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Chapitre 5 : écoulements à surface libre

•Vocabulaire
•Notion de perte de charge hydraulique

•Régime permanent uniforme
•Régime permanent non uniforme

•Courbes de remous et écoulements critiques
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Un petit quiz pour s’échauffer

•Quelle est la forme de la surface libre

d’écoulement d’eau au-dessus d’un obstacle ?

•Que se passe-t-il quand un barrage libère un

gros volume d’eau ?
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Objectif en images du chapitre

Voir géométrie à la figure 5.57 des notes de cours

On ouvre une vanne (de hauteur h = 2 m), et

un débit constant q = 10 m2/s est établi. L’eau

s’écoule

• sur un coursier à forte pente (i = 5 %), puis

• sur un radier à pente douce (i = 0,2 %), qui

se termine par un seuil haut de p = 50 cm.
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Vocabulaire

Une terminologie technique, parfois au charme désuet

•bief : tronçon homogène en termes de pente moyenne et de section d’écoulement ;
• type de cours d’eau : il existe plusieurs classifications. Une distinction des cours
d’eau peut se faire en fonction de la pente i :
• i < 3 % on parle de rivière,

• 3 < i < 6 %, on parle de rivière torrentielle ,

• i > 6 %, on parle de torrent ;
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Vocabulaire

•périmètre mouillé χ : longueur de la surface d’écoulement en contact avec le lit

• section d’écoulement (ou section mouillée) S : partie de la section du canal limitée

par les parois et la surface libre
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Vocabulaire

•hauteur d’écoulement : hauteur moyenne d’eau, par définition c’est

h = S/B

•hauteur normale hn : c’est la hauteur d’un écoulement permanent uniforme dans

un bief. La hauteur normale est fonction du débit Q, de la rugosité K, et de la

pente moyenne i

• tirant d’eau : profondeur maximale d’une section d’écoulement

• largeur au miroir B : largeur de la section d’écoulement au niveau de la surface

libre

• rayon hydraulique : c’est une longueur caractéristique définie par

RH = S/χ.
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Vocabulaire

• régime uniforme : régime d’écoulement le long d’un bief où les caractéristiques

d’écoulement sont constantes (∂h/∂x = 0)

• régime permanent : régime où l’écoulement ne dépend pas du temps (∂h/∂t = 0)

•courbe de remous : la courbe de remous est la courbe décrivant la variation de la

hauteur d’eau dans un bief pour un écoulement graduellement varié. L’équation de

cette courbe est appelée équation de la courbe de remous

Voir en ligne http://lhe.epfl.ch/piwigo/index.php?/category/32
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Vocabulaire

• régime graduellement varié : régime d’écoulement où la variation de hauteur dans

la direction d’écoulement est très faible, typiquement si L désigne une longueur

d’écoulement et ∆h une variation de hauteur, on a ∆h/L ≪ 1

• régime rapidement varié : régime d’écoulement où la variation de hauteur dans la

direction d’écoulement est très importante, typiquement si L désigne une longueur

d’écoulement et ∆h une variation de hauteur, on a ∆h/L = O(1). À l’approche

d’une singularité ou bien en cas de ressaut hydraulique, l’écoulement peut entrer

dans un régime rapidement varié

• ressaut hydraulique : variation brutale de hauteur d’eau (passage d’un régime

torrentiel à un régime fluvial)
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Vocabulaire

•pente moyenne : pente moyenne longitudinale i = tan θ d’un bief exprimé en % ou

en h

• régime torrentiel : régime supercritique (Fr > 1), forte vitesse, faible hauteur

• régime fluvial : régime subcritique (Fr < 1), faible vitesse, hauteur élevée

•débit Q : flux d’eau par unité de temps à travers la surface d’écoulement

•vitesse moyenne ū : vitesse

ū =
Q

S
;
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Vocabulaire

•coefficient de rugosité : coefficient traduisant la rugosité des parois

• la berge ou rive est le talus qui sépare le lit mineur du lit majeur. Lorsque la berge

est couverte par la végétation, on parle de ripisylve
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Vocabulaire

Lit mineur : lit occupé ordinairement par un cours d’eau par opposition au lit majeur

qui correspond à l’emprise maximale historique d’un cours d’eau ou à la plaine

inondable. On parle aussi de niveau des plus hautes eaux (PHE) pour désigner la

cote maximale atteinte par la surface libre d’un cours d’eau
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Vocabulaire

•Le débit d’étiage est le débit minimal d’un cours d’eau. Le débit de plein bord est

le débit atteint lorsque la rivière sort de son lit mineur. On parle de débit de pointe

pour désigner le débit maximal atteint. Pour les crues, on peut relier le débit de

pointe à la période de retour T .

•débit dominant : c’est le débit de la crue ordinaire qui permet de façonner un cours

d’eau. Pour les rivières à sable, le débit dominant correspond au débit de pointe

d’une crue de période 1–2 ans alors que pour un lit à gravier, il correspond à crue

de période de retour de quelques dizaines d’années.
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Qu’est-ce qu’une rivière?

Le Rhône entre Martigny et Saint-Maurice (VS)
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L’eau qui cache la rivière

Le Rhône au niveau actuel de Sion à l’époque néolithique (Gallay, A., Des

Alpes au Léman : Images de la préhistoire, Infolio, 2006.)
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Rivière quasi naturelle

Tagliemento, Italie, une des dernières rivières naturelles d’Europe
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Rivières : des systèmes complexes

Gurnell et al., How large is a river ? WiREs Water, 3, 313-325, 2016.
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La tendance : retour vers la liberté de divaguer?

Le Grand-Marais, Pays des Trois-Lacs (entre les lacs de Neuchâtel, de

Bienne et de Morat). Reconstitution : 1850 (d’après dossier Pro Natura).
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La tendance : retour vers la liberté de divaguer?

Le Grand-Marais, Pays des Trois-Lacs (entre les lacs de Neuchâtel, de

Bienne et de Morat). État actuel. Une renaturation demain ?
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Morphologie des cours d’eau

Une grande variété de morphologies d’écoulement
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Morphologie des cours d’eau

Tagliamento (Frioul-Vénétie, Italie) : lit à tresses
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Morphologie des cours d’eau

Tagliamento (Frioul-Vénétie, Italie) à son débouché dans l’Adriatique

(Lignano Sabbiadoro) : lit à méandres
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Rugosité du lit

Navisence (affluent du Rhône, val d’Anniviers) : régime

de cascade

my header
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Rugosité du lit

Navisence (affluent du Rhône, val d’Anniviers) : régime de seuils et

mouilles
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Rugosité du lit

Banc de gravier (Sandy River, Portland EUA)
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Mécanique des fluides 25
o



Rugosité du lit

Le Rhône à Sierre
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Rugosité du lit et structure du lit

Vue en plan du lit d’une rivière
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Rugosité du lit et structure du lit

Évolution des structures morphologiques (longitudinales)
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Rugosité du lit et structure du lit

Type de structures morphologiques longitudinales en fonction du nombre

de Froude
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Régime d’écoulement

Le Rhône à Sion : écoulement dans son canal (régime graduellement varié)
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Régime d’écoulement

Débordement sur l’A3 en juin 2013 (régime graduellement varié)
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Régime d’écoulement

Crue de la Loire au barrage de Grangent en novembre 2008 : chute et

ressaut hydraulique (régime rapidement varié)
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Mécanique des fluides 32
o



Régime d’écoulement

Mascaret sur la Seine : ressaut hydraulique (régime rapidement varié)
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Régime d’écoulement

Chute sur déversoir (Aar à Berne) (régime rapidement varié)
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Notion de perte de charge

Analogie avec une bille roulant avec ou sans frottement.
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Notion de perte de charge

La différence d’altitudes traduit la perte d’énergie (perte de charge) subie par la bille

∆Ec +∆Ep = ∆Et,

où ∆ représente la différence d’énergie entre les instants final et initial. Cette

relation trouve son pendant en hydraulique :
1

ϱg
∆(Ψ + p + k) = ∆H,

avec ∆H la perte de charge (énergies converties en équivalent d’hauteur en eau en

divisant par ϱg).
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Charge totale et charge spécifique

La charge totale hydraulique s’écrit :

H = yℓ + h +
ū2

2g︸ ︷︷ ︸
Hs

,

avec yℓ la cote du fond, h la hauteur d’eau, et ū la vitesse moyenne de l’eau

(ū = q/h si q désigne le débit par unité de largeur). Hs s’appelle la charge

spécifique.
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Débit à charge spécifique constante

Si on écrit la charge spécifique comme une fonction de la hauteur, on a :

Hs(h) = h +
q̄2

2gh2
,

d’où l’on tire que le débit par unité de largeur q = ūh vaut

q(h) =
√
2gh2(Hs − h).

ou sous forme adimensionnelle

q∗ =
q(h)√
gH3

s

=
√

2ξ2(1− ξ),

avec ξ = h/Hs.
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Débit à charge spécifique constante

Conséquence : un débit maximal qmax =
√

gh3 =
√

8gH3
s/27 atteint pour Fr = 1

(h = hc =
3
√
q2/g)
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Débit à charge spécifique constante

Il existe deux régimes possibles :

•un régime supercritique (régime appelé aussi torrentiel) : h < hc ;

•un régime subcritique (régime appelé fluvial) : h > hc.
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Hauteur à débit constant

On se place à un débit donné 0 < q < qmax,

l’énergie spécifique s’écrit comme fonction de

h

Hs(h) = h +
q̄2

2gh2
,

que l’on peut écrire également, avec ξ = h/hc,

H∗ =
Hs

hc
= ξ +

1

2ξ2
.
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Application : exemple de lamarche

Considérons un régime subcritique sur une marche d’escalier de hauteur p = zb− za.
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Application : exemple de lamarche

0 2 4 6 8

0

2

4

6

8

A

B

A'

B'

Diminution de la charge spécifique d’une valeur égale à p

HA = HB = z + h +
ū2

2g
⇒ Hs(B) = Hs(A)− p.
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Conditions d’équilibre pour une section infiniment large

Équilibre d’un volume d’eau V = hL en équilibre (régime permanent uniforme). La

force de frottement doit reprendre la composante motrice du poids

P sin θ = ϱghL sin θ = τpL ⇒ τp = ϱgh sin θ,

avec τp la contrainte pariétale (au fond) et θ l’angle d’inclinaison.
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Conditions d’équilibre pour une section infiniment large (2)

Le théorème de Bernoulli s’écrit sur une petite tranche du bief de longueur L = dx

yℓ(A) + h(A) +
ū2(A)

2g
= yℓ(B) + h(B) +

ū2(B)

2g
+∆H,

Comme ū(A) = ū(B) et h(A) = h(B), on déduit que

yℓ(A) = yℓ(B) + ∆H.
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Conditions d’équilibre pour une section infiniment large

On pose yℓ(A)− yℓ(B) = idx avec i = tan |θ| et on introduit la pente de

frottement jf = −dH/dx. La condition d’équilibre s’écrit

i = jf
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Conditions d’équilibre pour une section quelconque

Équilibre d’une tranche de fluide par frottement le long du périmètre χ

χτp = Sϱg sin θ,

soit

τp = ϱg sin θRH ≈ ϱgiRH,

avec pour des pentes faibles, on a sin θ ≈ tan θ = i.
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Lois de frottement

Plusieurs lois empiriques ont été proposées pour établir la relation entre τp et les

variables d’écoulement ū et h. Ces lois expriment les pertes de charge régulières dues

aux frottements le long du lit (dissipation dans la couche limite) et par dissipation

d’énergie turbulente. La loi la plus employée car valable pour une large gamme de

débits et de rugosité est la loi de Manning-Strickler ; la contrainte pariétale s’écrit

τp =
ϱg

K2

ū2

h1/3
,

avec K le coefficient de Manning-Strickler souvent relié à la rugosité du lit, par

exemple la loi de Meyer-Peter

K =
26

d
1/6
90

.
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Loi deManning-Strickler

La condition d’équilibre donne :

τp = ϱgh sin θ,

Dans le même temps, la loi empirique de Manning-Strickler

τp =
ϱg

K2

ū2

h1/3
,

d’où l’on déduit la vitesse et la hauteur (normale) en régime permanent (q = ūh)

ū = K
√
ih2/3 et hn =

(
q

K
√
i

)3/5

my header
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Loi deManning-Strickler

Les valeurs de K sont tabulées en fonction du type de cours d’eau :

•canal en béton lisse : K = 55− 80 m1/3s−1 ;

•canal en terre : K = 40− 60 m1/3s−1 ;

• rivière à galet, rectiligne, section uniforme : K = 30− 40 m1/3s−1 ;

• rivière avec méandre, sinuosité, etc. : K = 20− 30 m1/3s−1 ;

• rivière végétalisée ou torrent : K = 10 m1/3s−1.

↬ On se reportera à la publication Rauheiten in ausgesuchten schweizerischen

Fliessgewässern (en allemand) du Bundesamt für Wasser und Geologie (maintenant

rattaché à l’Office fédéral de l’environnement) pour une analyse de 12 cours d’eau

en Suisse pour différents débits.
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Loi deManning-Strickler

La formule de Manning-Strickler ne s’applique pas sur des fonds très lisses (béton

lissé par exemple). On pose parfois la relation suivante

K < 78ū1/6,

qui fournit la borne supérieure du coefficient K en fonction de la vitesse moyenne ū.

Dans les pays anglo-saxons, on écrit aussi K en fonction du coefficient de Manning

n (sans unité !)

K =
1

n
.

On pourra aussi se référer au site

wwwrcamnl.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/index.htm pour un

catalogue de valeurs de n = 1/K pour différentes rivières (américaines).
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Loi de Darcy-Weisbach

Pour des lits à fond lisse, la loi de Darcy-Weisbach donne de bons résultats

τp = ϱ
f

8
ū2, avec :

1√
f
= −2 log10

(
ks

14,8RH
+

2,51

Re
√
f

)
,

(formule de Colebrook-White où l’on remplace le diamètre hydraulique par 4RH).

Cette équation non linéaire est implicite, et on lui préfère une forme approchée

explicite : √
8

f
= 3,38 + 5,75 log10

RH

d84
.

Attention : le nombre de Reynolds est défini à partir du rayon hydraulique

Re =
4RHū

ν
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Loi de Chézy

La loi de Chézy est la formule historique, peu utilisée aujourd’hui si ce n’est pour

obtenir des ordres de grandeur

τp =
ϱg

C2
ū2,

avec C le coefficient de Chézy variant dans la fourchette 30–90 m1/2s−1 (du plus

rugueux au plus lisse).
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Loi de Keulegan

Adaptée aux lits à gravier rugueux(h/ks < 10), la loi de Keulegan revient à dire que

la contrainte à la paroi est de type Chézy, mais avec un coefficient

C =
√
gκ−1 ln(11h/ks) fonction de la hauteur d’eau et de la rugosité, soit encore :

τp =
κ2

ln2 (11h/ks)
ϱū2,

avec κ la constante de von Kármán et ks une taille caractéristique des rugosités du

lit (ks ≈ 2d90). Actuellement, on préfère employer une loi puissance de type

Manning-Strickler comme la formule de Parker (valable pour h/ks < 5)

C = 8,10
√
g

(
h

ks

)1/6
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Synthèse des principales lois de frottement

Vitesse moyenne ū , hauteur normale hn (pour un canal infiniment large), et pente

de frottement

loi de frottement ū hn jf

Manning-Strickler ū = K
√
iR

2/3
H hn =

(
q

K
√
i

)3/5

jf =
ū2

K2R
4/3
H

Darcy-Weisbach ū =

√
8g

f

√
iR

1/2
H hn =

q

√
f

8gi

2/3

jf =
ū2

2g

f (RH)

4RH

Chézy ū = C
√
iR

1/2
H hn =

(
q

1

C
√
i

)2/3

jf =
ū2

C2RH
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Hauteurs caractéristiques

Pour les écoulements à surface il existe deux hauteurs caractéristiques :

• la hauteur normale, qui correspond à la hauteur d’écoulement en régime

permanent uniforme ;

• la hauteur critique, qui est la hauteur d’écoulement pour laquelle le nombre de

Froude vaut 1.

Ces deux hauteurs jouent un rôle-clé.
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Hauteur normale

La hauteur normale est la profondeur moyenne d’eau en régime permanent

uniforme. Elle se calcule en égalant contrainte pariétale et contrainte motrice. Pour

Manning-Strickler, on a

Q = h̄Bū = KR
2/3
H

√
iS,

(avec S = h̄B = f (hn) la section d’écoulement, B la largeur au miroir, Q le débit

total, h̄ la hauteur moyenne d’eau). Pour un canal infiniment large

(B ≫ h ⇒ RH ≈ h) :

hn =

(
q

K
√
i

)3/5

,

avec q le débit par unité de largeur. La hauteur normale est une fonction du débit et

de la pente.

my header
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Hauteur normale et section d’écoulement en canal

type (a) circulaire (b) rectangulaire (c) trapézöıdal

h R(1− cos δ) h h

S R2(δ − sin δ cos δ) Bh (B + b)h/2

χ 2Rδ B + 2h 2h/ cosϕ + b
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Mécanique des fluides 58
o



Hauteur critique

La hauteur critique étant définie comme étant Fr(hc) = 1, on tire que :

hc =

(
1

g cos θ

Q2

B2

)1/3

,

avec Q le débit total et B la largeur au miroir. Dans le cas d’un canal rectangulaire,

en introduisant le débit par unité de largeur q = Q/B, on tire :

hc =

(
q2

g cos θ

)1/3

.

Dans la plupart des ouvrages, le terme cos θ est omis car la pente est faible et donc

cos θ ≈ 1.

my header
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Résistance à l’écoulement

La résistance à l’écoulement traduit l’effet de la géométrie d’écoulement sur la

dissipation d’énergie. On distingue deux processus

•dissipation locale contrôlée par la rugosité du fond (rugosité de peau) ;

•dissipation à plus grande échelle due aux structures morphologiques (rugosité de

forme).

Ces deux processus peuvent varier dans le temps (pavage, déplacement des

structures du lit).
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Résistance à l’écoulement (2)

Shimizu, Y., S. Giri, S. Yamaguchi, and J. Nelson, Numerical simulation of dune-flat bed transition and stage-discharge relationship with hysteresis effect, Water Resources Research, 45,

W04429, 2009.
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Résistance à l’écoulement : effet de peau

Le coefficient de Manning-Strickler est donné en fonction de la granulométrie telle

que la formule de Meyer-Peter et Müller

K =
26

d
1/6
90

,

ou bien la formule plus de récente de Jäggi

K =
23,2

d
1/6
90

,

ou encore celle de Raudkivi

K =
24

d
1/6
65

,

avec d65 le diamètre des particules tel que 65 % (en poids) des grains du lit aient un

diamètre inférieur. K peut varier avec la granulométrie du lit.
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Résistance à l’écoulement : effet de forme
Variation de n = 1/K au cours d’une crue.

Chollet,

J.-P., and J.A. Cunge, Simulation of unsteady flow in alluvial streams, Applied Mathematical Modelling, 4, 234-244, 1980.

Lorsque le lit présente des structures

morphologiques (comme des dunes), une

sinuosité (méandres), et un fond mobile, la

résistance à l’écoulement peut crôıtre de façon

notable. La dissipation d’énergie est due aux

grandes structures turbulentes générées par les

formes du lit.
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Courbes de remous : canal large

Théorème de Bernoulli entre A et B :
1

ϱg
∆(Ψ + p + k) = ∆

(
yℓ + h +

ū2

2g

)
= ∆H,

On fait l’hypothèse d’un régime permanent (q = ūh = cste) et graduellement varié

(h continue, dH = −jfdx < 0).
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Courbes de remous : canal large

On différentie par rapport à x :

dyℓ
dx

+
dh

dx
+

1

2g

dū2

dx
=

dH

dx
,

soit

− tan θ +
dh

dx
+

1

2g

d

dx

(
q2

h2

)
= −jf .

En posant i = tan |θ| et comme dh−2/dx = −2h′h−3, on a finalement(
1− q2

gh3

)
dh

dx
= jf − i.

Or Fr2 = ū2/(gh) = q2/(gh3).
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Courbes de remous : canal large

L’équation de la surface libre ou de la courbe de remous s’écrit :
dh

dx
=

jf − i

Fr2 − 1
=

N(h)

D(h)

avec Fr2 = ū2/(gh) une fonction de h(x). C’est une équation différentielle non

linéaire du premier ordre.

•quand N = 0 c’est le régime permanent uniforme ;

•quand D = 0 la tangente de la courbe h(x) est verticale : variation brutale de

hauteur d’eau. On est alors en dehors du cadre de nos hypothèses... Lorsque

Fr = 1, l’écoulement ne peut être décrit par l’équation de la courbe de remous.
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Courbes de remous : canal quelconque

Pour des canaux quelconques, on peut montrer que la définition du nombre de

Froude est identique (si on définit h = S/B). En revanche l’équation de remous est

plus complexe car il faut tenir compte des éventuelles variations de la largeur au

miroir B dans la direction d’écoulement ; on montre qu’on aboutit à :

dh

dx
=

1

ϱgS cos θ

χτp − ϱgS sin θ − ϱhū2B′(x)

Fr2 − 1
=

jf − i− Fr2B′h/B

Fr2 − 1
,

avec Fr = ū/
√
gh = Q

√
B/

√
gS3 et h = S/B. Une notion qui reste dangereuse

pour des canaux quelconques...
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Courbes de remous : propagation de l’information

Équation des ondes (linéaires) en eau peu profonde au repos :

∂2η

∂t2
= gh

∂2η

∂x2
⇒ c± = ±

√
gh célérité des ondes

Pour un écoulement d’eau à la vitesse ū, les ondes se propagent à la vitesse

c± = ū±
√
gh =

√
gh

(
ū√
gh

± 1

)
=
√

gh (Fr± 1)

my header
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Régimes sub- et supercritiques

• régime subcritique : Fr < 1, donc c− = ū−
√
gh < 0 et c+ = ū +

√
gh > 0. Les

ondes se propagent dans les deux sens. La condition à la limite de l’équation de la

courbe de remous est fixée par l’aval ;

• régime supercritique : Fr > 1, donc c− = ū−
√
gh > 0 et c+ = ū+

√
gh > 0. Les

ondes se propagent dans le même sens que l’écoulement. La condition à la limite

de l’équation de la courbe de remous est fixée par l’amont ;

• régime critique : Fr → 1, donc c− → 0 et c+ → 0 et outre D → 0. Quand on

résout numériquement l’équation de la courbe de remous, on ne peut pas franchir

continûment la zone h = hc (Froude Fr → 1). Une discontinuité (h′ → ∞) se

produit : c’est un ressaut hydraulique.

my header
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Forme de la courbe de remous

Résolution de l’équation sur [0,L] :

dh

dx
=

jf − i

Fr2 − 1
=

N(h)

D(h)
= i

(hn/h)
10/3 − 1

(hc/h)3 − 1

avec jf = ū2/(K2h4/3) (loi de Manning-Strickler), hc =
3
√
q2/g, et

hn = (q/(K
√
i))3/5. On a h(x) → hn.
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Forme de la courbe de remous

Résolution de l’équation sur [0,L] :

dh

dx
=

jf − i

Fr2 − 1
=

N(h)

D(h)
= i

(hn/h)
10/3 − 1

(hc/h)3 − 1

La courbe h(x) tend toujours vers hn, mais si elle rencontre h = hc, un ressaut

hydraulique se produit.
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Classification des régimes d’écoulement

Il y a classification des courbes de remous en fonction des valeurs respectives de h,

hn, et hc. Quand la pente est positive (tan θ > 0), on a :

•profil de type M (≪ mild ≫) pour pente douce quand hn > hc ;

•profil de type S (≪ steep ≫) pour pente forte quand hn < hc.

Il faut ajouter les profils critiques C quand h = hc. Lorsque la pente est nulle, la

hauteur normale devient infinie, la courbe de remous devient horizontale ; on parle

de profil H. Lorsque la pente est négative, on parle de profil adverse A. Notons qu’il

n’y a pas de hauteur normale dans ce cas-là.
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Classification des régimes d’écoulement : courbesM

•h > hn > hc : la courbe est tangente à hn à l’amont

et sa tangente devient horizontale à l’aval.

•hn > h > hc : la courbe est tangente à hn à l’amont.

Le profil est décroissant (h′ < 0). Sa tangente aurait

tendance à devenir verticale à l’aval car la courbe de

remous croise la hauteur critique.

•hn > hc > h : la courbe est tangente à hn à l’amont.

Le profil est croissant (h′ > 0). À l’aval il se forme un

ressaut.
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Classification des régimes d’écoulement : courbes S

•h > hc > hn : la courbe est tangente à hn à l’aval et

sa tangente tendrait à devenir verticale à l’amont car

la courbe de remous croise la hauteur critique.

•hc > h > hn : la courbe est tangente à hn à l’aval. Le

profil est décroissant (h′ < 0). Sa tangente aurait

tendance à devenir verticale à l’amont.

•hc > hn > h : la courbe est tangente à hn à l’aval. Le

profil est croissant (h′ > 0). À l’aval il se forme un

ressaut.
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Classification des régimes d’écoulement : synthèse
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Ressaut hydraulique

Ressaut hydraulique : variation brutale de h lors du passage super- à subcritique
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Ressaut hydraulique

Mascaret : ressaut mobile (onde de choc). Rivière Zavragia (Tessin) en août 1987.

Voir cours de master
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Ressaut hydraulique

Le ressaut hydraulique est une zone tourbillonnaire qui s’étend sur une certaine

longueur L et se caractérise par une variation brutale de hauteur.

Mathématiquement, on va considérer qu’il s’agit d’une discontinuité, donc qu’en un

point la hauteur passe de h1 à h2.
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Ressaut hydraulique

Considérons un volume de contrôle de longueur L. On fait les hypothèses suivantes

• le fond est peu rugueux et de pente négligeable ;

• l’écoulement est permanent et le débit par unité de largeur vaut q ;
• l’écoulement est unidirectionnel ;
• le ressaut est immobile (sa vitesse de déplacement est nulle) ;

• la pression est hydrostatique loin du ressaut ;

• le profil de vitesse est uniforme.
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Ressaut hydraulique

Les équations de conservation sur le volume de contrôle donnent :

•L’équation de continuité donne : u1h1 = u2h2 = q.

•L’équation de quantité de mouvement∫
∂V

ϱu(u · n)dS =

∫
V

ϱgdV −
∫
∂V

pndS +

∫
∂V

T · ndS

projetée le long de la direction d’écoulement donne :

ϱq(u2 − u1) = −Lτp +
1

2
ϱg(h2

1 − h2
2).
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Ressaut hydraulique

On suppose que l’on connâıt les conditions à l’amont (h1 et u1) et on veut déduire

ce qui se passe à l’aval. Quand on peut négliger le frottement τp, on tire :

h2

h1
=

1

2

(√
1 + 8Fr21 − 1

)
.

Cette relation s’appelle relation de conjugaison car elle permet de relier (conjuguer)

deux arcs de courbes de remous.
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Ressaut hydraulique

Le rapport h2/h1 varie de façon à peu près linéaire avec le nombre de Froude amont

Fr1. La perte de charge associée s’écrit :

∆H = H2 −H1 = h2 − h1 +
u22 − u21

2g
=

(h2 − h1)
3

4h1h2
= h1

(√
1 + 8Fr21 − 3

)3

16

(√
1 + 8Fr21 − 1

).
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Ressaut hydraulique

Évacuateur de crue du barrage d’Oroville (Californie).

Dans les ouvrages hydrauliques, il est essentiel de contrôler la position des ressauts

hydrauliques et de dimensionner les ouvrages pour qu’ils résistent à leur action

érosive.
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Ressaut hydraulique

Évacuateur de crue du barrage d’Oroville (Californie) en février 2017.
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Ressaut hydraulique

Les ressauts peuvent provoquer un vieillissement des conduites et provoquer leur

rupture (ici, Naples le 22 février 2015).
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Ressaut hydraulique

Les ressauts se forment lors du passage supercritique → subcritique, souvent lors

d’un changement de pente, mais parfois aussi lorsqu’il y a contraction puis

élargissement de l’écoulement (p. ex. au passage des piles d’un pont).
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Classification des ressauts hydrauliques

(a) Fr = 1 à 1,7 : ressaut ondulé
(b) Fr = 1,7 à 2,5 : ressaut faible
(c) Fr = 2,5 à 4,5 : ressaut oscillant
(d) Fr = 4,5 à 9 : ressaut stationnaire
(e) Fr > 9 : ressaut fort

La forme des ressauts dépend principalement du nombre de Froude.
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Conjugaison des courbes

Un ressaut prend place entre deux branches super- et subcritique. Comment le

positionner ?
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Conjugaison des courbes

On calcule la courbe conjuguée de la branche amont ham que l’on note h = hc
2(x)

hc
2(x)

ham(x)
=

1

2

(√
1 + 8Fr21(x)− 1

)
L’intersection de hc

2(x) et hav(x) donne la position du ressaut et h2.
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Mécanique des fluides 89
o



Écoulement au-dessus d’un obstacle

Écoulement d’un débit (par unité de largeur) q = h0u0 en régime permanent. Le

nombre de Froude à l’amont est F0 = u0/
√
gh0.
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Écoulement au-dessus d’un obstacle

Sous forme différentielle, le théorème de Bernoulli nous dit que

d

dx

(
ū2

2g
+ h + z

)
= 0,

tandis que la conservation du débit entrâıne
d

dx
(hū) = 0 ⇒ ūh = u0h0.
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Écoulement au-dessus d’un obstacle

En tout point x, on a aussi :

ū2

2g
+ h + z =

ū20
2g

+ h0 + z0,

qui peut se transformer en divisant par h0 (et avec z0 = 0)

1

2

(
F0
h0

h

)2

+
h

h0
+

z

h0
=

1

2
F 2
0 + 1.

Si l’on différentie cette équation par x, on obtient(
ū2

gh
− 1

)
dh

dx
=

dz

dx
,

my header
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Écoulement au-dessus d’un obstacle

(
ū2

gh
− 1

)
dh

dx
=

dz

dx
,

Conséquences :

• sur la crête de l’obstacle (z = zm) on doit avoir soit Fr = ū/
√
gh = 1

(écoulement critique) soit h′ = 0 ;

•chaque fois que Fr = ū/
√
gh = 1 (écoulement critique), z′ = 0 ;

•un écoulement subcritique (F0 < 1) reste subcritique (et réciproquement pour un

écoulement supercritique) ;

• il existe une hauteur maximale d’obstacle associée à un nombre de Froude Fr = 1
zmax

h0
= 1− 3

2
F

2/3
0 +

1

2
F 2
0 .
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Chute d’eau

Le passage sub- à supercritique s’observe pour des ouvrages avec des chutes d’eau,

des cascades, etc.
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Seuil et déversoir

Les seuils sont des ouvrages hydrauliques qui servent à contrôler le niveau d’eau, par

exemple pour alimenter une prise d’eau (barrage d’Émosson, VS).
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Seuil et déversoir

Barrage de la Rouvière, Gard (crue de septembre 2002)

Les seuils sont aussi des ouvrages de protection (écrêteur de crue).
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Seuil et déversoir

Conservation de la charge hydraulique entre A et B :

zA + hA +
u2A
2g

= zB + hB +
u2B
2g

.

Hypothèse : la hauteur critique est atteinte au sommet de l’obstacle (p pelle)

hB = hc =
3
√

q2/g,

La conservation de la masse implique : q = uAhA = uBhB.
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Seuil et déversoir

Conservation de la charge hydraulique entre A et B :

h +
q2

2gh2
= p +

q2/3

3
√
g
+
q4/3

2g
3
√
g.

C’est une équation polynomiale de degré 3 en h (ou q2/3). En B, on a

h = hc =
3
√
q2/g, soit q =

√
gh3

c.

my header
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Seuil et déversoir

L’équation du seuil s’écrit aussi en fonction de la charge hydraulique à l’amont (en

A). C’est l’équation du seuil (dénoyé) :

HA = HB = hc +
q2

2gh2
c

+ p =
3

2
hc + p ⇒ q = CD

√
g (HA − p)3/2 ,

avec CD = (2/3)3/2 ≈ 0,54 le coefficient de débit en l’absence de perte de charge

(dans le cas réel, CD prend des valeurs plus petites).
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Parshall

convergence crête du déversoir

coursier

divergent

écoulement

ressaut hydraulique

écoulement

vue en plan

vue en coupe

seuil noyé
seuil dénoyé

puits de mesure

D’autres systèmes similaires tels que le Parshall (combinant une chute d’eau et une

contraction de l’écoulement) existent pour mesurer et contrôler un débit.
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Parshall

On peut montrer que le débit est lié à la hauteur d’eau h mesurée sur la crête du

déversoir (de largeur B)

Q ≈ 1,7Bh3/2
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Réponses au quiz de relaxation

Question 1. La forme de la courbe de remous dépend du

nombre de Froude : elle présente un minimum quand Fr < 1

et un maximum quand Fr > 1.

Question 2. Il se forme un jet, puis un ressaut hydraulique,

qui favorise la dissipation d’énergie.
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