la charge ultime

4. Approche cinématique

(a) Choix d’un champ de déplacement cinématiquement admissible - éventuellement avec des lignes
de glissement représentant le mécanisme de rupture (souvent paramétrisé)

(b) Calculs de la puissance intérieure (en supposant que le matériau vérifie le critère de plasticité dans
les zones de déplacement plastiques)

(c) Utilisation du principe des puissances virtuelles afin d’obtenir la charge ultime par minimization:
obtention d’une borne supérieure du chargement ultime




