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conduite

e Ecoulement permanent uniforme lisse entre
deux plans paralleles (Poiseuille plan

® sous-couche visqueuse

e zone logarithmique

e zone centrale
o Effet de la rugosité sur le profil de vitesse
e Dissipation d énergie et pertes de charges
e Pertes de charge singuliere

e Exemple traité : vidange d'un réservoir
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Quiz de relaxation A

1.Dans un écoulement en charge, peut-on
négliger la pression hydrostatique ?

e oui elle est faible par rapport a la pression cinétique.

e cela dépend des problemes.
2.Une conduite dont les parois sont rugueuses
dissipe plus d'énergie qu'une conduite lisse ?

e oui, la rugosité accentue toujours la dissipation d'énergie.

eil n'y a pas d'effet de la rugosité sur |'écoulement si

|"'écoulement est laminaire.
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Problématigue 7\

En hydraulique a surface libre (chap. 5) on a montré que le théoreme de Bernoulli

u2

E:ngJrQQ - D

(en principe valable uniquement pour des fluides non visqueux) peut se généraliser

en introduisant une perte de charge linéairement répartie le long du bief. La charge

est définie comme |'équivalent en hauteur d'eau de |'énergie :

E
H=—,
09
et la perte de charge est introduite comme la pente de la ligne de charge (on dit

pente d'énergie méme si c'est une charge)

, dH
= dzx
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Problématigue 7\

Cette perte de charge linéaire (c.-a-d. linéairement répartie) peut étre estimée a

I'aide de formules empiriques telles que |'équation de Manning-Strickler

ﬂz

- 4/3°
K’R,/

On va montrer ici que pour des écoulements en charge dans des conduites,

Jf

|'équation de perte de charge est
dH 1 u
E B th297

avec : Dy, le diametre hydraulique de la conduite, u la vitesse débitante, f le

coefficient de frottement qui dépend du nombre de Reynolds
Dy
Re = .

vV
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Problématigue 7\

Comme en hydraulique a surface libre, cette équation suppose que |'écoulement est
uniforme et que la conduite ne change pas de caractéristiques. Comme la vitesse est
constante si le diametre ne change pas (cela résulte de la conservation de la masse),

on a pour une conduite de longueur L

AH=H — Hy = .
1 — H thzg

Si la conduite change de caractéristiques, il faut introduire dans les calculs une
perte de charge singuliere qui traduit une dissipation d'énergie locale due, par

exemple, a un changement brutal de direction ou de section.
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Ecoulement dans une conduite de Poiseuille plan A

Considérons un écoulement permanent de Poiseuille plan entre deux plans paralléles
espacés de 2b. La turbulence dépend fortement de la rugosité de la paroi. On est
amené a distinguer :

e les parois lisses;

e les parois rugueuses.

On peut faire une anatomie simplifiée de |'écoulement en considérant qu'il comporte

trois couches que |'on peut distinguer en fonction de |'ordonnée adimensionnelle :
_ I
§ o )
%
ol wu, est la vitesse de frottement (ou de cisaillement) : u, = \/7,/0 (avec 7, la

contrainte a la paroi).
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Les expériences montrent que les trois couches sont

o() < & <25 : |la couche laminaire, incluant pour 0 < ¢ < 3 |a sous-couche
visqueuse ;

025 < £ <500 : la zone logarithmique;

e 500 < £ : la zone centrale.

Y
A
— 9 SN .
Y couche limite
y:b————————————————r —————————————— {LE_) ““““ zone centrale
@ .. Y
— | couche limite
T e W
; v A

. zone transitolre _ _
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La résolution des équations de Navier—-Stokes dans un écoulement de Poiseuille
entre deux plans (mu par un gradient de pression d,p) montre que le profil des

vitesses dans la direction x est parabolique

u=— @i) y(y — 2b),

donc au premier ordre en quand y— 0, on a:

1 [Op 1
~ — | — —2b) = —
Y (5‘9?) y=20) u'

et sous forme adimensionnelle
U= Uk,
Expérimentalement cela est valable tant que & < 3. Pour le reste de |la couche

laminaire (3 < & < 25) il n'y a pas d'approximation analytique.
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Rappelons que les équations de Navier—-Stokes

0
Q((;tl | H-Vu) =02 —Vp+V-T.

peuvent se moyenner en introduisant la décomposition de Reynolds

u= (u) + u
avec U la fluctuation de vitesse et (u) la vitesse moyennée (moyenne d'ensemble).

On obtient les équations suivantes :

o (57 ) VW) ) = ~Vp) + 9 (D)~ o7 - ufw)
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A

Le tenseur
>, = —o(ud)
est appelé tenseur de Reynolds. |l reflete les contraintes turbulentes. Pour |'estimer

on se sert d'équations de fermeture. Une des équations les plus simples est le

modele de longueur de mélange de Prandl :
it = 2:ut<D>7
avec (1; la viscosité turbulente qui varie avec le gradient moyen de vitesse
d{w)
dy ’

avec k la constante de von Karman (x = 0,41).

i = o(ky)?
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En négligeant les contraintes visqueux, on tire des équations de Navier—Stokes

moyennées
o ( ol _ol.
oy \""" Oy 0r
et par intégration sur vy, on déduit I'équation
O(u) — O{ps)
bt 8?] — O y_l_ C,

avec ¢ une constante d’'intégration. En négligeant |'épaisseur de la sous-couche

visqueuse, on exprime la condition aux limites

O(u
en y =0, Ly 0<y> = Tp.
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En supposant 7, = puZ connu, on peut donc écrire |'équation précédente

O(u) _ O(p«)
p— —|— T :
et au premier ordre en y en y = 0, on déduit I'équation
0(u)

i B = Tp T+ O(y)

En se servant du modele de Prandtl, on doit résoudre

CNU>__vﬁ?1
dy 0KY

L 'intégration fournit un profil logarithmique de vitesse

1 "
(u) = \/E—lner c:u—lny+ C.
OK K

Mécanique des fluides
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Zone logarithmigque A

La constante d'intégration est déterminée en imposant un raccord avec la couche

laminaire. On obtient alors

1
@ = —Iné+55~25In€+ 5,5,
Uy K

qui est valable pour 25 < & < 500.
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Les expériences montrent que le profil de vitesse a la paroi vérifie bien la loi

logarithmique
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On suit les mémes équations que précédemment, mais on prend en compte une
nouvelle loi de fermeture qui refléte |'influence moindre du taux de cisaillement sur

la viscosité turbulente (loi de fermeture de type Boussinesq) :
v, = 0.080bus.

La viscosité est indépendante du taux moyen de cisaillement, mais dépend de
'espacement entre les plans (ce qui donne la taille maximale des tourbillons) et de
la vitesse de frottement. La résolution des équations de Navier—Stokes moyennées
pour cette équation de fermeture nous donne un profil de vitesse parabolique

comme pour le régime laminaire puisque la viscosité turbulente est constante.

Mécanique des fluides
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Profil de vitesse :

Uy — () (y) 6.3 (1 B ?_J){

Us, b
pour 0,26 < y < 1,8b, et ou u,, est la vitesse maximale atteinte en y = 0
Um
— =2,5In&,+ 5,9,
U

avec &, = 0,2bu, /v I'ordonnée de la transition zone centrale/logarithmique.
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La contribution de la sous-couche visqueuse est négligeable. Le débit s’ obtient par

intégration du champ de vitesse :

b,
7= 20bu, (2,51n & 3,21),

vV

tandis que la vitesse de frottement est

_ fm by 1/2
) 0 00% |

Pour montrer cela, on se sert de |'équation de conservation de |la quantité de

mouvement en y = b. Comme le profil de vitesse y atteint son maximum, on a

d(u)/dy = 0. La dissipation d'énergie est

Ox U U

¢ = 1yu= b—pu* (2,5111 - | 3,21) = ou (2,51n - - 3,21 | .

Mécanique des fluides
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Extension a des parois rugueuses A

Lorsque la rugosité adimensionnalisée (construite comme le nombre de Reynolds)

K5ty
ki = - > 3.1,
1%

on dit que la paroi est rugueuse. Les équations de fermeture sont modifiées. Pour

une paroi rugueuse se pose le probleme de la définition du plan moyen y = 0. Les

\ /u
y=0 2

Ay aaan

formules sont imprécises lorsque kI < 70.
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Extension a des parois rugueuses A

La rugosité augmente la turbulence de paroi, ce qui change la vitesse dans la zone

logarithmique :

U Y
<—> = 2.51n
Uy k.
mais pas dans la zone centrale. Le débit s'écrit alors pour une canalisation plane

- 8.34.

rectangulaire (Poiseuille plan)

b
q = 20bu, (2,51n : | 6,04) ,

et pour un écoulement dans un conduit circulaire (Poiseuille cylindrique)

R
g = mR*u, (2,5111 . | 4,87) .

Mécanique des fluides 20



Dissipation d'éneryie dans les conduites A

On va maintenant capitaliser nos connaissances sur le comportement de
|'écoulement turbulent pour étendre le théoreme de Bernoulli a des écoulements

réels
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Bilan d’'énergie yZ N

Rappelons que théoreme de |'énergie cinétique s obtient en prenant le produit

scalaire de |'équation de conservation de la quantité de mouvement et de la vitesse

u :
d
Qu-d—ltl:gu-g—u-Veru-V-T.

En se servant de Green-Ostrogradski et en supposant |'établissement d'un régime

permanent, on simplifie cette équation (voir chap. 4)

2
ou
/u-n(‘ | - Py | dS = n-(u-T)dS — T:DdV,
s N2 ) 0 ds v
flux d'énergie puissance dissipée a la frontiere P, puissance dissipée dans le volume

avec p, la pression généralisée, V' le volume de controle et .S sa surface enveloppe.
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On suppose également :

o les effets de bord (a I'entrée S; et sortie S; de la conduite) sont négligés;

e |a section ne change pas avec z;

e |'écoulement est établi : Ju/0x = 0;

e la composante selon y (7 en coordonnées cylindriques) de la vitesse est nulle
u= (u, 0, 0). La pression généralisée p (on supprime l'indice *) est considérée
comme constante dans une section droite.

Cela permet de simplifier encore I'équation de conservation de |'énergie

2 2
_/ (Qu | p) udS+/ (@u Ip) udS:—/T:DdV.
Sl 2 SZ 2 V
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On note ¢ = Siu; = Souy le débit volumique, p; et Ps la pression (qui est
uniformément répartie) sur S; et S—2 et ® = T : D la fonction de dissipation
interne. En divisant |'énergie par ¢, on aboutit a |'équation de conservation de |a

charge (attention, il s'agit de la charge selon le sens employé en génie industriel)

1
pl_p2:£(/ uSdS—/ u3d5> +—/<1>dv.
2q \ J s, s, q.)v

0 si 31232
Dans une conduite de section constante en régime permanent et uniforme, |a

différence de pression motrice équivaut a la dissipation d'énergie (aux pertes de
charge). Dit autrement, pour mouvoir le fluide, il faut exercer un gradient de

pression qui contrebalance exactement la dissipation d énergie.
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Bilan d'eénergie

En hydraulique, on définit la charge comme un équivalent en hauteur d'eau, donc
on va diviser |'équation de la charge par pg. La charge en S s'écrit
1
H=2 | /ugdS,
S

09  2qg
et donc compte tenu de la conservation du débit dans des conduites de meme

section (51 = S, = S), p1 — po» = Hy — H>, on a finalement

1
Hl—ngAH:—/CDdV.
0949 Jv
La différence de charge est égale a |la perte de charge totale AH, qui représente

|'énergie dissipée dans V.

Comment estimer cette dissipation d'énergie ?

Mécanique des fluides
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A

Pour estimer la dissipation d énergie ¢, on peut écrire que
¢ = T,ud,,
ou u est la vitesse moyenne, 7, est la contrainte exercée par le fluide sur la paroi de

la conduite S, entre les deux section 5 et Sy. Si P est le périmetre de la conduite

(pas nécessairement circulaire) et L sa longueur, alors
S. = PL.

On note C le coefficient de frottement (dit coefficient de Fanning). On peut

exprimer la contrainte pariétale comme une fraction de |'énergie cinétique

1,
Tp — 50]?@11,2

Mécanique des fluides 26



De facon équivalente, on peut employer la loi de Darcy—Weisbach (voir chap. 5)

1
Tp = éfguza
ou f= 4C}est le coefficient de Darcy—Weisbach. On introduit le diametre

hydraulique (pendant du rayon hydraulique pour les écoulements a surface libre)

S
Dh — 4?

On veérifie que D;, = 2R pour une conduite circulaire de rayon R tandis que pour

une conduite prismatique a section rectangulaire S= b x (

S  bx/
D =4— =72 .
TP Thrd
Attention : en regle générale, le nombre de Reynolds est défini a partir de D), :

Re = ﬂDh/V.
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En réesumé on a |
® = 7,uS, = éfgzﬂ x ux PL,

et si on exprime cela en termes de perte de charge (voir chap. 5)

0
ANH=—.
0494
Soit finalement . - ),
AH=— = —fi’~L=f——
099 8¢ S 29Dy,

Comme en hydraulique a surface libre, la perte de charge A H est exprimée en m

(équivalent métre colonne d’eau).
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Coefficient de frottement / oA

En régime laminaire, on montre en résolvant les équations de Navier-Stokes que

f—@

Pour ce régime, f est indépendant de la taille des rugosités.

Pour un écoulement turbulent, f dépend de |'échelle de rugosité £, et du nombre de
Reynolds Re = uDy/v. La séparation entre régime lisse et rugueux se fait a |'aide

du nombre sans dimension k] = ksu, /v
esi k7 < 5, le régime est lisse;

esi kI > 70, il est (pleinement) rugueux. La viscosité n'est plus importante, et f

devient indépendant du nombre de Reynolds;

elorsque 5 < k7 < 70 on parle de régime rugueux transitionnel
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Coefficient de frottement / oA

| existe trois stratégies classiques pour calculer f pour des conduites industrielles :

e on utilise une formule de type Nikuradse en supposant que le régime est turbulent

lisse ou turbulent rugueux, puis on vérifie |'hypothese de départ ;

e on utilise une formule de type Colebrook, qui est valable pour une large gamme

d'écoulements (lisses et rugueux);

e on se sert de |'abaque de Moody.
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Formule de Nikuradse (1933) oA

| 'expression du coefficient de frottement dépend du régime d'écoulement et de la
géométrie de la conduite. Ce sont des équations implicites :

rectangulaire circulaire

| |

isse — 95l (Re\/ f/8> — 0,25 — 9250 (Re\/ f/8> +031
f/8 1 , f/8 1 -

rugueux =2.0In—+6,04 = 2.5In— + 4,87

1/8 R f/8 R

La formule de McKeon (2005) permet de calculer le coefficient de frottement avec

une erreur relative inférieure a 1.25 %

1
— = 0,831In(Rer/f) — 0,537,
\/][
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Formule de Colebrook (1939) oA

Pour les conduites circulaires et pour Re > 2300, on peut utiliser la formule de

Colebrook valable quelle que soit la rugosité :

: 0,911 (o 27 N, 201 )
— = — Il | :
Yii | " 2R \/fRe

Cette formule a |'avantage de donner un résultat relativement précis sans se soucier

de la nature du régime turbulent (lisse/rugueux), mais la précision peut étre faible

pour le régime transitionnel 5 < k7 < 70.
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Abhaque de Moody--Stanton (1944)

#
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Pertes de charge singulieres A

Tout changement dans la conduite (direction, section, grille, etc.) se traduit par une
dissipation d'énergie supplémentaire localisée a I'endroit du changement. On parle
donc de pertes de charge singulieres pour souligner la différence avec la dissipation
d'énergie uniformement répartie dans le volume de |la conduite. Ces pertes de charge
sont le plus souvent exprimées comme des fractions perdues d'énergie cinétique. Les

pertes de charge singulieres sont introduites sous la forme :
9
U
AH, = (—,
29

avec ( le coetficient de perte de charge singuliére.

On se référera au livre d'ldel’'cik Mémento des pertes de charges (Eyrolles, Paris,

1986) pour les cas pratiques.
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On ne donne ici que les formules pour des tubes cylindriques :

e élargissement brutal :
9

U
1
AHS — C_7
29
8S1 | 250 i 112 . 5\
avec ( =2 — 55, §5é si |'écoulement est laminaire et ( = ( — Fi) pour un

écoulement turbulent (profil de vitesse uniforme). On emploie S| pour la section

amont et S5y pour |'aval. L'entrée d’un réservoir se déduit en prenant S, — o0.

e rétrécissement brutal

dVeC

1 2
(= (1
0759 -+ O,41(S2/S1)3 Mécanique des fluides 35



Au niveau d'un coude (changement de direction 6 exprimé en degrés, avec un rayon

de courbure R.), il y a une perte de charge donnée par la formule de Weisbach :

9 R\
— 013+ 185 [ —
C 9()(7 —I_ Y, (RC) )7

avec R le rayon de la conduite. Pour un coude sans rayon de courbure, on peut

employer |la variante suivante :

o o
2 -4
2 [ ]
) -+ 2 Sl 5

Pour un coude a angle vif (R. — 0) d'angle 90°, on peut prendre ( = 1,3.

( = sin
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H (m)
)
NON

W
S
I I I I I I

10+

10

A

Une pompe sert a injecter de |'énergie a un

ecoulement en charge. Elle se caractérise par

1. la courbe caractéristique H(()) qui représente
|'énergie exprimée en metre colonne d'eau en

fonction du débit. On appelle H(0) la

hauteur de fermeture
2.la puissance utile P, = 0gQH( Q) la

puissance délivrée au fluide par la pompe;

3.le rendement global n = P,/ P avec la
puissance (électrique ou thermique) qu'il faut

fournir a la pompe.
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A

Le point de fonctionnement d'une pompe
s obtient en cherchant le point d'intersection
de la courbe de perte de charge d'une

conduite (singuliére +- réguliére)

Al = Z D2g ZC]Q;}

j:
et la courbe caracteristique H(Q).
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Exemple traité : vidange d’'un réservoir yZ N

h,

hy

On considere une conduite de vidange d'un barrage de
hauteur (d'eau) hy. La conduite est lisse et de diametre D.
Sa longueur totale est L. La chute de dénivellation est notée
hi. On cherche a calculer le débit a la sortie de la conduite.
On prend D=1 m, L =1000 m, k;/D = 107, hg = 10 m,
et hy = 10 m.

Si on appliquait Bernoulli (formule de Torricelli), on aurait

Q= mD*\/2g9(hy + h1)/4 = 15,6 m?/s.
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|

On applique le théoreme de Bernoulli généralisé entre la surface libre et la sortie
(point B) :

Hy= Hp+ AH,
ou la perte de charge AH comprend a la fois :

e les pertes de charge réparties

9
A =g
29D
e les pertes de charge singulieres dues a |'entrée dans la canalisation en O et le
coude en A :
AH; = (Ca+¢ >u2
s — \KGA 0, 29
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|

En détaillant, on a a la surface libre (point Q) :

Hop= 2z2p1 | = hy + Ny,
29 Py
tandis qu'a la sortie (point B) on a :
) )
U U
HB — ZRB | | LB - —.
29  pg 29

On en déduit que la vitesse moyenne est solution de |'équation :

TR
h1—|—h():29 | 29(%L‘|‘<A‘|‘CQ).

On déduit facilement que :

1/2
o 29<h0—|—h1)
1+ T];L + (4 + (o

Mécanique des fluides
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|

L équation est implicite car f dépend du nombre de Reynolds

1/2
o Zg(h0+h1>
1+ Z—JSL + ¢4+ Co

Onprend D=1m, L =1000 m, k;/D = 107, hg =10 m, et h; = 10 m. On

emploie la formule de Colebrook

: 0.911 (o 27 i 2’51)
—. = —U,Jdlin | U, | :
Vi 2R /fRe

On a vu par ailleurs : (o = 0,5 et (4 = 1,3. En résolvant numériquement, on trouve

que la vitesse vaut 5,85 m/s, soit un débit de 4,6 m°/s. Une grande différence avec

le calcul a la Torricelli |
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Exemple traité : remplissage d'un réservoir A

Supposons maintenant que |'on veuille pomper de |'eau dans le réservoir. En B, on
place une pompe qui aspire |'eau et la remonte dans le réservoir. Quelle est |a
puissance fournie par la pompe et quel est le débit si sa courbe caractéristique est
H,=170— (/27

Si on néglige la perte de charge singuliere de la pompe, alors |la perte de charge de

la conduite que doit compenser |la pompe est

2
AH(Q) = (Z_];L + Q4+ CO) Q;LfDQ-

La seule difficulté ici est que le coefficient de frottement f est une fonction implicite

de (). Le point de fonctionnement est obtenu en recherchant le point d'intersection :

HP(Q) — AH(Q) + Hop— Hjy.
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Exemple traité : remplissage du réservoir A

Si on prend la méme vitesse en O et
A, et une pression atmosphérique en
A, alors Hyo— H4 = 20 m.

On trouve : Qpne = 6,6 m?/s et
Hy( Qrone) = 28,4 m. La puissance
fournie par la pompe est

P, = QQfonchp(Qfonc)1 soit
P, = 1.83 MW.
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Réponse au quiz de relaxation A

1.Dans un écoulement en charge, peut-on
négliger la pression hydrostatique ?

n \ ] [ ]
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e cela dépend des problemes.

2.Une conduite dont les parois sont rugueuses
dissipe plus d'énergie qu'une conduite lisse ?

eil n'y a pas d'effet de la rugosité sur |'écoulement si

|"'écoulement est laminaire.
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