
MÉCANIQUE DES MILIEUX CONTINUS BS - SGC - EPFL
Séance d’exercice n°10 Lausanne

Correction

Exercice 1 : Essai oedométrique

On considère un bloc parallélépipédique d’axe Oz de section carrée, de côté 2R sur la surface x − y et de
hauteur L dans la direction z (voir figure 1). Il est placé dans un conteneur indéformable de même géométrie.
Le contact entre le conteneur et le bloc est sans frottement.

Un piston indéformable, astreint à coulisser dans le conteneur, est en contact sans frottement avec la partie
supérieure du bloc.

Le bloc est constitué d’un matériau thermoélastique linéaire isotrope homogène, de caractéristiques λ, µ et
α. Le piston est soumis à un déplacement vertical (−δez). Les forces de masse sont négligées.

Figure 1 –

1. Traduire les conditions aux limites en termes de données.
2. Le but de cette question est de calculer un champ de déplacement, qui est éventuellement solution

du problème. On cherche un déplacement de la forme :

u(x, y, z) = f(z)ez (1)

(a) Ecrire deux conditions sur f .
(b) Expliciter le tenseur des petites déformations en fonction de f .
(c) Calculer le tenseur des contraintes. Déterminer la forme de f à partir de l’équation d’équilibre.
(d) Donner l’expression du déplacement en fonction de δ.
(e) Vérifier que le tenseur des contraintes est admissible (i.e. qu’il satisfait les conditions aux limites).

3. La solution trouvée est-elle exacte ?
4. On donne l’expression de la force extérieure fext et du moment extérieur mext qui s’appliquent sur la

face supérieure du bloc S :
fext =

∫
S

σezdS (2)

mext =
∫

S
OM ∧ (σez)dS (3)

où M est un point de S. Calculer fext et mext.
5. Le piston est maintenant astreint à rester fixe à la côte z = L. On fait subir un échauffement uniforme

∆T . Déterminer le champ de contrainte dans le bloc.



Correction
1. Conditions aux limites

Les surfaces du problème sont :
- S0 surface du bas en z = 0.
- SL surface du haut en z = L.
- Slatx surfaces latérales définies par x = ±R.
- Slaty surfaces latérales définies par y = ±R.
Sur chacune de ces surfaces, il faut donner une condition en traction ou en déplacement dans chaque
direction : ex, ey et ez.

Limite ex ey ez

S0 tx = 0 ty = 0 uz = 0
SL tx = 0 ty = 0 uz = −δ

Slatx ux = 0 ty = 0 tz = 0
Slaty tx = 0 uy = 0 tz = 0

u = vecteur déplacement, t = σ · n vecteur des contraintes.
2. (a) On suppose que u(x, y, z) = f(z)ez.

Vérifions que ce u satisfait les conditions aux limites :
uz(z = 0) = 0 ⇔ f(0) = 0
uz(z = L) = −δ ⇔ f(L) = −δ
ux(x = ±R) = 0 car ux = 0
uy(y = ±R) = 0 car uy = 0.

(b)

ε = 1
2(∇u + ∇ut)

ε =

 0 0 0
0 0 0
0 0 f ′(z)


(c)

σ = 2µε + λtr(ε)1

σ =

 λf ′(z) 0 0
0 λf ′(z) 0
0 0 (λ + 2µ)f ′(z)


divσ = 0 ⇔ f ′′(z) = 0

⇔ f(z) = a · z + b

(d)

f(0) = 0 ⇒ b = 0

f(L) = −δ ⇒ a = −δ

L

u = − δ

L
z · ez

(e)

σ =


−λδ

L
0 0

0 −λδ

L
0

0 0 −(λ + 2µ)δ
L

 (4)
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On vérifie que les conditions limites sont bien vérifiées. :

-S0 : t = σ(−ez) =


0
0

(λ + 2µ)δ
L

 ⇔ tx = ty = 0

-SL : t = σ(ez) =


0
0

−(λ + 2µ)δ
L

 ⇔ tx = ty = 0

-Slatx : t = σ(±ex) = ±

 −λδ

L
0
0

 ⇔ ty = tz = 0

-Slaty : t = σ(±ey) = ±


0

−λδ

L
0

 ⇔ tx = tz = 0

3. La solution trouvée est exacte car :
- elle vérifie l’équation d’équilibre ;
- elle vérifie les conditions limites en contrainte et en déplacement sur chacune des faces ;
- elle est intégrable (et continue) dans tout le domaine.

4.

fext =
∫

SL

σ · ezdS =
∫

SL

−(λ + 2µ) δ

L
ezdxdy

⇔ fext = −(λ + 2µ) δ

L
(2R)2ez

mext =
∫

S
OM ∧ (σ · ez)dS =

∫
S

 x
y
L

 ∧


0
0

−2µ + λ

L
δ

 dxdy

mext = −2µ + λ

L
δ

∫ R

x=−R

∫ R

y=−R

 y
−x
0

 dxdy

mext = −2µ + λ

L
δ

∫ R

x=−R


R2

2 − (−R)2

2
−x(R − (−R))

0

 dx

mext = −2µ + λ

L
δ


0

−2R

(
R2

2 − (−R)2

2

)
0


⇔ mext = 0

5. δ = 0 mais ∆T ̸= 0.
Tous les calculs précédents ne prenaient pas en compte les effets thermiques. Il faut les rajouter dans
la relation de comportements.
δ = 0 nous permet de supposer ϵ = 0

En utilisant la loi de Hooke généralisée, on obtient σ = −α(2µ + 3λ)∆T1 = −α
E

1 − 2ν
∆T1 qui

respecte bien les conditions aux limites de la question 1 avec δ = 0, l’équilibre et la compatibilité.
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Exercice 2 :
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Figure 2 – Console triangulée.

Une console triangulée ABC (voir figure 2) est formée de deux barres en acier et est soumise à la seule charge
concentrée verticale Q = 60 kN au nœud C (poids propre négligé). Déterminer pour de petits déplacements

1. la contrainte normale dans chaque barre ;
2. l’allongement ou le raccourcissement de chaque barre ;
3. les composantes horizontale et verticale du déplacement du nœud C. Indication : au nœud C, sup-

primer la liaison des barres, porter les variations de longueur calculées à la question 2 et construire
la position C′ du nœud en configuration déformée.

Note : il est possible d’utiliser le théorème de Pythagore généralisé à la question 3. Soient a, b et c les
longueurs des côtés d’un triangle quelconque. Soit :

c2 = a2 + b2 − 2ab cos γ

où γ est l’angle entre a et b.

Correction Ces barres ne peuvent pas fléchir (grâce aux appuis rotules). On cherche à calculer la contrainte
normale dans chaque barre. On exprime, comme sur le schéma joint les forces de réactions en A et B comme
F2 et F1 respectivement. Calculons tout d’abord les réactions. Pour ce faire on exprime l’équilibre des
moments au point B : ∑

MB = 0 ⇒ − Q · 2 m − F2 · 1.5 m = 0 (5)

⇒ F2 = −Q · 2 m
1.5 m = −80 kN (6)

On exprime aussi l’équilibre des forces s’appliquant à notre objet :∑
Fx = 0 ⇒ − F2 − F1 · cos α = 0 (7)

⇒ F1 = − F2
cos α

= − −80 kN
cos(arctan(1.5/2)) = 100 kN (8)

On en déduit, les contraintes normales dans les barres :

σBC = F1
A1

= 250 MPa (9)

σAC = F2
A2

= −100 MPa (10)
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Par la loi de Hooke on obtient simplement les déformations des barres :

εBC = σ1
E

= 250 MPa
205 GPa ≃ 0,00122 (11)

εAC = σ2
E

= −100 MPa
205 GPa ≃ −0,000488 (12)

Et finalement l’élongation est :

∆BC = εBC · ∥BC∥ ≃ 0,00122 ·
√

20002 + 15002 = 3.05 mm (13)
∆AC = εAC · ∥AC∥ ≃ −0,000488 · 2000 = −0.976 mm (14)

Enfin, pour déterminer le déplacement du noeud C, le plus simple est de trouver la position du point C′ via
le théorème de Pythagore généralisé :

γ = arccos
(

∥AB∥2+∥AC ′∥2−∥BC ′∥2

2∥AB∥·∥AC ′∥

)
= arccos

(
15002 + 1999,0242 − 2503,052

2 · 1500 · 1999,024

)
≃ 90,18◦ (15)

La position de C′ est donc maintenant :

C′
x = 1999.024 mm · cos(90◦ − γ) (16)

C′
y = 1999.024 mm · sin(90◦ − γ) (17)

Le déplacement est donc finalement :

uC = 2000 mm − C′
x ≃ 1 mm (18)

vC = C′
y ≃ 6.33 mm (19)

Exercice 3 : Étude d’une poutre soumise à une charge uniforme

Note : Cet exercice est inspiré du cours de mécanique des structures CIVIL-238.

Figure 3 – Poutre soumise à une charge uniformément répartie et section rectangulaire de la poutre.

Une poutre est supportée par un appui fixe en A et un appui mobile en B, avec un porte-à-faux à partir de
B. La longueur de la portée est de L = 3.0 m et celle du porte-à-faux L/2 = 1.5 m (Ltot = 4.5 m). Elle est
soumise à une charge uniformément répartie q = 3 kN/m sur toute sa longueur. La section transversale de
la poutre est rectangulaire avec une largeur b = 100 mm et une hauteur h.

1. Rappel : Pour une coupe de longueur infinitésimale dx de la poutre soumise à une charge uniforme
q (voir Fig.4), donner l’équation générale de l’effort tranchant V (x) et du moment M(x).
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Figure 4 – Coupe de longueur dx de la poutre.

2. Calculer les réactions d’appuis RA et RB, en A et B respectivement.
3. Calculer et dessiner les diagrammes de l’effort tranchant V (x) et du moment fléchissant M(x). Indi-

quer où le moment est maximal ainsi que sa valeur.
4. Calculer le moment d’inertie Iy de la section rectangulaire.
5. La poutre est mince, on considère donc que l’effet de l’effort tranchant est négligeable par rapport à

celui du moment pour l’étude de l’intégrité structurale.
(a) Pour la section déterminante de la poutre, M(x) = Mmax, donner le tenseur des contraintes σ en

fonction de z.
(b) Déterminez la hauteur h de la section pour laquelle le critère de Tresca τmax ≤ τ0 = 117.5 MPa

est respecté.

Note : La correction est faite pour la convention de signe donnée en Figure 4. D’autres conventions peuvent
être utilisées.

Correction
1. En faisant l’équilibre des forces en y :∑

Fy = 0 ⇔ V − (V + dV ) − q · dx = 0

⇔ dV

dx
= −q

⇔ V (x) = −
∫

x
qdx = −qx

En faisant l’équilibre des moments sur la coupe à gauche :

∑
M = 0 ⇔ − M + (M + dM) − qdx

(
dx

2

)
− (V + dV )dx = 0

⇔ dM

dx
= V (en supprimant les termes d’ordre 2)

⇔ M(x) =
∫

x
V (x)dx = −qx2

2

2. En faisant l’équilibre des forces en y, et l’équilibre des moments en A :
∑

Fy = 0 ⇔ RA,y + RB,y − 3qL

2 = 0 (20)∑
MA = 0 ⇔ RB,yL − 3qL

2
3L

4 = 0 (21)

On obtient donc RB,y = 9qL

8 et RA,y = 3qL

8 .
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Figure 5 – Coupe 0 ≤ x ≤ L

3. Pour déterminer V (x) et M(x), il est nécessaire d’effectuer deux coupes dû à la discontinuité induite
par les appuis.

Entre A et B, 0 ≤ x ≤ L (voir Fig. 5) :∑
Fy = 0 ⇔RA − V (x) − qx = 0

⇔V (x) = −qx + 3qL

8 .

Pour M(x), il est possible soit d’effectuer l’équilibre autour du point A,
∑

MA = 0, soit d’utiliser

M =
∫

x
V (x)dx. En choisissant la deuxième option, on trouve :

∑
MA = 0 ⇔M(x) + q

x2

2 − RAx = 0

⇔M(x) = −q
x2

2 + 3qL

8 x

À partir de B, L ≤ x ≤ 3L

2 (voir Fig.5) :

Figure 6 – Coupe L < x ≤ 3L

2

L’effort tranchant V (x) est donné par :∑
Fy = 0 ⇔RA + RB − V (x) − qx = 0

⇔V (x) = −qx + 3qL

2

En choisissant la deuxième option, le moment M(x) est donné par :

M(x) =
∫

x
V (x)dx = −q

x2

2 + 3qL

2 x + C
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Pour trouver C, il est possible d’égaliser M0≤x≤L(L) = ML≤x≤3L/2(L) :

−q
L2

2 + 3qL2

8 = −q
L2

2 + 3qL2

2 + C

C = −9qL2

8

On obtient donc :

V (x) =


−qx + 3qL

8 , ∀x ∈ [0, L]

−qx + 3qL

2 , ∀x ∈ [L, 3L/2]

M(x) =


−q

x2

2 + 3qL

8 x , ∀x ∈ [0, L]

−q
x2

2 + 3qL

2 x − 9qL2

8 , ∀x ∈ [L, 3L/2]

En dessinant les diagrammes correspondants, on trouve Mmax = −qL2

8 , situé à l’appui mobile x = L.

Figure 7 – Diagrammes de V (x) et M(x)

4. Pour calculer le moment d’inertie de la section, on utilise la formule suivante :

Iy =
∫

A
z2dA

= b

∫ h/2

−h/2
z2dz

= bh3

12
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5. La poutre étant mince, on considère l’effort tranchant négligeable τxy = 0.

(a) Pour un moment M , la contrainte uniaxiale σxx(z) = M

Iy
z. En x = L, on a donc σxx(z) = −3qL2

2bh3 z

En supposant que l’effort tranchant soit négligeable, les autres composantes sont nulles : τxz =
τzx = σzz = 0

(b) La contrainte maximale σxx se situe en z = ±h

2 . On a donc σxx,max = ±3qL2

4bh2 Le cisaillement
maximal doit respecter le critère de rupture de Tresca.

τmax = σ1 − σ3
2 < τ0

⇔ σxx,max
2 < τ0

⇔ 3qL2

8bh2 < τ0

⇔ h >

√
3qL2

8bτ0

A.N.⇔ h >

√
3 · 3000 · 32

8 · 0.02 · 117.5 · 106 = 0.066m
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