

In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Deep Learning – Part 3

1


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiRoad map 2

Lectures


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiRoad map 3

Lectures


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

▪ Neural networks
• Layers (fully connected or convolutional)

• Activation functions
• Loss functions

So far 4


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 https://playground.tensorflow.org/

https://poloclub.github.io/cnn-explainer/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://www.cs.ryerson.ca/~aharley/vis/conv/

https://teachablemachine.withgoogle.com/

vitademo.epfl.ch/movements

Usefullinks
10

https://playground.tensorflow.org/
https://poloclub.github.io/cnn-explainer/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://www.cs.ryerson.ca/%7Eaharley/vis/conv/
https://teachablemachine.withgoogle.com/
http://vitademo.epfl.ch/movements


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

▪ Backprop
▪ Recipe for training neural networks
▪ Weight initialisation
▪ Optimization
▪ Batch normalization
▪ Regularisation techniques
▪ Transfer learning

Outline

▪ It s all about the gradient!

11


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Training neural
nets

12


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

13Neural networks
Training

 Forward pass of 2 layer NN (for a single sample):
• 𝐳𝐳[1] = 𝐖𝐖[1]𝑇𝑇𝒙𝒙+𝐛𝐛[1]

• 𝐚𝐚[1] = 𝑔𝑔[1](𝐳𝐳[1])

• 𝐳𝐳[2] = 𝐖𝐖[2]𝑇𝑇𝐚𝐚[1] +𝐛𝐛[2]

• 𝐲𝐲
̂

= 𝐚𝐚[2] = 𝑔𝑔[2](𝐳𝐳[2])

• 𝐲𝐲
̂

= 𝑔𝑔[2](𝐖𝐖[2]𝑇𝑇𝑔𝑔[1](𝐖𝐖[1]𝑇𝑇𝒙𝒙+𝐛𝐛[1]) +𝐛𝐛[2])

𝐖𝐖[1] 𝐖𝐖[2]


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

14Neural networks
Training

 Forward pass of 2 layer NN (for a single sample):

• 𝐲𝐲
̂

= 𝑔𝑔[2](𝐖𝐖[2]𝑇𝑇𝑔𝑔[1](𝐖𝐖[1]𝑇𝑇𝒙𝒙+𝐛𝐛[1]) +𝐛𝐛[2])

 To train, we need a loss function: 𝐿𝐿(𝐲𝐲
̂
,𝐲𝐲)

 Using that loss function, we want to update
𝐖𝐖[1],𝐛𝐛[1],𝐖𝐖[2],𝐛𝐛[2]

 using gradient descent.

𝐖𝐖[1] 𝐖𝐖[2]


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

15Neural networks
Training

Need to compute:
𝜕𝜕𝜕𝜕

𝜕𝜕𝐖𝐖[𝑖𝑖],
𝜕𝜕𝜕𝜕
𝜕𝜕𝐛𝐛[𝑖𝑖]

=> Gradient of loss with respect
to weights

Once gradients are computed,

update weights with:

▪ 𝐖𝐖[𝑖𝑖]: = 𝐖𝐖[𝑖𝑖] −𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝐖𝐖[𝑖𝑖]

▪ 𝐛𝐛[𝑖𝑖]: = 𝐛𝐛[𝑖𝑖] −𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝐛𝐛[𝑖𝑖]

where 𝛼𝛼 is the learning rate

In
tro

 to
 M

L
fo

r e
ng

in
ee

rs

Al
ex

an
dr

e
Al

ah
i

16

Backpropagation


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

17NN - Backpropagation
Overview

 Algorithm used to efficiently compute
gradient of loss with respect to weights

 Makes use of chain rule: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 Use computational graph to
progressively compute gradients

 Forward pass: Compute output
 Backward pass: Compute derivatives


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

18

Backprop 18


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

19

Backprop 19


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

20

Backprop 20


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

21

Backprop 21


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

22

Backprop 22


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

23

Backprop 23


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

24

Backprop 24


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

25

25Backprop


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

26

Backprop 26


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Chain rule:

e.g., x = -2, y = 5, z = -4

Want:

27

Backprop 27


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want:

28

Backprop 28


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Chain rule:

e.g., x = -2, y = 5, z = -4

Want:

29

Backprop 29


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

f

30

30


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

f

“local gradient”

31

31


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

f

“local gradient”

gradients

32

32


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

f

“local gradient”

gradients

33

33


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

f

“local gradient”

gradients

34

34


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

f

“local gradient”

gradients

35

35


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

36

Backprop 36


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

37

Backprop 37


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

38

Backprop 38


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

39

Backprop 39


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

40

Backprop 40


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

41

Backprop 41


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

42

Backprop 42


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

43

Backprop 43


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

44

Backprop 44


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

(-1) * (-0.20) = 0.20

45

Backprop 45


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

46

Backprop 46


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

[local gradient] x [upstream gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

47

Backprop 47


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

48

Backprop 48


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

[local gradient] x [upstream gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

49

Backprop 49


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

sigmoid function

sigmoid gate

50

Backprop 50


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

sigmoid gate

sigmoid function

(0.73) * (1 - 0.73) = 0.2

51

Backprop 51


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

(x,y,z are scalars)

x

y

z
*

52

Modularized implementation:
forward / backward API

52


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

(x,y,z are scalars)

x

y

z
*

53

Modularized implementation:
forward / backward API

53


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

54Deep learning frameworks
Overview

 Deep learning frameworks are used to efficiently define and train neural
networks
• Support for many types of layers, activations, loss functions, optimizers, …
• Backpropagation computed automatically (e.g. loss.backward() in PyTorch)
• GPU support for faster training

 Most popular frameworks today:
• PyTorch (https://pytorch.org)
• TensorFlow (https://www.tensorflow.org/)

https://pytorch.org/
http://tensorflow.org/


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

55Deep learning frameworks
Implementing a simple neural network in PyTorch


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

56Recap on training a neural network

• Loop:
1. Sample a batch of data
2. Forward pass to get the loss
3. Backward pass to calculate gradient
4. Update parameters using the gradient

� Forward pass computes result of an operation and save any intermediates needed for gradient
computation in memory

� Backward pass applies the chain rule to compute the gradient of the loss function with respect to the
inputs

� Backpropagation = recursive application of the chain rule along a computational graph to compute
the gradients of all inputs/parameters/intermediates


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Recipe for training
neural networks

57


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

How to have an “efficient Gradient”?

58


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

59Vanishing or exploding gradients
Definitions

1. Feed forward pass

3. Backward pass

To calculate gradient
& update weight
(with stochastic gradient)

2. Compute Loss (estimate error)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

60Vanishing or exploding gradients
Definitions

 Vanishing gradient: The update of the weights close to the
input layer will become very slow, resulting in the hidden
layer weights close to the input layer almost unchanged,
throwing the weights close to the initialization.

 Exploding gradient: When the initial weight value is too
large, the weight value near the input layer changes faster
than the weight value near the output layer, which will cause
the problem of gradient explosion.

1. Feed forward pass

3. Backward pass

To calculate gradient
& update weight
(with stochastic gradient)

2. Compute Loss (estimate error)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiNN TIPS & TRICKS 61


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data

NN TIPS & TRICKS 62


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Normalize each dimension of the data

Data pre-processing 63


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data

NN TIPS & TRICKS 64

Normalize each dimension of the input


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters

NN TIPS & TRICKS 65

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

66Convolutional Neural Networks
Popular architectures

LeNet-5
LeCun et al. ,1998

--
Layer (type) Output Shape Param #

==
Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0

MaxPool2d-6 [-1, 16, 5, 5] 0
Linear-7 [-1, 120] 48,120
ReLU-8 [-1, 120] 0

Linear-9 [-1, 84] 10,164
ReLU-10 [-1, 84] 0

Linear-11 [-1, 10] 850
Softmax-12 [-1, 10] 0

==
Total params: 61,706

-1 in output shape represents
the mini-batch dimension


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

67Convolutional Neural Networks
Popular architectures

AlexNet
Krizhevsky et al., 2012

Winner of ImageNet Competition 2012


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

68Convolutional Neural Networks
Popular architectures

VGG16
Simonian & Zisserman, 2014

--
Layer (type) Output Shape Param #

==
Conv2d-1 [-1, 64, 224, 224] 1,792

ReLU-2 [-1, 64, 224, 224] 0
Conv2d-3 [-1, 64, 224, 224] 36,928

ReLU-4 [-1, 64, 224, 224] 0
MaxPool2d-5 [-1, 64, 112, 112] 0

Conv2d-6 [-1, 128, 112, 112] 73,856
ReLU-7 [-1, 128, 112, 112] 0

Conv2d-8 [-1, 128, 112, 112] 147,584
ReLU-9 [-1, 128, 112, 112] 0

MaxPool2d-10 [-1, 128, 56, 56] 0
Conv2d-11 [-1, 256, 56, 56] 295,168

ReLU-12 [-1, 256, 56, 56] 0
Conv2d-13 [-1, 256, 56, 56] 590,080

ReLU-14 [-1, 256, 56, 56] 0
Conv2d-15 [-1, 256, 56, 56] 590,080

ReLU-16 [-1, 256, 56, 56] 0
MaxPool2d-17 [-1, 256, 28, 28] 0

Conv2d-18 [-1, 512, 28, 28] 1,180,160
ReLU-19 [-1, 512, 28, 28] 0

Conv2d-20 [-1, 512, 28, 28] 2,359,808
ReLU-21 [-1, 512, 28, 28] 0

Conv2d-22 [-1, 512, 28, 28] 2,359,808
ReLU-23 [-1, 512, 28, 28] 0

MaxPool2d-24 [-1, 512, 14, 14] 0
Conv2d-25 [-1, 512, 14, 14] 2,359,808

ReLU-26 [-1, 512, 14, 14] 0
Conv2d-27 [-1, 512, 14, 14] 2,359,808

ReLU-28 [-1, 512, 14, 14] 0
Conv2d-29 [-1, 512, 14, 14] 2,359,808

ReLU-30 [-1, 512, 14, 14] 0
MaxPool2d-31 [-1, 512, 7, 7] 0

Linear-32 [-1, 4096] 102,764,544
ReLU-33 [-1, 4096] 0

Dropout-34 [-1, 4096] 0
Linear-35 [-1, 4096] 16,781,312

ReLU-36 [-1, 4096] 0
Dropout-37 [-1, 4096] 0
Linear-38 [-1, 1000] 4,097,000

Softmax-39 [-1, 1000] 0
==
Total params: 138,357,544


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiResidual neural

networks
69

• ResNets (He et al., 2015):
Add shortcuts (skip-connections) to jump over some
layers

• Deeper models are harder to optimize, and in
particular, don’t learn identity functions well

• Skip-connections make identity functions easier to
learn, helps during training

• ResNets stack residual blocks on top of each
other to form deep networks (e.g. ResNet-50,
ResNet-101, …)

He and al, Deep Residual Learning for Image Recognition, 2015

residual blocks


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 https://playground.tensorflow.org/

Design an architecture 70


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

NN TIPS & TRICKS 71

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiActivation functions 72

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Derivative of output with respect to
the input is 1 for inputs great than 0
=> Training more stable and efficient

Derivative close to 0 for large
positive or negative inputs

Deal with dying Relu


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

NN TIPS & TRICKS 73

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

NN TIPS & TRICKS 74

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

returns the loss and the
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for
10 classes

75

Double check that the loss is reasonable: 75


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

crank up regularization

loss went up, good. (sanity check)

76

Double check that the loss is reasonable: 76


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Tip: Make sure
that you can overfit
very small portion
of the training data

The above code:
- take the first 20 examples from

CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

77

Lets try to train
now…

77


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Very small loss,
train accuracy 1.00,
nice!

78

Tip: Make sure that
you can overfit very
small portion of the
training data

Lets try to train
now…

78


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Start with small
regularization and find
learning rate that
makes the loss go
down.

79

Lets try to train
now…

79


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Start with small
regularization and find
learning rate that
makes the loss go
down. Loss barely changing

80

Lets try to train
now…

80


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Start with small
regularization and find
learning rate that
makes the loss go
down. Loss barely changing: Learning rate is

probably too low

81

 loss not going down:
learning rate too low

Lets try to train
now…

81


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Start with small
regularization and find
learning rate that
makes the loss go
down. Loss barely changing: Learning rate is

probably too low

82

 loss not going down:
learning rate too low

Lets try to train
now…

82


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Start with small
regularization and find
learning rate that
makes the loss go
down.

Now let’s try learning rate 1e6.

83

 loss not going down:
learning rate too low

Lets try to train
now…

83


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

cost: NaN almost
always means high
learning rate...

Start with small
regularization and find
learning rate that
makes the loss go
down.

84

 loss not going down:
learning rate too low
 loss exploding:
learning rate too high

Lets try to train
now…

PS: NaN also occurs because of:
- log (negative number),
- divide by zeros (variable going to zero)

84


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Start with small
regularization and find
learning rate that
makes the loss go
down.

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 … 1e-5]

85

 loss not going down:
learning rate too low
 loss exploding:
learning rate too high

Lets try to train
now…

85


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

NN TIPS & TRICKS 86

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”

NN TIPS & TRICKS 87

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

88Weight initialization
Overview

How weights are initialized has an important impact on training

Q: What happens if we initialize all weights 𝐖𝐖 to 0?

A: Output of each neuron of a hidden layer is identical
=> Gradient for each neuron is identical

=> Weight update for each neuron is identical
=> All neurons of a hidden layer will be identical, no better than a linear
model

Avoid zero initialization!


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

89Weight initialization
Initialization values

Next idea: Random initialization

▪ Initialize with small random numbers (e.g. sample from normal distribution)
• Okay for shallow networks, problematic for deeper networks

• Activations tend to zero for deeper network layers → small gradients, no learning

J. Johnson, Deep Learning for Computer Vision (University of Michigan) - Lecture 10


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

90Weight initialization
Initialization values

Next idea: Random initialization

▪ Initialize with larger random numbers

• Activations saturate →bad

=> Need to find initialization values that are “just right”

J. Johnson, Deep Learning for Computer Vision (University of Michigan) - Lecture 10


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

91Weight initialization
Initialization values

Xavier (Glorot) initialization [Glorot et al., 2010]:

Sample from 𝒩𝒩(0,𝜎𝜎2), with 𝜎𝜎 = 2
𝑎𝑎+𝑏𝑏

,

where 𝑎𝑎 is the number of input neurons, and 𝑏𝑏 is the number of output neurons

▪ Good initialization for network with 𝑡𝑡𝑡𝑡𝑡𝑡ℎactivations

Kaiming (He) initialization [He et al., 2015]:

Sample from 𝒩𝒩(0,𝜎𝜎2), with 𝜎𝜎 = 2
𝑎𝑎
, where 𝑎𝑎 is the number of input neurons

▪ Good initialization for network with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 activations

▪ More info: https://paperswithcode.com/method/he-initialization

https://paperswithcode.com/method/he-initialization


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

92Weight initialization
Resources

� (Must read) Great interactive lecture notes on initialization by
Katanforoosh & Kunin:
https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”

NN TIPS & TRICKS 93

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”
 Batch normalization

NN TIPS & TRICKS 94

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

this is a vanilla
differentiable function...

95

Batch Normalization

[Ioffe and Szegedy, 2015]

95


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

“you want unit gaussian activations?
just make them so.”

XN

D

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize

96

Batch Normalization

[Ioffe and Szegedy, 2015]

96


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

97

Batch Normalization

[Ioffe and Szegedy, 2015]

97


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

98

Batch Normalization

[Ioffe and Szegedy, 2015]

98


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

And then allow the network to squash
the range if it wants to:

Note, the network can learn:

to recover the identity
mapping.

Normalize:

99

Batch Normalization

[Ioffe and Szegedy, 2015]

99


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

[Ioffe and Szegedy, 2015]
100

Batch Normalization

- Improves gradient flow through
the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization
- Acts as a form of regularization

in a funny way, and slightly
reduces the need for dropout,
maybe

100


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

[Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g., can be estimated during
training with running averages)

101

Batch Normalization 101


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Lubana, E. S., Dick, R., & Tanaka, H. (2021).
Beyond BatchNorm: Towards a unified un-
derstanding of normalization in deep
learning. Neural Information Processing
Systems

Batch Normalization 102


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”
 Batch normalization

NN TIPS & TRICKS 103

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies

NN TIPS & TRICKS 104

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

105Regularization
Introduction

 Deep neural networks can learn very complex functions → prone to
overfitting

 Overfitting: when a model learns the “noise” of the training data, and fails to
generalize → high variance, low bias
� Great performance on training set
� Much worse on test set

 Many regularization techniques exist to limit overfitting:
� Some quite generic (e.g. data augmentation)
� Some exclusive to neural nets (e.g. dropout)

Green: Overfitting
Black: Regularized model


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

106Regularization
Getting more data

 Overfitting is caused by noisy data & a complex model

Training ModelData


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

107Regularization
Getting more data

Training Model

Data

 Overfitting is caused by noisy data & a complex model

 Solution: Gather more data to reduce noise
The more data we collect, the better the model can identify the

underlying phenomenon that generates the data


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

108Regularization
Getting more data

 Drawback: getting new data can be very difficult or costly
� Some data is finite (e.g. civil data)
� Labeling data takes time, need to do it manually
� Some datasets already have millions of samples, gathering a

few new samples won’t do much

The ImageNet dataset contains over 14 million images!


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

109Regularization
Data augmentation

 Deep neural nets have millions / billions of parameters
requires a proportional amount of training samples, which can be hard to obtain

 Solution: Use data augmentation!

 Data augmentation: Artificially generate new training samples by slightly modifying
existing training data

S. Li, Automating Data Augmentation: Practice, Theory and New Direction, 2020

http://ai.stanford.edu/blog/data-augmentation/


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

110Regularization
Data augmentation

 Data augmentation:
 Artificially generate new training samples

by slightly modifying existing data

 Some commonly used techniques (for
images):

• Cropping
• Flipping
• Rotating
• Color / contrast jittering
• Adding noise

Image credit: Hackernoon

https://medium.com/hackernoon/stop-feeding-garbage-to-your-model-the-6-biggest-mistakes-with-datasets-and-how-to-avoid-them-3cb7532ad3b7


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

111Regularization
Using less parameters

 Overfitting is caused by noisy data & a complex model

 Solution: Simplify the model by reducing the number of parameters
� Reduce number of hidden layers (depth)
� Reduce number of neurons in each hidden layer (width)

Simplification


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Early Stopping

Validation Error

Training Error

112Regularization
Early stopping

 Overfitting → low training error, high validation & test error

 Early stopping: Stop the training process when the the validation error starts
increasing
Simple technique, but requires frequent evaluation on the validation set


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

113Regularization
L2, L1 & elastic net

Limit overfitting by adding a regularization term to the cost function
▪ Constrains the weights (high value gets penalized)

▪ λ: hyper-parameter which tunes the strength of the regularization
• bigger λ = more regularization

No regularization With L2 regularization (weight decay)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

114Regularization
L2

L2 regularization, also known as ridge or weight decay
▪ One of the most popular regularization techniques in ML

• Used for linear regression, logistic regression, neural nets, SVMs, …

For neural nets, define:∥ 𝐖𝐖 ∥22= ∑
𝑙𝑙=1

𝖫𝖫
∥ 𝐖𝐖[𝑙𝑙] ∥22 where ∥ 𝐖𝐖[𝑙𝑙] ∥22= ∑

𝑖𝑖=1

𝑛𝑛[𝑙𝑙−1]

∑
𝑗𝑗=1

𝑛𝑛[𝑙𝑙]

(𝑊𝑊𝑖𝑖,𝑗𝑗
[𝑙𝑙])2

𝐽𝐽 =
1
𝑁𝑁 ∑
𝑖𝑖=1

𝑁𝑁
𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦

̂ (𝑖𝑖)) + 𝜆𝜆 ∥ 𝐖𝐖 ∥22

L2 Regularization term:
model should be
“simple”

Loss function:
predictions should
match training data

Sum the square of
each weight


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

L1 regularization, also known as lasso (Least Absolute Shrinkage Selector Operator):
▪ Tends to force weights to 0, which increases sparsity

For neural nets, define:∥ 𝐖𝐖 ∥1= ∑
𝑙𝑙=1

𝖫𝖫
∥ 𝐖𝐖[𝑙𝑙] ∥1 where ∥ 𝐖𝐖[𝑙𝑙] ∥1= ∑

𝑖𝑖=1

𝑛𝑛[𝑙𝑙−1]

∑
𝑗𝑗=1

𝑛𝑛[𝑙𝑙]

|𝑊𝑊𝑖𝑖,𝑗𝑗
[𝑙𝑙]|

𝐽𝐽 =
1
𝑁𝑁 ∑
𝑖𝑖=1

𝑁𝑁
𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦

̂ (𝑖𝑖)) + 𝜆𝜆 ∥ 𝐖𝐖 ∥1

115Regularization
L1

L1 Regularization termLoss function

Sum the absolute value
of each weight


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

116Regularization
Elastic net

Elastic net regularizations combines L1 and L2

𝐽𝐽 =
1
𝑁𝑁 ∑
𝑖𝑖=1

𝑁𝑁
𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦

̂ (𝑖𝑖)) + 𝜆𝜆2 ∥ 𝐖𝐖 ∥22 +𝜆𝜆1 ∥ 𝐖𝐖 ∥1
L2 regularization
termLoss function

L1 regularization
term

L1 L2 Elastic net (L1 + L2)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

117Regularization
Dropout - Overview

 Dropout:
 Randomly drop nodes (along with connections) with probability 1−𝑝𝑝 during

training

Srivastava, Hinton et al. , Dropout: A Simple Way to Prevent Neural
Networks from Overfitting, 2012

https://www.cs.toronto.edu/%7Ehinton/absps/JMLRdropout.pdf


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

118Regularization
Dropout - Implementation

 At training time:
 At each iteration, keep node with probability 𝑝𝑝
� Dropped nodes change at each iteration
� Lower 𝑝𝑝 → stronger regularization

 At test time:
 All nodes are present, but weights are scaled by 𝑝𝑝 (i.e. 𝐰𝐰 becomes 𝑝𝑝𝑝𝑝)

𝑝𝑝 is a hyperparameter


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

119Regularization
Dropout - Implementation

Training: Iteration 1

When implemented, 𝑝𝑝 usually varies per layer

Example: 𝑝𝑝[0] = 1,𝑝𝑝[1] = 0.5,𝑝𝑝[2] = 0.75

where 𝑝𝑝[𝑙𝑙] is the probability of keeping a node in

the 𝑙𝑙𝑡𝑡ℎ layer

Note:

In some literature, 𝑝𝑝 instead refers to the probability of
dropping the nodes.

Weights are scaled by (1−𝑝𝑝) with this notation


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

120Regularization
Dropout - Implementation

Training: Iteration 2

Note:

In some literature, 𝑝𝑝 instead refers to the probability of
dropping the nodes.

Weights are scaled by (1−𝑝𝑝) with this notation

When implemented, 𝑝𝑝 usually varies per layer

Example: 𝑝𝑝[0] = 1,𝑝𝑝[1] = 0.5,𝑝𝑝[2] = 0.75

where 𝑝𝑝[𝑙𝑙] is the probability of keeping a node in

the 𝑙𝑙𝑡𝑡ℎ layer


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

121Regularization
Dropout - Implementation

Test time

Note:

In some literature, 𝑝𝑝 instead refers to the probability of
dropping the nodes.

Weights are scaled by (1−𝑝𝑝) with this notation

When implemented, 𝑝𝑝 usually varies per layer

Example: 𝑝𝑝[0] = 1,𝑝𝑝[1] = 0.5,𝑝𝑝[2] = 0.75

where 𝑝𝑝[𝑙𝑙] is the probability of keeping a node in

the 𝑙𝑙𝑡𝑡𝑡 layer


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

122Regularization
Dropout - Intuition

Cat score

has an ear

has a tail

is furry

has claws
mischievous

look

 How can dropout possibly be a good idea?
� It forces the network to have a redundant representation
� Prevents co-adaptation of features

The network can’t rely on any specific feature as they are
randomly dropped during training → needs redundancy


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

123Regularization
Dropout - Intuition

 Another interpretation:
 Dropout is training a large ensemble

of models (that share parameters)

 Each binary mask is one model

 An FC layer with 4096 units has
 24096 ~ 101233 possible masks!
 Only ~ 1082 atoms in the universe...


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

124Regularization
Resources

� Data augmentation:
http://ai.stanford.edu/blog/data-augmentation/

� (Must read) L1 vs L2 regularization:
https://developers.google.com/machine-learning/crash-
course/regularization-for-sparsity/l1-regularization

� Dropout paper:
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.
pdf

http://ai.stanford.edu/blog/data-augmentation/
https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/l1-regularization
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”
 Batch normalization
 Regularization strategies
 Optimization strategy

NN TIPS & TRICKS 125

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 https://www.deeplearning.ai/ai-
notes/optimization/index.html

 On gradient based optimization methods:
http://ruder.io/optimizing-gradient-descent/

 Bottou, L., Curtis, F. E., & Nocedal, J. (2018).
Optimization methods for large-scale machine
learning. SIAM Review

 Sun, R.-Y. (2020). Optimization for deep
learning: An overview. Journal of the
Operations Research Society of China

Optimization review 126

https://www.deeplearning.ai/ai-notes/optimization/index.html
http://ruder.io/optimizing-gradient-descent/

In
tro

 to
 M

L
fo

r e
ng

in
ee

rs

Al
ex

an
dr

e
Al

ah
i

127

Optimization


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

128Optimization
Overview

Goal of optimization in ML:
Minimize cost over batch: ∑𝑖𝑖=1𝑁𝑁 𝐿𝐿(𝑖𝑖)

where 𝐿𝐿(𝑖𝑖) is the loss 𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦
̂ (𝑖𝑖)) of the 𝑖𝑖-th

training example of batch

Want the optimization to:
• Converge quickly

• Find a good local minima (or even global
minima) Image credit: https://www.cs.umd.edu/~tomg/projects/landscapes/

https://www.cs.umd.edu/%7Etomg/projects/landscapes/


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

129Optimization
Overview - for NN

Gradient descent (and variants) is the
preferred way to optimize neural networks

Choice of optimizer and hyper-parameters
affect speed of convergence and kind of local
minima found

A. Amini et al. Spatial Uncertainty Sampling for
End-to-End Control, 2019

https://arxiv.org/pdf/1805.04829.pdf


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

130Optimization
Cost Function - Disambiguation

In this class:
𝐽𝐽 : cost function
=> average of loss over a single iteration

In ML literature:

▪ loss function 𝐿𝐿
▪ cost function 𝐽𝐽
▪ error function 𝐸𝐸
are sometimes used interchangeably, and
sometimes used like they are in this class


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

131Optimization
Gradient descent

1. Compute 𝐽𝐽

2. Find
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(equivalent notation: 𝛻𝛻𝐖𝐖𝐽𝐽)

3. Update parameters with:

• 𝐖𝐖: = 𝐖𝐖−𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Notation:

▪ 𝐖𝐖= all parameters of model

(𝐖𝐖[1],𝐛𝐛[1], . . . ,𝐖𝐖[𝑛𝑛],𝐛𝐛[𝑛𝑛])

▪ 𝛼𝛼 = learning rate


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

132Optimization
Gradient descent

(Vanilla / Batch) Gradient descent (GD):

▪ 𝐽𝐽 = 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝐿𝐿(𝑖𝑖)

where 𝐿𝐿(𝑖𝑖) is the loss 𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦
̂ (𝑖𝑖)) of the 𝑖𝑖-th

example of the training set

▪ Weights are updated only after calculating the
gradient over the entire dataset

• slow

• requires large memory

For a training set with 𝑁𝑁 examples:

Stochastic gradient descent (SGD):

▪ 𝐽𝐽 = 𝐿𝐿(𝑖𝑖)

where 𝐿𝐿(𝑖𝑖) is a single example from the training set

▪ Weights are updated after calculating the gradient of a
single example

• frequent updates, faster convergence
• requires much less memory than GD
• can potentially find new, better minima
• high variance in parameter updates


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

133Optimization
Gradient descent

Q: Can we compromise between vanilla GD and SGD?


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

134Optimization
Gradient descent

Q: Can we compromise between vanilla GD and SGD?

A: Yes! Mini-batch gradient descent:
▪ Take batches of 𝑛𝑛𝑏𝑏 examples from training set.

▪ 𝐽𝐽 = 1
𝑛𝑛𝑏𝑏
∑𝑖𝑖=1
𝑛𝑛𝑏𝑏 𝐿𝐿(𝑖𝑖),

where 𝐿𝐿(𝑖𝑖) is the loss 𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦
̂ (𝑖𝑖)) of the 𝑖𝑖-th example of the mini-batch

▪ Weights are updated after every mini-batch:
• faster convergence than GD
• reduces variance of parameter updates compared to SGD
→more stable convergence


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

135Optimization
Learning rate

Image credit: Jeremy Jordan (https://www.jeremyjordan.me/nn-learning-rate/)

https://www.jeremyjordan.me/nn-learning-rate/


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

136Optimization
Optimizers

Variants of gradient descent are commonly
used in practice to speed-up and improve
convergence:

▪ Momentum update
▪ Nesterov Accelerated Gradient (NAG)
▪ Adagrad

▪ Adadelta
▪ RMSprop
▪ Adam

▪ and more…


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process

NN TIPS & TRICKS 137

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

138

Monitor and visualize the loss curve 138


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

139

Monitor and visualize the loss curve 139


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

140

Monitor and visualize the loss curve 140


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

141

Monitor and visualize the loss curve 141


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

142

Monitor and visualize the loss curve 142


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiLoss

time

143

143


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiLoss

time

Bad initialization
a prime suspect

144

144


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

145

Monitor and visualize the accuracy: 145


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01
(about okay)
want this to be somewhere around 0.001 or so

146

Track the ratio of weight updates / weight magnitudes: 146


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process

NN TIPS & TRICKS 147

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process
 Hyperparameters search

NN TIPS & TRICKS 148

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

149

 Coarse -> fine cross-validation in stages
 First stage: only a few epochs to get

rough idea of what params work
Second stage: longer running time, finer
search
… (repeat as necessary)

 Tip for detecting explosions in the
solver:

If the cost is ever > 3 * original cost, break
out early

Cross-validation strategy 149


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

nice

note it’s best to optimize
in log space!

150

For example: run coarse search for 5 epochs 150


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

adjust range

53% - relatively
good for a 2-layer
neural net with 50
hidden neurons.

151

Now run finer search... 151


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Important
Parameter

Important
Parameter

U
ni

m
po

rta
nt

Pa

ra
m

et
er

U
ni

m
po

rta
nt

Pa

ra
m

et
er

Grid Layout Random Layout

Random Search for Hyper-Parameter
Optimization
Bergstra and Bengio, 2012

152

Random Search vs. Grid Search 152


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

153

 network architecture
 learning rate, its decay schedule, update

type
 regularization (L2/Dropout strength)

Hyperparameters to play with 153


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

154

Cross-validation
“command center”

154


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process
 Hyperparameters search

NN TIPS & TRICKS 155

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process
 Hyperparameters search
 Model ensembles

NN TIPS & TRICKS 156

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

157

1. Train multiple independent models
2. At test time average their results

 Enjoy 2% extra performance

Model Ensembles 157


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. 158

 Instead of training independent models,
use multiple snapshots of a single model
during training!

Model Ensembles: Tips
and Tricks

158


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. 159

 Instead of training independent models,
use multiple snapshots of a single model
during training!

Model Ensembles: Tips
and Tricks

159


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process
 Hyperparameters search
 Model ensembles

NN TIPS & TRICKS 160

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process
 Hyperparameters search
 Model ensembles
 Sub-loss magnitude ~ 1

NN TIPS & TRICKS 161

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models
Numerical stability


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Often necessary to do multiple tasks
simultaneously. Below are training
curves showing the value of their sub-
losses for 6 sub-tasks.

 Each sub-task can be multiplied by a
constant, the “weight” of the sub-task.

 Sometimes, there is no natural weight.
Then, a good initial weight guess is to
make every sub-loss ~1.

Multi-Task Losses 162


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process
 Hyperparameters search
 Model ensembles
 Sub-loss magnitude ~ 1
 Pretrained networks

NN TIPS & TRICKS 163

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models
Numerical stability
Especially helpful when own training data is small


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 “You need a lot of a data if you want to
train/use Deep NNs”

NN TIPS & TRICKS 164


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

22K categories and 14M images

www.image-net.org

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

• Animals
• Bird
• Fish
• Mammal
• Invertebrate

• Plants
• Tree
• Flower

• Food
• Materials

• Structures
• Artifact

• Tools
• Appliances
• Structures

• Person
• Scenes

• Indoor
• Geological

Formations
• Sport Activities


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

166

Output:
Scale
T-shirt

Steel drum
Drumstick
Mud turtle

Steel drum


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Steel drumThe Image Classification Challenge:
1,000 object classes

1,431,167 images

Russakovsky et al., 2014

167


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 “You need a lot of a data if you want to
train/use Deep NNs”

 What if you don’t?
 Transfer Learning

NN TIPS & TRICKS 168


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hiTransfer Learning with CNNs 169

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze
these

Reinitialize
this and train

Transfer Learning with CNNs 170


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze
these

Train
these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Transfer Learning with CNNs 171


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of
data

? ?

172


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of
data

Finetune a
few layers

?

173


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a
few layers

Finetune a
larger number
of layers

174


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 When you have some a small dataset

1. Find a very large dataset that has
similar data, train a big network there

2. Transfer learn to your dataset
 Deep learning frameworks provide a

“Model Zoo” of pretrained models so you
don’t need to train your own
 PyTorch:

https://github.com/pytorch/vision

Takeaway 175

https://github.com/pytorch/vision


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 https://teachablemachine.withgoogle.co
m/train/image

176

https://teachablemachine.withgoogle.com/train/image


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Preprocess data
 Design an architecture

• Loss function
• Layers type
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies
 Optimization strategy
 Monitor learning process
 Hyperparameters search
 Model ensembles
 Sub-loss magnitude ~ 1
 Pretrained networks

 + Data distribution
 + Gradient flow
 + Visualize your input data, intermediate values, results

NN TIPS & TRICKS 177

Normalize each dimension of the input
Start from state-of-the-art designs

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models
Numerical stability
Especially helpful when own training data is small


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 Book: Deep Learning by Ian Goodfellow,
Yoshua Bengio, Aaron Courville
(http://www.deeplearningbook.org/)

 Class on CNN: http://cs231n.stanford.edu/

 Good tuto on gradient check:
http://cs231n.github.io/neural-networks-3/

 On gradient based optimization methods:
http://ruder.io/optimizing-gradient-descent/

References 178

http://www.deeplearningbook.org/
http://moralmachine.mit.edu/
http://ruder.io/optimizing-gradient-descent/


In

tro
 to

 M
L

fo
r E

ng
in

ee
rs

O
. F

in
k

/ A
. A

la
hi

 CNN demo on CIFAR-10:
http://cs.stanford.edu/people/karpathy/convnet
js/demo/cifar10.html

Additional materials 179

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

	Deep Learning – Part 3
	Road map
	Road map
	So far
	�Useful links
	Outline
	Slide Number 12
	Neural networks
	Neural networks
	Neural networks
	Slide Number 16
	NN - Backpropagation
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Backprop
	Modularized implementation: forward / backward API��
	Modularized implementation: forward / backward API��
	Deep learning frameworks
	Deep learning frameworks
	Recap on training a neural network
	Recipe for training �neural networks�
	How to have an “efficient Gradient”?
	Vanishing or exploding gradients
	Vanishing or exploding gradients
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Data pre-processing
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Convolutional Neural Networks
	Convolutional Neural Networks
	Convolutional Neural Networks
	Residual neural networks
	Design an architecture �
	NN TIPS & TRICKS
	Activation functions
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Double check that the loss is reasonable:���
	Double check that the loss is reasonable:���
	Lets try to train now… �
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Weight initialization
	Weight initialization
	Weight initialization
	Weight initialization
	Weight initialization
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	Batch Normalization�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	Regularization
	NN TIPS & TRICKS
	Optimization review
	Slide Number 127
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	NN TIPS & TRICKS
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Monitor and visualize the loss curve�
	Slide Number 143
	Slide Number 144
	Monitor and visualize the accuracy:�
	Track the ratio of weight updates / weight magnitudes:�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Cross-validation strategy�
	For example: run coarse search for 5 epochs�
	Now run finer search...�
	Random Search vs. Grid Search
	Hyperparameters to play with
	Cross-validation “command center”�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Model Ensembles�
	Model Ensembles: Tips and Tricks�
	Model Ensembles: Tips and Tricks�
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Multi-Task Losses
	NN TIPS & TRICKS
	NN TIPS & TRICKS
	Slide Number 165
	Slide Number 166
	Slide Number 167
	NN TIPS & TRICKS
	Transfer Learning with CNNs�
	Transfer Learning with CNNs
	Transfer Learning with CNNs
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Takeaway �
	Slide Number 176
	NN TIPS & TRICKS
	References
	Additional materials

