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Annezxe :

1 Coordonnées polaires

Coordonnées curvilignes

Dans cette section les définitions de Vf et Vv sont utilisées pour déterminer leurs composantes en coor-

données polaires.
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Les coordonnées polaires sont définies par r et 0 comme suit :

ou 0 € (0,27) (pour plus d’informations référez-vous a Wikipedia).

r =22+ y>?

f = arctan (%)

Les vecteurs unitaires e, et eg qui composent une base orthonormale peuvent étre exprimés par les vecteurs

unitaires cartésiens comme suit :

Ces vecteurs unitaires changent avec 6. Des équations [3] et 4] découle les formules suivantes :

Le vecteur position du point M est r = re,,

qui en appliquant devient

=cosfi+sinfj
= —sinfi+cosfj

de, = egdb
deg = —e, db
donc

dr = e, dr +rde,

dr = e, dr + regdo



1.1 Composantes de Vf

Soit f(r,#) un champ scalaire. D’apres la définition du gradient et 1’équation (8] :
df =Vf-dr = (are, + ageq) - (e, dr + reg do) (9)
ou a, et ag sont le composants de V f respectivement dans les directions e, et eg. Donc
df = a,dr + agrdf (10)

de plus, selon la définition de la différentielle nous avons :

of of
df = —=dr+ = df 11
F= 9" 5 ()
Puisque les équations et doivent étre égales :
0 0
ar = 8—‘; et agr = 8—‘5 (12)
finalement le gradient est défini comme suit :
of 10f
_9/ 97 13
Vi=gret g (13)
1.2 Composantes de Vv
1.2.1 Rappel : coordonnées cartésiennes 3D
Dans le repere cartésien 3D, le gradient d’un vecteur est
Ov ov ov
Y=g 0ty Ogtg G (14)
ol ® indique le produit tensoriel. En explicitant les composantes cartésiennes, on a :
[Ov, Ovg % T
%o b
v v v
Vo= |2 2 15
=L or Jy 0z (15)
Oov, O0Ov, Ov,
Ldz Oy 0z (epreye2)

On en déduit directement I'expression de la divergence d’un champ vectoriel en coordonnées cartésiennes :

dive = tr(Vo) = 8;; + 881;’/ + 8;;

(16)

1.2.2 Coordonnées polaires

Soit v une fonction vectorielle de (r,0) dans le systeme de coordonnées polaires : v = v,.(r, 8)e, + vo(r, 0)egy.
D’apres la définition du gradient :

dv=Vuv-dr (17)

avec dr donné par [§ Explicitons la différentielle de v en prenant garde au fait que les vecteurs de base
varient avec la position et ont donc une différentielle non nulle :

dv = d (vre, + vgey) = dupe, + vrde, + dugey + vodey = (dv, — vgdh)e, + (dvg + v,db)ey (18)



en utilisant [5] et [f} En utilisant & présent la définition de la différentielle [IT] pour les fonctions scalaires v, et

vg, on obtient :
(0, v, vy g
dv = <8r dr + <80 —v9> d9> e, + (mdr+ <89+UT> d«9> €g (19)

D’autre part, en notant a,, a,, ag, et agg les 4 composantes de Vv dans la base polaire, le membre de droite
de s’explicite de la fagon suivante en utilisant (8] :

Y -dr = (ardr + ra,ed0) e, + (agrdr 4 raggdf) eq (20)

L’identification termes a termes de et conduit & :

i = (21)
rary = ‘?;g_vg (22)
aw = (23)
ragy = %U;—i-vr (24)

On obtient finalement ’expression du gradient d’un vecteur en coordonnées polaires :

ov, 1 <avr )
- — v
or r \ 00
L7 w1 (0w N 29)
or r \ 00 Ur (ee0)

On en déduit directement I'expression de la divergence d’un champ vectoriel en coordonnées polaires :

dive = tr(Yu) = %tf + % <%v; + vr> (26)

2 Coordonnées cylindriques

Les expressions des gradients scalaire et vectoriel pour les coordonnées cylindriques peuvent étre facilement
déterminées par extension des gradients en coordonnées polaires. On suit pour cela la méme démarche en
considérant pour le cas vectoriel v(r,0,z) = vq(r,0,2)e, + vo(r, 0, 2)ey + v4(r,0, z)e, et en remarquant que
r =re, + ze, et de, = 0 dans ce systeme de coordonnées. On obtient alors :

of 10f of

er+——-ep+ €, (27)

VI= et 562
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_8Ur,~ 1 avr _ 8UT i
o r\ao ’) o2
Ovg 1 [(Ovg Ovg
V’U = - — - _ 28
=" o r(aa ”T) BE 28)
v, 1 v, v,
L 37“ r 86 (92 - (gwgmgz)
On en déduit directement I'expression de la divergence d’un champ vectoriel en coordonnées cylindriques :
) ov, 1 [0Ovy Ov,
divy =tr(Jy) = Z-+7 <69 *”T) "o (29)

3 Coordonnées sphériques

Les expressions des gradients en coordonnées sphériques peuvent étre déterminé de la méme fagon que celle
utilisée auparavant en remarquant que r = re, et :

de, = dbeg +sinfdpey (30)
deg = df e, + cosfdpe, (31)
de, = —sinfdpe, —cosfdpey (32)
dr =dre, +rdfey+rsinfdpe, (33)
Elles sont of Lof 1 of
_of, J1of, L o 1
A\ 8r€*+7“69€*9+rsin98g0§‘p (34)
[ Ov, 1 (Ov, B 1/ 1 dv, i
ar r\ag r \sinf Oy e
| Ove 1 [Ovg 1 1 Ovg Uy
Yu= or r ( 00 + UT> r <sin0 Jp  tand (35)
vy, 1 dv,, 1 1 Ov, Vg
| Or r 00 r <sin9 0y +tan9+w>_

(er-€0:€,)
On en déduit directement I'expression de la divergence d’un champ vectoriel en coordonnées sphériques :

du. 1(d 1( 19
dive = tr(Vo) = 81; + - (“9 +'Ur> + r <sin9 BQ;D + t:ZG +UT> (36)

4 Expressions de la divergence d’un tenseur d’ordre 2

Nous avons défini dans le cours 'opérateur divergence pour un tenseur du deuxieéme ordre T'. L’obtention
des expressions de la divergence de tenseurs dans les différents systémes de coordonnées peut s’effectuer (au
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prix de calculs relativement lourds) en calculant I'expression du gradient de 7' dans les différents systemes
de coordonnées et en calculant ensuite la trace de ce gradient (contraction selon les 2 derniers indices). On
donne ici directement les résultats (on rappelle que divZ est un vecteur) :

— coordonnées cartésiennes : a

Ty 0Ty 0Ty, )
_l’_
Oz oy 0z
oT, oT, oT,
divT = yz vy yz 37
e ox oy 0z (37)
or,, 0T, 0T,
or oy | o:
Y (§z7§y7gz)
— coordonnées cylindriques :
aTrr laTre aTrz Trr — T09
or r 00 0z r
divT = Oy,  10Thy 0Ty, | Tig+ To, (38)
= or r 00 0z r
aTzr 1 aTzG 8Tzz TZT‘
or r 00 0z r (e,-e9.€;)

Remarque : on obtient le cas polaire en prenant les 2 premieres composantes et avec T,, = Ty, = 0.
— coordonnées sphériques :

oL,y | 10T 1 0T, 2T, —Tpg — T, + Trgcotd

or r 00 rsinf Oy r
divT = Ty, 18T99 1 aTgw (ng — thp) cot 0 + Trg + 2Tp, (39)

= or r 00 rsinf Oy r

8T¢r lang 1 8T¢¢ n Trp + 2T + (T9<p + ng) cot 0
. Or r 00 rsing Oy r (e-€p:€,)
Remarque : les expressions précédentes se simplifient quelque peu dans le cas d’'un tenseur symétrique
Ti; =Ty
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