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La vérifications des états limites ultimes (ELU - ULS) repose sur la détermination de(s) la charge(s)
maximale supportable par une structure (dans notre cas, une fondation, un mur de souténement etc.). Dans
ce cadre, 'analyse limite est trés couramment employée, notamment en géotechnique. Elle repose sur un
modeéle rigide plastique du sol (en conditions drainées ou non-drainées selon que I'analyse est effectuée a long
ou court terme). Les formules “classiques” de capacité portante des fondations ont été obtenues par cette
méthode (avec plus ou moins d’approximations), idem pour la stabilité des talus. De plus, des nouveau logiciel
éléments finis (e.g. OptumG2) permettent maintenant de faire directement de I’analyse limite numeérique et
donc d’obtenir des bornes des charges maximales pour des configurations complexes rapidement (sans devoir
résoudre le probléme élastoplastique temporel complet). L’idée de ces notes est d’introduire les méthodes
d’analyse limite pour la géotechnique. Réferez vous au cours Mécanique des structures pour GC (Civil 223)
et au cours de Mécanique des milieux continus (Civil 225) pour plus de détails sur les concepts de bases.

Conventions En géotechnique / mécanique des sols, les contraintes sont typiquement compressives et donc
en pratique, la convention est de prendre les contraintes positives en compression. En ce qui concerne les
déformations, deux conventions sont possibles: i) soit on garde une convention d’extension positive mais cela
implique de mettre un signe — dans les lois de comportements (relation contraintes - déformation), soit ii) on
utilise la convention que les déformations de “contraction” sont positives (i.e. extension négative). On utilise
la deuxiéme convention ici. En résumé:

0i; >0 en compression

€; >0 en contraction

On notera donc que comme €;; > 0 en contraction, les déplacements seront positif dans le sens opposé du
systéme de coordonnée choisi (en pratique, on retombera sur ses pieds avec un peu de sens de physique).

1 Le probléme rigide-plastique

Soit un domaine V' de surface S, le probléme rigide-plastique consiste en

e les équations d’équilibre (en négligeant les efforts inertiels - approche quasi-statique)
ag i5,0 b1 = 0

ou le signe moins devant les forces de volume est du & la convention de contraintes positives. On
utilise ici la convention de sommation sur les indices répétés, et la notation suivantes pour les dérivées
partielles

h’j = ah/ax]

b; est une force de volume (en pratique le poids du sol). Le tenseur des contraintes est symmétrique
0i; = 0j; (conservation du moment angulaire).
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e En tout point de V, le champ de contraintes est continument différentiable. Notons que des surface de
discontinuité (de normal n;) peuvent exister, mais le vecteur contraintes T; = o;;n; doit etre continu &
travers de telles surface, soit

- + — - R
(Uij - Uij) n; = [[oi;]]n; =0
ou [o;;] désigne donc le saut du champ de contraintes & travers d’une telle surface de discontinuitée.
e les conditions aux limites en tractions et déplacement imposés:
oiynj = t4 donnée sur S;, de normale n;

u; = uf donnée sur S,

avec non intersection de Sy, et S,,,. On notera que par la suite on se restricte aux cas o les déplacements
imposés ne varient pas en temps ¢ = 0, ott 'on note la dérivée temporelle Ju/9t = 1. On notera aussi
S¢ pour la surface ou les tractions / efforts sont imposés.

e Le tenseur des déformations
€ij = 5 (i +uj,)
e Equations de compatibilité - ici pour ’élasticité plane:

Oyy€zaz + Opg€yy = 205y €xy

e Soit, le critére de plasticité f (et le potentiel d’écoulement plastique g). La loi de comportement rigide
plastique s’écrit

f(O’ij) <0 G'ij =0

floi) =0 é&;=2A 09

anj

(1)

ot 'on note la dérivée temporelle du/dt = 4. Le cas de la plasticité associée correspond a f = g. On se
restrictera a ce cas ici. A est le multiplicateur plastique (A > 0) (sans dimension car f a une dimension
de contraintes). On voit donc que

)\f(O’ij) =0
Dans le cas de la plasticité associée (f = g), les déformations plastiques sont orientées dans la diretion
normale de la surface de rupture.

Le modéle rigide-plastique néglige les déformations élastiques du milieu par rapport aux déformations plas-
tiques: une hypothése satisfaisante lorsque 1'on veut étudier la ruine d’une structure.

On rappel qu’en mécanique des milieux continus, on appelle un champ de contraintes o;; statiquement
admissible si il vérifie les équations d’équilibres et les conditions aux limites en tractions. On appelle un champ
de déplacement u; cinématiquement admissible si il vérifie les conditions aux limites en déplacement et est
régulier (i.e. ne crée pas d’ouverture ou de “trou” dans le domaine, en revanche des surfaces de glissement
peuvent apparaitre).

1.1 Principe des puissances virtuelles

Le principe des puissances virtuelles (PPV) est équivalent du principe des travaux virtuels écrit en vitesse.
Soit 1; , un champ de vitesses virtuelles cinématiquement admissibles , le principe des puissances virtuelles
s’écrit (en quasi-statique - i.e. sans effet inertiels):

Pezt ({le) = Pint (uz)
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ot la puissance des efforts extérieurs Pe.:(tu;) est définie par:

Pt () = / (=bi)i; AV + / td4,; dS
\% S,
[Attention le signe — dans l'expression précédente est due a la convention de contraintes positive en
compression et la convention de déplacement positif dans la direction opposée au systéme de coordonnée| et
la puissance intérieure par

Pint (1) = ~/V/52 oijéij(t;) AV + /S): oijn; H{LZH ds

ol H&ZH dénote le saut de vitesse virtuel a travers la surface Sy, .

Note: on peut retrouver facilement le PPV en multipliant I’équation d’équilibre par ; et intégrant sur V'
et en utilisant la formule de Green ([}, h;;dV = [ hin;dS).

1.2 Théorémes de ’analyse limite

e Théoréme de la borne inférieure (lower bound theorem)
La ruine ne se produira pas si 'on peut trouver un état de contraintes qui réponde aux équations
d’équilibre et aux conditions aux limites de traction (champ statiquement admissible - SA) et qui est
partout inférieur ou égal au critére de rupture.

e Théoréme de la borne supérieure (upper bound theorem)
La ruine doit se produire si, pour toute déformation plastique compatible (i.e. pour lequel le champ
de déplacement est cinématiquement admissible), le taux de travail des forces externes est égal ou
supérieur au taux de dissipation d’énergie interne.
[On notera que si il y a déformation, les contraintes correspondantes doivent satisfaire le critére de
rupture. Des discontinuitées de déplacement le long de bande de cisaillement sont possibles.|

1.3 Paramétres de chargement / notions des domaines de charges admissibles
/ Approches du calcul a la rupture

Pour un ouvrage géotechnique, les paramétres de chargement vont typiquement étre : les charges a reprendre
par les fondations, la hauteur d’une paroi / mur de soutenement, la force d’un ancrage, la longueur d’un clou
etc.

Le but d’un calcul ELU est de déterminer le domaine admissible de ces charges. Dénotons K ce domaine,
si les charges (par example @1, Q2) restent & 'interieur de K 1’ouvrage est stable. Evidemment le domaine
K contient l'origine (charges nulles) - c.f. Figure 1.

Si les charges atteignent la frontiére du domaine K, on arrive a la ruine de 'ouvrage: on ne peut pas
avoir un champ de contraintes satisfaisant ’équation d’équilibre et le critére de plasticité simultanément en
tout point de 'ouvrage. On parle alors de ruine plastique. On peut noter que ce domaine K va dépendre:

1. de la géométrie de 'ouvrage considérée
2. du critére de plasticité utilisé
3. du chargement

En revanche, il ne dépend pas du trajet de chargement (i.e. comment la ruine peut étre atteinte) ni des
conditions initiales (qui sont a priori telles que la structure est stable en étant non-chargée).

En pratique, on va approximer K par des approches par l'intérieur (dite statique) et par 'extérieur (dite
cinématique).
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Figure 1: Domaine de stabilité K d’un ouvrage dans le cas de 2 paramétres de chargement (Q1, @2). On
bornera K par l'intérieur (approche statique) et 'extérieur (approche cinématique).

2

e Approche statique: La philosophie de I’approche par l'intérieur consiste & trouver un champ de con-

traintes statiquement admissible en paramétrant le chargement par e.g. (Q1,Q2) = 8 x (Q7,Q3) (ou
Q7, Q% sont des valeurs des charges petites interieure a K) et ensuite maximiser § tout en vérifiant que
le critére de plasticité f(o;;) < 0 en tout point du domaine. Ce faisant on obtient une borne inférieure
K~ du domaine K (on démontre ce théoréme plus loin dans ces notes).

Approche cinématique: Cette fois ci, on va postuler un mécanisme de ruine, i.e. un champ cinématique-
ment admissible décrivant la ruine plastique de 'ouvrage. Ici en plus des paramétres de chargement,
le mécanisme de ruine peut également étre paramétrisé par un nombre fini de parameétres (exemple:
Pinclinaison d’une surface de rupture). On va calculer la puissance dissipée lié & ce mécanisme de ruine
en postulant que le champ de contraintes duquel dérivent les déformations vérifie le critére de plasticité.
En utilisant le PPV, on va obtenir une borne supérieure K= du domaine K (on démontre ce théoréme
plus loin dans ces notes). Notons que dans le cas ol le mécanismes de ruine est parametré, il convient
de minimiser la borne supérieure obtenue en fonction des paramétres du mécanisme de ruine choisi afin
d’obtenir la borne supérieure la plus proche possible du domaine K (i.e. la plus petite).

Critéres de plasticité en mécanique des sols

Rappelons briévement les critéres de résistance/plasticité classiques utilisés en mécanique des sols (note: vous
verrez des modéles de comportement plus réalistes et complets lors du cours de master de Géomécanique
notamment).

[On notera en passant que 'approche du calcul a la rupture est basée sur le comportement rigide parfaite-

ment plastique, soit sans écrouissage/radoucissement du critére de plasticité. Une approche qui est d’autant
plus valable que le matériau présente une rupture ductile. Hypotheése réaliste pour les sols.]
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Figure 2: Critére de Mohr-Coulomb (diagramme de Mohr, dans le m-plan de l'espace de contraintes princi-
pales).

2.1 Court terme - long termes
2.1.1 Conditions drainées (long terme) - Mohr-Coulomb en contraintes effectives

A long terme, le modéle de Mohr-Coulomb (avec cohesion ¢’ et angle de friction ¢') est typiquement utilisé
pour obtenir une estimation des charges ultimes (bien évidemment, des modéles plus complexes reproduisent
mieux le comportement des sols - cf le modéle de Cam-Clay que vous verrez en Master). Dans le diagramme
de Mohr, le critére de Mohr-Coulomb correspond a une droite. Il est important de souligner que ce critére de
rupture a long terme est bien sur exprimé en fonction des contraintes effectives o;; = 0;; — ud;; (contraintes
positives en compression). Pour plus de simplicité (et de clarté) dans la suite de ces notes sur le
calcul & la rupture, on ne fera pas de difference entre contraintes effectives et totales ! . Dans
Pespace des contraintes principales (contraintes positives en compression), oy > oy > oyyy, le critére s’écrit
(Fig.2):
f(oij) = (o1 —orr1) — (01 + o111) sing — 2C cos ¢ (2)
On rappelle que pour la facette dont I'orientation correspond au point touchant la droite de Mohr Coulomb
dans le diagramme de Mohr, notant o,, la contrainte normale & cette facette et 7 le cisaillement sur cette
facette, le critére de Mohr-Coulomb s’écrit simplement:

flop,7)=7—c—o,tane (3)

2.1.2 Conditions non-drainées (court terme) - Tresca en contraintes totales

A court terme, le critére de rupture d’un sol s’écrit en contraintes totales (& court terme i.e. en conditions
non drainées, dans un essai tri-axial, qq soit ’état initial en augmentant la charge axiale, on obtient toujours
le meme cercle de Mohr en contraintes effectives). Le critére de Tresca (matériau purement cohérent, non-
frictionnel) approxime correctement la rupture du sol & court terme (en contraintes totales):

f(oij) = (o1 —orr1) —2C

(et classiquement en mécanique des sols on note la cohésion non-drainée c,,).

2.1.3 Propriété de convexité du critére de plasticité

Plan tangent a la surface de rupture Soit une courbe f(x1, z2) (dépendant de 2 variables). Au point
(z$,29), la normale & cette courbe est donnée par son gradient de f a ce point: (0f/0x1,0f/0x2)°. Un
développement de Taylor au premier ordre autour de (9, x$), donne:

11a distinction sera implicite:long terme - critére de Mohr-Coulomb en contraintes effectives, court terme - critére de Tresca
en contraintes totales.
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Figure 4: Surface de rupture (f(o;;) = 0) - exemple en 2D. Illustration de la propriété de convéxité
(03 = o%y) aaifjafj > 0.
Uij
o o o 9f o 9f
f(x1,22) = f(af,23) + (z1 — 29) 8331J° + (22 — 29) ax2J°
la tangente & f au point (x9,z9) a pour equation (z; — x9) %Jo + (22 — x9) %Jo = 0, i.e. sous forme
of

vectorielle (summation sur les indices répétes) (z; — z7) 52-Jo = 0. Le gradient de f en un point sur la suface
donne la normale & celle-ci en ce point.

On peut facilement généraliser au cas d’une surface f fonction de n variables. Dans notre case, 035 = 03
de telles sorte que le critére de plasticité f(o;;) ne dépend que de 6 valeurs du tenseur des contraintes (ou
des 3 contraintes principales).

Convéxité Il est plus simple de visualiser les choses en 2D. Prenons donc un example ou le critére ne
dépend que de 011 et a2 (cf Fig. 4). On voit que pour tout point of; dans le domaine élastique (f(of;) < 0),

0 e .
I'angle entre les vecteurs (of; —o7;) et Do / Jog, est inférieur & 7/2 (avec of; un point sur la surface de rupture
T "

f(of;) = 0), soit:
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Figure 5: Example de surface concave ou l'on peut avoir (0.» — o5 3
0ij

on observe que les surface de rupture sont toujours convexe (cf Fig.4). Cela se comprend intuitivement
physiquement.

Jog, < 0. Expérimentalement,

Cette propriété découle de la “convexité” de la surface de rupture. On voit bien sur la Fig.5 que pour
une surface concave cela n’est plus le cas en tout point. On observe expérimentalement que les critéres de
rupture ont la propriété de convexité (et on peut le comprendre physiquement en imaginant different chemins
de chargement). Cette propriété est importante pour démontrer les théorémes de I'analyse limite (borne
inférieure & supérieure de la charge limite d’une structure).

2.2 Déformations plastiques

Expérimentalement, on remarque que les déformations plastiques peuvent etre dérivées d’un potentiel g
lorsque le critére de plasticité est atteint, soit:

f(O'ij) <0 éij =0
0
f(O'ij) =0 éij = /\a?i
Pour les métaux etc., le potentiel g est bien approximé par le critére de rupture f: f = g (postulat dit de

Drucker qui n’est pas trop faux expérimentalement pour certains matériaux). On dit alors que la plasticité est
“associée”. Cette hypothése simplifie beaucoup les calculs et permet notamment de borner les charges limites.
En revanche pour les sols, elle n’est pas nécessairement vérifiée expérimentalement (vous re-verrez cela lors
de vos cours de Master). Pour le critére de Mohr-Coulomb, ’hypothése f = g implique que les déformations
plastiques augmentent toujours de volume (alors que le comportement des sols est plus complexe et dépend
de la pression de pre-consolidation). Néanmoins, il est usuel pour les calculs a la rupture (afin de vérifier les
ELUs) de faire les calculs sous ’hypothése de la plasticité associée: f = g. Les bornes obtenues avec cette
hypotheése semblent également valable pour le cas non-associé (f # ¢g) méme si aucune preuve mathématique
formelle n’existe.

2.2.1 Mohr-Coulomb - dilatance

Prenons le cas du critére de Mohr-Coulomb et raisonnons dans le repére des contraintes principales (en 2D).
Pour un critére associé (f = g), les déformations plastiques principales seront également dans le meme repére.
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Figure 6: Surface de glissement dans un matériau Mohr-Coulomb. Le vecteur vitesse de discontinuité de
déplacement [[u;]] = u; — u; est représenté ici par U dans le cas u; = 0.

G =

En utilisant eq.(2) et (1) on a pour les déformations plastiques principales:
ér = M1 —sing)
érrr = A(—1 —sing)

et la déformation volumique €¥ = é; + éryr peut s’exprimer en fonction de la déformation de cisaillement
Y =€ — €

€y = —7¥sin¢
A =2\

L’angle de frottement ¢ étant toujours inférieur a m/2 et le multiplicateur plastique A > 0, on a é, < 0
qui correspond dans la convention MS (compression positive, contraction positive) a une augmentation de
volume. En d’autres termes, toute déformation plastique de cisaillement est associée & une augmentation de
volume pour le critére de MC associé, ceci est partiellement vrai - en revanche il est typiquement observé qu’a
partir d’une certaine déformation plastique: le taux déformation volumique devient nul et la déformation
plastique n’est que cisaillante (on appelle cela 1'état critique en mécanique des sols). Il convient d’utiliser des
modéles plus complexe pour prendre en compte ce comportement. Encore une fois, pour le calcul ELU et
I’estimation des charges de ruines, le critére de Mohr-Coulomb est efficace.

2.2.2 Surface de Glissement

Il est courant dans les sols que la déformation plastique se localise et que des surfaces de glissement appa-
raissent. Imaginons le cas d’'un matériau satisfaisant le critére de Mohr-Coulomb pour lequel la déformation
plastique est localisée sur une surface de glissement ¥. La déformation plastique localisée devient en faite
une discontinuité de déplacement: [[u;]] = u; —u; (c.f. fig.6).
On peut ecrire le critére de Mohr-Coulomb directement en terme de contraintes normales et tangentielles
a cette surface de glissement:
flon,7) =7 —¢c— o, tan¢.

avec
t; = o;;n; vecteurs contraintes sur Ss
ts = T = s;04jn; contrainte de cisaillement sur Sy,

t, = o, = n;04;n; contrainte normale sur Sy,
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ol n; est la normale & la surface de glissement Sy; et s; le vecteur tangent associé.
On écrira ’écoulement plastique sous la forme

of
5] = Aa= t;) =20
[l = hege f(8)
ol \g est un multiplicateur plastique de dimensions [L/T] ici et A\gf = 0 et Agq > 0.
On voit donc que le rapport des vitesses de discontinuité plastiques normales et tangentielles est:

[[i2n]]
[[t2s]]

Le vecteur de discontinuité de déplacement plastique localisée sur la surface de glissement fait donc toujours un
angle ¢ par rapport a celle-ci (cf. Fig. 7). Il existe une “dilatance” lié au cisaillement localisé. Le raisonnement
est strictement similaire & la sous-section précedente. Notez que dans notre convention (tassement - overlap
positif / compression positive),

|| =tan ¢

[[in]] = =Atan ¢
[[s]) = A

En définissant HU H la norme du vecteur de vitesse de discontinuité de déplacement, on peut réécrire

[in]] = = [ [U]] sing
[i]] = [[0]] cos s (4)

Calcul de la puissance dissipée le long d’une surface de glissement On aura souvent & calculer la
puissance dissipée le long de la surface de glissement & la rupture:

~/Sz oijng [[i]] dS

Intéressons nous ici & I'intégrande
Pdiss = Tij15 [[UZH
qui dans le repére (n, s) local a la surface de glissement s’écrit donc:

Pdiss = T Husﬂ +on HunH

A la rupture, on a Iégalité f = 0, soit
T=c+o,tan¢

ce qui permet d’obtenir en utilisant (4)
Ddiss = C HU” cos ¢ + oy, HU“ sing — o, HU” sing
=c HU” cos ¢

On voit donc que la puissance dissipée le long d’une surface de glissement est nulle dans le cas d’un materiau
de cohésion nulle. Ce résultat découle directement de I’hypothése d’un écoulement plastique associé (f = g).
Le résultat est différent pour le cas non-associé (en exercice, dérivé le cas avec un angle de dilatance 1 # ¢).
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Figure 7: Formes des surfaces de glissement dans un matériau avec un critére de Mohr Coulomb: droite ou
spirale logarithmique.

Surface de glissement courbe ? Considérons maintenant une surface de glissement non-nécessairement
droite. En tout point, le vecteur déplacement plastique a toujours un angle ¢ par rapport & la surface de
glissement. Localement celle ci peut etre parameétrée par un rayon de courbure r (dans le cas d’un droite
r — 00), on voit que pour une rotation df autour du centre de rotation instantanné, I'incrément de rayon
étant dr, on a (cf Fig. 7):

dr

@ ztanqﬁ

soit apres intégration:
r =1, exp(f tan ¢)

Une telle courbe correspond a une spirale logarithmique.

On en conclut donc pour un sol: en conditions drainées (¢ = ¢', contraintes effectives), les surfaces
de glissements seront soit des droites (r, — 00), soit des spirales logarithmiques. En conditions non-drainées
(¢ = 0, contraintes totales), les surfaces de glissement sont soit des droites, soit des arc de cercles.

2.3 Discontinuités de contraintes

Il est également possible que des discontinuités de contraintes apparaissent dans un volume se plastifiant.
Considérons une surface (de normale n) avec de part et d’autre de celle-ci deux champs de contraintes (A&
B, cf Fig.8), il convient de rappeler que le vecteur de tractions doit étre continu entre ces 2 zones, i.e.
(ol n; = (0 —o53)ny =0

Toutefois, il peut y avoir une rotation des directions principales de contraintes ainsi qu’un saut dans les
valeurs. Considérons le cas de 2 régions A et B ayant deux états de contraintes différents et étant tous les
deux & la rupture. La continuité des tractions & travers la surface séparant A et B implique que les cercles
de Mohr des 2 regions ont un point commum X (i.e. afin de satisfaire la continuité des tractions entre les 2
zones et donc vérifier I’équilibre). On se référe a la Fig. 8 ou le centre des cercles de Mohr correspondant
aux regions est noté A et B. De la région A a B, on a une changement de direction principale de contraintes
dd. Explorons le cas ot ds’ — 0, sin2dd ~ 2d9, X — T, I'angle XBA ~ 7/2 — ¢ et BX ~ AX =~ s'sin ¢.
En appliquant la loi des sinus au triangle ABX on obtient:

AX  ¢sing  AB  ds
sin X BA cos ¢ sinAXB  sin2dd
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Figure 8: Discontinuité de contraintes entre 2 régions et cercles de Mohr associés.

on obtient alors la relation suivante entre ds’ (increment de contraintes moyenne) et d¢ angle du changement
des directions principales entre les regions A et B (sinz = z pour x < 1) :

/
i—s = 2dd tan ¢

=

Si maintenant, on considére un éventail continu de discontinuité de contraintes dans une région fini
ou la rotation des directions principales de contraintes total est ¢ (entre le début et la fin de 1’éventail de
discontinuité), par intégration, on obtient la variation entre les cercles de Mohr au debut (contraintes moyenne
s1) et ala fin (contraintes moyenne s4) de I’éventail:

/

S

S—,l = exp 29 tan ¢
2

[Notez que 'on retrouve une expression mathématique du type spirale logarithmique.].

3 Démonstration des théorémes de 1’analyse limite

[Cette partie 3 ne sera pas détaillée en cours - je vous invite & refaire les dérivations par vous méme]

On rappelle le PPV valable pour tout champ de vitesse C.A (quand les déplacements imposés sont constant

en temps)
V/Ss Sx 14 St

Dans les deux sections qui suivent, on va démontrer les théoremes statiques et cinématiques de 'analyse
limite : bornes inf et sup de la charge de ruine. Pour plus de simplicité, on suppose qu’il n’y a pas de surface
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de glissement - mais le raisonnement est strictement le meme avec (re-faites les dérivations pour vous en
convaincre).

Paramétrons le chargement de tel sorte que ¢; = ot ou ¢t correspond a la charge maximale de rupture
de la structure (a la rupture a = 1).

3.1 Borne inférieure statique

Soit un champ statiquement admissible of; correspondant & un parametre de chargement o vérifiant le critére
de rupture (a savoir f(of;) < 0 ) en tout point, le PPV s’écrit pour ce champ de contraintes statiquement
admissible en prenant pour champ de vitesse le champ solution 1;

/O’%éij dV:a“/ tfuZdS—F/(—b,)ude
14 St |4

ou %; est le champ de vitesse solution (et €;; le champ de taux de déformation associé¢). Pour le champ de
contraintes exactes o;; a la rupture correspondant & la valeur o = 1 du paramétre de chargement, on a:

/%‘éz‘j dV = 1/ tfuidS'F/(—bi)?lidV
\4 St 174

En prenant la soustraction des deux expressions précédentes, on obtient
a cr ayy 9f
(1 — ) tZ’U/ZdS = (Uij - Uij))‘i dV >0
Sy v 60’i]‘
soit
a® <1

car la puissance des efforts exterieures est positive t5u; > 0 (et peut etre d’ailleurs utilisé comme un facteur
de scaling)). La valeur a® est donc une borne inférieure du parameétre de chargement a la rupture car

of

>0
80’1]'

(0ij — o5 A

du fait de la convexité de la surface de rupture (et de ‘“I’associativité” de la déformation plastique - c.f
subsection 2.1.3 de ces notes).

3.2 Borne supérieure cinématique

Prenons un champ de déplacement cinématiquement admissible %{ . Pour un tel champ de déplacement, cor-

respond un champ de contraintes of] vérifiant le critére de rupture (mais pas forcement 1’équation d’équilibre)

de telle sorte que €; = =\ 6’; ot A’ est le multiplicateur plastique correspondant. On peut définir le facteur
Tij

Qab / teudds = / )\b af - dV - / yagdv

Pour le champ de contraintes solution o;; (& la rupture) - correspondant au paramétre de chargement
solution & =1, le PPV pour le champ test 4 s’écrit:

/ téutds = / oA aj; dv — / (—by)utdV
S do v '

¢ of
(aab—l)/ téudds = /A” U”)aob dV >0

ij

de chargement

d’ou
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soit
Qgp > 1

encore une fois a cause de la convexité de la surface de rupture (et de “I’associativité” de la déformation
plastique - c.f subsection 2.1.3 de ces notes).

Le champ de déplacement u{ correspondant au parameétre de chargement g, fournit donc une borne
supérieure agpt§ de la charge de rupture exacte 5.

4 Démarche pour I'obtention des bornes de la charge ultime

La démarche du calcul a la rupture (afin de déterminer la charge ultime d’une structure géotechnique) sera
donc la suivante:

1. Paramétrisation du chargement (e.g. descente de charges, forces d’ancrages)

2. Choix du critére de comportement selon que 1'on fasse un calcul a court terme (Tresca - contraintes
totales) ou long terme (Mohr-Coulomb - contraintes effectives)

3. Approche statique (“par l'intérieur”) afin de déterminer une borne inférieure a la vrai charge ultime.

(a) Choix d’un champ de contraintes statiquement admissible (donc paramétré par le chargement)
(b) Maximisation du paramétre de chargement pour lequel le champ de contraintes vérifie le critére
de rupture: obtention d’une borne inférieure de la charge ultime
4. Approche cinématique
(a) Choix d’un champ de déplacement cinématiquement admissible - éventuellement avec des lignes
de glissement représentant le mécanisme de rupture (souvent paramétrisé)

(b) Calculs de la puissance intérieure (en supposant que le matériau vérifie le critére de plasticité dans
les zones de déplacement plastiques)

c ilisation du principe des puissances virtuelles afin d’obtenir la charge ultime par minimization:
Utilisation du principe d i irtuelles afin d’obtenir la ch 1ti inimizati
obtention d’une borne supérieure du chargement ultime





