
Mécanique des fluides
Section de génie civil

Hydraulique

Problème 1 : évacuateur de crue

Les évacuateurs de crue sont des ouvrages hydrauliques disposés sur des
barrages pour laisser transiter une crue lorsque le niveau dans le lac d’accumu-
lation dépasse un certain niveau et présente un danger. Lorsque le débit à éva-
cuer est important, il faut parfois des ouvrages complexes qui présentent une
convergence marquée de la largeur du coursier (voir l’exemple de la figure 1).
On étudie ici un tel dispositif.

On considère un évacuateur de crue de section rectangulaire en béton : le
radier (le fond) et les bajoyers (murs droits) sont du même béton. Sa pente est
constante et notée i. Sa longueur est L. Sa largeur est variable, et c’est une
fonction supposée connue notée B(x). Le frottement est de type Chézy, avec
un coefficient de rugosité C . Le débit Q à laisser transiter est constant.

(a) On souhaite établir l’équation de la courbe de remous pour un canal convergent.
En s’inspirant de la démonstration vue en cours pour le canal de largeur constante,
considérer l’équation de la charge hydraulique H

h+ z +
ū2

2g
= H,

avec h la hauteur d’eau, z la cote du radier, ū la vitesse moyenne. En différen-
tiant par rapport à x et en introduisant la pente d’énergie j = −H ′(x) et la
pente du radier i, obtenir l’équation différentielle de la hauteur d’eau h.

(b) On suppose que la largeur du canal est grande par rapport à la hauteur en
sorte de pouvoir simplifier l’expression du rayon hydraulique. En déduire les
équations algébriques vérifiées par la hauteur normale hn et la hauteur critique



hc (on rappelle que celles-ci correspondent respectivement aux cas h′ = 0 et
h′ → ∞).

(c) Dans le cas d’un radier droit (à largeur constante), quelle est la condition portant
sur le nombre de Froude pour que l’écoulement soit supercritique? Dans le cas
d’un frottement de type Chézy, montrer que cette condition est indépendante
du débit et permet de mettre en évidence une pente critique séparant régimes
sub- et supercritique.

(d) On considère le cas d’une convergence linéaire :

B(x) = B0 − kx,

avec k > 0. En supposant que k ≪ 1, faire un développement asymptotique à
l’ordre 1 de l’équation algébrique et en déduire une expression analytique. Pour
quelles conditions l’écoulement est-il supercritique? Est-ce qu’une contraction
de la largeur du radier augmente ou diminue la pente critique?

(e) On considère le cas limite k = 0 (canal à largeur constante). Calculer la hauteur
normale et la hauteur critique dans le cas où L = 200 m, Q = 500 m3/s, B0 =
50 m, i = 0,2, et C = 80 m1/2/s. Tracer l’allure de la courbe de remous dans le
cas où la hauteur au sommet de l’évacuateur de crue est h0 = 1 m.



Figure 1 –: Example d’évacuateur de crue avec une convergence.



Problème 2 : mesure de débit à l’aide d’un
Parshall

Un Parshall est un dispositif qui sert à mesurer le débit dans un canal à partir
de la mesure de la hauteur (voir figure 2). Il comporte :

– un tronçon convergent, tout d’abord ascendant puis horizontal, où l’écou-
lement est subcritique ;

– un coursier à pente descendante, étroit de largeur constanteW2, où l’écou-
lement est critique ;

– un tronçon divergent et légèrement ascendant, où l’écoulement est su-
percritique.

Onmesure la hauteur d’eau h1 dans un puits relié au premier tronçon au niveau
de la section 1 (voir figure 2). La largeur du canal en cette section est notéeW1.
Le débit total est Q. Le régime est permanent. La différence d’altitude entre le
sommet du seuil (section 2) et le lit du canal est notée ∆z. On appelle hc la
hauteur critique atteinte dans le second tronçon où l’écoulement est critique
(on a donc h2 = hc). Le seuil est dénoyé.

(a) Donner l’expression de l’énergie totale à la section 2 en fonction de ∆z et hc.
On peut répondre en termes d’énergie totale ou de charge hydraulique.

(b) Donner l’expression de l’énergie totale à la section 1 en fonction de ∆z, Q, W1

et h1. On peut répondre en termes d’énergie totale ou de charge hydraulique.
(c) En négligeant la dissipation d’énergie entre les sections 1 et 2, déterminer l’équa-

tion (implicite) permettant de calculer le débit si on suppose que h1 est déter-
minée (à partir d’une mesure dans le puits).

(d) Faire une application numérique.
(e) Dans l’expression de l’énergie spécifique à la section 1, laquelle des deux contri-

butions est négligeable et pourquoi ? En déduire une expression approchée per-
mettant de déduire Q en fonction de ∆z, W2, W1 et h1. Faire une application
numérique. Quelle est la précision de cette approximation?

Données numériques :

– Largeur des tronçons : W1 = 6 m et W2 = 2 m
– Hauteur mesurée h1 = 1 m
– Hauteur de la marche ∆z = 30 cm
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Figure 2 –: Schéma d’un canal Parshall.



Problème 6 : méthode de mesure sommaire du
débit

Vous travaillez pour le compte d’une commune de montagne qui souhaite
créer un lac d’accumulation en détournant une partie du débit d’un torrent.
Pour cela, une conduite de diamètre D = 2R, de longueur L, et de pente i est
placée dans le torrent et capte une partie du débit transitant par le torrent. Un
jet se forme à la sortie de la conduite. La question qui se pose à vous est de
savoir comment déterminer le débit dévié dans la conduite avec des moyens
rudimentaires.



(a)

(b)

Figure 3 –: Géométrie de la conduite. (a) vue de face. (b) vue de côté ; le cadre noir
représente le volume de contrôle pour le calcul.



On adoptera les notations usuelles du cours :

– périmètre mouillé χ, rayon hydraulique Rh, et section mouillée S ;
– vitesse moyenne ū = Q/S ;
– θ l’angle que fait la surface libre par rapport à la verticale ;
– On appelle x la direction de l’écoulement.

On considère que dans la conduite, l’écoulement est à surface libre. Sur la plus
majeure partie de la longueur, l’écoulement a une hauteur d’eau qui est égale à
la hauteur normale hn. La conduite est en acier avec un coefficient de Manning-
Strickler K . On rappelle que cette loi s’écrit

τp =
ϱg

K2

ū2

R
1/3
h

Si on exprime la formule en termes de pente de frottement, cette loi s’écrit

jf =
τp

ϱgRh

= −dH
dx =

ū2

K2R
4/3
h

On considère que le taux de remplissage maximal est de 50 %, c.-à-d. que θ ≤
π/2 ou h ≤ R pour la gamme d’écoulements étudiés. Pour les applications
numériques, on prendra les valeurs suivantes :

– R = 20 cm, L = 50 m, et i = 10 %;
– Q = 200 L/s ;
– K = 85 m1/3/s.

(a) Quelle est l’expression de la hauteur normale en régime permanent? (on se
contentera de donner l’équation implicite vérifiée par la hauteur normale).

(b) Calculer la relation entre section mouillée S, hauteur d’eau h, rayonR, et angle
θ. Montrer qu’en première approximation, cette surface mouillée est voisine de
S̃ =

√
Dh3. Quelle est l’erreur (relative) maximale commise?

(c) Écrire la définition de la charge spécifique Hs. On va s’inspirer ici de ce qu’on
avait fait en cours pour établir la hauteur critique. Montrer qu’à débit constant,
la fonction Hs admet un minimum, qui sépare deux domaines : le domaine su-
percritique et le domaine subcritique. Quelle est la définition de la hauteur cri-
tique? (on se contentera de donner l’équation implicite vérifiée par la hauteur
critique).



(d) En vous servant de l’approximation S̃ =
√
Dh3 et du développement asymp-

totique au premier ordre arccos(1 − x) =
√
2x quand x → 0, calculer une

approximation explicite des hauteurs critique et normale.
(e) Faire l’application numérique. Caractériser le régime d’écoulement. Est-ce que

ce résultat peut changer sachant que l’on a fait des approximations pour arriver
à ce résultat ? Si on veut résoudre l’équation de la courbe de remous, où faut-il
placer la condition aux limites ?

(f) En vous inspirant de ce qu’on a vu en cours pour établir l’équation de la courbe
de remous, déduire l’équation de la courbe de remous en différentiant l’équa-
tion de conservation de la chargeH par rapport à x dans le cas d’un écoulement
permanent. En vous servant de l’approximation S̃ =

√
Dh3 et des approxima-

tions trouvées précédemment pour les hauteurs normale et critique, écrire une
approximation de l’équation de la courbe de remous pour une conduite circu-
laire inclinée sous la forme d’une équation de Bresse :

dh
dx = i

1− (hn/h)
p

1− (hc/h)q
,

avec p et q deux coefficients à déterminer.
(g) À la sortie de la conduite, un jet se forme. La pression qui était hydrostatique

dans l’écoulement d’eau dans la conduite devient uniforme (en première ap-
proximation) et égale à la pression atmosphérique (cela sera utilisé à la ques-
tion 9). On cherche à déterminer la hauteur d’eau he à l’exutoire de la conduite.
On va pour cela appliquer le théorème de conservation de la quantité de mou-
vement sur un volume de contrôle – voir figure 1(b) – pour un écoulement
d’eau en régime permanent. Que vaut la résultante des forces de pression sur
la face amont S0 en supposant qu’on est suffisamment loin de l’exutoire et que
la pression est hydrostatique (comme d’habitude on supposera que la pression
ambiante est nulle) ? Montrer que cette force (sous forme algébrique) peut être
approchée par l’expression :

F̃p =
3

4
ϱg

√
Rh5.

(h) Comment s’exprime le flux de quantité de mouvement Φ0 (projeté le long de
x)à travers S0 en supposant le profil de vitesse uniforme? En vous servant de
l’approximation S̃ =

√
2Rh3, proposez une approximation Φ̃0.

(i) À l’exutoire de la conduite, il se forme un jet. La pression devient non hydrosta-
tique sur la face Se : p ≈ ϱg(h− z)− ϱg(h− z)2/h. Comme le montre la figure



4, la pression est plus faible que la pression hydrostatique. En conséquence, en
première approximation, on va supposer que la pression est égale à la pression
atmosphérique sur Se et qu’en conséquence, la résultante des forces de pression
sur Se est nulle. Le profil de vitesse est également affecté dans la zone de transi-
tion « écoulement à surface libre »→ « jet ». On va toutefois supposer qu’il est
uniforme. Exprimez le flux de quantité de mouvementΦe et une approximation
Φ̃e en vous servant de S̃.

(j) En vous servant de l’équation de la conservation de la quantité de mouvement
(1):

d
dt

∫
V

ϱudV +

∫
S

ϱu(u · n)dS = ϱV g +

∫
S

σ · ndS, (1)

écrivez la relation (approchée) liant les flux de quantité de mouvement Φe et
Φe à la force de pression Fp sur S0 (on néglige : l’effet de la pesanteur, le frot-
tement sur les parois, et la pression à l’exutoire). Simplifiez cette relation en
introduisant le nombre de Froude à l’amont et le rapport de hauteur :

Fr20 =
3

4

Q2

gRh4
0

et Y =
he

h0

.

Faire une application numérique en supposant que h0 = hn.
(k) Tracez la forme de la courbe de remous en prenant comme hauteur d’eau à

l’entrée de la conduite : hi = 20 cm.
(l) Est-ce qu’en mesurant la hauteur d’eau he à l’exutoire on dispose d’un moyen

commode et précis d’estimer le débit ? Quelle précision pensez-vous obtenir ?
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Figure 4 –: Profil (adimensionnalisé) de pression à l’exutoire de la conduite : profil
hydrostatique (trait continu) et approximation d’un profil non hydrostatique (trait dis-
continu).



Correction du problème 1

Question (a)

La conservation du débit nous impose

Q = B(x)h(x)ū(x). (2)

La charge hydraulique s’écrit

h+ z +
ū2

2g
= H,

soit encore
h+ z +

Q2

2gB2h2
= H.

On différentie par rapport à x et on introduit i = −z′ et j = −H ′

h′ − Q2

gB2h2

(
B′

B
+

h′

h

)
= i− j.

En regroupant les termes, on a

h′ =

i− j +
ū2

g

B′

B

1− Fr2
, (3)

avec Fr2 = ū2/(gh) = Q2/(gB2h3).

Question (b)

La hauteur normale hn est définie comme la hauteur pour laquelle le numé-
rateur du rapport dans l’équation de la courbe de remous (3) est nul :

i− j +
ū2

g

B′

B
= i− ū2

C2Rh

+
Q2

gh2B2

B′

B
= 0,

avec Rh = Bh/(B + 2h) le rayon hydraulique. Autrement dit c’est la solution
de l’équation algébrique

B + 2h

C2Bh
− 1

g

B′

B
=

ih2B2

Q2
. (4)



Pour la hauteur critique hc, on est en terrain connu puisque l’on retrouve la
condition sur le dénominateur nul, qui donne

Fr2 = 1 ⇒ hc =
3

√
Q2

gB2
.

Question (c)

Un écoulement est supercritique quand

Fr > 1.

En termes de vitesse cela impose

ū2 > gh,

or d’après la loi de Chézy, on a ū = C
√
ih, donc en substituant cette loi dans la

condition ci-dessus, on a
C2i > g.

Il existe donc une pente critique

ic =
g

C2

telle que pour i > ic l’écoulement est supercritique, et réciproquement pour
i < ic il est subcritique. Cela est indépendant du débit (contrairement à ce qui
est trouvé avec des lois plus réalistes comme Manning-Strickler).

Question (d)

Avec B(x) = B0 − kx et Rh ∝ h, l’équation (4) devient

1

C2h
+

1

g

k

B
=

ih2B2

Q2
.

Soit encore
h3 =

Q2

iC2B2

(
1 +

k

g

C2h

B

)
,



On a donc

h =

(
Q2

iC2B2

)1/3(
1 +

k

g

C2h

B

)1/3

,

et comme k est petit, on a au premier ordre en k

h =

(
Q2

iC2B2

)1/3(
1 +

1

3

k

g

C2h

B

)
.

En regroupant les termes en h et en faisant un nouveau développement limité
en k, on déduit

hn =

(
Q2

iC2B2

)1/3
(
1 +

1

3

k

g

C2

B

(
Q2

iC2B2

)1/3
)
.

L’écoulement est supercritique lorsque hn < hc, soit quand

hn < hc ⇒
(

Q2

iC2B2

)1/3
(
1 +

1

3

k

g

C2

B

(
Q2

iC2B2

)1/3
)

< 3

√
Q2

gB2
.

En simplifiant on trouve

1 +
1

3

k

g

C2

B

(
Q2

iC2B2

)1/3

< 3

√
iC2

g
.

Un développement limité donne une expression simplifiée

i >
g

C2︸︷︷︸
ic0

+k
1

B

(
Q2

iC2B2

)1/3

. (5)

On a vu au (c) que si le canal était droit (k = 0), la condition i > ic0 = g/C2 est
la condition usuelle pour observer un écoulement supercritique avec un frotte-
ment à la Chézy, et cela indépendamment du débit. On voit que la contraction
du radier avec un coefficient k a pour effet d’augmenter la pente à partir de la-
quelle le régime supercritique est observé car le second terme dans le membre
de droite dans (5) est positif (quelle que soit la valeur de i). Pour s’en convaincre
on peut poser i = ic0 + δi avec δi ≪ 1. En reportant dans (5), on trouve

δi >
α

1 + α/3
avec α =

k

B

(
Q2

ic0C2B2

)1/3

.

Le facteur correctif dépend du débit.



Question (e)

Le débit critique est

hc =
3

√
Q2

gB2
= 2,16 m

La hauteur normale est solution de l’équation.

Q2 = B2C2ih2 Bh

B + 2h
,

qui donne hn = 43 cm. Si on fait l’approximation d’un canal large, alors

hn =
3

√
Q2

iC2B2
= 42,7 cm.

Comme le régime est supercritique et que la condition initiale vérifie hc >
h0 > hn, on doit avoir une courbe de remous décroissante qui tend vers son
asymptote hn. Si on intègre numériquement l’équation de la courbe de remous
(3) avec pour condition initiale h(0) = h0 on obtient la solution tracée sur la
figure 5.

Cette figure a été obtenue avec Mathematica en quelques lignes

Q = 500

B = 50
i = 0.2
Ch = 80
q = Q/B
g = 9.81

eqn = NDSolve[{
h[0] == 1,
h'[x] == (i - q^2/Ch^2/h[x]^3)/(1 - q^2/g/h[x]^3)

}, h, {x, 0, 200}]

Plot[h[x] /. eqn, {x, 0, 200}, Frame -> True, FrameLabel -> {"x", "h"},
BaseStyle -> {FontFamily -> "Times New Roman", 12}]
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Figure 5 –: Courbe de remous.



Correction du problème 2

Question (a)

L’énergie totale au point 2 (en prenant le fond du canal comme référence
des z) est

E2 = ∆z + h2 +
u2
2

2g
,

avec h2 = hc et u2 = Q/(W2h2). Comme Fr = 1, on en déduit que

h2 = hc =
3

√
Q2

gW 2
2

On a donc Fr = 1 ⇒ u2
2/(2g) = hc/2 et donc

E2 = ∆z +
3

2
h2,

Question (b)

Par définition, on a
E1 = ∆z + h1 +

u2
1

2g

avec u1 = Q/(W1h1).

Question (c)

Les deux points étant sur le même plan, il y a égalité des énergies spécifiques
en l’absence de perte de charge. Donc

E1 = ∆z + h1 +
u2
1

2g
= E2 ⇒ h1 +

Q2

2gW 2
1 h

2
1

=
3

2
3

√
Q2

gW 2
2

ou bien encore

Q =
2
√
2g

3
√
3
W2

(
h1 +

Q2

2gW 2
1 h

2
1

)3/2



Question (d)

AN: Q = 3,5 m3/s.

Question (e)

Comme l’écoulement est subcritique, on peut supposer que l’énergie ciné-
tique est bien plus faible que la pression, donc

h1 ≫
Q2

2gW 2
1 h

2
1

Il s’ensuit alors
Q ≈ 2

√
2g

3
√
3
W2h

3/2
1

AN Q = 3,41 m3/s. L’erreur relative est donc

∆Q

Q
=

3,41− 3,5

3,5
= −2,6 %



Correction du problème 6

Question (a)

La hauteur normale s’obtient en égalant force de frottement et composante
motrice de la gravité :

χτp = ϱgSi,

et comme on utilise la loi de Manning-Strickler, il vient :

χ
ϱg

K2

ū2

R
1/3
h

= ϱgSi,

et après élimination, on obtient une équation implicite

Q2 = K2S10/3χ−4/3i. (6)

Question (b)

Le calcul de la surface mouillée a été vu en cours. On considère une surface
infinitésimale

dS = 2R sin θ × dz (7)

avec :
z = R cos θ et dz = −R sin θdθ.

L’angle θ est donné par

θ = arccos
(
1− h

R

)
.

L’intégration donne
S = R2(θ − cos θ sin θ).

S et S̃ sont deux fonctions croissantes de h, qui sont nulles pour h = 0 et
atteignent les valeurs maximales respectives (pour θ = π/2) :

Smax =
π

2
R2 et S̃max =

√
2R2.
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Figure 6 –: Variation de S (trait continu) et S̃ (trait discontinu) en fonction de h. Les
variables ont été adimensionnalisées.

L’erreur relative maximale commise est donc :

ϵ = 1−
π
2
R2

√
2R2

= 1− π

2
√
2
≈ −11 %.

On pourrait obtenir une meilleure approximation de la surface mouillée en
faisant un développement limité à l’ordre 2. En effet, on a

arccosx =
√
2
√
x+

x3/2

6
√
2
+O

(
x5/2

)
,

et √
x(2− x) =

√
2
√
x− x3/2

2
√
2
+O

(
x5/2

)
.

On montre ainsi en posant ξ = h/R que

S =
4

3

√
2R2ξ3/2 +O(xi5/2) =

4

3

√
2Rh3 +O(xi5/2).

Ce développement est plus précis pour h → 0, mais il l’est moins pour h → R
(l’erreur atteignant 20 %).



Question (c)

La charge spécifique est

Hs = h+
Q2

2gS2
.

Comme S ∝
√
h, on a Hs ∝ h−1 quand h → 0 (domaine supercritique) et

Hs ∝ h quand h → ∞ (domaine subcritique). Il existe un minimum de Hs

atteint quand la dérivée de Hs s’annule :

dHs

dh = 1− 2Q2

2gS3

dS
dh = 0 ⇒ 1 =

Q2

gS3

dS
dh .

On peut transformer cette égalité en introduisant le nombre de Froude

Fr2 =
Q2

gS3

dS
dh . (8)

La hauteur hc qui vérifie Fr = 1 est la hauteur critique. C’est une équation
implicite.

Question (d)

Avec S̃ =
√
Dh3, on a d’après (6) et le développement asymptotique θ =

arccos(1 − h/R) =
√
2h/R pour h ≪ R (l’erreur commise quand h → R est

de l’ordre de 10 %) :

Q2 = K2S10/3χ−4/3i ≈ K2i
(2Rh3)5/3

(2hR)2/3

En regroupant les puissances de h, on déduit

Q2

2K2iR
= h13/3

n

On obtient la solution recherchée

hn =

(
Q2

2K2iR

)3/13

. (9)



Pour la hauteur critique, on amoins de travail. D’après (8) et en servant toujours
de S̃ =

√
Dh3, on a

Fr2 = 1 =
Q2

g(2Rh3)3/2
3

2
(2Rh)1/2 =

3

4

Q2

gRh4
.

On en déduit une approximation de la hauteur critique

hc =

(
3

4

Q2

gR

)1/4

. (10)

Comme le montre la figure 7, l’approximation S̃ =
√
Dh3 permet d’obtenir

les hauteurs normale et critique avec une erreur relative maximale de 13 % pour
la gamme de débits testés.

Question (e)

On fait l’application numérique et on trouve : hn = 13 cm, hc = 35 cm.
La résolution des équations implicites (6) et (8) donne hn = 14,3 cm, hc =
32 cm. Le régime est supercritique puis que hn < hc. L’ordre de grandeur de
l’incertitude est 10 %. L’écart entre hn et hc est un ordre de grandeur supérieur
à cette incertitude, donc même en résolvant les équations implicites (6) et (8),
le régime ne changera pas de nature. En régime supercritique, la condition à la
limite se place à l’amont.

Le nombre de Froude vaut :

Fr =

√
3

4

Q2

gRh4
= 7,3.

Question (f)

En régime permanent, la charge s’écrit

H = z + h+
Q2

2gS2
.

En différentiant par rapport à x, on obtient
dH
dx =

dz
dx +

dh
dx − 2

Q2

2gS3

dS
dx ,
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Figure 7 –: Variation de la hauteur normale hn et de la hauteur critique hc en fonction
du débit Q. Les courbes continues sont les solutions aux équations implicites (6) et (8),
respectivement, et les courbes en tireté sont les solutions approchées (9) et (10).

soit encore, après introduction de la pente d’énergie jf et de la pente du fond i :

dH
dx = −jf = −i+

dh
dx − Q2

gS3

dS
dh

dh
dx.



On reconnaît le nombre de Froude (8), et on peut écrire :

dh
dx =

i− jf
1− Fr2

.

Avec l’approximation S̃ =
√
Dh3 et les expressions approchées (9) et (10)

des hauteur normale et critique, on a

dh
dx = i

1− ū2

iK2R
4/3
h

1− 3

4

Q2

gRh4

.

Si on considère le numérateur, on a

ū2

iK2R
4/3
h

=
S
10/3
n

S10/3

χ
4/3
h

χ
10/3
n

,

où sn et χn sont les surface et périmètre mouillés. En servant de l’équation (9),
on peut simplifier

S
10/3
n

χ
4/3
n

= 2Rh13/3
n .

On peut fait de même pour les autres termes et on trouve finalement

dh
dx = i

1− (hn/h)
p

1− (hc/h)q
,

avec p = 13/3 et q = 4.

Question (g)

Le calcul de la force de pression nécessite de reprendre les éléments de calcul
vus à la question (b). La force infinitésimale de pression s’écrit :

dF p = −p(z)ndS,

avec n = ex la normale à S0, p = ϱg(h0 − z′) la pression hydrostatique, et
dS donné par (7) : dS = 2R2 sin2 θdθ. On a z = R cos θ (position par rapport à



l’axe de la conduite) et z′ = R−z (position par rapport au fond de la conduite).
On a donc en projection sur l’axe x

dFp = 2ϱgR2(h0 −R +R cos θ) sin2 θdθ,

que l’on intègre sur [0,θ0] avec θ0 = arccos(1− h0/R). L’intégration donne

Fp =
1

3
ϱgR3

(
2 sin3(θ) + 3(ξ − 1)(θ − sin(θ) cos(θ))

)
,

avec ξ = h/R et θ = arccos(1 − h/R). On peut aussi tout mettre en fonction
de θ

Fp =
1

12
ϱgR3 (9 sin θ + sin(3θ)− 12θ cos θ) , (11)

ou bien de ξ

Fp =
1

3
ϱgR3

(√
(2− ξ)ξ

(
ξ2 − 2ξ + 3

)
+ 3(ξ − 1) cos−1(1− ξ)

)
(12)

Comme le montre l’analyse rapide de (11), Fp est une fonction croissante de
θ (Fp ∝ θ5). L’erreur est donc maximale quand θ = Π/2, et on trouve alors que

Fp =
2

3
ϱgR3,

alors que l’approximation proposée dans l’énoncé donne

F̃p =
3

4
ϱgR3,

soit une erreur relative de 12,5 %. L’approximation semble correcte. On peut
réitérer cela en deux ou trois points pour vérifier que l’approximation est cor-
recte.

On peut le démontrer de façon plus rigoureuse en faisant un développement
limité à l’ordre 3 en ξ = 0 de (12) donne

Fp =
8

15

√
2ξ5/2ϱgR3 +O(ξ7/2) (13)

et une application numérique montre que

8

15

√
2 = 0,7542 ≈ 3

4
.



On va donc pouvoir se servir de l’approximation de la force de pression sur S0 :

F̃p =
3

4
ξ5/2ϱgR3 (14)

avec ξ0 = h0/R. La figure 8 montre le bon accord entre solution théorique et
approximation.
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Figure 8 –: Variation de la force de pression Fp en fonction de la hauteur h : calcul
exact représentant (12) (trait continu) et approché (13) (trait discontinu).

Question (h)

La projection du flux de quantité de mouvement à travers S0 s’écrit

Φ0 =

∫
S0

ϱu · ex(u · n)dS = −ϱu2
0S0,

puisque la vitesse est uniforme. La conservation du débit impose : u0 = Q/S0.
D’où le résultat demandé

Φ0 = −ϱ
Q2

S0

,

et en se servant de l’approximation S̃0 =
√
2Rh3

0, on déduit

Φ̃0 = −ϱ
Q2

S̃0

= −ϱ
Q2√
2Rh3

0

. (15)



Question (i)

Comme les hypothèses sont identiques à celles utilisées pour la question
(8), on déduit immédiatement

Φe = ϱ
Q2

Se

,

et en se servant de l’approximation S̃e =
√

2Rh3
e , on déduit

Φ̃e = ϱ
Q2

S̃e

= ϱ
Q2√
2Rh3

e

. (16)

Question (j)

La conservation de la quantité de mouvement s’écrit

d
dt

∫
V

ϱudV +

∫
S

ϱu(u · n)dS = ϱV g +

∫
S

σ · ndS, (17)

et donc en projetant sur x, en considérant un régime permanent (donc pas de
terme d’accélération) et les hypothèses de l’énonce, on aboutit à une équation
relativement simple

Fp + Φ0 = Φe. (18)
On peut simplifier cette équation à l’aide des approximations (14), (15) et (16)
vues précédemment :

F̃p + Φ̃0 = Φ̃e,

soit encore
3

4
ξ5/2ϱgR3 + ϱ

Q2√
2Rh3

0

= ϱ
Q2√
2Rh3

e

.

On divise cette équation par F̃p :

1 +
4

3

Q2

gR3
√

2Rh3
0ξ

5/2
0

=
4

3

Q2

gR3
√
2Rh3

eξ
5/2
0

.

Comme on a ξ0 = h0/R, on peut tout exprimer en fonction de h0 :

1 +
4

3

Q2

gR
√
2h4

0

=
4

3

Q2

gR
√
2h4

0

(
h0

he

)3/2

.



On identifie le nombre de Froude donné dans l’énoncé et trouvé également à la
question (4), et cela nous conduit à

1 +
16

9
√
2
Fr20 =

16

9
√
2
Fr20Y

−3/2.

Le résultat est immédiat

Y =

(
16
9
√
2
Fr20

1 + 16
9
√
2
Fr20

)2/3

.

Soit encore, après réarrangement des termes :

Y ≈
(

Fr20
0,8 + Fr20

)2/3

.

Avec les valeurs trouvées à la question (5), on trouve : Y = 0,99. C’est un ré-
sultat sans surprise : à grand nombre de Froude, la perturbation causée par la
formation d’un jet est minime. La figure 9 montre l’allure de la courbe Y .

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9 –: Variation de la Y en fonction du nombre de Froude Fr0.



Question (k)

On a un régime supercritique. La condition à la limite est donnée par l’amont.
La condition initiale est entre les hauteurs normale hn et critique hc, donc la
courbe de remous va tendre vers hn (voir figure 10).
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Figure 10 –: Courbe de remous (trait continu) et hauteurs normale hn (trait discontinu)
et critique hc (trait pointillé).

Question (l)

Si la conduite est suffisamment longue et le régime supercritique, la hauteur
d’eau à la sortie de la conduite est très proche de la hauteur normale. On peut
donc calculer la courbe de débitance en servant de l’équation (9) de la hauteur
normale. Il s’agit d’une approximation précise à environ 10 %. Avec une simple
règle, on peut mesurer la hauteur he et en déduire Q avec une précision de
l’ordre de 10 %.
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