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= Location of sensors

= Temperature
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i Kaggle

kaggle

= Make an account (www.kaggle.com)

= Join the competition
= Download dataset

= There will be a leaderboard and a Prize for the winner!
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Logistics

= Team of 2 (should be registered on moodle by Tuesday)
= Deadline for the leaderboard is 18" of May.

= Deadline for submission on moodle (poster + code) is 23 of
May.

= Best teams will present at the last week of class.
= Grading:

* 50% poster

* 50% performance (you need to pass a baseline)
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BUILDING COLLAPSE DETECTION : ) 6N

L Do et somaon 100831

Classify wether a building collapses based on some earthquake data  Tnes Ao L

Goal: provided with containing data for about 17000 past earthquakes as well as the corresponding response of a 4-story steel structure, , we shall
develop a able to of a new set of data.
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Pre_processing

Interpolation Imputation Scaling factor Data cut and normalisation
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This table makes us clearly realize that the Random Forest Classifier References
gave us the best test accuracy. However, we are also able to realize P —_—
that the model is overfitting. The train accuracy is too big and is thus " g mchat f;m‘mmwnu;ﬂbﬂfmmy‘ 5021 02 16/nn-artificial-
noural.mstworkfor-bier,

unable to generalize. By tuning our hyper-parameters, we would be able Lectureof the course Introduction to machine learming by Professor
to deal with the overfitting problem and thus increasing our test Random Forest Hyperparameter tu

« https; Mig 2020,03 begir
aceuracy. Fandom.forest-hyperparameter- g

Final thoughts and future: We spent a lot of time on developing our neural network as well as dealing with our data. We tried at the very end the which
clearly performed in a much better way on our data, which could also be improved. If we had more time, we would then implement an algorithm able to find the
and try our model with those. We think that by implementing this, we could easily increase our test accuracy.
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