MECANIQUE DES MILIEUX CONTINUS BS - SGC - EPFL
Séance d’exercice n°10 Lausanne

Correction

Exercice 1 : Essai oedométrique

On considére un bloc parallélépipédique d’axe Oz de section carrée, de co6té 2R sur la surface x — y et de
hauteur L dans la direction z (voir figure . I1 est placé dans un conteneur indéformable de méme géométrie.
Le contact entre le conteneur et le bloc est sans frottement.

Un piston indéformable, astreint a coulisser dans le conteneur, est en contact sans frottement avec la partie
supérieure du bloc.

Le bloc est constitué d’un matériau thermoélastique linéaire isotrope homogene, de caractéristiques A, p et
a. Le piston est soumis a un déplacement vertical (—de;). Les forces de masse sont négligées.

Essai oedométrique.

FiGURE 1 —

1. Traduire les conditions aux limites en termes de données.

2. Le but de cette question est de calculer un champ de déplacement, qui est éventuellement solution
du probleme. On cherche un déplacement de la forme :

Q(mayv'z) = f(z)el (1)

(a) Ecrire deux conditions sur f.
(b) Expliciter le tenseur des petites déformations en fonction de f.
(c
(d

(e) Vérifier que le tenseur des contraintes est admissible (i.e. qu’il satisfait les conditions aux limites).

Calculer le tenseur des contraintes. Déterminer la forme de f & partir de ’équation d’équilibre.

)
)
)
) Donner I'expression du déplacement en fonction de 0.
3. La solution trouvée est-elle exacte 7

4. On donne I'expression de la force extérieure foxy et du moment extérieur mey qui s’appliquent sur la
face supérieure du bloc S :

foxt = /S e dS 2)

mes = [ OM A (ce.)ds (3)

ou M est un point de S. Calculer fext et mext.

5. Le piston est maintenant astreint a rester fixe a la c6te z = L. On fait subir un échauffement uniforme
AT. Déterminer le champ de contrainte dans le bloc.



Correction

1. Conditions aux limites

Les surfaces du probléme sont :

- Sy surface du bas en z = 0.

- Sy, surface du haut en 2z = L.

- Slat, surfaces latérales définies par x = £R.
- Siat, surfaces latérales définies par y = +R.
Sur chacune de ces surfaces, il faut donner une condition en traction ou en déplacement dans chaque
direction : ey, ey et e;.

2. (a)

Limite ez ey e
So tz =0 | t,=0] u,=0
St t,=0 | t,=0 | u,=—9
Slat, Uy =01]t,=0| t.=0
Siat, t,=0 | u,=0| t.,=0
u = vecteur déplacement, ¢ = o - n vecteur des contraintes.
On suppose que u(z,y,z) = f(2)e..
Vérifions que ce u satisfait les conditions aux limites :
uy(z=0)=0< f(0)=0
uy(z=L)=-0< f(L)=—¢
uz(z ==+R)=0car uy =0
uy(y = £R) =0 car u, = 0.
1 t
00 O
e=|0 0 0
00 f(2)
o =2ue + Atr(e)1
M(2) 0 0
o= 0 A (2) 0
00 (A+2u)f()
dive =0« f(2)=0
< fz)=a-z+0b
f(0)=0 = b=
L)y=—6 = —
() =6 = a=-
u= —éz e
= L =z
A
—-—— 0 0
L A
0 0 (A+2p)d
L



On vérifie que les conditions limites sont bien vérifiées. :

-So :

=S

'Slatz :

'Slaty :

3. La solution trouvée est exacte car :
- elle vérifie ’équation d’équilibre ;

o(—e,) =

ole.) = )
o(+e,) = +
o(te,) =+

St,=t,=0

Sty =t,=0

- elle vérifie les conditions limites en contrainte et en déplacement sur chacune des faces;
- elle est intégrable (et continue) dans tout le domaine.

4.

fext:/ o-e,dS =
Jext s,

St

)
—(\+ 2u) Fe.drdy

-

foxe =~ 20) F (2R,

] 0
Mext = [ OM A a-eZdS:/ A 0 dzd
o= [LoMA (o e L] e, |
i L
w+A. (B[R Y
MZ—M—F 0 / —z | dzdy
L s=—RJy=—R |
RQ (—R)2
2u+ X [F o 9
ext — — 5/ d
Mext L =—R _x(R - (_R)> v
0
20+ A R? —R)?
= 2| ()
& | Mext = 0

5. 6 =0 mais AT # 0.

Tous les calculs précédents ne prenaient pas en compte les effets thermiques. Il faut les rajouter dans

la relation de comportements.
6 = 0 nous permet de supposer ¢ =0

En utilisant la loi de Hooke généralisée, on obtient

o =—a2u+3NAT1 = —a

1—-2v

AT1

qui

respecte bien les conditions aux limites de la question 1 avec § = 0, I’équilibre et la compatibilité.



Exercice 2 :

1,5m

Ao = 800 mm?2
|
TA I C

FI1GURE 2 — Console triangulée.

Une console triangulée ABC (voir figure [2)) est formée de deux barres en acier et est soumise a la seule charge
concentrée verticale @ = 60kN au noeud C (poids propre négligé). Déterminer pour de petits déplacements

1. la contrainte normale dans chaque barre;

2. l'allongement ou le raccourcissement de chaque barre;

3. les composantes horizontale et verticale du déplacement du nceud C. Indication : au noeud C, sup-
primer la liaison des barres, porter les variations de longueur calculées a la question 2 et construire
la position C’ du noeud en configuration déformée.

Note : il est possible d’utiliser le théoreme de Pythagore généralisé a la question 3. Soient a, b et ¢ les
longueurs des cotés d’un triangle quelconque. Soit :

¢ = a® +b? — 2abcosy

ou y est I’angle entre a et b.

Correction Ces barres ne peuvent pas fléchir (grace aux appuis rotules). On cherche a calculer la contrainte
normale dans chaque barre. On exprime, comme sur le schéma joint les forces de réactions en A et B comme
F5 et Iy respectivement. Calculons tout d’abord les réactions. Pour ce faire on exprime 1’équilibre des
moments au point B :

> Mp=0 = —Q-2m—Fy-15m=0 (5)
—Q-2m

= = —""=_80kN 6

27 1h5m (6)

On exprime aussi I’équilibre des forces s’appliquant a notre objet :

> F=0 = -F-F-csa=0 (7)
Iy —80kN

= P =— = — = 100kN 8

! cos a cos(arctan(1.5/2)) ®)

On en déduit, les contraintes normales dans les barres :

F

oBC = A% = 250 MPa (9)
F.

ouc = —2 = —100MPa (10)
Ao



Par la loi de Hooke on obtient simplement les déformations des barres :

o1 250 MPa

= — =—~0,00122 11
BCTE T 205GPa (1

oy  —100MPa
== = ———— ~ —0,000488 12
“ACTF T 205GPa ’ (12)

Et finalement 1’élongation est :

Apc =epe - ||BC|| ~ 0,00122 - v/2000% 4+ 15002 = 3.05 mm (13)
Aac =ceac - ||AC|| ~ —0,000488 - 2000 = —0.976 mm (14)

Enfin, pour déterminer le déplacement du noeud C, le plus simple est de trouver la position du point C’ via
le théoreme de Pythagore généralisé :

~ rccos [ JABIPHIACTP= | BC|2 _ - (1500% +1999,024° — 2503,057
T AABACT ) > 1500 - 199,024

~ 90,18° (15)

La position de C' est donc maintenant :

C/, = 1999.024 mm - cos(90° — ) (16)
/ . o
C, = 1999.024 mm - sin(90° — ) (17)
Le déplacement est donc finalement :
uc = 2000mm — C,, ~ 1 mm (18)
vc = Cj, ~ 6.33mm (19)

Exercice 3 : Ftude d’une poutre soumise a une charge uniforme

Note : Cet exercice est inspiré du cours de mécanique des structures CIVIL-238.

4 B
a h

L L/2
FIGURE 3 — Poutre soumise a une charge uniformément répartie et section rectangulaire de la poutre.

Une poutre est supportée par un appui fixe en A et un appui mobile en B, avec un porte-a-faux a partir de
B. La longueur de la portée est de L = 3.0 m et celle du porte-a-faux L/2 = 1.5 m (Lot = 4.5 m). Elle est
soumise a une charge uniformément répartie ¢ = 3 kN/m sur toute sa longueur. La section transversale de
la poutre est rectangulaire avec une largeur b = 100 mm et une hauteur h.

1. Rappel : Pour une coupe de longueur infinitésimale dx de la poutre soumise & une charge uniforme
¢ (voir Fig[), donner I'’équation générale de l'effort tranchant V(z) et du moment M ().



Vi V-V
N
dx

FIGURE 4 — Coupe de longueur dx de la poutre.

2. Calculer les réactions d’appuis R4 et Rp, en A et B respectivement.

3. Calculer et dessiner les diagrammes de l'effort tranchant V(z) et du moment fléchissant M (x). Indi-
quer ou le moment est maximal ainsi que sa valeur.

4. Calculer le moment d’inertie I, de la section rectangulaire.

5. La poutre est mince, on considere donc que 'effet de 'effort tranchant est négligeable par rapport a
celui du moment pour I’étude de l'intégrité structurale.

(a) Pour la section déterminante de la poutre, M (x) = Mpyax, donner le tenseur des contraintes o en
fonction de z.

(b) Déterminez la hauteur h de la section pour laquelle le critére de Tresca Tax < 79 = 117.5 MPa
est respecté.

Note : La correction est faite pour la convention de signe donnée en Figure [4] D’autres conventions peuvent
étre utilisées.

Correction

1. En faisant 1’équilibre des forces en y :

> Fy=0& V- (V+dV)—q-dz=0

dv

%:

& V(m):—/qu:—qa:
x

& —q

En faisant I’équilibre des moments sur la coupe a gauche :

d
ZM:0<:> M+(M+dM)qu(2x>(V+dV)dx:0

aM _

& V' (en supprimant les termes d’ordre 2)

dx
xZ
o M) = /IV(x)dx: —

2. En faisant I’équilibre des forces en y, et I’équilibre des moments en A :

3¢L
> Fy=0& Ray+Rp,— == =0 (20)
3¢L 3L
S My=0& RB7yL——g =0 (21)
L L
On obtient donc Rp, = 92 et Ry = 3L
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FIGURE 5 — Coupe 0 < x < L

3. Pour déterminer V(x) et M (x), il est nécessaire d’effectuer deux coupes di a la discontinuité induite
par les appuis.

Entre A et B, 0 <z < L (voir Fig. ) :

ZFy:()(:)RA—V(x)—q:r:0

L
&V(z) = —qx + 3%

Pour M (z), il est possible soit d’effectuer ’équilibre autour du point A, ZM 4 = 0, soit d’utiliser

M = / V(z)dz. En choisissant la deuxiéme option, on trouve :
x

2
ZMA:0<:>M(:E)+q£—RA:L‘:O

2
> 3qL
SM(z) = —q% + %x

N L
A partirde B, L <z < 37 (voir Fig D :

3L
FIGURE 6 — Coupe L < z < 5

L’effort tranchant V' (z) est donné par :

ZFy:O@RA+RB—V(:r)—qx:0

L
&V(r) = —qx + SQT

En choisissant la deuxiéme option, le moment M (z) est donné par :

2 3qL
M() :/V(x)da:: ~5+ L



Pour trouver C, il est possible d’égaliser Mo<,<.(L) = Mp<y<3r/2(L) :

L?  3qL? L?  3qL?
g — _ C
5 T3 5+t 7
9qL?
C=-
8

On obtient donc :

L
—qw—i—gi Vo € [0, L]

—qx + qT Vo € [L,3L/2]
2
3qL
(@) —q%—k%x Vo € [0, L]
M(z) =
x 3qL 9qL?

—q— — V. L,3L/2

G5 + = =g Ve [L,3L/2]

qL?
En dessinant les diagrammes correspondants, on trouve My, = ———, situé a 'appui mobile x = L.

qL

5qL

9qL*

128
FIGURE 7 — Diagrammes de V' (z) et M (x)

4. Pour calculer le moment d’inertie de la section, on utilise la formule suivante :

I :/szA
Y A

h/2
=b 22dz
—h/2

_ o
12

8



5. La poutre étant mince, on considere ’effort tranchant négligeable 7., = 0.
3qL?

2bh3
Yy
En supposant que leffort tranchant soit négligeable, les autres composantes sont nulles : 7,, =

M
(a) Pour un moment M, la contrainte uniaxiale o,,(2) = T Enx = L, on a donc 0,,(z) = — z

Toz = 05, =0

h 3qL?
(b) La contrainte maximale o4, se situe en z = £—. On a donc oy max = 4?)? Le cisaillement
maximal doit respecter le critere de rupture de Tresca.
01— 0
Tmax = ! 5 <179
2
O'x:rémax <70
= 73(11;2 <
-
8bh?
3qL?
< h >
8b7‘0
AN. 3-3000 - 32
S h = 0.066
~ \/8 -0.02-117.5 - 106 o



