
Mécanique des fluides
Section de génie civil

Résolution d’équations implicites

Introduction
Une équation implicite f(x, y, z, . . .) = 0 est une équation dont la variable
d’intérêt x ne peut pas être isolée. En d’autres mots, il nous est impossible
de l’écrire sous forme x = g(y, z, . . .). On ne parvient pas à trouver x par
un calcul direct.

Deux exemples récurrents en hydraulique sont le calcul de la hauteur d’eau
h pour une charge H donnée et le calcul de la hauteur normale hn. Pour le
premier exemple, on cherche à résoudre

H = z + h + Q2

2gS(h)2 (1)

Où la seule inconnue est h. Il n’est possible d’isoler h que si la forme de
S(h) le permet. En conséquence, cette équation implicite se résout numéri-
quement. Le deuxième exemple est un cas similaire où il est souvent difficile
d’isoler h. Avec la loi de Manning-Strickler, l’équation implicite est

Q(h) = KRH(h)2/3S(h)
√

i. (2)

Trois différentes méthodes de résolution sont présentées ici :

— Le calcul itératif (avec une calculatrice)
— La résolution numérique (méthode itérative également) avec du code
— La méthode graphique

Premièrement, la résolution d’une seule équation est présentée ci-dessous
avant de s’intéresser aux systèmes d’équations implicites où on ne parlera
que de la méthode numérique.

1

Résolution d’une équation implicite :
Calcul d’une hauteur normale
Prenons l’exemple du calcul de la hauteur normale pour une section tra-
pézoïdale avec une pente des berges à 45°, de largeur de fond b = 5 m, de
rugosité K = 40 m1/3 s−1 pour un débit de 100 m3 s−1 et une pente i de
0,17 %. La section est dessinée sur la figure 1.

Figure 1 – Coupe en travers du canal

La section et le périmètre mouillés s’expriment comme :

S = (b + h)h, P = b + 2
√

2h (3)

En substituant les expressions du périmètre et de la section mouillée dans
l’équation 4, on arrive à l’équation implicite à résoudre.

Q = K
[(b + hn)hn]5/3

(b + 2
√

2hn)2/3

√
i (4)

Calcul itératif
Commençons par exprimer hn sans l’isoler complètement afin d’avoir équa-
tion de la forme hn = f(hn) :

hn = 1
b + hn

(
Q

K
√

i

)3/5 (
b + 2

√
2hn

)2/5
(5)

Pour la résoudre, on va examiner la suite

hi+1 = 1
b + hi

(
Q

K
√

i

)3/5 (
b + 2

√
2hi

)2/5
(6)

2

qui peut soit diverger, soit converger vers un point fixe qui sera une solution.
Cela dépend de la forme de l’équation et du choix de la valeur initiale qui
doit être proche de la solution réelle. Si la fonction f a une dérivée continue
et |f ′(hn)| < 1, le point fixe est attractif et la suite converge 1.

Pour trouver une bonne solution initiale dans le cas général d’une fonction
g(x) monotone autour de sa racine, trouver deux valeurs x1 et x2 (que l’on
pense proches de la solution) où

g(x1) < 0 < g(x2) (7)

Offre de grandes chances que la racine soit comprise entre x1 et x2. Dans le
cas hn = f(hn), on cherche donc hn1 − f(hn1) < 0 < hn2 − f(hn2).

1 >>> b = 5
2 >>> Q = 100
3 >>> K = 40
4 >>> i = 0.17/100
5 >>> hn1 = 1
6 >>> hn1 - 1/(b+hn1)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*hn1)^(2/5)
7 -3.456027717969377
8 >>> hn2 = 10
9 >>> hn2 - 1/(b+hn2)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*hn2)^(2/5)

10 6.819951886864983

Les conditions sur hn1 et hn2 sont bien remplies et on peut choisir la so-
lution initiale quelque part entre 1 et 10, prenons hn = 5 m. En injectant
cette nouvelle valeur dans l’équation 6, on obtient une nouvelle hauteur
normale.

11 >>> 5.
12 >>> 1/(b+ANS)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*ANS)^(2/5)
13 3.8231865032854824

Où ANS est la réponse précédente. Cette nouvelle hauteur normale hn = 3,82 m
est très différente de la valeur précédente hn = h1 = 5 m, ce qui veut dire
que la suite n’a pas encore convergé. Il faut réitérer le calcul jusqu’à ce que
la différence entre deux résultats consécutifs soit infime.

14 >>> 1/(b+ANS)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*ANS)^(2/5)
15 3.9098553659096287
16 >>> 1/(b+ANS)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*ANS)^(2/5)
17 4.014359084566256
18 >>> 1/(b+ANS)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*ANS)^(2/5)
19 3.9824239743546506
20 >>> 1/(b+ANS)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*ANS)^(2/5)
21 3.9877385996424817
22 >>> 1/(b+ANS)*(Q/K/i^0.5)^(3/5)*(b+2^(3/2)*ANS)^(2/5)
23 3.986853561962517

Le résultat ne varie plus beaucoup, il a donc convergé et la hauteur normale
vaut finalement hn = 3,99 m.

1. Selon le théorème du point fixe (de Banach), https://fr.wikipedia.org/wiki/
Point_fixe

3

https://fr.wikipedia.org/wiki/Point_fixe
https://fr.wikipedia.org/wiki/Point_fixe

On peut aussi employer la dichotomie ou la méthode de Newton. Elles sont
décrites dans le GitHub du cours :
https://github.com/cancey/introduction-hydraulique/blob/main/1_
hauteur-normale.ipynb.

Solveur numérique
Il existe de nombreux de solveurs d’équations non linéaires dans différents
langages de programmation (Mathematica, MATLAB, Python, etc.). On
donne ici un exemple en Python avec la librairie scipy dont le module optimize

contient une pléthore de fonctions utiles à notre problème. On peut notam-
ment employer la méthode de newton pour résoudre l’équation 4 2.

Il faut commencer par importer la fonction d’optimisation et initialiser les
variables.

1 from scipy.optimize import newton
2 b = 5.
3 K = 40.
4 Q = 100.
5 i = 0.17/100

Il faut ensuite définir la fonction dont on cherche la racine.
6 def gms_root(hn):
7 """Formule de (Gauckler-)Manning-Strickler"""
8 S = (b+hn)*hn
9 P = b + 2*2**0.5*hn

10 return (K * (S/P)**(2/3) * S * i**0.5) - Q # = 0

Puis finalement appliquer la méthode de Newton en y insérant une solution
initiale. Cette dernière doit être assez proche de la solution recherchée pour
s’assurer de converger vers la bonne solution. Pour une fonction monotone,
on peut se référer à l’inégalité 7. Le premier argument à la fonction newton(

fonction_nulle_à_résoudre, solution_initiale).
11 hn = newton(gms_root, 5.0)
12 print(hn) # 3,99

Ce qui donne une hauteur normale hn = 3,99 m, ce résultat est en accord
avec la méthode précédente.

Méthode graphique
C’est la plus simple et la plus sûre quand on sait quelle plage de valeurs
observer. De plus, elle permet de voir rapidement s’il existe plusieurs so-
lutions. Il suffit de tracer la fonction Q(hn), chercher l’intersection avec le
débit voulu Q = 100 m3 s−1 et lire l’abscisse correspondante.

2. Une autre méthode populaire de scipy est fsolve : https://docs.scipy.org/doc/
scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root. Elle
permet également de résoudre un système d’équations.

4

https://github.com/cancey/introduction-hydraulique/blob/main/1_hauteur-normale.ipynb
https://github.com/cancey/introduction-hydraulique/blob/main/1_hauteur-normale.ipynb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root

1 import numpy as np
2 from matplotlib import pyplot as plt
3
4 b = 5.
5 K = 40.
6 Q_cible = 100.
7 i = 0.17/100
8 hn = np.linspace(0, 10, num=100)
9 # hn = np.logspace(-1, 1, num=100)

10
11 S = (b+hn)*hn
12 P = b + 2*2**0.5*hn
13 Q = K*(S/P)**(2/3)*S*i**0.5
14
15 plt.axline((hn[0], Q_cible), slope=0, ls="-.", label=r"$Q=100$ m$^\mathrm

{3}$/s")
16 plt.axline((3.99, Q_cible), slope=float("inf"), ls=":", label="$h_n=3.99$

m")
17 plt.plot(hn, Q, label="GMS")
18 plt.xlabel("h_n")
19 plt.ylabel("Q")
20 plt.legend()
21 plt.show()

0 2 4 6 8 10
hn

0

100

200

300

400

500

600

700

Q

Q = 100 m3/s
hn = 3.99 m
GMS

Figure 2 – Courbe Q(hn) pour le canal trapézoïdal.

Le croisement des lignes sur la figure 2 marque la solution et est en accord
avec les résultats des méthodes précédentes.

5

Résolution d’une équation implicite :
Hauteur d’eau à partir de la charge.
Quand on veut déterminer la hauteur d’eau après un ressaut ou suite à un
seuil, une solution est de partir de la charge connue à l’amont. On se retrouve
alors dans le cas de l’équation 1. En y injectant l’expression de la section
mouillée en 3, l’équation à résoudre est

H = z + h + Q2

2(b + h)2h2g
. (8)

L’importance de la solution initiale
Cette équations a de multiples solutions dont deux sont physiques (h > 0).
On convergera vers une solution ou vers une autre selon le choix de la solution
initiale. Dans le cas du seuil, la solution obtenue est subcritique quand la
solution initiale est supérieure à la hauteur critique (minimum de charge
spécifique) et supercritique sinon (voir figure 3).

0 2 4 6 8 10
h

10

20

30

40

50

60

70

H
∗(

h
)

H∗ = 10.0 m
h = hsubcritique

h = hsupercritique

Figure 3 – Charge spécifique H∗ = H − z en fonction de h. Deux solutions
sont obtenues pour deux solutions initiales.

On trouve que pour une charge H = 10 m, la hauteur peut être de h = 1,22 m
en régime supercritique ou h = 9,98 m régime subcritique.

6

Point fixe, dérivée et convergence
Même si le point fixe (solution à h = f(h)) à une équation existe, la méthode
itérative n’y convergera pas pour toute fonction f car, d’après le théorème
du point fixe, il faut que |f ′(h)| < 1. Essayons d’isoler un h dans l’équation
8, c’est une équation du cinquième degré :

(b + h)2h3 − (b + h)2h2H∗ + Q2

2g
= 0, (9)

⇒ h = Q

(b + hi)
√

2g(H − hi)
. (10)

Si on essaie de résoudre l’équation 10 par la méthode itérative, on ne trou-
vera que la solution supercritique car le calcul diverge autour de la solution
subcritique. C’est parce que la dérivée de f ′ est trop grande au voisinage de
hsubcritique.

Par exemple, avec une solution initiale h = 1 m,
1 >>> b = 5
2 >>> H_ = 10.
3 >>> Q = 100.
4 >>> g = 9.81
5 >>> 1.
6 1.0
7 >>> Q/(b+_) / (2*g*(H_-_))**0.5
8 1.2542323360714747
9 >>> Q/(b+_) / (2*g*(H_-_))**0.5

10 1.2206116757663512
11 >>> Q/(b+_) / (2*g*(H_-_))**0.5
12 1.224856687932349
13 >>> Q/(b+_) / (2*g*(H_-_))**0.5
14 1.2243174295231
15 >>> Q/(b+_) / (2*g*(H_-_))**0.5
16 1.2243858806671144

La solution supercritique h = 1,22 m est obtenue. Alors que pour une solu-
tion initiale h = 9,977 174 2 m (c’est-à-dire extrêmement proche de la solu-
tion subcritique),

17 >>> 9.9771742
18 9.9771742
19 >>> Q/(b+_) / (2*g*(H_-_))**0.5
20 9.977175544777532
21 >>> Q/(b+_) / (2*g*(H_-_))**0.5
22 9.977468563573513
23 >>> Q/(b+_) / (2*g*(H_-_))**0.5
24 10.041940455575565
25 >>> Q/(b+_) / (2*g*(H_-_))**0.5
26 (4.487566708955747e-16-7.328752603738753j)

On s’éloigne de plus en plus de la solution. Pourtant, le point fixe subcritique
existe bel et bien :

7

27 >>> h = 9.977174193799552
28 >>> Q/(b+h) / (2*g*(H_-h))^0.5
29 9.97717419379785

On dit que le point fixe supercritique est attractif alors que le point fixe sub-
critique ne l’est pas. Selon la manière d’isoler un des termes h, l’attractivité
des points peut changer.

0 2 4 6 8 10
h

0

5

10

15

f
(h

)=
Q

(b
+

h
)√

2g
(H

∗
−

h
)

hsupercritique

hsubcritique

f(h)

−1.0

−0.5

0.0

0.5

1.0

∂
f

/∂
h

0 2 4 6 8 10
hi

0

5

10

h
i+

1
=

f
(h

i)

h0

f(h0)
f(h1)
f(h20)

Figure 4 – Graphique de la fonction récursive (en haut), sa dérivée (au
milieu) et diagramme montrant l’attractivité du point fixe supercritque (en
bas).

8

Résolution d’un système d’équations implicites :
Conduites en parallèle
Un glissement de terrain détruit le château d’eau d’un village. Pour avoir
accès à l’eau potable, le système est raccordé à celui d’un autre village plus
en amont. Deux conduites sont alors en parallèle comme sur la figure 5.

Ancien
réservoir

A B

C D

E F

L2, D2

L1, D1

Figure 5 – Deux réservoirs connectés à un lac via des conduites en charge.

Connaissant la chute de charge hydraulique ∆H entre le point A et le point
F, on cherche à connaitre le débit qui s’écoule naturellement (lorsqu’on ne
prélève pas d’eau entre A et F). Pour cela, il faut exprimer la conservation
de la charge par les deux conduites. Un système de deux équations implicites
se forme quand les pertes de charges singulières et régulières sont prises en
compte :

∆H = ∆HABEF = 2ζe
u2

A

2g
+ f1

L1
D1

u2

2g
, (11)

∆H = ∆HABEF = 2ζe
u2

A

2g
+

(
2ζc + f2

L2
D2

)
u2

2g
, (12)

1√
fi

= −0, 91 ln
(

0, 27 ks

Di
+ 2, 51ν√

fiuiDi

)
, i = 1, 2. (13)

Où uA = u1 + u2
D2

2
D2

1
est la vitesse dans la conduite simple, ζe et ζc sont

les coefficients de perte de charge singulière pour les embranchements et les
coudes respectivement. On prendra ζe = 1, 3 et ζc = 1, 0. Pour réduire le
nombre d’équations, il est possible d’isoler ui dans la formule de Colebrook
(13) et d’injecter l’expression dans les conservations de la charge (11 et 12).
On obtient ainsi

∆H − 2ζe

[
C(f1) + C(f2)D2

2/D2
1
]2

2g
− f1

L1
D1

C(f1)2

2g
= 0, (14)

9

∆H − 2ζe

[
C(f1) + C(f2)D2

2/D2
1
]2

2g
−

(
2ζc + f2

L2
D2

)
C(f2)2

2g
= 0, (15)

Où C est l’expression de ui selon l’équation de Colebrook (13) :

ui = C(fi) = ν

Di
√

fi
· 2, 51

e−1/
(

0,91
√

fi

)
− 0, 27ks/Di

, i = 1, 2. (16)

De nombreux solveurs de systèmes d’équations existent, chacun avec une ou
plusieurs méthodes numériques différentes (par exemple root, fsolve, minimize,
least_squares... dans scipy). On peut utiliser least_squares pour minimiser les
fonctions 14 et 15 et préciser l’intervalle de valeurs de f1 et f2.

1 import numpy as np
2 from scipy.optimize import least_squares
3
4 # Paramètres du problème
5 g = 9.81
6 L1 = 8e3
7 L2 = 18
8 D1 = 2.
9 D2 = 1.

10 nu = 1.31e-6
11 ks = 0.01e-3
12 DH = 5
13
14 # Expression de la vitesse en fonction du coefficient de frottement u=C(f)
15 def colebrook(f, D):
16 return (
17 nu/D*2.51/(np.sqrt(f)*(np.exp(-(1/(0.91*np.sqrt(f))))-0.27*ks/D))
18)
19
20 # Système d'équations à résoudre
21 def system(f_vector, D=(D1, D2)):
22
23 # Calcul des vitesses d'écoulement à partir du frottement
24 f1, f2 = f_vector
25 u1 = colebrook(f1, D1)
26 u2 = colebrook(f2, D2)
27
28 # Pertes de charge singulières
29 uA = u1 + u2*(D1/D2)**2
30 DH_B = 1.3*uA**2/(2*g)
31 DH_E = 1.3*uA**2/(2*g)
32 DH_C = 1.0*u2**2/(2*g)
33 DH_D = 1.0*u2**2/(2*g)
34
35 # Pertes de charge régulières
36 DH1 = f1*L1/D1 * u1**2/(2*g) + DH_B+DH_E
37 DH2 = f2*L2/D2 * u2**2/(2*g) + DH_B+DH_C+DH_D+DH_E
38
39 return DH1 - DH, DH2 - DH
40
41 x0 = 0.09, 0.09 # Solution initiale
42 result = least_squares(
43 system,
44 x0=x0,
45 bounds=((0.008, 0.008), (0.1, 0.1))

10

46)
47 f1, f2 = result.x
48 u1 = colebrook(f1, D1)
49 u2 = colebrook(f2, D2)
50 print(f"{f1 = :.5f}, {f2 = :.5f}")
51 print(f"{u1 = :.5f}, {u2 = :.5f}")

On peut aussi employer une méthode graphique en traçant les lignes de
niveau des surfaces ∆H1(f1, f2) et ∆H2(f1, f2) où elles valent ∆H. Il est
ainsi plus aisé de trouver la ou les racines du problème comme à la figure
6.

52 from matplotlib import pyplot as plt
53
54 f1_sol, f2_sol = f1, f2
55
56 # On observe une grande plage de valeurs possibles (abaque de Moody)
57 f1 = np.logspace(np.log10(0.008), np.log10(0.1), num=1000)
58 f2 = np.logspace(np.log10(0.008), np.log10(0.1), num=1000)
59
60 # Il faut générer une grille pour chaque variable
61 F1, F2 = np.meshgrid(f1, f2)
62 DH1, DH2 = np.array(system((F1, F2))) + DH
63
64 plt.imshow(DH1, extent=(f1[0], f1[-1],f2[0],f2[-1]), origin="lower")
65 plt.colorbar()
66 plt.loglog()
67 plt.xlabel("f_1")
68 plt.ylabel("f_2")
69 plt.title(r"ΔH_1")
70 plt.gca().set_aspect("auto")
71
72 plt.figure()
73 plt.imshow(DH2,extent=(f1[0],f1[-1],f2[0],f2[-1]),origin="lower")
74 plt.colorbar()
75 plt.loglog()
76 plt.xlabel("f_1")
77 plt.ylabel("f_2")
78 plt.title(r"ΔH_2")
79 plt.gca().set_aspect("auto")
80
81 plt.figure(layout="tight", figsize=)
82 plt.scatter(f1_sol, f2_sol, label="Solution", zorder=np.inf)
83 c1 = plt.contour(F1, F2, DH1, levels=[DH], colors=["r"])
84 c2 = plt.contour(F1, F2, DH2, levels=[DH], colors=["g"])
85 plt.clabel(c1, c1.levels, fmt=r"$\Delta H_1 = \Delta H$")
86 plt.clabel(c2, c2.levels, fmt=r"$\Delta H_2 = \Delta H$")
87 plt.clabel(c1, c1.levels)
88 plt.clabel(c2, c2.levels)
89 plt.loglog()
90 plt.ylim(1.06e-2, 1.15e-2)
91 plt.xlabel("f_1")
92 plt.ylabel("f_2")
93 plt.legend()
94 plt.gca().set_aspect("auto")
95 plt.show()

La démarche pour résoudre des systèmes est plus laborieuse, il vaut mieux
réduire le système afin de résoudre un minimum d’équations numériquement.

11

10−2 10−1

f1

1.06 × 10−2

1.07 × 10−2

1.08 × 10−2

1.09 × 10−2

1.1 × 10−2

1.11 × 10−2

1.12 × 10−2

1.13 × 10−2

1.14 × 10−2

1.15 × 10−2
f 2

∆H1 = ∆H

∆H2 = ∆H

Figure 6 – Lignes de niveau des foctions ∆H1 et ∆H2. Les deux courbes
se croisent en la solution.

Par exemple, en explicitant les variables u1 et u2 dans les équations 14 et
15, deux équations sont sorties du système. Réduire le nombre de variables
permet également de converger plus sûrement.

12

