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e Sans voilement, ce chapitre
* Avec voilement, TGC 10 chap. 12
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En section: cas section rectangulaire
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Section rectangulaire
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T = Ty

Vpl,Rd =T, Aw/VM1

Vpl,Rd =T, AV/VMl
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16" et 2°™¢ modeéles : A, 3eme modele : A, (SIA 263 et EC 3)
(simplifié, SIA 161, SIA 269/3) I b P
== i te i:ix/ ez
Ay
h t,
ti/2 S
A, = (h-t) t, A, <A, A, =A-2bt+ (t, + 2r)t;
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Profilé laminé en double té
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Avec modele 1, interaction toujours considérée

Avec modele 2, A, pas d’interaction a considerer

Avec modele 3, A,:

e Etant donné I'augmentation de V4 pour les profilés
laminés, controler désormais lI'interaction M, V

 Réduction de la valeur de calcul du moment résistant:

fbt (h-t wil,
M Rt b (1 ()
va Ym1 YM1
~ " AN v \—/V’/dl
Moment écoulement M. plast|que Facteur
ailes Mg « ame » reduction
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SIA 263 (2013) Modele 3, A,
1

STIA 161 (1990) Modele 2, 4,,
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e SIA 263 § 5.1.2: Pour une vérification plastique selon axe fort,
utiliser A,

 EN1993-1-1, identique, plus d’information sur le calcul de A, pour
les différents types de profilés

Avecmodele 3, AV, <V . =7 A, /Y

M, =M, ,, Réductionde Mg,siVg,>50% Vg,
Remarques:
* (Cas élastique et simplification, voir page suivante
* Eurocodes 2" generation (2025), modeéle utilisant A, aussi pour d’autres cas

et formules de réduction de Mj, revues
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* Cas élastique, regles spécifiques =\/(0(M )) 3 (x(v )) Jy
(mais peut toujours utiliser Von Mises) H H = Yu

 Enrésistance élastique (SIA 263 § 5.2.4, classe 3), aussi
condition Vg < 50% Vg rg

 Sinon, alors réduction de M, rd, devient M, y g4

* Onavu:A,>A,
 Donc pour prédimensionnement plastique, on peut tjs

utiliser A, (car pas d’interaction) V., =V, ., =7,"A,/Vu

M, =M,,

Ed —

\S]
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Une introduction uniquement, utile pour la résistance au déversement
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dQO TV (.X ) Analogie de la membrane.

K [mm?] = cte de torsion uniforme ( =J = I, dans TGC 2)

1, = pr prdA G = module de glissement = E/ 2(1+v) = 81000 N/mm?
A
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(a) Section fermée. (b) Section ouverte.

Mode prépondérant de résistance, Mode prépondérant de résistance,
torsion uniforme : M, =T, torsion non-uniforme: M, =T,
En particulier a I'encastrement car
Flux de cisaillement fermé, t, gauchissement empéché, flux de
contraintes de torsion non-uniforme
o, ett,

Note: modeles toujours ELASTIQUES
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Question 2: Quel est le mode de résistance préférentiel de chacune des sections ci-dessous ?

2.1.A)T,
B) Tw
29 A) T,
B) Tw
2.3, A)T,
B) Tw
Section Section Profilé Caisson Caisson Tube Tube
rectangulaire en té laminé ouvert fermé ouvert fermé
< 160 300 30()* o, 300*
S e gl 84
NI:I K 2 o 5 12.5 % 12.5
i R
R S ] I PR
HEA 340
8y 8y ROR 355.6 - 12.5
¥ T )
2.4. AT,
B) Tw
2.5. A)T,
B) Tw

2.6. A)Ty
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A = 13400 mm?

Section Section Profilé Caisson Caisson Tube Tube
rectangulaire en té laminé ouvert fermé ouvert fermé
160 300
et t 2t
=
j o]

2

T T

% 16.5

35

(e}

5 6

I:I o 12:5 % 1255
ywt ’
67
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0.7 397

HEA 340

15.8 5.7 1.0
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Section ouverte Ko EKf/ 500
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Torsion
mixte

Flux des
contraintes
tangentielles
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Déformations

Contraintes

Résultantes «eXternesy
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Equ. différentielle de torsion non-uniforme: Tw (x)= —E[w(p”’(x) (4.51)

T-S
Contraintes de cisaillement: 7 = ——2—° (4.57a)
1,
Normales (bimoment de torsion):
! MCU
M, =-EI @ o, = 7 " (4.57b)

o coordonnée sectorielle normalisée A retenir, pour profilé double-té (4.59):
I, moment d’inertie sectorielle (mmb®) 2 2
w o (h-g) ()
S, moment statique sectoriel (mm?*) @ z 4 aile,z 2

1 2
v = (1)
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RHS 300-200-8
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Torsion uniforme
22.3
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Torsion non-uniforme
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Tableau 7: Renvois pour la vérification de la résistance et de la stabilité aux chiffres de la présente norme,
en fonction de la sollicitation et de la classe de section de I'élément considéré
Classe de section 1 (PP) et 2 (EP) 3 (EE) 4 (EER)
Effort normal Résistance 5.1.2 5.1.2 5.3.2
Stabilité 451 4.5.1 5.3.8
Flexion Résistance 5.1.3 5.2.3 5.3.3
Stabilité 4.5.2 4.5.2 5.6.2
Effort tranchant Résistance 51.4 524 5.3.4
Stabilité 454 454 454
Flexion et effort Résistance 5:1.6 5.2.6 5:3:5
nogmal Stabilité 5.1.9 et 5.1.10 5.2.9 5.3.9, 5.6.2
Flexion et effort Résistance 5.1.5 5.2.5 5.3.6
AR Stabilité 452et454 452et454 | 454, 5626t56.3
Flexion, effort Résistance 5.1.7 et 5.1.8 5.2.7 et 5.2.8 5.3.7
normal et effort
Stabilite 4.54,519et5.1.10 4.54et529 454 et5.3.9

tranchant

Résistance plastique,
principe: § 5.1.1.2

Et aussi von Mises, par ex. interaction avec torsion (SIA 263, § 3.2.2.5 et §4.3.5.4):

= 2 2 2 2 2 2
OmEe = \/GX,E ez O-y,E - Oz — o-x,EO-y,E — Oy g0z — O-y,Eo-z,E * 3(Txy,E+sz,E+ sz,E)
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Poutre:
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En section: cas section rectangulaire
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<
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Une panne inclinée (TGC 11, § 5.3.3), étude en section

Quelles pannes sont soumises a de la torsion ?
A)a, B)b, C)c, D)a,b,c, E)b,c
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Une panne inclinée (TGC 11, § 5.3.3), étude en plan, avec liernes

voir détail IV Détail 1V

Elévation
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*‘T' ferme
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Vue en plan
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