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Mécanique des fluides

Section de génie civil

Résolution d’équations implicites

Introduction

Une équation implicite f(x,y,z,...) =0 est une équation dont la variable
d’intérét x ne peut pas étre isolée. En d’autres mots, il nous est impossible
de écrire sous forme x = ¢(y, z,...). On ne parvient pas a trouver x par
un calcul direct.

Deux exemples récurrents en hydraulique sont le calcul de la hauteur d’eau
h pour une charge H donnée et le calcul de la hauteur normale h,,. Pour le
premier exemple, on cherche a résoudre

Q2
H=z+h+ —— 1
2gS(h)? (1)
Ou la seule inconnue est h. Il n’est possible d’isoler h que si la forme de
S(h) le permet. En conséquence, cette équation implicite se résout numéri-
quement. Le deuxiéme exemple est un cas similaire ot il est souvent difficile
d’isoler h. Avec la loi de Manning-Strickler, I’équation implicite est

Q(h) = KRy (h)**S(h)Vi. (2)

Trois différentes méthodes de résolution sont présentées ici :

— Le calcul itératif (avec une calculatrice)
— La résolution numérique (méthode itérative également) avec du code
— La méthode graphique

Premierement, la résolution d’une seule équation est présentée ci-dessous
avant de s’intéresser aux systemes d’équations implicites ot on ne parlera
que de la méthode numérique.



Résolution d’une équation implicite :

Calcul d’une hauteur normale

Prenons I'exemple du calcul de la hauteur normale pour une section tra-
pézoidale avec une pente des berges a 45°, de largeur de fond b = 5m, de

rugosité K =40m'/3s~! pour un débit de 100m3s~! et une pente i de
0,17 %. La section est dessinée sur la figure 1.
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F1GURE 1 — Coupe en travers du canal

La section et le périmetre mouillés s’expriment comme :

S=(b+h)h, P=b+2V2h (3)

En substituant les expressions du périmetre et de la section mouillée dans
I’équation 4, on arrive a 1’équation implicite a résoudre.
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Calcul itératif

Commencons par exprimer h, sans ’isoler completement afin d’avoir équa-
tion de la forme h,, = f(hy,) :

fn =3 +1 Ion <K?ﬁ)3/5 (b+ Qﬁhn)m (5)

Pour la résoudre, on va examiner la suite

hijy = th (K?ﬁ>3/5 (b+ 2\/§hi)2/5 (6)
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qui peut soit diverger, soit converger vers un point fixe qui sera une solution.
Cela dépend de la forme de I’équation et du choix de la valeur initiale qui
doit étre proche de la solution réelle. Si la fonction f a une dérivée continue
et | f'(hn)| < 1, le point fixe est attractif et la suite converge !.

Pour trouver une bonne solution initiale dans le cas général d’une fonction
g(z) monotone autour de sa racine, trouver deux valeurs x; et x2 (que 'on
pense proches de la solution) ou

g(r1) <0< g(z2) (7)

Offre de grandes chances que la racine soit comprise entre x1 et xs. Dans le
cas hy, = f(hy), on cherche donc hpp — f(hp1) <0 < hpa — f(hn2).

>>> b =5

>>> Q = 100
3 >>> K = 40

>>> i = 0.17/100
5 >>> hnl = 1

>>> hnl - 1/(b+hn1)*(Q/K/i70.5) " (3/5)*(b+27(3/2)*hn1) ~(2/5)
-3.456027717969377

8 >>> hn2 = 10

>>> hn2 - 1/(b+hn2)*(Q/K/i70.5) ~(3/5)*(b+2~(3/2)*hn2) ~(2/5)
6.819951886864983

Les conditions sur h,; et h,o sont bien remplies et on peut choisir la so-
lution initiale quelque part entre 1 et 10, prenons h,, = 5m. En injectant
cette nouvelle valeur dans 1’équation 6, on obtient une nouvelle hauteur
normale.

>>> 5.
>>> 1/(b+ANS)*(Q/K/170.5) " (3/5) *(b+2~(3/2) *ANS) ~(2/5)

3 3.8231865032854824

O ans est la réponse précédente. Cette nouvelle hauteur normale A, = 3,82m
est tres différente de la valeur précédente h, = h; = 5m, ce qui veut dire
que la suite n’a pas encore convergé. Il faut réitérer le calcul jusqu’a ce que
la différence entre deux résultats consécutifs soit infime.

>>> 1/(b+ANS)*(Q/K/170.5) ~(3/5) *(b+2~(3/2) *ANS) ~(2/5)

5 3.9098553659096287

>>> 1/(b+ANS)*(Q/K/i70.5) ~(3/5) *(b+27(3/2) *ANS) ~(2/5)

7 4.014359084566256

>>> 1/(b+ANS)*(Q/K/1i70.5) " (3/5) *(b+2~(3/2) *ANS) ~(2/5)
3.9824239743546506
>>> 1/(b+ANS)*(Q/K/1i70.5) ~(3/5) *(b+2~(3/2) *ANS) ~(2/5)
3.9877385996424817
>>> 1/(b+ANS)*(Q/K/1i70.5) ~(3/5) *(b+2~(3/2) *ANS) ~(2/5)

3 3.986853561962517

Le résultat ne varie plus beaucoup, il a donc convergé et la hauteur normale
vaut finalement h,, = 3,99 m.

1. Selon le théoréme du point fixe (de Banach), https://fr.wikipedia.org/wiki/
Point_fixe


https://fr.wikipedia.org/wiki/Point_fixe
https://fr.wikipedia.org/wiki/Point_fixe
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On peut aussi employer la dichotomie ou la méthode de Newton. Elles sont
décrites dans le GitHub du cours :
https://github.com/cancey/introduction-hydraulique/blob/main/1_
hauteur-normale.ipynb.

Solveur numérique

Il existe de nombreux de solveurs d’équations non linéaires dans différents
langages de programmation (Mathematica, MATLAB, Python, etc.). On
donne ici un exemple en Python avec la librairie scipy dont le module optimize
contient une pléthore de fonctions utiles & notre probleme. On peut notam-
ment employer la méthode de newton pour résoudre 1’équation 4 2.

Il faut commencer par importer la fonction d’optimisation et initialiser les
variables.

from scipy.optimize import newton

b = 5.

K = 40.

Q = 100.

i = 0.17/100

I1 faut ensuite définir la fonction dont on cherche la racine.

def gms_root (hn):
"""Formule de (Gauckler-)Manning-Strickler
S (b+hn) *hn
P = b + 2*%2%x0.5%xhn
return (K * (S/P)**x(2/3) * S * i**x0.5) - Q # = 0

Puis finalement appliquer la méthode de Newton en y insérant une solution
initiale. Cette derniere doit étre assez proche de la solution recherchée pour
s’assurer de converger vers la bonne solution. Pour une fonction monotone,
on peut se référer a 'inégalité 7. Le premier argument a la fonction newton(
fonction_nulle_a_résoudre, solution_initiale).

hn = newton(gms_root, 5.0)
print (hn) # 3,99

Ce qui donne une hauteur normale h,, = 3,99 m, ce résultat est en accord
avec la méthode précédente.

Méthode graphique

C’est la plus simple et la plus stire quand on sait quelle plage de valeurs
observer. De plus, elle permet de voir rapidement s’il existe plusieurs so-
lutions. 11 suffit de tracer la fonction Q(h,), chercher I'intersection avec le
débit voulu @Q = 100m3s~! et lire 'abscisse correspondante.

2. Une autre méthode populaire de scipy est fsolve : https://docs.scipy.org/doc/
scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root. Elle
permet également de résoudre un systéme d’équations.


https://github.com/cancey/introduction-hydraulique/blob/main/1_hauteur-normale.ipynb
https://github.com/cancey/introduction-hydraulique/blob/main/1_hauteur-normale.ipynb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root

1 import numpy as np
2 from matplotlib import pyplot as plt

= 5.

; = 40.

6 Q_cible = 100.

71 = 0.17/100

8 hn = np.linspace(0, 10, num=100)

9 # hn = np.logspace(-1, 1, num=100)

= T

11 8 = (b+hn)*hn
12 P = Db + 2%2%x0.5xhn
13 Q = K¥(S/P)**(2/3)*S*i**0.5

15 plt.axline((hn[0], Q_cible), slope=0, 1ls="-.", label=r"$Q=100$ m$ " \mathrm
{3}8$/s")

16 plt.axline((3.99, Q_cible), slope=float("inf"), 1s=":", label="$h_n=3.99%
o"

17 plt.plot(hn, Q, label="GMS")
18 plt.xlabel("$h_n$")

19 plt.ylabel("$Q$")

20 plt.legend()

21 plt.show()

700 .

600 -

500 1

400 1

300 ~

200

100

FIGURE 2 — Courbe Q(h,) pour le canal trapézoidal.

Le croisement des lignes sur la figure 2 marque la solution et est en accord

avec les résultats des méthodes précédentes.



Résolution d’une équation implicite :
Hauteur d’eau a partir de la charge.

Quand on veut déterminer la hauteur d’eau aprés un ressaut ou suite a un
seuil, une solution est de partir de la charge connue a ’amont. On se retrouve
alors dans le cas de I’équation 1. En y injectant I'expression de la section
mouillée en 3, ’équation a résoudre est

2
H:z+h+2 @ (8)

(b+ h)?h2g’

L’importance de la solution initiale

Cette équations a de multiples solutions dont deux sont physiques (h > 0).
On convergera vers une solution ou vers une autre selon le choix de la solution
initiale. Dans le cas du seuil, la solution obtenue est subcritique quand la
solution initiale est supérieure a la hauteur critique (minimum de charge
spécifique) et supercritique sinon (voir figure 3).

70
------ H, =10.0 m

60 [ h = hsubcritique
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F1Gure 3 — Charge spécifique H, = H — z en fonction de h. Deux solutions
sont obtenues pour deux solutions initiales.

On trouve que pour une charge H = 10m, la hauteur peut étre de h = 1,22 m
en régime supercritique ou A = 9,98 m régime subcritique.



Point fixe, dérivée et convergence

Méme si le point fixe (solution a h = f(h)) a une équation existe, la méthode
itérative n’y convergera pas pour toute fonction f car, d’apres le théoreme
du point fixe, il faut que |f'(h)| < 1. Essayons d’isoler un h dans 1’équation
8, ¢’est une équation du cinquieme degré :

2
(b+h)2h% — (b+ h)?h*H, + = =0, (9)

29
Q
(b+ hi)/29(H — hi)
Si on essaie de résoudre ’équation 10 par la méthode itérative, on ne trou-

vera que la solution supercritique car le calcul diverge autour de la solution
subcritique. C’est parce que la dérivée de f’ est trop grande au voisinage de

= h=

(10)

hsubcrnique'

Par exemple, avec une solution initiale h = 1 m,

>>> b =5
>>> H_ = 10.
>>> Q = 100.
>>> g = 9.81
5 >>> 1.
5 1.0

7 >>> Q/(b+_) / (2xgx(H_-_))**0.5
1.2542323360714747

>>> Q/(b+_) / (2%g*x(H_-_))*%0.5
1.2206116757663512

>>> Q/(b+_) / (2*%g*(H_-_))**0.5
2 1.224856687932349

3 >>> Q/(b+_) / (2xg*x(H_-_))**0.5
1.2243174295231

5 >>> Q/(b+_) / (2%g*(H_-_))*%0.5
1.2243858806671144

La solution supercritique h = 1,22 m est obtenue. Alors que pour une solu-
tion initiale h = 9,9771742m (c’est-a-dire extrémement proche de la solu-
tion subcritique),

7>>> 9.9771742

9.9771742

>>> Q/(b+_) / (2*%g*(H_-_))**0.5
9.977175544777532

>>> Q/(b+_) / (2%g*x(H_-_))*%0.5
9.977468563573513

>>> Q/(b+_) / (2%g*x(H_-_))*%0.5
10.041940455575565

5 >>> Q/(b+_) / (2%g*x(H_-_))*%0.5
(4.487566708955747e-16-7.32875260373875375)

On s’éloigne de plus en plus de la solution. Pourtant, le point fixe subcritique
existe bel et bien :



27 >>> h = 9.977174193799552
28 >>> Q/(b+h) / (2*g*(H_-h))"0.5
29 9.97717419379785

On dit que le point fixe supercritique est attractif alors que le point fixe sub-
critique ne ’est pas. Selon la maniére d’isoler un des termes h, attractivité
des points peut changer.
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FIGURE 4 — Graphique de la fonction récursive (en haut), sa dérivée (au
milieu) et diagramme montrant Pattractivité du point fixe supercritque (en

bas).



Résolution d’un systeme d’équations implicites :
Conduites en parallele
Un glissement de terrain détruit le chateau d’eau d’un village. Pour avoir

acces a ’eau potable, le systeme est raccordé a celui d’un autre village plus
en amont. Deux conduites sont alors en paralléele comme sur la figure 5.

A B L17 Dl E F
]
Ancien I
réservoir L\\ C Ly, Dy D

FIGURE 5 — Deux réservoirs connectés a un lac via des conduites en charge.

Connaissant la chute de charge hydraulique AH entre le point A et le point
F, on cherche & connaitre le débit qui s’écoule naturellement (lorsqu’on ne
préleve pas d’eau entre A et F). Pour cela, il faut exprimer la conservation
de la charge par les deux conduites. Un systeme de deux équations implicites
se forme quand les pertes de charges singulieres et régulieres sont prises en
compte :

L
AH = AHaper = 23 + hir v (11)
AH = AH —2<“A-+(2g+f[’2>“2 (12)
— ABEF — e 29 c 2D2 297
| ks 2,51y
:-—Q91h1(027 ), i=1,2. 13
V f’L \/ i D ( )

2
Ou uyg = vy + UQ% est la vitesse dans la conduite simple, (. et (. sont

les coefficients de peite de charge singuliére pour les embranchements et les
coudes respectivement. On prendra (, = 1,3 et (. = 1,0. Pour réduire le
nombre d’équations, il est possible d’isoler u; dans la formule de Colebrook
(13) et d’injecter I'expression dans les conservations de la charge (11 et 12).
On obtient ainsi

[C(f1) + C(f2)D3/D3] flﬂc(fl)z

2¢g Dy 2g

AH —2(, =0, (14)
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2
AH_ngC(fl”CQ(f)D%/D%] —(2cc+f2§22)c(2f;)2=0, (15)

Ou C est l'expression de u; selon I’équation de Colebrook (13) :

v 2,51
Divfi o=1/(090W5E) _o o7, /D,

U; = C(fl) = s 1= 1,2. (16)

De nombreux solveurs de systémes d’équations existent, chacun avec une ou
plusieurs méthodes numériques différentes (par exemple root, fsolve, minimize,
least_squares... dans scipy). On peut utiliser least_squares pOuUr minimiser les
fonctions 14 et 15 et préciser I'intervalle de valeurs de f1 et fo.

import numpy as np

from scipy.optimize import least_squares

# Paramétres du probléme

g = 9.81
L1 = 8e3
L2 = 18
D1 = 2.
D2 = 1.

nu = 1.31e-6
ks = 0.01e-3
DH = 5

# Expression de la vitesse en fonction du coefficient de frottement u=C(f)
def colebrook(f, D):
return (
nu/D*2.51/(np.sqrt (f)*(np.exp(-(1/(0.91*np.sqrt(£))))-0.27*ks/D))
)

# Systéme d'équations & résoudre
def system(f_vector, D=(D1, D2)):

# Calcul des vitesses d'écoulement & partir du frottement
f1, £f2 = f_vector

ul = colebrook(fi, D1)

u2 = colebrook(f2, D2)

# Pertes de charge singuliéres
uA = ul + u2x(D1/D2) **2

DH_B = 1.3*ul**2/(2%g)

DH_E = 1.3%ulA**2/(2xg)

DH_C 1.0%xu2**2/(2*g)

DH_D 1.0*u2**2/(2*g)

# Pertes de charge réguliéres
DH1 = f1%L1/D1 * ul#**2/(2*%g) + DH_B+DH_E
DH2 = f2%L2/D2 * u2#**2/(2*g) + DH_B+DH_C+DH_D+DH_E

return DH1 - DH, DH2 - DH

x0 = 0.09, 0.09 # Solution initiale
result = least_squares(
system,
x0=x0,
bounds=((0.008, 0.008), (0.1, 0.1))
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46 )

17 £f1, £2 = result.x

18 ul = colebrook(fi, D1)

19 u2 = colebrook(f2, D2)
50 print (£"{f1 = :.5f}, {f2
51 print (£"{ul = :.5f}, {u2

: . Bf}")
:.6E£}")

On peut aussi employer une méthode graphique en tracant les lignes de
niveau des surfaces AH;(f1, fo) et AHs(f1, f2) ou elles valent AH. 11 est
ainsi plus aisé de trouver la ou les racines du probléme comme a la figure

6.

from matplotlib import pyplot as plt
f1_sol, f2_sol = f1, £f2

56 # On observe une grande plage de valeurs possibles (abaque de Moody)
57 f1 = np.logspace(np.logl10(0.008), np.logl10(0.1), num=1000)
58 £2 = np.logspace(np.logl10(0.008), np.logl10(0.1), num=1000)

60 # I1 faut générer une grille pour chaque variable
61 F1, F2 = np.meshgrid(f1, £2)
62 DH1, DH2 = np.array(system((F1, F2))) + DH

64 plt.imshow(DH1, extent=(f1[0], f1[-1],f2[0],f2[-1]), origin="lower")
65 plt.colorbar ()

66 plt.loglog()

67 plt.xlabel("$f_1$")

68 plt.ylabel ("$f_28%")

69 plt.title(r"$\Delta H_1$")

plt.gca() .set_aspect("auto")

~

[

plt.figure()
plt.imshow(DH2,extent=(£f1[0],f1[-1],f2[0],f2[-1]) ,origin="1lower")
plt.colorbar ()

plt.loglog()

plt.xlabel ("$£_1$")

plt.ylabel ("$f_28")

plt.title(r"$\Delta H_2$")

9 plt.gca().set_aspect("auto")
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81 plt.figure(layout="tight", figsize=)

82 plt.scatter(fl_sol, f2_sol, label="Solution", zorder=np.inf)
83 ¢l = plt.contour(F1, F2, DH1, levels=[DH], colors=["r"])
814 ¢2 = plt.contour(F1, F2, DH2, levels=[DH], colors=["g"])
85 plt.clabel(cl, cl.levels, fmt=r"$\Delta H_1 = \Delta H$")
86 plt.clabel(c2, c2.levels, fmt=r"$\Delta H_2 = \Delta H$")
87 plt.clabel(cl, cl.levels)

88 plt.clabel(c2, c2.levels)

89 plt.loglog()

90 plt.ylim(1.06e-2, 1.15e-2)

91 plt.xlabel ("$f_18$")

92 plt.ylabel("$f_2%")

93 plt.legend()

94 plt.gca().set_aspect("auto")

95 plt.show()

La démarche pour résoudre des systemes est plus laborieuse, il vaut mieux
réduire le systéme afin de résoudre un minimum d’équations numériquement.
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FIGURE 6 — Lignes de niveau des foctions AH; et AHs. Les deux courbes
se croisent en la solution.

Par exemple, en explicitant les variables u; et uo dans les équations 14 et
15, deux équations sont sorties du systeme. Réduire le nombre de variables
permet également de converger plus siirement.
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