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Annexe : Coordonnées curvilignes

1 Coordonnées polaires

Dans cette section les définitions de ∇f et ∇v sont utilisées pour déterminer leurs composantes en coor-
données polaires.
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Les coordonnées polaires sont définies par r et θ comme suit :

r =
√

x2 + y2 (1)

θ = arctan
(y
x

)
(2)

où θ ∈ (0, 2π) (pour plus d’informations référez-vous à Wikipedia).

Les vecteurs unitaires er et eθ qui composent une base orthonormale peuvent être exprimés par les vecteurs
unitaires cartésiens comme suit :

er = cos θ i+ sin θ j (3)

eθ = − sin θ i+ cos θ j (4)

Ces vecteurs unitaires changent avec θ. Des équations 3 et 4 découle les formules suivantes :

der = eθ dθ (5)

deθ = −er dθ (6)

Le vecteur position du point M est r = rer, donc

dr = er dr + r der (7)

qui en appliquant (5) devient
dr = er dr + reθ dθ (8)



1.1 Composantes de ∇f

Soit f(r, θ) un champ scalaire. D’après la définition du gradient et l’équation (8) :

df = ∇f · dr =
(
arer + aθeθ

)
·
(
er dr + reθ dθ

)
(9)

où ar et aθ sont le composants de ∇f respectivement dans les directions er et eθ. Donc

df = ar dr + aθr dθ (10)

de plus, selon la définition de la différentielle nous avons :

df =
∂f

∂r
dr +

∂f

∂θ
dθ (11)

Puisque les équations (10) et (11) doivent être égales :

ar =
∂f

∂r
et aθr =

∂f

∂θ
(12)

finalement le gradient est défini comme suit :

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ (13)

1.2 Composantes de ∇v

1.2.1 Rappel : coordonnées cartésiennes 3D

Dans le repère cartésien 3D, le gradient d’un vecteur est

∇v =
∂v

∂x
⊗ ex +

∂v

∂y
⊗ ey +

∂v

∂z
⊗ ez (14)

où ⊗ indique le produit tensoriel. En explicitant les composantes cartésiennes, on a :

∇v =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z


(ex,ey ,ez)

(15)

On en déduit directement l’expression de la divergence d’un champ vectoriel en coordonnées cartésiennes :

div v = tr(∇v) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(16)

1.2.2 Coordonnées polaires

Soit v une fonction vectorielle de (r, θ) dans le système de coordonnées polaires : v = vr(r, θ)er + vθ(r, θ)eθ.
D’après la définition du gradient :

dv = ∇v · dr (17)

avec dr donné par 8. Explicitons la différentielle de v en prenant garde au fait que les vecteurs de base
varient avec la position et ont donc une différentielle non nulle :

dv = d (vrer + vθeθ) = dvrer + vrder + dvθeθ + vθdeθ = (dvr − vθdθ)er + (dvθ + vrdθ)eθ (18)
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en utilisant 5 et 6. En utilisant à présent la définition de la différentielle 11 pour les fonctions scalaires vr et
vθ, on obtient :

dv =

(
∂vr
∂r

dr +

(
∂vr
∂θ

− vθ

)
dθ

)
er +

(
∂vθ
∂r

dr +

(
∂vθ
∂θ

+ vr

)
dθ

)
eθ (19)

D’autre part, en notant arr, arθ, aθr et aθθ les 4 composantes de ∇v dans la base polaire, le membre de droite
de (17) s’explicite de la façon suivante en utilisant 8 :

∇v · dr = (arrdr + rarθdθ) er + (aθrdr + raθθdθ) eθ (20)

L’identification termes à termes de (19) et (20) conduit à :

arr =
∂vr
∂r

(21)

rarθ =
∂vr
∂θ

− vθ (22)

aθr =
∂vθ
∂r

(23)

raθθ =
∂vθ
∂θ

+ vr (24)

On obtient finalement l’expression du gradient d’un vecteur en coordonnées polaires :

∇v =


∂vr
∂r

1

r

(
∂vr
∂θ

− vθ

)
∂vθ
∂r

1

r

(
∂vθ
∂θ

+ vr

)

(er,eθ)

(25)

On en déduit directement l’expression de la divergence d’un champ vectoriel en coordonnées polaires :

div v = tr(∇v) =
∂vr
∂r

+
1

r

(
∂vθ
∂θ

+ vr

)
(26)

2 Coordonnées cylindriques
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Les expressions des gradients scalaire et vectoriel pour les coordonnées cylindriques peuvent être facilement
déterminées par extension des gradients en coordonnées polaires. On suit pour cela la même démarche en
considérant pour le cas vectoriel v(r, θ, z) = vr(r, θ, z)er + vθ(r, θ, z)eθ + vz(r, θ, z)ez et en remarquant que
r = rer + zez et dez = 0 dans ce système de coordonnées. On obtient alors :

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez (27)
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∇v =



∂vr
∂r

1

r

(
∂vr
∂θ

− vθ

)
∂vr
∂z

∂vθ
∂r

1

r

(
∂vθ
∂θ

+ vr

)
∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z


(er,eθ,ez)

(28)

On en déduit directement l’expression de la divergence d’un champ vectoriel en coordonnées cylindriques :

div v = tr(∇v) =
∂vr
∂r

+
1

r

(
∂vθ
∂θ

+ vr

)
+

∂vz
∂z

(29)

3 Coordonnées sphériques
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Les expressions des gradients en coordonnées sphériques peuvent être déterminé de la même façon que celle
utilisée auparavant en remarquant que r = rer et :

der = dθ eθ + sin θ dφeφ (30)

deθ = dθ er + cos θ dφeφ (31)

deφ = − sin θ dφer − cos θ dφeθ (32)

dr = dr er + rdθ eθ + r sin θ dφeφ (33)

Elles sont

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ (34)

∇v =



∂vr
∂r

1

r

(
∂vr
∂θ

− vθ

)
1

r

(
1

sin θ

∂vr
∂φ

− vφ

)
∂vθ
∂r

1

r

(
∂vθ
∂θ

+ vr

)
1

r

(
1

sin θ

∂vθ
∂φ

− vφ
tan θ

)
∂vφ
∂r

1

r

∂vφ
∂θ

1

r

(
1

sin θ

∂vφ
∂φ

+
vθ

tan θ
+ vr

)


(er,eθ,eφ)

(35)

On en déduit directement l’expression de la divergence d’un champ vectoriel en coordonnées sphériques :

div v = tr(∇v) =
∂vr
∂r

+
1

r

(
∂vθ
∂θ

+ vr

)
+

1

r

(
1

sin θ

∂vφ
∂φ

+
vθ

tan θ
+ vr

)
(36)

4 Expressions de la divergence d’un tenseur d’ordre 2

Nous avons défini dans le cours l’opérateur divergence pour un tenseur du deuxième ordre T . L’obtention
des expressions de la divergence de tenseurs dans les différents systèmes de coordonnées peut s’effectuer (au
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prix de calculs relativement lourds) en calculant l’expression du gradient de T dans les différents systèmes
de coordonnées et en calculant ensuite la trace de ce gradient (contraction selon les 2 derniers indices). On
donne ici directement les résultats (on rappelle que divT est un vecteur) :

— coordonnées cartésiennes :

divT =



∂Txx

∂x
+

∂Txy

∂y
+

∂Txz

∂z
∂Tyx

∂x
+

∂Tyy

∂y
+

∂Tyz

∂z
∂Tzx

∂x
+

∂Tzy

∂y
+

∂Tzz

∂z


(ex,ey ,ez)

(37)

— coordonnées cylindriques :

divT =



∂Trr

∂r
+

1

r

∂Trθ

∂θ
+

∂Trz

∂z
+

Trr − Tθθ

r
∂Tθr

∂r
+

1

r

∂Tθθ

∂θ
+

∂Tθz

∂z
+

Trθ + Tθr

r
∂Tzr

∂r
+

1

r

∂Tzθ

∂θ
+

∂Tzz

∂z
+

Tzr

r


(er,eθ,ez)

(38)

Remarque : on obtient le cas polaire en prenant les 2 premières composantes et avec Trz = Tθz = 0.
— coordonnées sphériques :

divT =



∂Trr

∂r
+

1

r

∂Trθ

∂θ
+

1

r sin θ

∂Trφ

∂φ
+

2Trr − Tθθ − Tφφ + Trθ cot θ

r
∂Tθr

∂r
+

1

r

∂Tθθ

∂θ
+

1

r sin θ

∂Tθφ

∂φ
+

(Tθθ − Tφφ) cot θ + Trθ + 2Tθr

r
∂Tφr

∂r
+

1

r

∂Tφθ

∂θ
+

1

r sin θ

∂Tφφ

∂φ
+

Trφ + 2Tφr + (Tθφ + Tφθ) cot θ

r


(er,eθ,eφ)

(39)

Remarque : les expressions précédentes se simplifient quelque peu dans le cas d’un tenseur symétrique
Tij = Tji
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