L.
J

o
5
-
|
-
=
£
«
3
.
D
D
Qa

slaauibuz Joj N O} o4u|

=PrL

Intro to ML for Engineers

2. ML Basics

o GTOT

ADELIgy

(Part 1)

4. Role of Input

= = - BN

input layer
hidden layer 1 hidden layer 2

N

O. Fink / A. Alahi

L=
=

PrL

Intro to ML for Engineers

Road map
Lectures

7. Deep Learning (Part 3)

8. Support Vector Machine

9. Other Supervised Learning
Models

Y=Faise

)

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Sofar

Neural networks
 Layers (fully connected or convolutional)
 Activation functions

* Loss functions

E Y

O. Fink / A. Alahi

u Intro to ML for Engineers

Usefullinks

= https://playground.tensorflow.org/

https://poloclub.github.io/cnn-explainer/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://www.cs.ryerson.ca/~aharley/vis/conv/

https://teachablemachine.withgoogle.com/

vitademo.epfl.ch/movements

1

O. Fink / A. Alahi

https://playground.tensorflow.org/
https://poloclub.github.io/cnn-explainer/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://www.cs.ryerson.ca/%7Eaharley/vis/conv/
https://teachablemachine.withgoogle.com/
http://vitademo.epfl.ch/movements

=PrL

Intro to ML for Engineers

Outline

= Backprop

= Recipe for training neural networks
= Weight initialisation

= Optimization

= Batch normalization

= Regularisation techniques

= Transfer learning

It s all about the gradient!

1

[y

O. Fink / A. Alahi

=PrL

Training neural
nets

u Intro to ML for Engineers

=PrL

u Intro to ML for Engineers

Neural networks
Training

= Forward pass of 2 layer NN (for a single sample):
e ZI1 = Wity 4+ pltl
. alll = gltl(Zly
. Z21 = Wi2ITal1 4 pl2]
. y=al2l = g2z}

oy = gPIWET gl Wit x + b1y 4 pl2)

7

<>

>

N

>

>

>

AS

1

(%)

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Neural networks
Training

Forward pass of 2 layer NN (for a single sample):

o y = g WET g WILTy 4 bl 4 pl2))

To train, we need a loss function: L(y,y)

Using that loss function, we want to update
will plil w2l pl2l

using gradient descent.

7

> >

>

X

AN

>

1

=

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Neural networks
Training

oL 0L
awll’ gplil
=> Gradient of loss with respect
to weights

Need to compute: —=

Once gradients are computed,

update weights with:

. wiil. = oL
w Wil

= blil. = plil —
bl:=b a—-= ab[l]

where & is the learmning rate

=
o

O. Fink / A. Alahi

=PrL

H Intro to ML for engineers

Backpropagation

Alexandre Alahi %

[=Y
=y

=" NN - Backpropagation

Overview

O. Fink / A. Alahi

= Algorithm used to efficiently compute
gradient of loss with respect to weights

. oL dy oL
= Makes use of chain rule: &= = 2%

dx dx oy O h
= Use computational graph to PyTO rC

progressively compute gradients / A U t 0 g ra d \

= Forward pass: Compute output
= Backward pass: Compute derivatives

u Intro to ML for Engineers

=PrFL Backprop
f(z,y,2) = (z +y)z
eg.,x=-2,y=95,z=+4

u Intro to ML for Engineers

f

={

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

f

={

_ 0 ., O0q
g=x+Yy E—l,a—l
of of
f=gqz g 9 94
0 0 0
2\Want ol

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

dq dq f
q=1l 5 =l =1 /
oz Ay i
of of of
f=gqz g 9 94
0 0 0
2\Want i o0

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

dq dq f
q=1l 5 =l =1 /
oz Ay i
of of of
f=gqz g 9 94
0 0 0
\Want i o0

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

g=z+y %:1,@:1 ——
9y
dy
af of 0z
f=qz 0= %5 =4
df O8f 0
z\Want L2k e

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

g=z+y F=lg=1| T
Oy
of
of of 0z
f=gqz g 9 94
0 0 s,
2\Want i o0

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

_ 0 ., O0q
g=x+Yy a—l,a—l
of of
f=gqz g 9 94
of Of O
2\Want ol

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

_ 0 ., O0q
g=x+Yy a—l,a—l
of of
f=gqz g 9 94
of Of O
°\Want ol

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

_ 0 ., O0q
g=x+Yy a—l,%—l
of of
f=gqz g 9 94
of Of O
°\Want ol

or’ Oy’ 0z

u Intro to ML for Engineers

=P*L Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5,z=+4

_ gfF _OF Chain rule: Oy
f=qz 3q_z’6z_q g_ic@
of df 0 Oy 0q By
2\Want o O

or’ Oy’ 0z

u Intro to ML for Engineers

=PrL Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5z=+4

_ 0 ., O0q
g=x+Yy a—l,%—l
of of
f=gqz g 9 94
of Of O
°\Want ol

or’ Oy’ 0z

u Intro to ML for Engineers

=P*L Backprop

f(z,y,2) = (z +y)z
eg.,x=-2,y=5,z=+4

_ ar . OF Chain rule: Oz
f_qz 3q_z&@3_q S_f _f@
of of 0 or dq Ox
eWant L O

) By Bz

u Intro to ML for Engineers

(=)
o™

Iyely v /3uld4 'O

=PrL

sloauibug Joj N oy osu) R

=PrL

u Intro to ML for Engineers

“local gradient”

3

=4

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

“local gradient”

Z

0L

%v az
gradients

[
N

O. Fink / A. Alahi

u Intro to ML for Engineers

L
\ “local gradient”
> & 0z
2 V4
<
oL
% =
gradients

3

[

O. Fink / A. Alahi

u Intro to ML for Engineers

“local gradient”

34

Z
>
<
OL
%; =
oL
- .
= gradients

“local gradient”
= @

2
<
OL
0z
oL
o7 gradients

=PrL

Intro to ML for Engineers

1

1+e

—(wpxg+wyxy+ws)

3

O. Fink / A. Alahi

L Backprop (s - —

1w —(wpxg+wyxy+ws)

100 AL 100 O 087) 1 @ 0.73
_ # -y

~

O. Fink / A. Alahi

ey Sl T
flz) =e? Voo | =1 Yy
f. iz —nr g:a f@)=c+z %—1

u Introto Ml

=PrL

u Introto Ml

Backprop

w0 2.00

1 38
f(w,ﬁ:) = 1 LS E—{IUQI[]+T.U1;I.‘1+T.U2} §
1.00 @ -1.00 @ 0.37 1.37 @ ?gg
=1 A 1 df
= f(z) = — E—_l/mz
df df
i, f(@)=c+=z . E_l

=PrL

u Introto Ml

Backprop

w0 2.00

1 39
f(w,ﬁ:) = 1 LS E—{IUQI[]+T.U1;I.‘1+T.U2} §
1 -
(1)(1.00) = —0.53
1.00 * -1.00 0.37 1.37 0.73
D & e D e a Gy
=1 A 1 df
= f(z) = — i E—_l/mz
df df
E =a fc(m) — T — E

L Backprop (s - —

u Introto Ml

4

1 e E—{wg:nu+w1;r1+w2} §
w0 2.00 (:f
1.00 * -1.00 0.37 1.37 0.73
D (D (s
if 1 if
m E:em f(z) = — i E—_l/mz
df df
o E_a fiz)—ci= et E_l

L Backprop (s - —

MR —(wpxg+wyxy+ws)

w0 2.00

1.00 A7\, 1.00 @ 037 T\ 137 | g7y 073
N /1405 __/ 05 [\ 100

=y

O. Fink / A. Alahi

M= = == f@)= = R s
P S | T

u Introto Ml

EPFL 1 ;
Backprop sw,o)- T
w0 2.00
) a R CORC T () e o (aer
z df' s 1 d
f(&?):fﬁ EZG f(a‘:):— =y é__l/mj
d d
fo(@) =az é:a f.(z)=c+=x — é_l

u Introto Ml

O. Fink / A. Alahi

L Backprop (s - —

1w —(wpxg+wyxy+ws)

w0 2.00

1.00 /;‘1\ -1.00 @ 0.37 /:.I\ 1.37 @ 073
_/ 020 \F/ 083 N/ 053 \ O 100

flz) =¢" = % =e’ flz) = é = ji:
f. iz —nr — g = f.(z)=c+=x e

u Introto Ml

[

O. Fink / A. Alahi

=PL Backprop

w0 2.00

flw,z) =

1

1+e

—(wpxg+wyxy+ws)

4

0.73

f(z) =€ j_f:
fa(m)_am g:a

u Introto Ml

1.00

E S

O. Fink / A. Alahi

=PrL 1 4
Backprop sw,o)- T
w0 2.00
1.00 * -1.00 0.37 1.37 0.73
0.20 @ 0.20 @ -0.53 @ 0.53 @ 1.00
z df' s 1 d
f(&?):fﬁ EZG f(a‘:):— =y é__l/mj
d d
fo(@) =az é:a f.(z)=c+=x — é_l

u Introto Ml

O. Fink / A. Alahi

=PrL Backprop

w0 2.00

u Introto Ml

w2 -3.00

1 4
f(w,ﬁ:) = 1 LS E—{IUQI[]+T.U1;I.‘1+T.U2}
1.00 * -1.00 0.37 1.37 0.73
0.20 @ -0.20 @ -0.53 @ 0.53 @ 1.00
=1 A 1 df
= f(z) = — i E—_l/mz
df df
- = fz)=c+z — =1

O. Fink / A. Alahi

L Backprop) - —

3. E—{wg:trn+w11:1+w2}
w0 2.00
[local gradient] x [upstream gradient]
— [1]x[0.2] = 0.2
020 [1]x [0.2] = 0.2 (both inputs!)
)L 100] ATy 100 @ 037 N\ 137 gy 073
020 _/ 020 \7/ 053 _/ 058 ‘_/ 100
w2 -3.00 ,/
0.20
z df _ . 1 d
flz)—=e - e f(m)ZE % é——l/mz
d
fo(@) =az g é:a fizl =et& — %_1

u Introto Ml

~

O. Fink / A. Alahi

=PrL

1 4
BaCkprop f(w,a‘:) - 1+ E_'[wa:trn+w11-‘1+wz}
WO 2.00
100 /5 1.00 0.37 1.37 0.73
0.20 @ 0.20 @ 0,53 @ 0.53 @ 1.00
0.20
z af _ . 1 af
fx)=e — == flz) = = % E“U“’z
df df
fo(@) =az g g A fizl =et& — E_l

u Introto Ml

O. Fink / A. Alahi

=PrL

u Introto Ml

Backprop

w0 2.00
-0.20
-2.00
0.20
x0 -1.00
0.40
wl -3.00

w2 -3.00
0.20

1 49
_f('w,a‘:) - 1+ e —(wozo+wi 1 +ws) %
[local gradient] x [upstream gradient]
x0: [2] x[0.2] = 0.4
wO: [-1] x [0.2] =-0.2
T) e G e G e)
df _ . 1 d
= f(z) = — i é—_l/mz
g:”‘ izl - %_1

=PrL Backprop i

f(w,z) = 11 e (Wozotwiz) o(z) = 1+ e-=| sigmoid function

do(z) e i i 1
der (1+e®)° B 11e " L4-& "

w0 2.00

(1-o(z))o(z)

sigmoid gate

100 | G). 100 @ 037 "\ 137 @ 0.73
020 [N/ 020 Y 053 _J 053 | 100

0.20

u Intro to ML for Engineers

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Bafkpmp 1
f(w,m =

1 i —(wozg+w iz +ws)

do(x) e " i i 1
der (1+e®)° B 11e " L4-& "

w0 2.00

1.00

sigmoid gate

@ SLO0 /TN 037 Q 1.37 @

sigmoid function

(1-o(z))o(z)

0.73

0.20

020 s s UK

\

0.20

(0.73)*(1-0.73) = 0.2

1.00

=y

O. Fink / A. Alahi

=PrL

Modularized implementation:
forward / backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = x*y

return z

def backward(dz):
Fdx = #t0;§\\\\\\\---\\\
)/ # dy = ... #todo

return [dx, dy]

oL
0z

(x,y,z are scalars) \

u Intro to ML for Engineers

OL
Oz

O. Fink / A. Alahi

=PFL Modularized implementation:
forward / backward API

class MultiplyGate(object):

X

y
(X,y,z are scalars)

u Intro to ML for Engineers

def

def

forward(x,y):
Z = X*y

X # must keep these around!

self.x

self.y = y
return z

backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

w

Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Deep leaming frameworks
Overview

= Deep learning frameworks are used to efficiently define and train neural
networks

* Support for many types of layers, activations, loss functions, optimizers, ...
 Backpropagation computed automatically (e.g. loss.backward() in PyTorch)

» GPU support for faster training .
O PyTorch

1F TensorFlow

= Most popular frameworks today:
 PyTorch (hitps://pytorch.org)
* TensorFlow (htips://www.tensorflow.org/)

(-]
-

O. Fink / A. Alahi

https://pytorch.org/
http://tensorflow.org/

=PrL

u Intro to ML for Engineers

Deep leaming frameworks

Implementing a simple neural network in PyTorch

def

def

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
__init__(self):

super(Net, self).__init_ ()
self.fcl = nn.Linear(3, 6)
self.fc2 = nn.Linear(6, 4)
self.fc3 = nn.Linear(4, 1)

forward(self, x):

x = self.fcl(x)
x = F.relu(x)

x = self.fc2(x)
X = F.relu(x)

x = self.fc3(x)
return x

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Recap on training a neural network

* Loop:

1. Sample a batch of data

2. Forward pass to get the loss

3. Backward pass to calculate gradient

4. Update parameters using the gradient

0 Forward pass computes result of an operation and save any intermediates needed for gradient
computation in memory

0 Backward pass applies the chain rule to compute the gradient of the loss function with respect to the
inputs

0 Backpropagation = recursive application of the chain rule along a computational graph to compute
the gradients of all inputs/parameters/intermediates

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Recipe for training
neural networks

o
=

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

How to have an “efficient Gradient”?

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Vanishing or exploding gradients

Definitions

00000
Jeteiesjeioioie
JOTE

uuuuuuuuuuuuu

1. Feed forward pass

»

2. Compute Loss (esfimate error)
3. Backward pass

<«

To calculate gradient
& update weight
(with stochastic gradient)

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Vanishing or exploding gradients

Definitions

= Vanishing gradient: The update of the weights close to the
input layer will become very slow, resulting in the hidden
layer weights close to the input layer almost unchanged,
throwing the weights close to the initialization.

= Exploding gradient: \When the initial weight value is too
large, the weight value near the input layer changes faster
than the weight value near the output layer, which will cause
the problem of gradient explosion.

SEHG

QO L) O
Beciccioes

uuuuuuuuuuuuu

1. Feed forward pass

»

2. Compute Loss (esfimate error)
3. Backward pass

«

To calculate gradient
& update weight
(with stochastic gradient)

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

NN TIPS & TRICKS

(-3
=4

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Data pre-processing

original data

0

=5

=10

-10 =5

=5

zero-centered data

-5

np.mean(X,

axis

%

a) |

normalized data

=5

=10

-10

X /= np.std(X, axis

w

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data

> Normalize each dimension of the input

'

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data

» Design an architecture
* Loss function
+ Layers type
« #layers, #Filters

> Normalize each dimension of the input

» Start from state-of-the-art designs
>Select task appropriate loss function (pytorch losses)
>“Conv” for signals such as images, and more recently Transformers
» Start with popular designs

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Convolutional Neural Networks
Popular architectures

S C3: 1. maps 16@10x10
: feature maps S4: f maps 16@5x5
COB SN

S2: f. maps
6@14x14

LeNet-5
LeCun et al. ,17998

|

Convolutions Subsampling Convolutions Subsampling Full connection

Full mmjlecﬁgn | Gaussian connections

Layer (type) Output Shape Param #

Conv2d-1 (-1, 6, 28, 28] 156 1 in output shape represents

the mini-batch dimension

RelLU-2 [-1, 6, 28, 28] 0
MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0
MaxPool2d-6 [-1, 16, 5, 5] 0
Linear-7 [-1, 120] 48,120
ReLU-8 [-1, 120] 0
Linear-9 [-1, 84] 10,164
ReLU-10 [-1, 84] 0
Linear-11 [-1, 10] 850
Softmax-12 [-1, 10] 0

Total params: 61,706

O. Fink / A. Alah

=PrL

Intro to ML for Engineers

Convolutional Neural Networks
Popular architectures

27

AlexNet

Krizhevsky et al., 2012

Winner of ImageNet Competition 2012

ﬁ 13 13 13
L +
\ 5 N - 3 T -
21 5: - 27 36: [=% s ﬁ: B Ay oI
224 5 - 3 N -~
s 384 384 \ 256
256 Max
Max Max pooling
Stride\\| 4, | Pocling pooling

black widow
cockroach
tick

starfish

drilling platform ||

go-kart
moped
bumper car

golfcart

L€

beach wagon

agaric

mushroom

jelly fungus

gill fungus
dead-man’s-fingers

fire engine

cheetah
snow leopard

Egyptian cat
e R

]
=~

O. Fink / A. Alahi

=PeL Convolutional Neural Networks

Popular architectures

Layer (type) Output Shape Param #

Conv2d-1 [-1, 64, 224, 224] 1,792

224 x224x3 224x224x64 ReLU-2 [-1, 64, 224, 224] 0

Conv2d-3 [-1, 64, 224, 224] 36,928

ReLU-4 [-1, 64, 224, 224] 0

MaxPool2d-5 [-1, 64, 112, 112] 0

Conv2d-6 [-1, 128, 112, 112] 73,856

ReLU-7 [-1, 128, 112, 112] 0

112 x 112 x 128 Conv2d-8 [-1, 128, 112, 112] 147,584

; ReLU-9 [-1, 128, 112, 112] 0

MaxPoo012d-10 [-1, 128, 56, 56] 0

56|x 56 x 256 Conv2d-11 [-1, 256, 56, 56] 295,168

r 7TxTx512 ReLU-12 [-1, 256, 56, 56] 0

Conv2d-13 [-1, 256, 56, 56] 590,080

) 1{4"14)(512 : 1x1x4096 1x1x1000 ReLU-14 [-1, 256, 56, 56] 0

I J Conv2d-15 [-1, 256, 56, 56] 590,080

ReLU-16 [-1, 256, 56, 56] 0

MaxPool2d-17 [-1, 256, 28, 28] 0

Conv2d-18 [-1, 512, 28, 28] 1,180,160

ReLU-19 [-1, 512, 28, 28] 0

i Conv2d-20 [-1, 512, 28, 28] 2,359,808

@ convolution+RelLU ReLU-21 (-1, 512, 28, 28] o

) max pooling Conv2d-22 [-1, 512, 28, 28] 2,359,808

fully nected+RelLU ReLU-23 t-1, 512, 28, 28] 0

MaxPool2d-24 [-1, 512, 14, 14] 0

softmax Conv2d-25 [-1, 512, 14, 14] 2,359,808

ReLU-26 [-1, 512, 14, 14] 0

» Conv2d-27 [-1, 512, 14, 14] 2,359,808
) ReLU-28 [-1, 512, 14, 14)] 0
o Conv2d-29 [-1, 512, 14, 14] 2,359,808
S ReLU-30 [-1, 512, 14, 14] 0
c MaxPool2d-31 [-1, s12, 1, 71 0
'-E VGG1 6 Linear-32 [-1, 4096] 102,764,544
k<] . . . ReLU-33 [-1, 4096] 0
2 Simonian & Zisserman, 2014 e ;
s y Linear-35 [-1, 4096] 16,781,312
o ReLU-36 [-1, 4096] 0
‘5 Dropout-37 [-1, 4096] 0
= Linear-38 [-1, 1000] 4,097,000
£ Softmax-39 [-1, 1000] 0

Total params: 138,357,544

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Residual neural
networks

* ResNets (He et al., 2015):
Add shortcuts (skip-connections) to jump over some
layers

» Deeper models are harder to optimize, and in
particular, don'’t learn identity functions well

« Skip-connections make identity functions easier to
learn, helps during training

* ResNets stack residual blocks on top of each
other to form deep networks (e.g. ResNet-50,
ResNet-101, ...)

weight layer

X
identity

residual blocks

poal, /2

33 conv, 128, f2

He and al, Deep Residual Learning for Image Recognition, 2015

ink / A. Alahi

=PrL

u Intro to ML for Engineers

Design an architecture

= https://playground.tensorflow.org/

=y
(]

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data

» Design an architecture
* Loss function
+ Layers type
« #layers, #Filters
 Activation function

> Normalize each dimension of the input
» Start from state-of-the-art designs
>Select task appropriate loss function (pytorch losses)
>“Conv” for signals such as images, and more recently Transformers
» Start with popular designs
>Relu, elu

7

=

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Activation functions

. . ! r—
SlngId Der!\{ative_'czlose 'Fo 0. for large
o'(x) — 1+1e_$ posfuv;;r negative inputs
tanh 1/
tanh(z) - 4 .
RelLU
max(0, z)

Derivative of output’with respect to
the input is 1 for inputs great than 0
=> Training more stable and efficient

Leaky RelLU 1/

Deal with dying Relu
max (0.1, x) g

/

-3 57_1 10

Maxout
max(w{ z + by, wd x + by)

10

ELU

T x>0
ae®—-1) z<0 - io

7

N

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data
» Design an architecture
* Loss function
+ Layers type
« #layers, #Filters
 Activation function
= Sanity check
» Gradient check
* Loss dynamics
» Overfit subset of the data

Normalize each dimension of the input
Start from state-of-the-art designs
Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
RelLu, elu

¢

[~

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data
» Design an architecture
* Loss function
+ Layers type
« #layers, #Filters
 Activation function
= Sanity check
» Gradient check
* Loss dynamics
» Overfit subset of the data

> Normalize each dimension of the input
» Start from state-of-the-art designs
>Select task appropriate loss function (pytorch losses)
>“Conv” for signals such as images, and more recently Transformers
» Start with popular designs
>Relu, elu
>Only once
> Analytical VS num grad (while turning all regularization off) (fix rand seed)
> At chance or when regularization is increased

7

£

O. Fink / A. Alahi

EPFL

u Intro to ML for Enaineers

Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

model = {}
model['W1'
model [
model [
model['b2'

np.zeros(hidden size)

np.zeros (output size)

0.0001 * np.random.randn(input size, hidden size)

0.0001 * np.random.randn(hidden size, output size)

model = init two layer model(32%*32*3, 56, 10) # input size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train] 0.0

print loss

2.30261216167 \

“correct “ for

<\disable regularization
loss ~2.3.

returns the loss and the

10 classes gradient for all parameters

7

O. Fink / A. Alahi

EPFL

u Intro to ML for Epnineare

Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

model = {}
model['W1'
model [
model [
model['b2'

np.zeros(hidden size)

np.zeros (output size)

model = init two layer model(32%*32*3, 50, 10) # Inguisiz

loss, grad = two layer net(X train, model, y train,

le3

print loss

0.0001 * np.random.randn(input size, hidden size)

0.0001 * np.random.randn(hidden size, output size)

, hidden size, number of classes

crank up regularization

3.06859716482 \
loss went up, good. (sanity check)

7

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Lets try to train
now...

Tip: Make sure
that you can overfit
very small portion
of the training data

model = init two layer model(32%32*3, 58, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 examples

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,

model, two layer net,
num_epochs=280, reg=0.0,
update='sgd', learning rate decay=1,
sample_batches = False,

learning rate=le-3, verbose=True)

The above code:

take the first 20 examples from
CIFAR-10

turn off regularization (reg = 0.0)
use simple vanilla ‘sgd’

77

H model = init two layer model(32%32*3, 58, 10) # input size, hidden size, number of classes —
EPFL ry raln trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 examples

now y tiny = y train[:20]
EEE best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,

model, two layer net,
num_epochs=280, reg=0.0,
update='sgd', learning rate decay=1,
sample_batches = False,

learning rate=le-3, verbose=True)

" . Finished epoch 1 / 200: cost 2.382603, train: 0.400800, val 0.400000, lr 1.008000e-03
Tlp_ Make sure that Finished epoch 2 / 200: cost 2.362258, train: 0.450000, val 0.450000, Lr 1.000000e-03
Finished epoch 3 / 2008: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Ou Can Overflt Ver e Finished epoch 4 / 200: cost 2.381196, tra@n: 0.650000, val 0.650000, 1lr 1.000000e-03
)/)/ Finished epoch 5 / 208: cost 2.300044, train: 0.650000, val ©.650000, lr 1.000000e-03
. Finished epoch 6 / 200: cost 2.297864, train: 0.550800, val 0.550000, lr 1.008000e-03
Sma” pornon Of the Finished epoch 7 / 208: cost 2.293595, train: 0.600800, val 0.660000, lr 1.600000e-03
Finished epoch 8 / 208: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
triiir1ir1 CjEitEi Finished epoch 9 / 200: cost 2.268094, traip: 0.550000, val 0.550000, 1lr 1.000000e-03
SJ Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val ©.500000, lr 1.000080e-03
Finished epoch 11 / 2080: cost 2.173187, train: 0.508000, val 0.500000, lr 1.080000e-83
Finished epoch 12 / 200: cost 2.076862, train: ©.500800, val ©.500000, lr 1.000080e-03
Finished epoch 13 / 200: cost 1.974098, train: 0.400008, val 0.400000, lr 1.000080e-03
Finished epoch 14 / 2080: cost 1.895885, train: 0.408008, val 0.400060, lr 1.080000e-83
Finished epoch 15 / 2080: cost 1.820876, train: ©.450008, val 0.4500600, lr 1.080000e-83
Finished epoch 16 / 280: cost 1.737430, train: 0.458000, val 0.450000, lr 1.080000e-83
Finished epoch 17 / 200: cost 1.642356, train: ©.500800, val ©.500000, lr 1.000080e-03
Very Sma” IOSS Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, Lr 1.000000e-03
) Finished epoch 19 / 2080: cost 1.421527, train: ©.608008, val 0.600008, lr 1.08P000e-83
Famarmrhoad ~aemask S0 N T T i 1 aACTEN B N CCAnnn raml N CCMAnnn T e 1 AAAMAMANA -~ "7
traln aCCU raCy 1 00, Finished e|r)0ch 195 200: cost ©.002694, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 196 / 208: cost ©.002674, train: 1.080000, val 1.080000, lr 1.000000e-03
.000000, val 1.000000, lr 1.000000e-03

Finished epoch 198 / 20@: cost
Finished epoch 199 / 208: cost
Finished epoch 208 / 200: cost ©.002597, train: 1.080080, val
finished optimization. best validation accuracy: 1.000000

.002617, train: 1.000000, val 1.000000, lr 1.000000e-03

1 1 1
1 1 1
.002635, train: 1.0080000, val 1.000000, lr 1.000000e-03
1 1 1
1 1.080000, lr 1.000000e-03

A 2]
. i 2}
r]|(:63| Finished epoch 197 / 200: cost ©.002655, train:
. /)
/ e
/ [0]
o

Intro to ML for Engineers

=rrL Lets tryto train
now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

Intro to ML for Engineers

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of clggses
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num_epochs=18, reg=0.000801,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=le-6, verbose=True)

[}
EPFL Letst to traln model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of clggses
trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
now. EE model, two layer net,
num_epochs=18, reg=0.000801,
update='sgd', learning rate decay=1,

ef
learning_rate=1e-6,|verb05e=True}

. Finished epoch 1 / 10:|cost 2.382576, |train: 0.080000, vl ©.103000, lr 1.000000e-086

Start Wlth Sma” Finished epoch 2 / 10:|cost 2.302582, |traif: 0.121000, val 0.124000, lr 1.600000e-06

Finished epoch 3 / 10:|cost 2.382558, |train: 0.119000, vel ©.138000, lr 1.000000e-06

. H . Finished epoch 4 / 10:|cost 2.362519, |trainf: 0.127080, val 0.151008, lr 1.000000e-06

regl."anzat'()n and flnd Finished epoch 5 / 10:|cost 2.382517, |train: ©.158000, vl ©.1716000, lr 1.000000e-06

Finished epoch 6 / 10:|cost 2.362518, |trainf: 0.179680, val 0.172000, lr 1.000000e-86

|earn|n rate that Finished epoch 7 / 10:|cost 2.302466, |trairf: ©.180000, val ©.176080, lr 1.000000e-06

SJ Finished epoch 8 / 10:|cost 2.302452, |trainf: 0.175080, val 0.185008, lr 1.000000e-06

Finished epoch 9 / 10:|cost 2.382459, |train: 0.206000, vl ©.192000, lr 1.000000e-086

makes the |OSS go Finished epoch 10 / 10} cost 2.3062420| train: ©.190000, jval ©.192000, 1r 1.000080e-06
finished optimization.lbest validatiod accuracy: 0.192000

down. Loss barely changing

Intro to ML for Engineers

[}
EPFL Letst to traln model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of clggses
trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
now. EE model, two layer net,
num_epochs=18, reg=0.000801,
update='sgd', learning rate decay=1,

ef
learning_rate=1e-6,|verb05e=True}

. Finished epoch 1 / 10:|cost 2.382576, |train: 0.080000, vl ©.103000, lr 1.000000e-086

Start Wlth Sma” Finished epoch 2 / 10:|cost 2.302582, |traif: 0.121000, val 0.124000, lr 1.600000e-06

Finished epoch 3 / 10:|cost 2.382558, |train: 0.119000, vel ©.138000, lr 1.000000e-06

. H . Finished epoch 4 / 10:|cost 2.362519, |trainf: 0.127080, val 0.151008, lr 1.000000e-06

regl."anzat'()n and flnd Finished epoch 5 / 10:|cost 2.382517, |train: ©.158000, vl ©.1716000, lr 1.000000e-06

Finished epoch 6 / 10:|cost 2.362518, |trainf: 0.179680, val 0.172000, lr 1.000000e-86

|earn|n rate that Finished epoch 7 / 10:|cost 2.302466, |trairf: ©.180000, val ©.176080, lr 1.000000e-06

SJ Finished epoch 8 / 10:|cost 2.302452, |trainf: 0.175080, val 0.185008, lr 1.000000e-06

Finished epoch 9 / 10:|cost 2.382459, |train: 0.206000, vl ©.192000, lr 1.000000e-086

makes the |OSS go Finished epoch 10 / 10} cost 2.3062420| train: ©.190000, jval ©.192000, 1r 1.000080e-06
finished optimization.lbest validatiod accuracy: 0.192000

down. Loss barely changing: Learning rate is

probably too low
= loss not going down:

learning rate too low

Intro to ML for Engineers

[}
EPFL Letst to traln model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of clggses
trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
now. EE model, two layer net,
num_epochs=18, reg=0.000801,
update='sgd', learning rate decay=1,

ef
learning_rate=1e-6,|verb05e=True}

. Finished epoch 1 / 10:|cost 2.382576, |train: 0.080000, vl ©.103000, lr 1.000000e-086

Start Wlth Sma” Finished epoch 2 / 10:|cost 2.302582, |traif: 0.121000, val 0.124000, lr 1.600000e-06

Finished epoch 3 / 10:|cost 2.382558, |train: 0.119000, vel ©.138000, lr 1.000000e-06

. H . Finished epoch 4 / 10:|cost 2.362519, |trainf: 0.127080, val 0.151008, lr 1.000000e-06

regl."anzat'()n and flnd Finished epoch 5 / 10:|cost 2.382517, |train: ©.158000, vl ©.1716000, lr 1.000000e-06

Finished epoch 6 / 10:|cost 2.362518, |trainf: 0.179680, val 0.172000, lr 1.000000e-86

|earn|n rate that Finished epoch 7 / 10:|cost 2.302466, |trairf: ©.180000, val ©.176080, lr 1.000000e-06

SJ Finished epoch 8 / 10:|cost 2.302452, |trainf: 0.175080, val 0.185008, lr 1.000000e-06

Finished epoch 9 / 10:|cost 2.382459, |train: 0.206000, vl ©.192000, lr 1.000000e-086

makes the |OSS go Finished epoch 10 / 10} cost 2.3062420| train: ©.190000, jval ©.192000, 1r 1.000080e-06
finished optimization.lbest validatiod accuracy: 0.192000

down. Loss barely changing: Learning rate is

probably too low
= loss not going down:

learning rate too low

Intro to ML for Engineers

|
EPFL Lets tWto traln model = init two layer model(32%32+%3, 58, 10) # input size, hidden size, number of classes 83

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
now... model, two layer net,
num_epochs=18, reg=0.080001,
update='sgd', learning rate decay=1,
sample batches = True,

Start with small x
regularization and find Now let’s try learning rate 1e6.
learning rate that

makes the loss go

down.

= loss not going down:
learning rate too low

u Intro to ML for Engineers

=PrL

Lets try to train
now...

Start with small
regularization and find
learning rate that
makes the loss go

down.

Intro to ML for Engineers

model = init two layer model(32%*32*3, 58, 10) # Input size, hidden size, number of classes 84
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num_epochs=18, reg=0.080001,

update='sgd', learning rate decay=1,

sample_batches = True,

learning rate=1e6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural_net.py:50: RuntimeWarning: divide by zero en
countered in log

data loss = -np.sum(np.log(probs[range(N), yl}) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural _net.py:48: RuntimeWarning: invalid value enc
ountered in subtract

probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))
Finished epoch 1 / 18: cost nan, train: ©.091008, val 0.087880, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: ©.095000, val 0.087880, lr 1.000000e+06
Finished epoch 3 / 18: cost nan, train: ©.108008, val 0.087880, lr 1.000000e+06

cost: NaN almost

= loss not going down: always means high

learning rate too low
= loss exploding:
learning rate too high

learning rate...

PS: NaN also occurs because of:
- log (negative number),
- divide by zeros (variable going to zero)

u model = init_two layer model(32%32*3, 58, 10) # input size, hidden size, number of classes
“PFL Lets tryto traln trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num_epochs=10, reg=0.000001,
update='sgd’', learning rate decay=1,
sample batches = True,

now. [

Finished
Finished

Start with small Finished
regularization and find =i
learning rate that

makes the loss go

down.

= loss not going down:
learning rate too low

= loss exploding:
learning rate too high

Intro to ML for Engineers

epoch
epoch
epoch
epoch
epoch
epoch

(=2 IS I S PV R

T Ty Ty ey ey e

10:
10:
10:
10:
10:
10:

learning_rate=3e-3,

cost 2.186654, train: 0.308000,
cost 2.176230, train: 0.330000,
cost 1.942257, train: 0.376000,
cost 1.827868, train: 0.32%000,

cost inf, train: 8.1288008, val
cost inf, train: ©.144000, val

verbose=True)

val ©.306000,
val 0.350000,
val ©.352000,
val ©.310000,
0.128000, lr 3.
0.147008, 1r 3.

1r 3.000000e-03
1r 3.000000e-083
1r 3.000000e-03
1r 3.0008000e-03
ogeeeee-03
ooeeeee-03

3e-3 is still too high. Cost explodes....

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 ... 1e-3]

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data
» Design an architecture
* Loss function
+ Layers type
« #layers, #Filters
 Activation function
= Sanity check
» Gradient check
* Loss dynamics
» Overfit subset of the data

> Normalize each dimension of the input
» Start from state-of-the-art designs
>Select task appropriate loss function (pytorch losses)
>“Conv” for signals such as images, and more recently Transformers
» Start with popular designs
>Relu, elu
>Only once
> Analytical VS num grad (while turning all regularization off) (fix rand seed)
> At chance or when regularization is increased
»Use small subset of the data (while regularization is off)

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data
» Design an architecture
* Loss function
+ Layers type
« #layers, #Filters
 Activation function
= Sanity check
» Gradient check
* Loss dynamics
» Overfit subset of the data
+ Initialize weight “smartly”

Normalize each dimension of the input
Start from state-of-the-art designs
Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
RelLu, elu
Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

~

O. Fink / A. Alahi

="l Weight initialization

u Intro to ML for Engineers

Overview

How weights are initialized has an important impact on training

Q: What happens if we initialize all weights W to 0?

A: Output of each neuron of a hidden layer is identical
=> Gradient for each neuron is identical
=> Weight update for each neuron is identical

=> All neurons of a hidden layer will be identical, no better than a linear
model

Avoid zero initialization!

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Weight initialization
Initialization values

Next idea: Random initialization

= |nitialize with small random numbers (e.g. sample from normal distribution)
« Okay for shallow networks, problematic for deeper networks

« Activations tend to zero for deeper network layers — small gradients, no leaming

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

L | 0 1 ot § 0 1 =1 0 1 | 0 1 -1 0

J. Johnson, Deep Learning for Computer Vision (University of Michigan) - Lecture 10

O. Fink / A. Alahi

="l Weight initialization

Intro to ML for Engineers

Initialization values

Next idea: Random initialization

= |nitialize with larger random numbers

 Activations saturate — bad

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

AN O O o

J. Johnson, Deep Learning for Computer Vision (University of Michigan) - Lecture 10

=> Need to find initialization values that are “just right”

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Weight initialization
Initialization values

Xavier (Glorot) initialization [Glorot et al., 2010]:

2
Sample from NV'(0,6%), witho = |[—,
a+b

where a is the number of input neurons, and b is the number of output neurons

» Good initialization for network with tanh activations

Kaiming (He) initialization [He et al., 2015]:

2
Sample from V'(0, %), with o = \/;l where @ is the number of input neurons

= Good initialization for network with ReLU activations

= More info: https:/paperswithcode.com/method/he-initialization

"3
=4

O. Fink / A. Alahi

https://paperswithcode.com/method/he-initialization

=PrL

u Intro to ML for Engineers

Weight initialization
Resources
0 (Must read) Great interactive lecture notes on initialization by

Katanforoosh & Kunin:
https:/Wwww.deeplearing.ai/ai-notes/initialization/

("3
N

O. Fink / A. Alahi

https://www.deeplearning.ai/ai-notes/initialization/

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

Preprocess data
Design an architecture

* Loss function

+ Layers type

« #layers, #Filters

 Activation function
Sanity check

» Gradient check

* Loss dynamics

» Overfit subset of the data
Initialize weight “smartly”

> Normalize each dimension of the input
» Start from state-of-the-art designs
>Select task appropriate loss function (pytorch losses)
>“Conv” for signals such as images, and more recently Transformers
» Start with popular designs
>Relu, elu
>Only once
> Analytical VS num grad (while turning all regularization off) (fix rand seed)
> At chance or when regularization is increased
»Use small subset of the data (while regularization is off)
> Xavier (Glorot) / Kaiming (He) initialization (pytorch init)

[

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

Preprocess data
Design an architecture

* Loss function

+ Layers type

« #layers, #Filters

 Activation function
Sanity check

» Gradient check

* Loss dynamics

» Overfit subset of the data
Initialize weight “smartly”
Batch normalization

> Normalize each dimension of the input
» Start from state-of-the-art designs
>Select task appropriate loss function (pytorch losses)
>“Conv” for signals such as images, and more recently Transformers
» Start with popular designs
>Relu, elu
>Only once
> Analytical VS num grad (while turning all regularization off) (fix rand seed)
> At chance or when regularization is increased
»Use small subset of the data (while regularization is off)
> Xavier (Glorot) / Kaiming (He) initialization (pytorch init)

=

O. Fink / A. Alahi

=PrL Batch Normalization

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

(k) _ B[, (k)
(k) & ']

\/Vﬂl'[ﬁ?(k)] this is a vanilla
differentiable function...

u Intro to ML for Engineers

[loffe and Szegedy, 2015]

O. Fink / A. Alahi

=PrL

Batch Normalization

“you want unit gaussian activations?
just make them so.”

Z

u Intro to ML for Engineers

A A A

vVVvyY

1. compute the empirical mean and
variance independently for each

dimension.

>
2. Normalize
~F) _ r(k) _ E[:z:““)}
\/Var[m(k)}

[loffe and Szegedy, 2015]

O. Fink / A. Alahi

=PrL Batch Normalization

v

FC Usually inserted after Fully
= Y Connected or Convolutional layers,
v and before nonlinearity.
tanh
v
FC
v
N) _ k) — E[z®)]
tanh ! \/Vﬁr[m(k)]

. <

u Intro to ML for Engineers

[loffe and Szegedy, 2015]

=PrL

u Intro to ML for Engineers

Batch Normalization

v

FC

BN

<_

tanh

FC

<« <

BN

<_

tanh

. <

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

() _ (k) _ E[:r;(’“)]
v/ Var[z (%))

[loffe and Szegedy, 2015]

=PrL

u Intro to ML for Engineers

Batch Normalization

Normalize:

o _ 2 —E®)
v/ Var[z (%))

And then allow the network to squash
the range if it wants to:

y®) = A (R)ZH) 4 gk

Note, the network can learn:

to recover the identity
mapping.

[loffe and Szegedy, 2015]

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Batch Normalization

Input: Values of = over a mini-batch: B = {z1_ ., };
Parameters to be learned: v, 3

Output: {y; = BN, g(z;)}

// mini-batch mean

1 m
— = i)
s — ;
g = Zm:(:n — ug)? // mini-batch variance
com = Al

// normalize

mz‘<_12—%
\/O'B-l-e

Yi < ¥Z; + B = BN, s(x;) // scale and shift

-
(-3
=]

O. Fink / A. Alahi

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization

Acts as a form of regularization
in a funny way, and slightly
reduces the need for dropout,
maybe

[loffe and Szegedy, 2015]

=PrL

u Intro to ML for Engineers

Batch Normalization

Input: Values of = over a mini-batch: B = {z1_ ., };
Parameters to be learned: v, 3

Output: {y; = BN, g(z;)}
S
B = — 2 T;

1 m
o — > (@i — up)”
i=1

Li — KB
\/0123 + €

Yi + YZT; + B = BN, g(z;)

// mini-batch mean

// mini-batch variance

T; // normalize

// scale and shift

-
(=3
=4

O. Fink / A. Alahi

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g., can be estimated during
training with running averages)

[loffe and Szegedy, 2015]

-
(=]
N

=PrL Batch Normalization

O. Fink / A. Alahi

= Lubana, E. S., Dick, R., & Tanaka, H. (2021).
Beyond BatchNorm: Towards a unified un-
derstanding of normalization in deep
learning. Neural Information Processing
Systems

u Intro to ML for Engineers

-
(-]
[

=PFL NNTIPS & TRICKS

<
<
= Preprocess data > Normalize each dimension of the input E
» Design an architecture » Start from state-of-the-art designs ©
* Loss function >Select task appropriate loss function (pytorch losses)
+ Layers type >“Conv” for signals such as images, and more recently Transformers
« #layers, #Filters » Start with popular designs
» Activation function >Relu, elu
» Sanity check >Only once
» Gradient check > Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics > At chance or when regularization is increased
» Overfit subset of the data »Use small subset of the data (while regularization is off)
= |nitialize weight “smartly” > Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
= Batch normalization > Try with and without. Test also Layer norm, group norm

Intro to ML for Engineers

=PrL

Intro to ML for Engineers

NN TIPS & TRICKS

= Preprocess data
» Design an architecture
* Loss function
+ Layers type
« #layers, #Filters
 Activation function
= Sanity check
» Gradient check
* Loss dynamics
» Overfit subset of the data
+ Initialize weight “smartly”
» Batch normalization
* Regularization strategies

> Normalize each dimension of the input
» Start from state-of-the-art designs
>Select task appropriate loss function (pytorch losses)
>“Conv” for signals such as images, and more recently Transformers
» Start with popular designs
>Relu, elu
>Only once
> Analytical VS num grad (while turning all regularization off) (fix rand seed)
> At chance or when regularization is increased
»Use small subset of the data (while regularization is off)
> Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
> Try with and without. Test also Layer norm, group norm

[y
(-3
9

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
Introduction

= Deep neural networks can leam very complex functions - prone to
overfitting

= Overfitting: when a model learns the “noise” of the training data, and fails to
generalize - high variance, low bias

[Great performance on training set
0 Much worse on test set

= Many regularization techniques exist to limit overfitting:
[Some quite generic (e.g. data augmentation)

: ® o
[Some exclusive to neural nets (e.g. dropout) 000, o ®o

Green: Overfitting
Black: Regularized model

10

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
Getting more data

= Qverfitting is caused by noisy data & a complex model

Training

10

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
Getting more data

= Qverfitting is caused by noisy data & a complex model

= Solution: Gather more data to reduce noise

+ The more data we collect, the better the model can identify the
underlying phenomenon that generates the data

\=
il —~ & = v
E Training Model

Data

10

=~

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Regularization
Getting more data

= Drawback: getting new data can be very difficult or costly
[Some datais finite (e.g. civil data)
0 Labeling data takes time, need to do it manually

0 Some datasets already have millions of samples, gathering a
few new samples won’t do much

i] —'F = X

The ImageNet dataset contains over 14 million images!

10

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Regularization
Data augmentation

= Deep neural nets have millions / billions of parameters
—>requires a proportional amount of training samples, which can be hard to obtain

= Solution: Use data augmentation!

= Data augmentation: Artificially generate new training samples by slightly modifying
existing training data

Augmented
data

s.u, Automating Data Augmentation: Practice, Theory and New Direction. 2020

10

O. Fink / A. Alahi

http://ai.stanford.edu/blog/data-augmentation/

=PrL

u Intro to ML for Engineers

gularization

Data augmentation

= Data augmentation:

= Artificially generate new training samples
by slightly modifying existing data

= Some commonly used techniques (for
images):

Cropping

Flipping

Rotating

Color / contrast jittering
Adding noise

Rotation

11

O. Fink / A. Alahi

https://medium.com/hackernoon/stop-feeding-garbage-to-your-model-the-6-biggest-mistakes-with-datasets-and-how-to-avoid-them-3cb7532ad3b7

=PrL

Intro to ML for Engineers

(3000 L)

Regularization
Using less parameters

= Qverfitting is caused by noisy data & a complex model

= Solution: Simplify the model by reducing the number of parameters
0 Reduce number of hidden layers (depth)
0 Reduce number of neurons in each hidden layer (width)

ogogeogogononehehe

G dad QOO 00000 D

11

[y

O. Fink / A. Alahi

1

[
N

=" Regularization

Early stopping

O. Fink / A. Alahi

= QOverfitting - low training error, high validation & test error

= Early stopping: Stop the training process when the the validation error starts
increasing

+ Simple technique, but requires frequent evaluation on the validation set

Error
A

Validation Error

Early Stopping

Training Error

u Intro to ML for Engineers

1 » Iraining Steps

EPFL T
Regularization
L2, L1 & elastic net

Limit overfitting by adding a regularization term to the cost function
= Constrains the weights (high value gets penalized)
= \: hyper-parameter which tunes the strength of the regularization

* bigger A = more regularization

Q0000
ONONONONONONONC
ONONOR®

Input Layer € R Hidden Layer € e Hidden Layer € T Output Layer € R Input Layer € Rs Hidden Layer € R® Hidden Layer € R? Qutput Layer € R

Intro to ML for Engineers

No regularization With L2 regularization (weight decay)

[
129

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

Regularization
L2

L2 regularization, also known as ridge or weight decay
= One of the most popular regularization techniques in ML

« Used for linear regression, logistic regression, neural nets, SVMs, ...

nli=1]
For neural nets, define: || W ”2— Z | witl ||2 where | W 2= ¥ A

\ =1 j=1

Sum the square of
J=— Z Liy®, y(l)) + AW I3 each weight
l 1
Loss function: L2 Regularization term:
predictions should model should be

match training data “simple”

)2

-
[
e

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
L1

L1 regularization, also known as lasso (Least Absolute Shrinkage Selector Operator):

= Tends to force weights to 0, which increases sparsity

All-11 0

For neural nets, define: || W [|,= z I W I, where || W |}, = T T W

Sum the absolute value

] - LO/(l) y(l)) + /1 ” w ”1 of each weight

T =

1
N ;

Loss function L1 Regularization term

1

[
ol

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
Elastic net

Elastic net regularizations combines L1 and L2

1N N
J=5Z Ly®,yO)+ 2, I W I3 +4, | W I,
i=1

L2 regularization L1 regularization
Loss function term term

-
91 91 9|
Sparsity Weight Compromise...
inducing sharing Two parameters ...
L1 L2 Elastic net (L1 + L2)

11

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
Dropout - Overview

= Dropout:

= Randomly drop nodes (along with connections) with probability : -, during
training

(a) Standard Neural Net (b) After applying dropout.

Srivastava, Hinton et al. , Dropout: A Simple Way to Prevent Neural
Networks from Overfitting, 2012

-
~

O. Fink / A. Alahi

https://www.cs.toronto.edu/%7Ehinton/absps/JMLRdropout.pdf

1

[
©

EPFL T
Regularization
Dropout - Implementation

O. Fink / A. Alahi

= At training time:

= At each iteration, keep node with probability ,

[Dropped nodes change at each iteration P is a hyperparameter
[Lower, - stronger regularization

= Attest time:
= All nodes are present, but weights are scaled by , (i.e. w becomes)

PW
Present with Always
probability p present

(a) At training time (b) At test time

u Intro to ML for Engineers
g

=PrL

u Intro to ML for Engineers

Regularization
Dropout - Implementation

When implemented, p usually varies per layer

Example: pl® = 1,pl = 0.5,pl? = 0.75
where p[l] is the probability of keeping a node in
the [t layer

Note:

In some literature, p instead refers to the probability of
dropping the nodes.

Weights are scaled by (1 — p) with this notation

Training: Iteration 1

1

[
-]

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
Dropout - Implementation

When implemented, p usually varies per layer

Example: pl® = 1,pl = 0.5,pl? = 0.75
where p[l] is the probability of keeping a node in
the [t layer

Note:

In some literature, p instead refers to the probability of
dropping the nodes.

Weights are scaled by (1 — p) with this notation

Training: Iteration 2

-
N
o

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization
Dropout - Implementation

When implemented, p usually varies per layer

Example: pl% = 1,p!1 = 0.5,p?l = 0.75
where p[l] is the probability of keeping a node in
the [layer

Note:

In some literature, p instead refers to the probability of
dropping the nodes.

Weights are scaled by (1 — p) with this notation

Test time

-
N
>4

O. Fink / A. Alahi

=PrL

u Intro to ML for Engineers

Regularization)
Dropout - Intuition

= How can dropout possibly be a good idea?
[0 It forces the network to have a redundant representation
[Prevents co-adaptation of features

Q—,has anear—— X —
Qg»has a tail ﬁ\
\\
Q—' is furry X —— . cCatscore
Q—' has claws -
mischievouM
< > look

The network can’t rely on any specific feature as they are
randomly dropped during training — needs redundancy

N

O. Fink / A. Alahi

=3
N
w

EPFL T
Regularization
Dropout - Intuition

O. Fink / A. Alahi

= Another interpretation:

Dropout is training a large ensemble
of models (that share parameters)

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

u Intro to ML for Engineers
]

=PrL

u Intro to ML for Engineers

Regularization
Resources

[Data augmentation:
http://ai.stanford.edu/blog/data-augmentation/

0 (Must read) L1 vs L2 regularization:
https://developers.googdle.com/machine-learning/crash-
course/reqularization-for-sparsity/l1-reqularization

[Dropout paper:
https:/[jmlir.org/papers/volume15/srivastaval4al/srivastavaida.

pdf

-
N
=

O. Fink / A. Alahi

http://ai.stanford.edu/blog/data-augmentation/
https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/l1-regularization
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

-
N
]

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
» [nitialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
= Batch normalization Try with and without. Test also Layer norm, group norm
» Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock

» Optimization strategy

Intro to ML for Engineers

=PrL

u Intro to ML for Engineers

Optimization review

= https://www.deeplearning.ai/ai-
notes/optimization/index.html

= On gradient based optimization methods:
http://ruder.io/optimizing-gradient-descent/

= Bottou, L., Curtis, F. E., & Nocedal, J. (2018).
Optimization methods for large-scale machine
learning. SIAM Review

Sun, R.-Y. (2020). Optimization for deep
learning: An overview. Journal of the
Operations Research Society of China

-
N
]

O. Fink / A. Alahi

https://www.deeplearning.ai/ai-notes/optimization/index.html
http://ruder.io/optimizing-gradient-descent/

=PrL

H Intro to ML for engineers

Optimization

Alexandre Alahi

=3
N
@

=Pk Optimization
Overview

O. Fink / A. Alahi

Goal of optimization in ML:

Minimize cost over batch: YN, L®

where LY isthe loss L(y®, y®) ofthe i-th

training example of batch

Want the optimization to:

 Converge quickly

* Find a good local minima (or even global
minima)

Image credit: https://www.cs.umd.edu/~tomg/projects/landscapes/

u Intro to ML for Engineers

https://www.cs.umd.edu/%7Etomg/projects/landscapes/

=PrL

Intro to ML for Engineers

Optimization
Overview-for NN

Gradient descent (and variants) is the
preferred way to optimize neural networks

e gty
0"‘:;;%:"0 9% %,'z
Choice of optimizer and hyper-parameters
affect speed of convergence and kind of local

minima found

A. Amini et al. Spatial Uncertainty Sampling for

End-to-End Control, 2019

0!'4",’5%/

=3
N
©

O. Fink / A. Alahi

https://arxiv.org/pdf/1805.04829.pdf

=PrL

u Intro to ML for Engineers

Optimization
Cost Function - Disambiguation

In this class:
J : cost function
=> average of loss over a single iteration

In ML literature:
= Joss function L
= cost function /

= error function E
are sometimes used interchangeably, and
sometimes used like they are in this class

13

O. Fink / A. Alahi

=
&y
=4

=" Optimization

Gradient descent

O. Fink / A. Alahi

1. Compute J

d
2. Findﬁv (equivalent notation: Vyy,/)

3. Update parameters with:

W _ 9
e W:=W aaw

Notation:
= W =all parameters of model

WU pltl . winl pinl)

= (=leamingrate

u Intro to ML for Engineers

=PrL

u Intro to ML for Engineers

Optimization
Gradient descent

For a training set with N examples:
(Vanilla/ Batch) Gradient descent (GD):

1 .
-] =EZ?’=1L@

where L& is the loss L(y®, y©) of the i-th

example of the training set

= Weights are updated only after calculating the
gradient over the entire dataset

e slow

* requires large memory

Stochastic gradient descent (SGD):

- J =10

where L® is a single example from the training set

= Weights are updated after calculating the gradient of a
single example

« frequent updates, faster convergence
* requires much less memory than GD

« can potentially find new, better minima
* high variance in parameter updates

=
&y
N

O. Fink / A. Alahi

=" Optimization

Gradient descent

Q: Can we compromise between vanilla GD and SGD?

u Intro to ML for Engineers

133

O. Fink / A. Alahi

=PrL

Optimization
Gradient descent

Q: Can we compromise between vanilla GD and SGD?

A: Yes! Mini-batch gradient descent:

u Intro to ML for Engineers

= Take batches of 11;, examples from training set.

)= 5O,

where L(‘) isthe loss L(y®, y®) of the I-th example of the mini-batch

= Weights are updated after every mini-batch:
» faster convergence than GD
* reduces variance of parameter updates compared to SGD

— more stable convergence

Gradient Descent

Mini-Batch Gradient Descent

/\/‘\/*

-
w
F

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

1(6)

Optimization
Learning rate

Too low Just right

| ll.'lll 1(8) | ll.'lll
/ \ /

! \ f

NN

1(8)

Too high

2}
A small learning rate The optimal learning
reguires many updates rate swiftly reaches the

before reaching the minimum point
minimum point

Image credit: Jeremy Jordan (https://www.jeremyjordan.me/nn-learning-rate/)

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

-
w
[}

O. Fink / A. Alahi

https://www.jeremyjordan.me/nn-learning-rate/

=PrL

Intro to ML for Engineers

Optimization
Optimizers

Variants of gradient descent are commonly
used in practice to speed-up and improve
convergence:

= Momentum update

= Nesterov Accelerated Gradient (NAG)
= Adagrad

= Adadelta

= RMSprop

= Adam

= and more...

T AL AT T

ag T g,

b,-,"r,,:r'
J’.‘-F;

’f]’ "f’
¥, 3;‘

‘f,’f

e My 't

= Gradient Descent
m— Momentum

— AdaDelta
RMS Prop

13

O. Fink / A. Alahi

-
w
=~

=PFL NNTIPS & TRICKS

<
<
= Preprocess data > Normalize each dimension of the input E
» Design an architecture » Start from state-of-the-art designs ©
* Loss function >Select task appropriate loss function (pytorch losses)
+ Layers type >“Conv” for signals such as images, and more recently Transformers
« #layers, #Filters » Start with popular designs
» Activation function >Relu, elu
» Sanity check >Only once
» Gradient check > Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics > At chance or when regularization is increased
» Overfit subset of the data »Use small subset of the data (while regularization is off)
* Initialize weight “smartly” > Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization > Try with and without. Test also Layer norm, group norm
* Regularization strategies > Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy > AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler

Monitor learning process

Intro to ML for Engineers

=PrL

Monitor and visualize the loss curve

25

loss

-
w
®

O. Fink / A. Alahi

Xﬁ“—_

(=]
=

® Introtc =

20 40 B0 80 100
Epoch P

epoch

=PrL

Monitor and visualize the loss curve

25

loss

-
w
0

O. Fink / A. Alahi

Xﬁ“—_

(=]
=

® Introtc =

20 40 B0 80 100
Epoch P

epoch

=PrL

Monitor and visualize the loss curve

25

low learning rate

=
3
o

O. Fink / A. Alahi

(=]
=

® Introtc =

20 40 B0 80 100
Epoch P

=PrL

Monitor and visualize the loss curve

25

low learning rate

high learning rate

-
B
-

O. Fink / A. Alahi

(=]
=

® Introtc =

20 40 B0 80 100
Epoch P

=PrL

Monitor and visualize the loss curve

25

good learning rate

low learning rate

high learning rate

=
F 3
n

O. Fink / A. Alahi

(=]
=

® Introtc =

20 40 B0 80 100
Epoch P

el - .
m Iyely v /3uld4 'O

time

A

Loss

slosulbug Joy N oy onu; A

=PrL

=
=
-

=PFL A
Loss

Bad initialization

«— aprime suspect

O. Fink / A. Alahi

time

u Intro to ML for Engineers

=PrL

Clasification accuracy

u Introtc

0751

065 |

el

Monitor and visualize the accuracy:

. WW

— Training accuracy

— Validation accuracy

20

nnnnn

8O

100

=
F)
]

O. Fink / A. Alahi

big gap = overfitting

=2 increase regularization strength?

NO gap
=> increase model capacity?

=PrL

u Intro to ML for Engineers

Track the ratio of weight updates / weight magnitudes:

assume parameter vector W and its gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

Ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01
(about okay)
want this to be somewhere around 0.001 or so

=
3
-]

O. Fink / A. Alahi

=
-3
=~

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
+ Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)

Intro to ML for Engineers

=
F 3
o

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
+ Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)

» Hyperparameters search

Intro to ML for Engineers

=PrL

u Intro to ML for Engineers

Cross-validation strategy

= Coarse -> fine cross-validation in stages

= First stage: only a few epochs to get
rough idea of what params work
Second stage: longer running time, finer
search
... (repeat as necessary)

= Tip for detecting explosions in the
solver:

If the cost is ever > 3 * original cost, break
out early

=
3
©

O. Fink / A. Alahi

=PrL

Intro to ML for Engineers

For example: run coarse search for 5 epochs

max_count = 100
for count in xrange(max_count):

=.
Q
®

note it's best to optimize
IR In log space!

model = init two layer model(32#32%3, 58, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num_epochs=5, reg=reg,

update='momentum', learning rate decay=0.9,

sample batches = True, batch size = 100,

learning rate=lr, verbose=False)

reg = 10**uniform(-5, 5)
1r = 18**uniform(-3, -6) <

| val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / lﬂH}|
val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)
val acc: ©.208000, lr: 2.119571e-06, reg: &.011857e+01, (3 / 108)
val acc: ©0.1960600, lr: 1.551131e-85, reg: 4.374936e-05, (4 / 100)
val acc: 0.0790008, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: ©.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)

| Ual_acc: ©.441000, lr: 1.750259e-04, reg: 2.110807e-84, (7 / lﬂB}|
val acc: 0.24108008, 1r: 6.749231e-05, reg: 4.226413e+01, (8 / 100}

| val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / lﬂH}|
val acc: 0.079000, Llr: 5.401602e-06, reg: 1.599828e+084, (10 / 100)
val acc: ©.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)

-
[1]
=]

O. Fink / A. Alahi

-
ol
-

=PFL Now run finer search...

E
<C
<
g
[T
max count = 100 . o o
for count in xrange(max_count): adJUSt range ?gﬁ‘ggﬂﬂi inlEEr]ange{max count) :
reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)
lr = 16**uniform(-3, -6) 1r = 10**uniform(-3, -4)
val _acc: 0.527600, .340517e-04, reg: 4.097824e-01, (0 / 100)
val_acc: ©.492000, T 2. Z79484e-04, Teg: 9.991345e-04,
val_acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461600, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val_acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100) o .
val_acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53/0 - re|atlve|y
val acc: 0.469000, 1lr: 1.484369e-04, req: 4.328313e-01, (6 / 100)
val acc: 0.522000, Lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) g;()()(j for a 22-|55)/E;r
val_acc: ©.530000, lr: 5.808183e-04, req: 8.259964e-62, (8 / 100))
val acc: 0.489600, lr: 1.979168e-04, reg: 1.01088%e-04, (9 / 100)
val acc: 0.490000, 1lr: 2.836031e-04, reg: 2.406271e-03, (10 / 180) neural net Wlth 50
val_acc: 0.475600, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 160) :
val acc: 0.460000, 1lr: 1.135527e-04, reg: 3.905840e-02, (12 / 180) hldden neurons
val_acc: 0.515000, lr: 6.947668e-84, reg: 1.562808e-02, (13 / 1@0)
val_acc: 0.531800, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
2 val acc: 0.5609000, lr: 3.140888e-04, req: 2.857518e-61, (15 / 100)
] val_acc: 0.514800, lr: 6.438349e-04, reg: 3.03378le-01, (16 / 100)
S val acc: 0.562000, lr: 3.921784e-04, req: 2.707126e-04, (17 / 100)
w val_acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 160)
S val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 160)
= val_acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
° val_acc: 0.516800, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
[e]
[=

|| 152
=PFL Random Search vs. Grid Search
<
<
Grid Lavout Random Layout °
------------- 000 .
= ¢ =
------------ ® 0 @ | | @] g
5 2 e 5 <
; a, “é ® | a, QE)
"""""" o @ @ | EF B F e I =~
. f £ 5 £ 3
L - A e — =
32 Important Important
% Parameter Parameter Random Search for Hyper-Parameter
é Optimization

Bergstra and Bengio, 2012

=PrL

u Intro to ML for Engineers

-
o1
w

Hypermparameters to play with

O. Fink / A. Alahi

= network architecture

= learning rate, its decay schedule, update
type
= regularization (L2/Dropout strength)

=PrL

Intro to ML for Engineers

Cross-validation
“command center”

[y
o
Y

O. Fink / A. Alahi

-
o
[}

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
* Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
» Hyperparameters search Random sample in log space (wide to coarse) (e.g., ray autotuner)

Intro to ML for Engineers

-
o
-]

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
* Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
» Hyperparameters search Random sample in log space (wide to coarse) (e.g., ray autotuner)

= Model ensembles

Intro to ML for Engineers

-
o
~

=PFL - Model Ensembles

O. Fink / A. Alahi

1. Train multiple independent models
2. Attest time average their results

= Enjoy 2% extra performance

u Intro to ML for Engineers

-
[}
®

=PFL Model Ensembles: Tips
and Tricks

O. Fink / A. Alahi

= Instead of training independent models,
use multiple snapshots of a single model
during training!

054 = Single Model -

04 Standard LR Schedule [}

- g ’/\._\. # g

02+

0.1+

0

-0.1
14
[-0.2
(5]
c
5 -0.3
C
w k)
K] 50 50
— 40 40
=
L
=
=

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

=PrL

Intro to ML for Engineers

Model Ensembles: Tips
and Tricks

= Instead of training independent models,
use multiple snapshots of a single model
during training!

05~ 'Single Model
04 Standard LR Schedule m :

0.3+
024

0.1+

0.5

Snapshot Ensemble m
o4 -Cyclic LR Schedule = /)1

i
AR

0.3+
0.2

0.1+ o
3

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

-
o
©

O. Fink / A. Alahi

=
-3
=]

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
* Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
» Hyperparameters search Random sample in log space (wide to coarse) (e.g., ray autotuner)
= Model ensembles Average top 10 performing models

Intro to ML for Engineers

=
(3
=4

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
* Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
» Hyperparameters search Random sample in log space (wide to coarse) (e.g., ray autotuner)
= Model ensembles Average top 10 performing models
» Sub-loss magnitude ~ 1 Numerical stability

Intro to ML for Engineers

=PrL

u Intro to ML for Engineers

Multi-Task Losses

= Often necessary to do multiple tasks
simultaneously. Below are training
curves showing the value of their sub-
losses for 6 sub-tasks.

= Each sub-task can be multiplied by a
constant, the “weight” of the sub-task.

= Sometimes, there is no natural weight.

Then, a good initial weight guess is to
make every sub-loss ~1.

107!

=
(-3
N

O. Fink / A. Alahi

=
[
w

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
* Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
» Hyperparameters search Random sample in log space (wide to coarse) (e.g., ray autotuner)

= Model ensembles Average top 10 performing models
» Sub-loss magnitude ~ 1 Numerical stability
Pretrained networks Especially helpful when own training data is small

Intro to ML for Engineers
n

=PrL

u Intro to ML for Engineers

NN TIPS & TRICKS

= “You need a lot of a data if you want to
train/use Deep NNs”

[y
(-3
9

O. Fink / A. Alahi

| M A G E N E T www.image-net.org

22K categories and 14M images

 Animals * Plants « Structures * Person
* Bird * Tree « Artifact » Scenes
* Fish * Flower Tools * |ndoor
« Mammal * Food » Appliances » Geological
<E |nvertebrate :

Materlals‘ bt tructus_ 3 Formatlons

e Deng, Dong, Socher L| Li, & Fe| Fel, 2009

Steel drum
Drumstick
Mud turtle

The Image Classification Challenge:
1,000 object classes
1.431.167 images

2010 2011 2013 2014 2015

Sanchez and K A Zeiler and Szegedy et al He et al

Lineces Fergus (Ne (ResNet)

Russakovsky et al

=PrL

u Intro to ML for Engineers

NN TIPS & TRICKS

= “You need a lot of a data if you want to
train/use Deep NNs”

= What if you don’t?
= Transfer Learning

=3
-]
@

O. Fink / A. Alahi

=3
[~
©

=PFL Transfer Leaming with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096

O. Fink / A. Alahi

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Intro to ML for Engineers

=PFL Transfer Leaming with CNNs

1. Train on Imagenet 2. Small Dataset (C classes)

—

\ Reinitiali
einitiatize
this and train
> Freeze
these

Intro to ML for Engineers

-
-~
]

O. Fink / A. Alahi

=PrL

1. Train on Imagenet

u Intro to ML for Engineers

Transfer Leaming with CNNs

2. Small Dataset (C classes)

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

M
9
0 (g}

_/

Reinitialize
this and train

> Freeze these

—

3. Bigger dataset

FC-C
MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

_/

-
-~
™

O. Fink / A. Alahi

Train

these
With bigger

dataset, train
more layers

> Freeze

these
Lower learning rate

when finetuning;
1/10 of original LR

—

is good starting
point

-
=~
N

=PrL

very similar | very different | :
dataset dataset °
B very little data | ? ?

_ ore specific

ore generic

quitealotof |? ?

data

u Intro to ML for Engineers

=PrL

u Intro to ML for Engineers

FC-1000

FC-4096~_ |
MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

ore specific

MaxPool
Conv-256
Conv-256

ore generic

MaxPool
Conv-128

MaxPool
Conv-64
Conv-64

(<
o
—
Y&
\

very similar

very different

dataset dataset
very little data | Use Linear ?
Classifier on
top layer
quite a lot of | Finetune a ?
data few layers

-
=~
©w

O. Fink / A. Alahi

=PrL

-
~
Ny

very similar | very different | :
oo dataset dataset :
y very little data | Use Linear You're in

ore specific Classifier on trouble... Try

top layer linear classifier
from different
Ceenv25%6 _More generic stages

quite a lot of Finetune a Finetune a

data few layers larger number

of layers

u Intro to ML for Engineers

=PrL

u Intro to ML for Engineers

Takeaway

= When you have some a small dataset

1. Find a very large dataset that has
similar data, train a big network there

2. Transfer learn to your dataset

= Deep learning frameworks provide a
“Model Zoo” of pretrained models so you
don’t need to train your own

= PyTorch:
https://qgithub.com/pytorch/vision

-
=~
L

O. Fink / A. Alahi

https://github.com/pytorch/vision

=PrL

u Intro to ML for Engineers

» https://teachablemachine.withqgoogle.co

m/train/image

-
~
-]

O. Fink / A. Alahi

https://teachablemachine.withgoogle.com/train/image

-
~
=~

=PFL NNTIPS & TRICKS

<
<
= Preprocess data Normalize each dimension of the input E
» Design an architecture Start from state-of-the-art designs ©
* Loss function Select task appropriate loss function (pytorch losses)
+ Layers type “Conv” for signals such as images, and more recently Transformers
« #layers, #Filters Start with popular designs
» Activation function RelLu, elu
= Sanity check Only once
» Gradient check Analytical VS num grad (while turning all regularization off) (fix rand seed)
* Loss dynamics At chance or when regularization is increased
» Overfit subset of the data Use small subset of the data (while regularization is off)
* Initialize weight “smartly” Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
+ Batch normalization Try with and without. Test also Layer norm, group norm
* Regularization strategies Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
= Optimization strategy AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
» Monitor learning process Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
® » Hyperparameters search Random sample in log space (wide to coarse) (e.g., ray autotuner)
§ = Model ensembles Average top 10 performing models
£ = Sub-loss magnitude ~ 1 Numerical stability
E » Pretrained networks Especially helpful when own training data is small
=
g » + Data distribution

+ Gradient flow
+ Visualize your input data, intermediate values, results

=PrL

u Intro to ML for Engineers

References

= Book: Deep Learning by lan Goodfellow,
Yoshua Bengio, Aaron Courville

(http://www.deeplearningbook.org/)

» Class on CNN: http://cs231n.stanford.edu/

= Good tuto on gradient check:
http://cs231n.github.io/neural-networks-3/

= On gradient based optimization methods:
http://ruder.io/optimizing-gradient-descent/

-
~
(-]

O. Fink / A. Alahi

http://www.deeplearningbook.org/
http://moralmachine.mit.edu/
http://ruder.io/optimizing-gradient-descent/

=PrL

u Intro to ML for Engineers

Additional matenials

= CNN demo on CIFAR-10:

http://cs.stanford.edu/people/karpathy/convnet
is/demo/cifar10.html

-
~
©

O. Fink / A. Alahi

3-

Activation Gradients:

Weight nts:
[Ll L L L)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

	Deep Learning – Part 3
	Road map
	Road map
	So far
	�Useful links
	Outline
	Slide Number 12
	Neural networks
	Neural networks
	Neural networks
	Slide Number 16
	NN - Backpropagation
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Modularized implementation: forward / backward API��
	Modularized implementation: forward / backward API��
	Deep learning frameworks
	Deep learning frameworks
	Recap on training a neural network
	Recipe for training �neural networks�
	How to have an “efficient Gradient”?
	Vanishing or exploding gradients
	Vanishing or exploding gradients
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Data pre-processing
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Residual neural networks
	Design an architecture �
	NN TIPS & TRICKS
	Activation functions
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Double check that the loss is reasonable:���
	Double check that the loss is reasonable:���
	Lets try to train now… �
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Weight initialization
	Weight initialization
	Weight initialization
	Weight initialization
	Weight initialization
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	NN TIPS & TRICKS
	Optimization review
	Slide Number 127
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	NN TIPS & TRICKS
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Monitor and visualize the loss curve�
	Slide Number 143
	Slide Number 144
	Monitor and visualize the accuracy:�
	Track the ratio of weight updates / weight magnitudes:�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Cross-validation strategy�
	For example: run coarse search for 5 epochs�
	Now run finer search...�
	Random Search vs. Grid Search
	Hyperparameters to play with
	Cross-validation “command center”�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Model Ensembles�
	Model Ensembles: Tips and Tricks�
	Model Ensembles: Tips and Tricks�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Multi-Task Losses
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Slide Number 165
	Slide Number 166
	Slide Number 167
	NN TIPS & TRICKS
	Transfer Learning with CNNs�
	Transfer Learning with CNNs
	Transfer Learning with CNNs
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Takeaway �
	Slide Number 176
	NN TIPS & TRICKS
	References
	Additional materials

