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Deep Learning – Part 3
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▪ Neural networks
• Layers (fully connected or convolutional)

• Activation functions
• Loss functions

So far 4
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 https://playground.tensorflow.org/

https://poloclub.github.io/cnn-explainer/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://www.cs.ryerson.ca/~aharley/vis/conv/

https://teachablemachine.withgoogle.com/

vitademo.epfl.ch/movements

Usefullinks
10

https://playground.tensorflow.org/
https://poloclub.github.io/cnn-explainer/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://www.cs.ryerson.ca/%7Eaharley/vis/conv/
https://teachablemachine.withgoogle.com/
http://vitademo.epfl.ch/movements
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▪ Backprop
▪ Recipe for training neural networks
▪ Weight initialisation
▪ Optimization
▪ Batch normalization
▪ Regularisation techniques
▪ Transfer learning

Outline

▪ It s all about the gradient!

11
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Training neural 
nets

12
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13Neural networks
Training

 Forward pass of 2 layer NN (for a single sample): 
• 𝐳𝐳[1] = 𝐖𝐖[1]𝑇𝑇𝒙𝒙+𝐛𝐛[1]

• 𝐚𝐚[1] = 𝑔𝑔[1](𝐳𝐳[1])

• 𝐳𝐳[2] = 𝐖𝐖[2]𝑇𝑇𝐚𝐚[1] +𝐛𝐛[2]

• 𝐲𝐲
̂

= 𝐚𝐚[2] = 𝑔𝑔[2](𝐳𝐳[2])

• 𝐲𝐲
̂

= 𝑔𝑔[2](𝐖𝐖[2]𝑇𝑇𝑔𝑔[1](𝐖𝐖[1]𝑇𝑇𝒙𝒙+𝐛𝐛[1]) +𝐛𝐛[2])

𝐖𝐖[1] 𝐖𝐖[2]
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14Neural networks
Training

 Forward pass of 2 layer NN (for a single sample): 

• 𝐲𝐲
̂

= 𝑔𝑔[2](𝐖𝐖[2]𝑇𝑇𝑔𝑔[1](𝐖𝐖[1]𝑇𝑇𝒙𝒙+𝐛𝐛[1]) +𝐛𝐛[2])

 To train, we need a loss function: 𝐿𝐿(𝐲𝐲
̂
,𝐲𝐲)

 Using that loss function, we want to update
𝐖𝐖[1],𝐛𝐛[1],𝐖𝐖[2],𝐛𝐛[2]

 using gradient descent.

𝐖𝐖[1] 𝐖𝐖[2]
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15Neural networks
Training

Need to compute: 
𝜕𝜕𝜕𝜕

𝜕𝜕𝐖𝐖[𝑖𝑖], 
𝜕𝜕𝜕𝜕
𝜕𝜕𝐛𝐛[𝑖𝑖]

=> Gradient of loss with respect 
to weights

Once gradients are computed, 

update weights with:

▪ 𝐖𝐖[𝑖𝑖]: = 𝐖𝐖[𝑖𝑖] −𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝐖𝐖[𝑖𝑖]

▪ 𝐛𝐛[𝑖𝑖]: = 𝐛𝐛[𝑖𝑖] −𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝐛𝐛[𝑖𝑖]

where 𝛼𝛼 is the learning rate
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Backpropagation
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17NN - Backpropagation
Overview

 Algorithm used to efficiently compute 
gradient of loss with respect to weights

 Makes use of chain rule: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 Use computational graph to 
progressively compute gradients

 Forward pass: Compute output
 Backward pass: Compute derivatives
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e.g., x = -2, y = 5, z = -4

18

Backprop 18
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e.g., x = -2, y = 5, z = -4

Want: 

19

Backprop 19
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e.g., x = -2, y = 5, z = -4

Want: 

20

Backprop 20
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e.g., x = -2, y = 5, z = -4

Want: 

21

Backprop 21
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e.g., x = -2, y = 5, z = -4

Want: 

22

Backprop 22
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e.g., x = -2, y = 5, z = -4

Want: 

23

Backprop 23
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e.g., x = -2, y = 5, z = -4

Want: 

24

Backprop 24




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

e.g., x = -2, y = 5, z = -4

Want: 

25

25Backprop
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e.g., x = -2, y = 5, z = -4

Want: 

26

Backprop 26
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Chain rule:

e.g., x = -2, y = 5, z = -4

Want: 

27

Backprop 27
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e.g., x = -2, y = 5, z = -4

Want: 

28

Backprop 28
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Chain rule:

e.g., x = -2, y = 5, z = -4

Want: 

29

Backprop 29
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f

30

30
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f

“local gradient”

31

31
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f

“local gradient”

gradients

32

32
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f

“local gradient”

gradients

33

33
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f

“local gradient”

gradients

34

34
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f

“local gradient”

gradients

35
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36

Backprop 36
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37

Backprop 37
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38

Backprop 38
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39

Backprop 39




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

40

Backprop 40
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41

Backprop 41
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42

Backprop 42
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43

Backprop 43




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

44

Backprop 44
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(-1) * (-0.20) = 0.20

45

Backprop 45




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

46

Backprop 46
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[local gradient] x [upstream gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2  (both inputs!)

47

Backprop 47
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48

Backprop 48
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[local gradient] x [upstream gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

49

Backprop 49
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sigmoid function

sigmoid gate

50

Backprop 50
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sigmoid gate

sigmoid function

(0.73) * (1 - 0.73) = 0.2

51

Backprop 51
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(x,y,z are scalars)

x

y

z
*

52

Modularized implementation: 
forward / backward API

52
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(x,y,z are scalars)

x

y

z
*

53

Modularized implementation: 
forward / backward API

53
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54Deep learning frameworks
Overview

 Deep learning frameworks are used to efficiently define and train neural 
networks
• Support for many types of layers, activations, loss functions, optimizers, …
• Backpropagation computed automatically (e.g. loss.backward() in PyTorch)
• GPU support for faster training

 Most popular frameworks today:
• PyTorch (https://pytorch.org)
• TensorFlow (https://www.tensorflow.org/)

https://pytorch.org/
http://tensorflow.org/
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55Deep learning frameworks
Implementing a simple neural network in PyTorch
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56Recap on training a neural network

• Loop:
1. Sample a batch of data
2. Forward pass to get the loss
3. Backward pass to calculate gradient
4. Update parameters using the gradient

� Forward pass computes result of an operation and save any intermediates needed for gradient 
computation in memory

� Backward pass applies the chain rule to compute the gradient of the loss function with respect to the 
inputs

� Backpropagation = recursive application of the chain rule along a computational graph to compute 
the gradients of all inputs/parameters/intermediates
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Recipe for training 
neural networks

57
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How to have an “efficient Gradient”? 

58
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59Vanishing or exploding gradients
Definitions

1. Feed forward pass

3. Backward pass 

To calculate gradient 
& update weight 
(with stochastic gradient)

2. Compute Loss (estimate error)
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60Vanishing or exploding gradients
Definitions

 Vanishing gradient: The update of the weights close to the 
input layer will become very slow, resulting in the hidden 
layer weights close to the input layer almost unchanged, 
throwing the weights close to the initialization.

 Exploding gradient: When the initial weight value is too 
large, the weight value near the input layer changes faster 
than the weight value near the output layer, which will cause 
the problem of gradient explosion.

1. Feed forward pass

3. Backward pass 

To calculate gradient 
& update weight 
(with stochastic gradient)

2. Compute Loss (estimate error)
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 Preprocess data

NN TIPS & TRICKS 62




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

 Normalize each dimension of the data

Data pre-processing 63
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 Preprocess data

NN TIPS & TRICKS 64

Normalize each dimension of the input




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters

NN TIPS & TRICKS 65

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
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66Convolutional Neural Networks
Popular architectures

LeNet-5
LeCun et al. ,1998

----------------------------------------------------------------
Layer (type)               Output Shape         Param #

================================================================
Conv2d-1            [-1, 6, 28, 28]             156
ReLU-2            [-1, 6, 28, 28]               0

MaxPool2d-3            [-1, 6, 14, 14]               0
Conv2d-4           [-1, 16, 10, 10]           2,416
ReLU-5           [-1, 16, 10, 10]               0

MaxPool2d-6             [-1, 16, 5, 5]               0
Linear-7                  [-1, 120]          48,120
ReLU-8                  [-1, 120]               0

Linear-9                   [-1, 84]          10,164
ReLU-10                   [-1, 84]               0

Linear-11                   [-1, 10]             850
Softmax-12                   [-1, 10]               0

================================================================
Total params: 61,706

-1 in output shape represents 
the mini-batch dimension
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67Convolutional Neural Networks
Popular architectures

AlexNet
Krizhevsky et al., 2012

Winner of ImageNet Competition 2012
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68Convolutional Neural Networks
Popular architectures

VGG16
Simonian & Zisserman, 2014

----------------------------------------------------------------
Layer (type)               Output Shape         Param #

================================================================
Conv2d-1         [-1, 64, 224, 224]           1,792

ReLU-2         [-1, 64, 224, 224]               0
Conv2d-3         [-1, 64, 224, 224]          36,928

ReLU-4         [-1, 64, 224, 224]               0
MaxPool2d-5         [-1, 64, 112, 112]               0

Conv2d-6        [-1, 128, 112, 112]          73,856
ReLU-7        [-1, 128, 112, 112]               0

Conv2d-8        [-1, 128, 112, 112]         147,584
ReLU-9        [-1, 128, 112, 112]               0

MaxPool2d-10          [-1, 128, 56, 56]               0
Conv2d-11          [-1, 256, 56, 56]         295,168

ReLU-12          [-1, 256, 56, 56]               0
Conv2d-13          [-1, 256, 56, 56]         590,080

ReLU-14          [-1, 256, 56, 56]               0
Conv2d-15          [-1, 256, 56, 56]         590,080

ReLU-16          [-1, 256, 56, 56]               0
MaxPool2d-17          [-1, 256, 28, 28]               0

Conv2d-18          [-1, 512, 28, 28]       1,180,160
ReLU-19          [-1, 512, 28, 28]               0

Conv2d-20          [-1, 512, 28, 28]       2,359,808
ReLU-21          [-1, 512, 28, 28]               0

Conv2d-22          [-1, 512, 28, 28]       2,359,808
ReLU-23          [-1, 512, 28, 28]               0

MaxPool2d-24          [-1, 512, 14, 14]               0
Conv2d-25          [-1, 512, 14, 14]       2,359,808

ReLU-26          [-1, 512, 14, 14]               0
Conv2d-27          [-1, 512, 14, 14]       2,359,808

ReLU-28          [-1, 512, 14, 14]               0
Conv2d-29          [-1, 512, 14, 14]       2,359,808

ReLU-30          [-1, 512, 14, 14]               0
MaxPool2d-31            [-1, 512, 7, 7]               0

Linear-32                 [-1, 4096]     102,764,544
ReLU-33                 [-1, 4096]               0

Dropout-34                 [-1, 4096]               0
Linear-35                 [-1, 4096]      16,781,312

ReLU-36                 [-1, 4096]               0
Dropout-37                 [-1, 4096]               0
Linear-38                 [-1, 1000]       4,097,000

Softmax-39                 [-1, 1000]               0
================================================================
Total params: 138,357,544
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69

• ResNets (He et al., 2015):
Add shortcuts (skip-connections) to jump over some 
layers

• Deeper models are harder to optimize, and in 
particular, don’t learn identity functions well 

• Skip-connections make identity functions easier to 
learn, helps during training

• ResNets stack residual blocks on top of each 
other to form deep networks (e.g. ResNet-50, 
ResNet-101, …)

He and al, Deep Residual Learning for Image Recognition, 2015

residual blocks
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 https://playground.tensorflow.org/

Design an architecture 70
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

NN TIPS & TRICKS 71

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Derivative of output with respect to 
the input is 1 for inputs great than 0
=> Training more stable and efficient

Derivative close to 0 for large 
positive or negative inputs

Deal with dying Relu
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

NN TIPS & TRICKS 73

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

NN TIPS & TRICKS 74

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
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returns the loss and the 
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for 
10 classes

75

Double check that the loss is reasonable: 75
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crank up regularization

loss went up, good. (sanity check)

76

Double check that the loss is reasonable: 76
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Tip: Make sure 
that you can overfit 
very small portion 
of the training data

The above code:
- take the first 20 examples from 

CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

77

Lets try to train 
now…  

77
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Very small loss, 
train accuracy 1.00, 
nice!

78

Tip: Make sure that 
you can overfit very 
small portion of the 
training data

Lets try to train 
now…  

78
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Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

79

Lets try to train 
now…  

79
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Start with small 
regularization and find 
learning rate that 
makes the loss go 
down. Loss barely changing 

80

Lets try to train 
now…  

80
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Start with small 
regularization and find 
learning rate that 
makes the loss go 
down. Loss barely changing: Learning rate is 

probably too low

81

 loss not going down:
learning rate too low

Lets try to train 
now…  

81
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Start with small 
regularization and find 
learning rate that 
makes the loss go 
down. Loss barely changing: Learning rate is 

probably too low

82

 loss not going down:
learning rate too low

Lets try to train 
now…  

82
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Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

Now let’s try learning rate 1e6.

83

 loss not going down:
learning rate too low

Lets try to train 
now…  

83
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cost: NaN almost 
always means high 
learning rate...

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

84

 loss not going down:
learning rate too low
 loss exploding:
learning rate too high

Lets try to train 
now…  

PS: NaN also occurs because of:
- log (negative number), 
- divide by zeros (variable going to zero)

84
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Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we 
should be cross-validating is 
somewhere [1e-3 … 1e-5]

85

 loss not going down:
learning rate too low
 loss exploding:
learning rate too high

Lets try to train 
now…  

85
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

NN TIPS & TRICKS 86

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”

NN TIPS & TRICKS 87

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)
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88Weight initialization
Overview

How weights are initialized has an important impact on training

Q: What happens if we initialize all weights 𝐖𝐖 to 0?

A: Output of each neuron of a hidden layer is identical
=> Gradient for each neuron is identical

=> Weight update for each neuron is identical
=> All neurons of a hidden layer will be identical, no better than a linear 
model

Avoid zero initialization!
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89Weight initialization
Initialization values

Next idea: Random initialization

▪ Initialize with small random numbers (e.g. sample from normal distribution)
• Okay for shallow networks, problematic for deeper networks

• Activations tend to zero for deeper network layers → small gradients, no learning

J. Johnson, Deep Learning for Computer Vision (University of Michigan) - Lecture 10
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90Weight initialization
Initialization values

Next idea: Random initialization

▪ Initialize with larger random numbers

• Activations saturate →bad

=> Need to find initialization values that are “just right”

J. Johnson, Deep Learning for Computer Vision (University of Michigan) - Lecture 10
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91Weight initialization
Initialization values

Xavier (Glorot) initialization [Glorot et al., 2010]:

Sample from 𝒩𝒩(0,𝜎𝜎2), with 𝜎𝜎 = 2
𝑎𝑎+𝑏𝑏

, 

where 𝑎𝑎 is the number of input neurons, and 𝑏𝑏 is the number of output neurons

▪ Good initialization for network with 𝑡𝑡𝑡𝑡𝑡𝑡ℎactivations

Kaiming (He) initialization [He et al., 2015]:

Sample from 𝒩𝒩(0,𝜎𝜎2), with 𝜎𝜎 = 2
𝑎𝑎
,  where 𝑎𝑎 is the number of input neurons 

▪ Good initialization for network with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 activations

▪ More info: https://paperswithcode.com/method/he-initialization

https://paperswithcode.com/method/he-initialization
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92Weight initialization
Resources

� (Must read) Great interactive lecture notes on initialization by 
Katanforoosh & Kunin:
https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”

NN TIPS & TRICKS 93

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”
 Batch normalization

NN TIPS & TRICKS 94

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
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“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla 
differentiable function...

95

Batch Normalization

[Ioffe and Szegedy, 2015]

95
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“you want unit gaussian activations? 
just make them so.”

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize

96

Batch Normalization

[Ioffe and Szegedy, 2015]

96
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FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.

97

Batch Normalization

[Ioffe and Szegedy, 2015]

97
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FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.

98

Batch Normalization

[Ioffe and Szegedy, 2015]

98
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And then allow the network to squash 
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:

99

Batch Normalization

[Ioffe and Szegedy, 2015]

99
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[Ioffe and Szegedy, 2015]
100

Batch Normalization

- Improves gradient flow through 
the network

- Allows higher learning rates
- Reduces the strong dependence 

on initialization
- Acts as a form of regularization 

in a funny way, and slightly 
reduces the need for dropout, 
maybe

100
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[Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently:

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used.

(e.g., can be estimated during 
training with running averages)

101

Batch Normalization 101
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 Lubana, E. S., Dick, R., & Tanaka, H. (2021). 
Beyond BatchNorm: Towards a unified un-
derstanding of normalization in deep 
learning. Neural Information Processing 
Systems

Batch Normalization 102
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”
 Batch normalization

NN TIPS & TRICKS 103

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 

NN TIPS & TRICKS 104

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm
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105Regularization
Introduction

 Deep neural networks can learn very complex functions → prone to 
overfitting

 Overfitting: when a model learns the “noise” of the training data, and fails to 
generalize  → high variance, low bias
� Great performance on training set
� Much worse on test set

 Many regularization techniques exist to limit overfitting:
� Some quite generic (e.g. data augmentation)
� Some exclusive to neural nets (e.g. dropout)

Green: Overfitting
Black: Regularized model
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106Regularization
Getting more data

 Overfitting is caused by noisy data & a complex model

Training ModelData
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107Regularization
Getting more data

Training Model

Data

 Overfitting is caused by noisy data & a complex model

 Solution: Gather more data to reduce noise
The more data we collect, the better the model can identify the 

underlying phenomenon that generates the data
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108Regularization
Getting more data

 Drawback: getting new data can be very difficult or costly
� Some data is finite (e.g. civil data)
� Labeling data takes time, need to do it manually
� Some datasets already have millions of samples, gathering a 

few new samples won’t do much

The ImageNet dataset contains over 14 million images!
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109Regularization
Data augmentation

 Deep neural nets have millions / billions of parameters 
requires a proportional amount of training samples, which can be hard to obtain

 Solution: Use data augmentation!

 Data augmentation: Artificially generate new training samples by slightly modifying 
existing training data

S. Li, Automating Data Augmentation: Practice, Theory and New Direction, 2020

http://ai.stanford.edu/blog/data-augmentation/
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110Regularization
Data augmentation

 Data augmentation: 
 Artificially generate new training samples 

by slightly modifying existing data

 Some commonly used techniques (for 
images): 

• Cropping
• Flipping
• Rotating
• Color / contrast jittering
• Adding noise

Image credit: Hackernoon 

https://medium.com/hackernoon/stop-feeding-garbage-to-your-model-the-6-biggest-mistakes-with-datasets-and-how-to-avoid-them-3cb7532ad3b7
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111Regularization
Using less parameters

 Overfitting is caused by noisy data & a complex model

 Solution: Simplify the model by reducing the number of parameters
� Reduce number of hidden layers (depth)
� Reduce number of neurons in each hidden layer (width)

Simplification
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Early Stopping

Validation Error

Training Error   

112Regularization
Early stopping

 Overfitting → low training error, high validation & test error

 Early stopping: Stop the training process when the the validation error starts 
increasing
Simple technique, but requires frequent evaluation on the validation set
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113Regularization
L2, L1 & elastic net

Limit overfitting by adding a regularization term to the cost function
▪ Constrains the weights (high value gets penalized)

▪ λ: hyper-parameter which tunes the strength of the regularization 
• bigger λ = more regularization

No regularization With L2 regularization (weight decay)
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114Regularization
L2

L2 regularization, also known as ridge or weight decay
▪ One of the most popular regularization techniques in ML

• Used for linear regression, logistic regression, neural nets, SVMs, …

For neural nets, define:∥ 𝐖𝐖 ∥22= ∑
𝑙𝑙=1

𝖫𝖫
∥ 𝐖𝐖[𝑙𝑙] ∥22 where ∥ 𝐖𝐖[𝑙𝑙] ∥22= ∑

𝑖𝑖=1

𝑛𝑛[𝑙𝑙−1]

∑
𝑗𝑗=1

𝑛𝑛[𝑙𝑙]

(𝑊𝑊𝑖𝑖,𝑗𝑗
[𝑙𝑙])2

𝐽𝐽 =
1
𝑁𝑁 ∑
𝑖𝑖=1

𝑁𝑁
𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦

̂ (𝑖𝑖)) + 𝜆𝜆 ∥ 𝐖𝐖 ∥22

L2 Regularization term:
model should be 
“simple”

Loss function:
predictions should 
match training data 

Sum the square of 
each weight
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L1 regularization, also known as lasso (Least Absolute Shrinkage Selector Operator):
▪ Tends to force weights to 0, which increases sparsity

For neural nets, define:∥ 𝐖𝐖 ∥1= ∑
𝑙𝑙=1

𝖫𝖫
∥ 𝐖𝐖[𝑙𝑙] ∥1 where ∥ 𝐖𝐖[𝑙𝑙] ∥1= ∑

𝑖𝑖=1

𝑛𝑛[𝑙𝑙−1]

∑
𝑗𝑗=1

𝑛𝑛[𝑙𝑙]

|𝑊𝑊𝑖𝑖,𝑗𝑗
[𝑙𝑙]|

𝐽𝐽 =
1
𝑁𝑁 ∑
𝑖𝑖=1

𝑁𝑁
𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦

̂ (𝑖𝑖)) + 𝜆𝜆 ∥ 𝐖𝐖 ∥1

115Regularization
L1

L1 Regularization termLoss function 

Sum the absolute value 
of each weight
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116Regularization
Elastic net

Elastic net regularizations combines L1 and L2

𝐽𝐽 =
1
𝑁𝑁 ∑
𝑖𝑖=1

𝑁𝑁
𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦

̂ (𝑖𝑖)) + 𝜆𝜆2 ∥ 𝐖𝐖 ∥22 +𝜆𝜆1 ∥ 𝐖𝐖 ∥1
L2 regularization 
termLoss function 

L1 regularization 
term

L1 L2 Elastic net (L1 + L2)
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117Regularization
Dropout - Overview

 Dropout:
 Randomly drop nodes (along with connections) with probability 1−𝑝𝑝 during 

training 

Srivastava, Hinton et al. , Dropout: A Simple Way to Prevent Neural 
Networks from Overfitting, 2012

https://www.cs.toronto.edu/%7Ehinton/absps/JMLRdropout.pdf
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118Regularization
Dropout - Implementation

 At training time:
 At each iteration, keep node with probability 𝑝𝑝
� Dropped nodes change at each iteration 
� Lower 𝑝𝑝 → stronger regularization

 At test time:
 All nodes are present, but weights are scaled by 𝑝𝑝 (i.e. 𝐰𝐰 becomes 𝑝𝑝𝑝𝑝)

𝑝𝑝 is a hyperparameter
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119Regularization
Dropout - Implementation

Training: Iteration 1

When implemented, 𝑝𝑝 usually varies per layer

Example:  𝑝𝑝[0] = 1,𝑝𝑝[1] = 0.5,𝑝𝑝[2] = 0.75

where  𝑝𝑝[𝑙𝑙] is the probability of keeping a node in 

the 𝑙𝑙𝑡𝑡ℎ layer

Note:

In some literature, 𝑝𝑝 instead refers to the probability of 
dropping the nodes. 

Weights are scaled by (1−𝑝𝑝) with this notation
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120Regularization
Dropout - Implementation

Training: Iteration 2

Note:

In some literature, 𝑝𝑝 instead refers to the probability of 
dropping the nodes. 

Weights are scaled by (1−𝑝𝑝) with this notation

When implemented, 𝑝𝑝 usually varies per layer

Example:  𝑝𝑝[0] = 1,𝑝𝑝[1] = 0.5,𝑝𝑝[2] = 0.75

where  𝑝𝑝[𝑙𝑙] is the probability of keeping a node in 

the 𝑙𝑙𝑡𝑡ℎ layer
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121Regularization
Dropout - Implementation

Test time

Note:

In some literature, 𝑝𝑝 instead refers to the probability of 
dropping the nodes. 

Weights are scaled by (1−𝑝𝑝) with this notation

When implemented, 𝑝𝑝 usually varies per layer

Example:  𝑝𝑝[0] = 1,𝑝𝑝[1] = 0.5,𝑝𝑝[2] = 0.75

where  𝑝𝑝[𝑙𝑙] is the probability of keeping a node in 

the 𝑙𝑙𝑡𝑡𝑡 layer
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122Regularization
Dropout - Intuition

Cat score

has an ear

has a tail

is furry

has claws
mischievous 

look

 How can dropout possibly be a good idea?
� It forces the network to have a redundant representation
� Prevents co-adaptation of features

The network can’t rely on any specific feature as they are 
randomly dropped during training → needs redundancy
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123Regularization
Dropout - Intuition

 Another interpretation:
 Dropout is training a large ensemble 

of models (that share parameters)

 Each binary mask is one model

 An FC layer with 4096 units has
 24096 ~ 101233 possible masks!
 Only ~ 1082  atoms in the universe...
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124Regularization
Resources

� Data augmentation:
http://ai.stanford.edu/blog/data-augmentation/

� (Must read) L1 vs L2 regularization: 
https://developers.google.com/machine-learning/crash-
course/regularization-for-sparsity/l1-regularization

� Dropout paper:
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.
pdf

http://ai.stanford.edu/blog/data-augmentation/
https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/l1-regularization
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

 Initialize weight “smartly”
 Batch normalization
 Regularization strategies 
 Optimization strategy 

NN TIPS & TRICKS 125

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
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 https://www.deeplearning.ai/ai-
notes/optimization/index.html

 On gradient based optimization methods:
http://ruder.io/optimizing-gradient-descent/

 Bottou, L., Curtis, F. E., & Nocedal, J. (2018). 
Optimization methods for large-scale machine 
learning. SIAM Review

 Sun, R.-Y. (2020). Optimization for deep 
learning: An overview. Journal of the 
Operations Research Society of China

Optimization review 126

https://www.deeplearning.ai/ai-notes/optimization/index.html
http://ruder.io/optimizing-gradient-descent/
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Optimization




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

128Optimization
Overview

Goal of optimization in ML:
Minimize cost over batch: ∑𝑖𝑖=1𝑁𝑁 𝐿𝐿(𝑖𝑖)

where 𝐿𝐿(𝑖𝑖) is the loss 𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦
̂ (𝑖𝑖)) of the 𝑖𝑖-th 

training example of batch

Want the optimization to:
• Converge quickly

• Find a good local minima (or even global 
minima) Image credit: https://www.cs.umd.edu/~tomg/projects/landscapes/

https://www.cs.umd.edu/%7Etomg/projects/landscapes/
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129Optimization
Overview - for NN

Gradient descent (and variants) is the 
preferred way to optimize neural networks

Choice of optimizer and hyper-parameters 
affect speed of convergence and kind of local 
minima found

A. Amini et al. Spatial Uncertainty Sampling for 
End-to-End Control, 2019

https://arxiv.org/pdf/1805.04829.pdf
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130Optimization
Cost Function - Disambiguation

In this class:
𝐽𝐽 : cost function
=> average of loss over a single iteration

In ML literature:

▪ loss function 𝐿𝐿
▪ cost function 𝐽𝐽
▪ error function 𝐸𝐸
are sometimes used interchangeably,  and 
sometimes used like they are in this class
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131Optimization
Gradient descent

1. Compute 𝐽𝐽

2. Find 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(equivalent notation: 𝛻𝛻𝐖𝐖𝐽𝐽 )

3. Update parameters with:

• 𝐖𝐖: = 𝐖𝐖−𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Notation: 

▪ 𝐖𝐖= all parameters of model 

(𝐖𝐖[1],𝐛𝐛[1], . . . ,𝐖𝐖[𝑛𝑛],𝐛𝐛[𝑛𝑛])

▪ 𝛼𝛼 = learning rate
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132Optimization
Gradient descent

(Vanilla / Batch) Gradient descent (GD):

▪ 𝐽𝐽 = 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝐿𝐿(𝑖𝑖)

where 𝐿𝐿(𝑖𝑖) is the loss 𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦
̂ (𝑖𝑖)) of the 𝑖𝑖-th 

example of the training set

▪ Weights are updated only after calculating the 
gradient over the entire dataset

• slow

• requires large memory

For a training set with 𝑁𝑁 examples:

Stochastic gradient descent (SGD):

▪ 𝐽𝐽 = 𝐿𝐿(𝑖𝑖)

where 𝐿𝐿(𝑖𝑖) is a single example from the training set

▪ Weights are updated after calculating the gradient of a 
single example

• frequent updates, faster convergence
• requires much less memory than GD
• can potentially find new, better minima
• high variance in parameter updates




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

133Optimization
Gradient descent

Q: Can we compromise between vanilla GD and SGD?
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134Optimization
Gradient descent

Q: Can we compromise between vanilla GD and SGD?

A: Yes! Mini-batch gradient descent:
▪ Take batches of 𝑛𝑛𝑏𝑏 examples from training set.

▪ 𝐽𝐽 = 1
𝑛𝑛𝑏𝑏
∑𝑖𝑖=1
𝑛𝑛𝑏𝑏 𝐿𝐿(𝑖𝑖), 

where 𝐿𝐿(𝑖𝑖) is the loss 𝐿𝐿(𝑦𝑦(𝑖𝑖),𝑦𝑦
̂ (𝑖𝑖)) of the 𝑖𝑖-th example of the mini-batch

▪ Weights are updated after every mini-batch:
• faster convergence than GD
• reduces variance of parameter updates compared to SGD 
→more stable convergence
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135Optimization
Learning rate

Image credit: Jeremy Jordan (https://www.jeremyjordan.me/nn-learning-rate/)

https://www.jeremyjordan.me/nn-learning-rate/
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136Optimization
Optimizers

Variants of gradient descent are commonly 
used in practice to speed-up and improve 
convergence:

▪ Momentum update
▪ Nesterov Accelerated Gradient (NAG)
▪ Adagrad

▪ Adadelta
▪ RMSprop
▪ Adam

▪ and more…
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process

NN TIPS & TRICKS 137

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
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138

Monitor and visualize the loss curve 138
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139

Monitor and visualize the loss curve 139
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140

Monitor and visualize the loss curve 140
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141

Monitor and visualize the loss curve 141
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142

Monitor and visualize the loss curve 142
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Bad initialization
a prime suspect

144

144
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big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

145

Monitor and visualize the accuracy: 145
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Ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 
(about okay)
want this to be somewhere around 0.001 or so

146

Track the ratio of weight updates / weight magnitudes: 146
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process

NN TIPS & TRICKS 147

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process
 Hyperparameters search

NN TIPS & TRICKS 148

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
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149

 Coarse -> fine cross-validation in stages
 First stage: only a few epochs to get 

rough idea of what params work
Second stage: longer running time, finer 
search
… (repeat as necessary)

 Tip for detecting explosions in the 
solver: 

If the cost is ever > 3 * original cost, break 
out early

Cross-validation strategy 149
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nice

note it’s best to optimize 
in log space!

150

For example: run coarse search  for 5 epochs 150
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adjust range

53% - relatively 
good for a 2-layer 
neural net with 50 
hidden neurons.

151

Now run finer search... 151
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Important 
Parameter

Important 
Parameter

U
ni
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Grid Layout Random Layout

Random Search for Hyper-Parameter 
Optimization
Bergstra and Bengio, 2012

152

Random Search vs. Grid Search 152
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153

 network architecture
 learning rate, its decay schedule, update 

type
 regularization (L2/Dropout strength)

Hyperparameters to play with 153
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154

Cross-validation 
“command center”

154
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process
 Hyperparameters search

NN TIPS & TRICKS 155

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process
 Hyperparameters search
 Model ensembles

NN TIPS & TRICKS 156

Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)




In

tro
 to

 M
L 

fo
r E

ng
in

ee
rs

O
. F

in
k 

/ A
. A

la
hi

157

1. Train multiple independent models
2. At test time average their results

 Enjoy 2% extra performance

Model Ensembles 157
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Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. 158

 Instead of training independent models, 
use multiple snapshots of a single model 
during training!

Model Ensembles: Tips 
and Tricks

158
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Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. 159

 Instead of training independent models, 
use multiple snapshots of a single model 
during training!

Model Ensembles: Tips 
and Tricks

159
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process
 Hyperparameters search
 Model ensembles
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Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process
 Hyperparameters search
 Model ensembles
 Sub-loss magnitude ~ 1
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Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models
Numerical stability
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 Often necessary to do multiple tasks 
simultaneously. Below are training 
curves showing the value of their sub-
losses for 6 sub-tasks.

 Each sub-task can be multiplied by a 
constant, the “weight” of the sub-task.

 Sometimes, there is no natural weight. 
Then, a good initial weight guess is to 
make every sub-loss ~1.

Multi-Task Losses 162
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process
 Hyperparameters search
 Model ensembles
 Sub-loss magnitude ~ 1
 Pretrained networks
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Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models
Numerical stability
Especially helpful when own training data is small
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 “You need a lot of a data if you want to 
train/use Deep NNs”
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22K categories and 14M images

www.image-net.org

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009 

• Animals
• Bird
• Fish
• Mammal
• Invertebrate

• Plants
• Tree
• Flower

• Food
• Materials

• Structures
• Artifact

• Tools
• Appliances
• Structures

• Person
• Scenes

• Indoor
• Geological 

Formations
• Sport Activities
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Output:
Scale
T-shirt

Steel drum
Drumstick
Mud turtle

Steel drum
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Steel drumThe Image Classification Challenge:
1,000 object classes

1,431,167 images

Russakovsky et al., 2014
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 “You need a lot of a data if you want to 
train/use Deep NNs”

 What if you don’t?
 Transfer Learning

NN TIPS & TRICKS 168
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze 
these

Reinitialize 
this and train

Transfer Learning with CNNs 170
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze 
these

Train 
these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Transfer Learning with CNNs 171
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on
top layer

?

quite a lot of 
data

Finetune a 
few layers

?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a 
few layers

Finetune a 
larger number 
of layers
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 When you have some a small dataset

1. Find a very large dataset that has 
similar data, train a big network there

2. Transfer learn to your dataset
 Deep learning frameworks provide a 

“Model Zoo” of pretrained models so you 
don’t need to train your own
 PyTorch: 

https://github.com/pytorch/vision

Takeaway 175
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 https://teachablemachine.withgoogle.co
m/train/image

176
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 Preprocess data
 Design an architecture 

• Loss function
• Layers type 
• #layers, #Filters
• Activation function

 Sanity check
• Gradient check
• Loss dynamics
• Overfit subset of the data

• Initialize weight “smartly”
• Batch normalization
• Regularization strategies 
 Optimization strategy 
 Monitor learning process
 Hyperparameters search
 Model ensembles
 Sub-loss magnitude ~ 1
 Pretrained networks

 + Data distribution
 + Gradient flow
 + Visualize your input data, intermediate values, results
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Normalize each dimension of the input
Start from state-of-the-art designs 

Select task appropriate loss function (pytorch losses)
“Conv” for signals such as images, and more recently Transformers 
Start with popular designs
ReLu, elu

Only once
Analytical VS num grad (while turning all regularization off) (fix rand seed)
At chance or when regularization is increased
Use small subset of the data (while regularization is off)

Xavier (Glorot) / Kaiming (He) initialization (pytorch init)
Try with and without. Test also Layer norm, group norm

Data augmentation, L1, L2, dropout (no dropout in ResNet), DropBlock
AdamW, Adam, SGD+Nesterov momentum, warm-up, learning rate scheduler
Check loss, training/validation accuracy, ratio of weights updates (e.g., Wandb)
Random sample in log space (wide to coarse) (e.g., ray autotuner)
Average top 10 performing models
Numerical stability
Especially helpful when own training data is small
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 Book: Deep Learning by Ian Goodfellow, 
Yoshua Bengio, Aaron Courville
(http://www.deeplearningbook.org/)

 Class on CNN: http://cs231n.stanford.edu/

 Good tuto on gradient check: 
http://cs231n.github.io/neural-networks-3/

 On gradient based optimization methods:
http://ruder.io/optimizing-gradient-descent/
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 CNN demo on CIFAR-10:
http://cs.stanford.edu/people/karpathy/convnet
js/demo/cifar10.html
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