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Chapitre 6 : écoulements laminaires et turbulents

•Problématique : pertes de charge dans une
conduite

•Écoulement permanent uniforme lisse entre
deux plans parallèles (Poiseuille plan)
• sous-couche visqueuse
• zone logarithmique
• zone centrale

•Effet de la rugosité sur le profil de vitesse
•Dissipation d’énergie et pertes de charges
•Pertes de charge singulière
•Exemple traité : vidange d’un réservoir

my header

Mécanique des fluides 2o



Quiz de relaxation

1.Dans un écoulement en charge, peut-on
négliger la pression hydrostatique ?
• oui elle est faible par rapport à la pression cinétique.
• cela dépend des problèmes.

2.Une conduite dont les parois sont rugueuses
dissipe plus d’énergie qu’une conduite lisse ?
• oui, la rugosité accentue toujours la dissipation d’énergie.
• il n’y a pas d’effet de la rugosité sur l’écoulement si

l’écoulement est laminaire.
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Problématique

En hydraulique à surface libre (chap. 5) on a montré que le théorème de Bernoulli

E = ϱgz + ϱ
u2

2 + p
(en principe valable uniquement pour des fluides non visqueux) peut se généraliser
en introduisant une perte de charge linéairement répartie le long du bief. La charge
est définie comme l’équivalent en hauteur d’eau de l’énergie :

H =
E
ϱg,

et la perte de charge est introduite comme la pente de la ligne de charge (on dit
pente d’énergie même si c’est une charge)

jf = −dH
dx
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Problématique

Cette perte de charge linéaire (c.-à-d. linéairement répartie) peut être estimée à
l’aide de formules empiriques telles que l’équation de Manning-Strickler

jf =
ū2

K2R4/3
h

.

On va montrer ici que pour des écoulements en charge dans des conduites,
l’équation de perte de charge est

dH
dx = −f 1

Dh

ū2

2g,

avec : Dh le diamètre hydraulique de la conduite, ū la vitesse débitante, f le
coefficient de frottement qui dépend du nombre de Reynolds

Re =
Dhū
ν

.
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Problématique

Comme en hydraulique à surface libre, cette équation suppose que l’écoulement est
uniforme et que la conduite ne change pas de caractéristiques. Comme la vitesse est
constante si le diamètre ne change pas (cela résulte de la conservation de la masse),
on a pour une conduite de longueur L

∆H = H1 − H2 = f L
Dh

ū2

2g.

Si la conduite change de caractéristiques, il faut introduire dans les calculs une
perte de charge singulière qui traduit une dissipation d’énergie locale due, par
exemple, à un changement brutal de direction ou de section.
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Écoulement dans une conduite de Poiseuille plan

Considérons un écoulement permanent de Poiseuille plan entre deux plans parallèles
espacés de 2b. La turbulence dépend fortement de la rugosité de la paroi. On est
amené à distinguer :
• les parois lisses ;
• les parois rugueuses.
On peut faire une anatomie simplifiée de l’écoulement en considérant qu’il comporte
trois couches que l’on peut distinguer en fonction de l’ordonnée adimensionnelle :

ξ =
yu∗

ν
,

où u∗ est la vitesse de frottement (ou de cisaillement) : u∗ =
√

τp/ϱ (avec τp la
contrainte à la paroi).
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Écoulement permanent uniforme lisse

Les expériences montrent que les trois couches sont
•0 ≤ ξ ≤ 25 : la couche laminaire, incluant pour 0 ≤ ξ ≤ 3 la sous-couche

visqueuse ;
•25 ≤ ξ ≤ 500 : la zone logarithmique ;
•500 ≤ ξ : la zone centrale.
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Sous-couche visqueuse

La résolution des équations de Navier–Stokes dans un écoulement de Poiseuille
entre deux plans (mu par un gradient de pression ∂xp) montre que le profil des
vitesses dans la direction x est parabolique

u =
1

2µ

(
∂p
∂x

)
y(y − 2b),

donc au premier ordre en y quand y → 0, on a :

u ≈ 1
2µ

(
∂p
∂x

)
y(−2b) = 1

µ
τpy,

et sous forme adimensionnelle
u = u∗ξ.

Expérimentalement cela est valable tant que ξ ≤ 3. Pour le reste de la couche
laminaire (3 ≤ ξ ≤ 25) il n’y a pas d’approximation analytique.
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Zone logarithmique

Rappelons que les équations de Navier–Stokes

ϱ

(
∂u
∂t + u · ∇u

)
= ϱg −∇p +∇ · T.

peuvent se moyenner en introduisant la décomposition de Reynolds
u = ⟨u⟩ + u′

avec u′ la fluctuation de vitesse et ⟨u⟩ la vitesse moyennée (moyenne d’ensemble).
On obtient les équations suivantes :

ϱ

(
∂⟨u⟩
∂t + ⟨u⟩ · ∇⟨u⟩

)
= −∇⟨p∗⟩ +∇ · ⟨T⟩ − ϱ∇ · ⟨u′u′⟩.
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Zone logarithmique

Le tenseur
Σt = −ϱ⟨u′u′⟩

est appelé tenseur de Reynolds. Il reflète les contraintes turbulentes. Pour l’estimer
on se sert d’équations de fermeture. Une des équations les plus simples est le
modèle de longueur de mélange de Prandl :

Σt = 2µt⟨D⟩,
avec µt la viscosité turbulente qui varie avec le gradient moyen de vitesse

µt = ϱ(κy)2d⟨u⟩dy ,

avec κ la constante de von Kármán (κ = 0,41).
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Zone logarithmique

En négligeant les contraintes visqueux, on tire des équations de Navier–Stokes
moyennées

∂

∂y

(
µt
∂⟨u⟩
∂y

)
=

∂⟨p∗⟩
∂x ,

et par intégration sur y, on déduit l’équation

µt
∂⟨u⟩
∂y =

∂⟨p∗⟩
∂x y + c,

avec c une constante d’intégration. En négligeant l’épaisseur de la sous-couche
visqueuse, on exprime la condition aux limites

en y = 0, µt
∂⟨u⟩
∂y = τp.
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Zone logarithmique

En supposant τp = ϱu2
∗ connu, on peut donc écrire l’équation précédente

µt
∂⟨u⟩
∂y =

∂⟨p∗⟩
∂x y + τp,

et au premier ordre en y en y = 0, on déduit l’équation

µt
∂⟨u⟩
∂y = τp + O(y).

En se servant du modèle de Prandtl, on doit résoudre
d⟨u⟩
dy =

√
τp
ϱ

1
κy.

L’intégration fournit un profil logarithmique de vitesse

⟨u⟩ =
√

τp
ϱ

1
κ
ln y + c =

u∗

κ
ln y + c.
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Zone logarithmique

La constante d’intégration est déterminée en imposant un raccord avec la couche
laminaire. On obtient alors

⟨u⟩
u∗

=
1
κ
ln ξ + 5,5 ≈ 2,5 ln ξ + 5,5,

qui est valable pour 25 ≤ ξ ≤ 500.
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Écoulement permanent uniforme lisse

Les expériences montrent que le profil de vitesse à la paroi vérifie bien la loi
logarithmique
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Zone centrale

On suit les mêmes équations que précédemment, mais on prend en compte une
nouvelle loi de fermeture qui reflète l’influence moindre du taux de cisaillement sur
la viscosité turbulente (loi de fermeture de type Boussinesq) :

νt = 0,080bu∗.

La viscosité est indépendante du taux moyen de cisaillement, mais dépend de
l’espacement entre les plans (ce qui donne la taille maximale des tourbillons) et de
la vitesse de frottement. La résolution des équations de Navier–Stokes moyennées
pour cette équation de fermeture nous donne un profil de vitesse parabolique
comme pour le régime laminaire puisque la viscosité turbulente est constante.
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Zone centrale

Profil de vitesse :
um − ⟨u⟩(y)

u∗
= 6,3

(
1 − y

b

)2
,

pour 0,2b < y < 1,8b, et où um est la vitesse maximale atteinte en y = b
um
u∗

= 2,5 ln ξr + 5,5,

avec ξr = 0,2bu∗/ν l’ordonnée de la transition zone centrale/logarithmique.
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Débit dans un écoulement de Poiseuille plan

La contribution de la sous-couche visqueuse est négligeable. Le débit s’obtient par
intégration du champ de vitesse :

q = 2ℓbu∗

(
2,5 ln bu∗

ν
+ 3,21

)
,

tandis que la vitesse de frottement est

u∗ =

√
τp
ϱ
=

(
−b
ϱ

∂p
∂x

)1/2
.

Pour montrer cela, on se sert de l’équation de conservation de la quantité de
mouvement en y = b. Comme le profil de vitesse y atteint son maximum, on a
d⟨u⟩/dy = 0. La dissipation d’énergie est

Φ = τpū = b∂p
∂xu∗

(
2,5 ln bu∗

ν
+ 3,21

)
= ϱu3

∗

(
2,5 ln bu∗

ν
+ 3,21

)
.
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Extension à des parois rugueuses

Lorsque la rugosité adimensionnalisée (construite comme le nombre de Reynolds)

k+s =
ksu∗

ν
> 3,1,

on dit que la paroi est rugueuse. Les équations de fermeture sont modifiées. Pour
une paroi rugueuse se pose le problème de la définition du plan moyen y = 0. Les
formules sont imprécises lorsque k+s ≤ 70.

y=0

u

y=0
sk
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Extension à des parois rugueuses

La rugosité augmente la turbulence de paroi, ce qui change la vitesse dans la zone
logarithmique :

⟨u⟩
u∗

= 2,5 ln y
ks
+ 8,34,

mais pas dans la zone centrale. Le débit s’écrit alors pour une canalisation plane
rectangulaire (Poiseuille plan) :

q = 2ℓbu∗

(
2,5 ln b

ks
+ 6,04

)
,

et pour un écoulement dans un conduit circulaire (Poiseuille cylindrique) :

q = πR2u∗

(
2,5 ln R

ks
+ 4,87

)
.
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Dissipation d’énergie dans les conduites

On va maintenant capitaliser nos connaissances sur le comportement de
l’écoulement turbulent pour étendre le théorème de Bernoulli à des écoulements
réels

L

S
n V
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Bilan d’énergie

Rappelons que théorème de l’énergie cinétique s’obtient en prenant le produit
scalaire de l’équation de conservation de la quantité de mouvement et de la vitesse
u :

ϱu · du
dt = ϱu · g − u · ∇p + u · ∇ · T.

En se servant de Green-Ostrogradski et en supposant l’établissement d’un régime
permanent, on simplifie cette équation (voir chap. 4)∫

S
u · n

(
ϱ|u|2

2 + p∗
)

dS︸ ︷︷ ︸
flux d’énergie

=

∫
S

n · (u · T)dS︸ ︷︷ ︸
puissance dissipée à la frontière

−
∫

V
T : DdV,︸ ︷︷ ︸

Φ, puissance dissipée dans le volume
avec p∗ la pression généralisée, V le volume de contrôle et S sa surface enveloppe.
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Bilan d’énergie

On suppose également :
• les effets de bord (à l’entrée S1 et sortie S2 de la conduite) sont négligés ;
• la section ne change pas avec x ;
• l’écoulement est établi : ∂u/∂x = 0 ;
• la composante selon y (r en coordonnées cylindriques) de la vitesse est nulle :

u = (u, 0, 0). La pression généralisée p (on supprime l’indice ∗) est considérée
comme constante dans une section droite.

Cela permet de simplifier encore l’équation de conservation de l’énergie

−
∫

S1

(
ϱu2

2 + p
)

udS +

∫
S2

(
ϱu2

2 + p
)

udS = −
∫

V
T : DdV.
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Bilan d’énergie

On note q = S1ū1 = S2ū2 le débit volumique, p1 et P2 la pression (qui est
uniformément répartie) sur S1 et S − 2 et Φ = T : D la fonction de dissipation
interne. En divisant l’énergie par q, on aboutit à l’équation de conservation de la
charge (attention, il s’agit de la charge selon le sens employé en génie industriel)

p1 − p2 =
ϱ

2q

(∫
S2

u3dS −
∫

S1

u3dS
)

︸ ︷︷ ︸
0 si S1=S2

+
1
q

∫
V
ΦdV.

Dans une conduite de section constante en régime permanent et uniforme, la
différence de pression motrice équivaut à la dissipation d’énergie (aux pertes de
charge). Dit autrement, pour mouvoir le fluide, il faut exercer un gradient de
pression qui contrebalance exactement la dissipation d’énergie.
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Bilan d’énergie

En hydraulique, on définit la charge comme un équivalent en hauteur d’eau, donc
on va diviser l’équation de la charge par ϱg. La charge en S s’écrit

H =
p
ϱg +

1
2qg

∫
S

u3dS,

et donc compte tenu de la conservation du débit dans des conduites de même
section (S1 = S2 = S), p1 − p2 = H1 − H2, on a finalement

H1 − H2 = ∆H =
1
ϱgq

∫
V
ΦdV.

La différence de charge est égale à la perte de charge totale ∆H, qui représente
l’énergie dissipée dans V.
Comment estimer cette dissipation d’énergie ?
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Bilan d’énergie

Pour estimer la dissipation d’énergie Φ, on peut écrire que
Φ = τpūSc,

où ū est la vitesse moyenne, τp est la contrainte exercée par le fluide sur la paroi de
la conduite Sc entre les deux section S1 et S2. Si P est le périmètre de la conduite
(pas nécessairement circulaire) et L sa longueur, alors

Sc = PL.
On note Cf le coefficient de frottement (dit coefficient de Fanning). On peut
exprimer la contrainte pariétale comme une fraction de l’énergie cinétique

τp =
1
2Cfϱū2.
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Bilan d’énergie

De façon équivalente, on peut employer la loi de Darcy–Weisbach (voir chap. 5)

τp =
1
8fϱu2,

où f = 4Cf est le coefficient de Darcy–Weisbach. On introduit le diamètre
hydraulique (pendant du rayon hydraulique pour les écoulements à surface libre)

Dh = 4S
P.

On vérifie que Dh = 2R pour une conduite circulaire de rayon R tandis que pour
une conduite prismatique à section rectangulaire S = b × ℓ

Dh = 4S
P = 2b × ℓ

b + ℓ
.

Attention : en règle générale, le nombre de Reynolds est défini à partir de Dh :
Re = ūDh/ν.
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Bilan d’énergie

En résumé on a
Φ = τpūSc =

1
8fϱu2 × ū × PL,

et si on exprime cela en termes de perte de charge (voir chap. 5)

∆H =
Φ

ϱgq.

Soit finalement
∆H =

Φ

ϱgq =
1
8gfu2P

SL = fu
2

2g
L
Dh

.

Comme en hydraulique à surface libre, la perte de charge ∆H est exprimée en m
(équivalent mètre colonne d’eau).
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Coefficient de frottement f

En régime laminaire, on montre en résolvant les équations de Navier–Stokes que
f = 64

Re.
Pour ce régime, f est indépendant de la taille des rugosités.
Pour un écoulement turbulent, f dépend de l’échelle de rugosité ks et du nombre de
Reynolds Re = ūDh/ν. La séparation entre régime lisse et rugueux se fait à l’aide
du nombre sans dimension k+s = ksu∗/ν :
• si k+s < 5, le régime est lisse ;
• si k+s > 70, il est (pleinement) rugueux. La viscosité n’est plus importante, et f

devient indépendant du nombre de Reynolds ;
• lorsque 5 ≤ k+s ≤ 70 on parle de régime rugueux transitionnel.
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Coefficient de frottement f

Il existe trois stratégies classiques pour calculer f pour des conduites industrielles :
•on utilise une formule de type Nikuradse en supposant que le régime est turbulent

lisse ou turbulent rugueux, puis on vérifie l’hypothèse de départ ;
•on utilise une formule de type Colebrook, qui est valable pour une large gamme

d’écoulements (lisses et rugueux) ;
•on se sert de l’abaque de Moody.
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Formule de Nikuradse (1933)

L’expression du coefficient de frottement dépend du régime d’écoulement et de la
géométrie de la conduite. Ce sont des équations implicites :

rectangulaire circulaire
lisse 1√

f/8
= 2,5 ln

(
Re
√

f/8
)
− 0,25 1√

f/8
= 2,5 ln

(
Re
√

f/8
)
+ 0,31

rugueux 1√
f/8

= 2,5 ln b
ks
+ 6,04 1√

f/8
= 2,5 ln R

ks
+ 4,87

La formule de McKeon (2005) permet de calculer le coefficient de frottement avec
une erreur relative inférieure à 1,25 %

1√
f
= 0,83 ln(Re

√
f)− 0,537,
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Formule de Colebrook (1939)

Pour les conduites circulaires et pour Re > 2300, on peut utiliser la formule de
Colebrook valable quelle que soit la rugosité :

1√
f
= −0,91 ln

(
0,27 ks

2R +
2,51√
fRe

)
.

Cette formule a l’avantage de donner un résultat relativement précis sans se soucier
de la nature du régime turbulent (lisse/rugueux), mais la précision peut être faible
pour le régime transitionnel 5 < k+s < 70.
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Abaque deMoody--Stanton (1944)
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Pertes de charge singulières

Tout changement dans la conduite (direction, section, grille, etc.) se traduit par une
dissipation d’énergie supplémentaire localisée à l’endroit du changement. On parle
donc de pertes de charge singulières pour souligner la différence avec la dissipation
d’énergie uniformément répartie dans le volume de la conduite. Ces pertes de charge
sont le plus souvent exprimées comme des fractions perdues d’énergie cinétique. Les
pertes de charge singulières sont introduites sous la forme :

∆Hs = ζ
ū2

2g,

avec ζ le coefficient de perte de charge singulière.

On se référera au livre d’Idel’cik Mémento des pertes de charges (Eyrolles, Paris,
1986) pour les cas pratiques.
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Élargissement et rétrécissement

On ne donne ici que les formules pour des tubes cylindriques :
•élargissement brutal :

∆Hs = ζ
ū2

1
2g,

avec ζ = 2 − 8
3
S1
S2
+ 2

3
S2

1
S2

2
si l’écoulement est laminaire et ζ =

(
1 − S1

S2

)2
pour un

écoulement turbulent (profil de vitesse uniforme). On emploie S1 pour la section
amont et S2 pour l’aval. L’entrée d’un réservoir se déduit en prenant S2 → ∞.

• rétrécissement brutal :
∆Hs = ζ

ū2
2

2g,
avec

ζ =

(
1 − 1

0,59 + 0,41(S2/S1)3

)2
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Changement de direction

Au niveau d’un coude (changement de direction θ exprimé en degrés, avec un rayon
de courbure Rc), il y a une perte de charge donnée par la formule de Weisbach :

ζ =
θ

90

(
0,13 + 1,85

(
R
Rc

)7/2
)
,

avec R le rayon de la conduite. Pour un coude sans rayon de courbure, on peut
employer la variante suivante :

ζ = sin2 θ

2 + 2 sin4 θ

2.
Pour un coude à angle vif (Rc → 0) d’angle 90°, on peut prendre ζ = 1,3.
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Pompe
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Une pompe sert à injecter de l’énergie à un
écoulement en charge. Elle se caractérise par

1. la courbe caractéristique H(Q) qui représente
l’énergie exprimée en mètre colonne d’eau en
fonction du débit. On appelle H(0) la
hauteur de fermeture ;

2. la puissance utile Pu = ϱgQH(Q) la
puissance délivrée au fluide par la pompe ;

3. le rendement global η = Pu/P avec la
puissance (électrique ou thermique) qu’il faut
fournir à la pompe.
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Pompe
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Le point de fonctionnement d’une pompe
s’obtient en cherchant le point d’intersection
de la courbe de perte de charge d’une
conduite (singulière + régulière)

∆H =

I∑
i=1

fLi
Di

ū2
i

2g +

J∑
j=1

ζj
ū2

j
2g.

et la courbe caractéristique H(Q).
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Exemple traité : vidange d’un réservoir

On considère une conduite de vidange d’un barrage de
hauteur (d’eau) h0. La conduite est lisse et de diamètre D.
Sa longueur totale est L. La chute de dénivellation est notée
h1. On cherche à calculer le débit à la sortie de la conduite.
On prend D = 1 m, L = 1000 m, ks/D = 10−5, h0 = 10 m,
et h1 = 10 m.

Si on appliquait Bernoulli (formule de Torricelli), on aurait
Q = πD2√2g(h0 + h1)/4 = 15,6 m3/s.
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Exemple traité : vidange d’un réservoir

On applique le théorème de Bernoulli généralisé entre la surface libre et la sortie
(point B) :

H0 = HB +∆H,

où la perte de charge ∆H comprend à la fois :
• les pertes de charge réparties

∆Hr =
ū2

2g
f
DL,

• les pertes de charge singulières dues à l’entrée dans la canalisation en O et le
coude en A :

∆Hs = (ζA + ζO)
ū2

2g.
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Exemple traité : vidange d’un réservoir

En détaillant, on a à la surface libre (point O’) :

HO = zO +
ū2

2g +
p0
ρg = h1 + h0,

tandis qu’à la sortie (point B) on a :

HB = zB +
ū2

2g +
pB
ρg =

ū2

2g.

On en déduit que la vitesse moyenne est solution de l’équation :

h1 + h0 =
ū2

2g +
ū2

2g

(
f
DL + ζA + ζO

)
.

On déduit facilement que :

ū =

(
2g(h0 + h1)

1 + f
DL + ζA + ζO

)1/2

.
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Exemple traité : vidange d’un réservoir

L’équation est implicite car f dépend du nombre de Reynolds

ū =

(
2g(h0 + h1)

1 + f
DL + ζA + ζO

)1/2

.

On prend D = 1 m, L = 1000 m, ks/D = 10−5, h0 = 10 m, et h1 = 10 m. On
emploie la formule de Colebrook

1√
f
= −0,91 ln

(
0,27 ks

2R +
2,51√
fRe

)
.

On a vu par ailleurs : ζO = 0,5 et ζA = 1,3. En résolvant numériquement, on trouve
que la vitesse vaut 5,85 m/s, soit un débit de 4,6 m3/s. Une grande différence avec
le calcul à la Torricelli !
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Exemple traité : remplissage d’un réservoir

Supposons maintenant que l’on veuille pomper de l’eau dans le réservoir. En B, on
place une pompe qui aspire l’eau et la remonte dans le réservoir. Quelle est la
puissance fournie par la pompe et quel est le débit si sa courbe caractéristique est
Hp = 70 − Q2/2 ?
Si on néglige la perte de charge singulière de la pompe, alors la perte de charge de
la conduite que doit compenser la pompe est

∆H(Q) =

(
f
DL + ζA + ζO

)
4Q2

2gπD2.

La seule difficulté ici est que le coefficient de frottement f est une fonction implicite
de Q. Le point de fonctionnement est obtenu en recherchant le point d’intersection :

Hp(Q) = ∆H(Q) + HO − HA.
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Exemple traité : remplissage du réservoir
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Si on prend la même vitesse en O et
A, et une pression atmosphérique en
A, alors HO − HA = 20 m.
On trouve : Qfonc = 6,6 m3/s et
Hp(Qfonc) = 28,4 m. La puissance
fournie par la pompe est
Pu = ϱQfoncgHp(Qfonc), soit
Pu = 1,83 MW.
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Réponse au quiz de relaxation

1.Dans un écoulement en charge, peut-on
négliger la pression hydrostatique ?
• oui elle est faible par rapport à la pression cinétique.
• cela dépend des problèmes.

2.Une conduite dont les parois sont rugueuses
dissipe plus d’énergie qu’une conduite lisse ?
• oui, la rugosité accentue toujours la dissipation d’énergie.
• il n’y a pas d’effet de la rugosité sur l’écoulement si

l’écoulement est laminaire.
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