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Fig. 5.1: Types de poutres

Notion d’élancement h/L (ou l’inverse)

h/L =
1/15

à 1/30

h/L =
1/7

à 1/35

h/L =
1/20

à 1/30
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Profilés laminés en double-té

Petit immeuble mmk en contruction, Lonay

IPE
(poutres)

HHD
(colonnes)
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Profilés laminés en double-té, profilés les plus utilisés

Bâtiment en construction, Rolex, Genève
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Peu d’encombrement et de poteaux

Bâtiment à Belmont, photo O. Burdet, 2017
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Poutres composées à âme pleine, si haut. variable, grande portée …

Halle de sport de Buchholz
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Poutres composées à âme pleine, la règle pour les ponts

Viaduc des Vaux, Estavayer



Cours structures en métal Prof. A. Nussbaumer 8

Fig. 5.21: Poutres ajourées
Découpe puis resoudage:
- augmentation hauteur statique et 
donc inertie sans augmenter le poids

Whitehall Road, Leeds UKHuddersfield Town Stadium UK
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Analyse structurale et dimensionnement de poutres (& poutre-poteau): 
Qu’est-ce qui change par rapport à vos connaissances de statique ?
1. La détermination des efforts intérieurs : peut être élastique ou 

plastique

2. Considérer le phénomène de voilement : l’éviter en vérifiant 
ou choisissant des épaisseurs de plaques sur la base de leur 
élancement b/t qui respectent des limites (fonction de la 
rotation nécessaire pour atteindre un moment résistant)

3. Considérer le phénomène de déversement: l’éviter en vérifiant 
ou choisissant des longueurs entre appuis latéraux qui 
respectent des limites (fonction de la rotation nécessaire pour 
atteindre un moment résistant)
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Le phénomène de déversement

Fig. 11.1 : Cas d’une poutre console chargée à son extrémité
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Déversement d’une poutre sous son propre poids lors transport
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Fig. 11.3: décomposition du mouvement d’une poutre 
sujette au déversement
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ELU: Analogie entre compression et flexion
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ELU: Analogie entre compression et flexion

€ 

λ D

€ 

χD

€ 

λ K

€ 

χK
Flambage : Déversement:

0,2 0,4

€ 

LD ≤ Lcr
et

€ 

NEd

Npl,Rd

≤ 0,15

Flambage 
empêché

Déversement empêché

Note: assouplissement critère (TGC10, 
pratique) pour considérer empêché 
selon axe faible (Iz) à 𝜆̅!" ≤ 0,5
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ELU: Longueur critique de déversement (SIA 263, tab. 6) METHODE GENERALE

Vérification:

LD ≤ Lcr
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Revenons à notre Exemple 6.2 (poutre-poteau), Fig. 6.9
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Revenons à notre Exemple 6.2 (poutre-poteau), Fig. 6.9
• Déversement empêché ?
• Calcul de Lcr
• Condition: NEd/NRd = 310/(2290/1.05) = 0.142

– NEd/NRd ≤ 0.15    OK

• (calcul EP) Lcr =                                    = 5650 mm
• LD ≤ Lcr ?
• 5000 ≤ 5650    OK
• Donc déversement empêché (ne se produit pas)
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Dimensionnement d’une poutre
• Définir les dimensions, sous les actions qui la sollicite:

– Assurant une sécurité suffisante
– Assurant un bon comportement en service
– Prévoyant une bonne durabilité 

• Vérifier toutes les sections de la poutre:
– Sur appui, en général sous M+V
– En travée
– Sections intermédiaires (aux charges concentrées)
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Prédimensionnement d’éléments (bâtiments)
De l’expérience, du TGC 11 § 3.2.3, § 5.3.3 et annexe chap. 6: règles empiriques de 
prédimensionnement d’éléments

Elancements:
• Dalle mixte avec tôle profilée: d ≅ l/32 (d : hauteur statique)
• Solive en profilé laminé (IPE): h ≅ l/30   (l/33) (h : hauteur statique)
• Sommier en profilé laminé (IPE ou HEA): h ≅ l/20 à l/25  (l/30)
• Poteau en profilé laminé: profilé HE d’élancement λk ≤ 50
• CV, treillis de faible élancement, si possible: h ≅ l/5 à h ≅ l/8   (l : portée horizontale ou verticale)

Cadres, portées et écartements:
• Compromis entre adaptabilité (grandes portées) et économie (petites portées)
• Portées sommiers: typiquement entre 6 et 15 m (profilés courants), mais possible jusqu’à 30 m
• Ecartement sommiers (= Portées solives): typiqu. entre 6 et 9 m, mais possible jusqu’à 12 à 15 m 

(poutres à treillis)
• Portées pannes: typiquement entre 6 et 9 m
• Entraxe des pannes: de 1 m (plaques ondulées en fibrociment sans sous-structure) à 4 m (tôles

profilées)
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Dimensionnement d’une poutre
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Fig. 5.11 : Exemple 5.1, répartition élastique des efforts intérieurs
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Démarche générale de dimensionnement
1. Séparer la structure en sous-systèmes à dimensionner séparément (au moins 

dans un premier temps, ce cours). Système statique du sous-système.
2. Définir les charges. Détermination des efforts intérieurs.
3. Décider du type d’élément <-> effort principal:

• Tirant ou poteau è NEd 
• Poutre è MEd

4. Prédimensionner, choisir le type de section (aussi en fonction effort principal)
• Poteau: soit avec A (en section), soit mieux avec 50 < λk < 100
• Poutre: h/L . Pour profilés laminés, mixte 1/15 à 1/30, pour composés soudés 1/7 à 

1/35 (pour dalles 1/40 à 1/50)
Et dimensionner (1ère itération), en général sous effort principal, l’un des cas de 
charge déterminants et à l’ELU
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Exemple 5.1, méthode de dimensionnement plastique-plastique
2) Détermination des efforts intérieurs plastiques 
3) Sollicitation principale ? Moment sous g + q
4) Dimensionnement, 1ère itération
La résistance à la flexion est fonction de:
- fy
-  type de profilé, soit :
ØWel ou Wpl et méthode de calcul (EE, EP , PP)
Ø critères d’élancement pour éviter le voilement
Ø h ou élancement (h/L)
Ø limitation en hauteur de construction
Ø possibilités/restrictions pour les assemblages
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Dimensionnement en flexion
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Extrait table SZS C4
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Dimensionnement en flexion (2)
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5) ELU: Contrôle critères 
d’élancement pour éviter le 
voilement
Méthode pour profilés double-té:
Utilisation table SZS C5
Sinon SIA 263, Tab. 5a et 5b 

HEA 120, S235, Ok pour calcul PP, 
i.e. profilé de classe 1
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Exemple 5.1, méthode de dimensionnement plastique-plastique

6) Vérification en tenant compte du poids propre
7) Vérification au déversement, LD  = 1250 mm

Tronçon Med,min [kNm] Med,max
[kNm]

Ψ Lcr [mm]

1 ≈  18.4 ≈ 18.4 1 1219  ≈ OK

2 1.76 -18.4 -0.1 1926   OK

Lcr1 =1.35 ⋅ iz
E
fy
=1.35 ⋅30.2 210000

235
=1219mm

Lcr1 = 2 ⋅ iz ⋅ 1− 2ψ 3( ) E
fy
=1926mm

ITERATIONS SI NECESSAIRE

≤ Lcr
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Cas possibles déversement (aile non-tenue directement) (1)

Support latéraux (aile sup. tenue directement, ponctuellement)

Changement de signe de moment 
avant l’appui latéral suivant

LD2
(ψ > 0)

LD1
(ψ < 0)

LD
(ψ < 0)

Changement de signe de moment 
après l’appui latéral suivant

Aile comprimée

M
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Cas possibles déversement (aile non-tenue directement) (2)

Support latéral aile sup. continu (tôle)

LD2
(ψ > 0)

LD1
(ψ < 0)

Changement de signe de moment après 
l’appui lat. suivant, mais raidisseurs

LD
(ψ = 0)

Support latéraux ponctuels Raidisseurs

Pas de déversement

Raidisseurs d’appuis (en général)

M
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8) Vérifications de la poutre aux autres ELU (ou ELS 
d’abord, selon le jugement de l’ingénieur)

• Effort tranchant
• Interaction moment-effort tranchant

• Autres interactions

• Autres cas de charges

• Introduction d’efforts concentrés

• Assemblages

• …

ITERATIONS SI NECESSAIRE
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9) Vérifications aux ELS, en particulier la flèche
La flèche totale d’une poutre :
1) contreflèche w0 à l’usine 
2) flèche w1 (poids propre et valeur instantanée des actions permanentes)
    et w2 flèche des effets à long terme, différés 
3) w3j flèches dues aux actions variables, selon la durée d’application
(j fait référence à 0: rare, 1: fréquent, 2: quasi permanent)
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9) Vérifications aux ELS: 
table SZS C4, p. 164. Calcul de 
la flèche d’une poutre

wM mm[ ]= L4 m4⎡⎣ ⎤⎦
I mm4⎡⎣ ⎤⎦

⋅q N /m[ ] ⋅A
Sous charge répartie, w au point M:

wM mm[ ]= L3 m3⎡⎣ ⎤⎦
I mm4⎡⎣ ⎤⎦

⋅Q N[ ] ⋅ k
Sous charge concentrée, flèche au point M:

wM mm[ ]= L3 m3⎡⎣ ⎤⎦
I mm4⎡⎣ ⎤⎦

⋅ Qi N[ ] ⋅ ki∑
Sous charges concentrées, w au point M:
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ELS: Fig. 5.4: diagramme pour le calcul de la flèche d’une poutre

1/12

€ 

MA

ql2
=
1
12

€ 

wmax =
1
384

ql4

EI

Notre cas: 2.64

Exemple, cas biencastré
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9) Vérifications aux ELS
• Fissuration
• Vibrations: voir TGC 10 § 5.2.1 et TGC 11 § 10.6
- fréquences désagréables aux utilisateurs
- phénomène de mise en résonance (fcrit = fpropre ou un multiple)

€ 

f propre,i Hz[ ] =
α i
2

2π⋅ L2 m2[ ]
⋅

EI Nm2[ ]
m kg /m[ ]

Fréquences propres à éviter (marche ≅ 2 Hz): fpropre = 1.6 à 2.4 Hz et 3.5 à 4.5 Hz
Donc il faut avoir (passerelles):
- verticalement:  fpropre < 1.6 Hz ou 2.4  < fpropre < 3.5 Hz 

 ou fpropre > 4.5 Hz 
- horizontalement (longitudinalement): fpropre > 2.5 Hz
- horizontalement (transversalement): fpropre > 1.3 Hz

ITERATIONS
SI NECESSAIRE

Passerelle du 
millenium, 

Londres
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TGC11 § 8.4.1: exemple, vérification d’une panne

Travail in
dividuel de lecture
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Annexe:
Tab. 5.8: expression simplifiée de la long. critique de déversement

€ 

Lcr = x ⋅ iz

LD LD1 LD2 LD3

Lcr augmente avec la classe de section

Lcr augmente lorsque diag. M ≠ cst
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Dimensionnement en flexion
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Dimensionnement en flexion (2)


