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Probléme 1: évacuateur de crue

Les évacuateurs de crue sont des ouvrages hydrauliques disposés sur des
barrages pour laisser transiter une crue lorsque le niveau dans le lac d’accumu-
lation dépasse un certain niveau et présente un danger. Lorsque le débit a éva-
cuer est important, il faut parfois des ouvrages complexes qui présentent une
convergence marquée de la largeur du coursier (voir I'exemple de la figure 1).
On étudie ici un tel dispositif.

On considéere un évacuateur de crue de section rectangulaire en béton: le
radier (le fond) et les bajoyers (murs droits) sont du méme béton. Sa pente est
constante et notée 7. Sa longueur est L. Sa largeur est variable, et c’est une
fonction supposée connue notée B(x). Le frottement est de type Chézy, avec
un coefficient de rugosité C. Le débit () a laisser transiter est constant.

On souhaite établir I’équation de la courbe de remous pour un canal convergent.
En s’inspirant de la démonstration vue en cours pour le canal de largeur constante,
considérer I’équation de la charge hydraulique A

=2

h+z+— =H,

29
avec h la hauteur d’eau, z la cote du radier, @ la vitesse moyenne. En différen-
tiant par rapport a x et en introduisant la pente d’énergie j = —H'(x) et la
pente du radier 7, obtenir I’équation différentielle de la hauteur d’eau h.
On suppose que la largeur du canal est grande par rapport a la hauteur en
sorte de pouvoir simplifier 'expression du rayon hydraulique. En déduire les
équations algébriques vérifiées par la hauteur normale £, et la hauteur critique



(c)

(d)

h. (on rappelle que celles-ci correspondent respectivement aux cas b’ = 0 et
h' — o).

Dans le cas d’'un radier droit (a largeur constante), quelle est la condition portant
sur le nombre de Froude pour que I’écoulement soit supercritique ? Dans le cas
d’un frottement de type Chézy, montrer que cette condition est indépendante
du débit et permet de mettre en évidence une pente critique séparant régimes
sub- et supercritique.

On considere le cas d’'une convergence linéaire:

B(z) = By — k=,

avec k > 0. En supposant que k£ < 1, faire un développement asymptotique a
I'ordre 1 de I'équation algébrique et en déduire une expression analytique. Pour
quelles conditions I’écoulement est-il supercritique ? Est-ce qu’une contraction
de la largeur du radier augmente ou diminue la pente critique ?

On considere le cas limite £ = 0 (canal a largeur constante). Calculer la hauteur
normale et la hauteur critique dans le cas ot L = 200 m, Q = 500 m3/s, By =
50m, i = 0,2, et C' = 80 m'/?/s. Tracer l'allure de la courbe de remous dans le
cas ou la hauteur au sommet de ’évacuateur de crue est hy = 1 m.



Figure 1 —: Example d’évacuateur de crue avec une convergence.
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Probléme 2: mesure de débit a ’aide d’un
Parshall

Un Parshall est un dispositif qui sert a mesurer le débit dans un canal a partir
de la mesure de la hauteur (voir figure 2). Il comporte:

- un trongon convergent, tout d’abord ascendant puis horizontal, ou1’écou-
lement est subcritique;

- un coursier a pente descendante, étroit de largeur constante W5, oul’écou-
lement est critique;

- un troncon divergent et légerement ascendant, ou I’écoulement est su-
percritique.

On mesure la hauteur d’eau /; dans un puits relié au premier trongon au niveau
de la section 1 (voir figure 2). La largeur du canal en cette section est notée W;.
Le débit total est (). Le régime est permanent. La différence d’altitude entre le
sommet du seuil (section 2) et le lit du canal est notée Az. On appelle k. la
hauteur critique atteinte dans le second troncon ou I’écoulement est critique
(on a donc hy = h,). Le seuil est dénoyé.

Donner I'expression de I’énergie totale a la section 2 en fonction de Az et h..
On peut répondre en termes d’énergie totale ou de charge hydraulique.
Donner I'expression de ’énergie totale a la section 1 en fonction de Az, @, W,
et hy. On peut répondre en termes d’énergie totale ou de charge hydraulique.
Ennégligeant la dissipation d’énergie entre les sections 1 et 2, déterminer I’équa-
tion (implicite) permettant de calculer le débit si on suppose que h; est déter-
minée (a partir d'une mesure dans le puits).

Faire une application numérique.

Dans I'expression de I’énergie spécifique a la section 1, laquelle des deux contri-
butions est négligeable et pourquoi ? En déduire une expression approchée per-
mettant de déduire () en fonction de Az, W5, W et h;. Faire une application
numérique. Quelle est la précision de cette approximation ?

Données numériques:

- Largeur des troncons: W, =6met Wy =2m
— Hauteur mesurée h; = 1 m
- Hauteur de la marche Az = 30 cm
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Probléme 6: méthode de mesure sommaire du

débit

Vous travaillez pour le compte d’'une commune de montagne qui souhaite
créer un lac d’accumulation en détournant une partie du débit d’'un torrent.
Pour cela, une conduite de diametre D = 2R, de longueur L, et de pente ¢ est
placée dans le torrent et capte une partie du débit transitant par le torrent. Un
jet se forme a la sortie de la conduite. La question qui se pose a vous est de
savoir comment déterminer le débit dévié dans la conduite avec des moyens
rudimentaires.
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Figure 3 —: Géométrie de la conduite. (a) vue de face. (b) vue de c6té; le cadre noir
représente le volume de contréle pour le calcul.
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On adoptera les notations usuelles du cours:

périmeétre mouillé , rayon hydraulique Ry, et section mouillée S';

vitesse moyenne u = Q/S;

0 I'angle que fait la surface libre par rapport a la verticale;
— On appelle z la direction de I’écoulement.

On considere que dans la conduite, ’écoulement est a surface libre. Sur la plus
majeure partie de la longueur, I'écoulement a une hauteur d’eau qui est égale a
la hauteur normale h,,. La conduite est en acier avec un coefficient de Manning-
Strickler K. On rappelle que cette loi s’écrit

_o w
Tp = K2 R;IL/B

Si on exprime la formule en termes de pente de frottement, cette loi s’écrit

Tp dH u?

" ogRn dr 2Rl

Jf

On considére que le taux de remplissage maximal est de 50 %, c.-a-d. que 6 <
w/2 ou h < R pour la gamme d’écoulements étudiés. Pour les applications
numériques, on prendra les valeurs suivantes:

- R=20cm, L =50m, et? =10 %;
- Q) =200L/s;
- K =85m'/3/s.

Quelle est 'expression de la hauteur normale en régime permanent? (on se
contentera de donner I’équation implicite vérifiée par la hauteur normale).
Calculer la relation entre section mouillée S, hauteur d’eau h, rayon R, et angle
. Montrer qu’en premiere approximation, cette surface mouillée est voisine de
S = V/Dh?. Quelle est I'erreur (relative) maximale commise ?

Ecrire la définition de la charge spécifique H,. On va s’inspirer ici de ce qu’on
avait fait en cours pour établir la hauteur critique. Montrer qu’a débit constant,
la fonction H; admet un minimum, qui sépare deux domaines: le domaine su-
percritique et le domaine subcritique. Quelle est la définition de la hauteur cri-
tique ? (on se contentera de donner 1’équation implicite vérifiée par la hauteur
critique).



(d)

(f)

(8)

(h)

En vous servant de Papproximation S = v/Dh3 et du développement asymp-
totique au premier ordre arccos(l — z) = v/2x quand x — 0, calculer une
approximation explicite des hauteurs critique et normale.

Faire I'application numérique. Caractériser le régime d’écoulement. Est-ce que
ce résultat peut changer sachant que I’on a fait des approximations pour arriver
a ce résultat? Si on veut résoudre 1’équation de la courbe de remous, ou faut-il
placer la condition aux limites ?

En vous inspirant de ce qu’on a vu en cours pour établir ’équation de la courbe
de remous, déduire I’équation de la courbe de remous en différentiant I’équa-
tion de conservation de la charge H par rapport a x dans le cas d’un écoulement
permanent. En vous servant de I'approximation S = v/Dh? et des approxima-
tions trouvées précédemment pour les hauteurs normale et critique, écrire une
approximation de I’équation de la courbe de remous pour une conduite circu-
laire inclinée sous la forme d’une équation de Bresse:

dh 1= (ha/h)"
dr 1 (ho/h)T

avec p et ¢ deux coefficients a déterminer.

A la sortie de la conduite, un jet se forme. La pression qui était hydrostatique
dans ’écoulement d’eau dans la conduite devient uniforme (en premiére ap-
proximation) et égale a la pression atmosphérique (cela sera utilisé a la ques-
tion 9). On cherche a déterminer la hauteur d’eau h, a I’exutoire de la conduite.
On va pour cela appliquer le théoreme de conservation de la quantité de mou-
vement sur un volume de contrdle — voir figure 1(b) — pour un écoulement
d’eau en régime permanent. Que vaut la résultante des forces de pression sur
la face amont Sj en supposant qu’on est suffisamment loin de I’exutoire et que
la pression est hydrostatique (comme d’habitude on supposera que la pression
ambiante est nulle) ? Montrer que cette force (sous forme algébrique) peut étre
approchée par 'expression:

.3
F, = 729V Rh®.

Comment s’exprime le flux de quantité de mouvement @, (projeté le long de
x)a travers Sy en supposant le profil de vitesse uniforme ? En vous servant de
I’approximation S = V2Rh3, proposez une approximation ;.

A I'exutoire de la conduite, il se forme un jet. La pression devient non hydrosta-
tique sur la face S.: p ~ 0g(h — z) — 0g(h — z)?/h. Comme le montre la figure



)

4, la pression est plus faible que la pression hydrostatique. En conséquence, en
premiére approximation, on va supposer que la pression est égale a la pression
atmosphérique sur S, et qu’en conséquence, la résultante des forces de pression
sur S, est nulle. Le profil de vitesse est également affecté dans la zone de transi-
tion « écoulement a surface libre » — « jet ». On va toutefois supposer qu’il est
uniforme. Exprimez le flux de quantité de mouvement ®, et une approximation
<i>e en vous servant de S.

En vous servant de I’équation de la conservation de la quantité de mouvement

(1):

4 QudV—l—/Qu(u-n)dS:QVg—i—/O'-ndS, (1)
dt Jy s s

écrivez la relation (approchée) liant les flux de quantité de mouvement P, et
®. a la force de pression F), sur Sy (on néglige: 'effet de la pesanteur, le frot-
tement sur les parois, et la pression a I'exutoire). Simplifiez cette relation en
introduisant le nombre de Froude a I'amont et le rapport de hauteur:

3 Q7 he

Fri="—"_etY =2,
0= 4 gRm € ho

Faire une application numérique en supposant que hy = h,,.

Tracez la forme de la courbe de remous en prenant comme hauteur d’eau a
I’entrée de la conduite: h; = 20 cm.

Est-ce qu’en mesurant la hauteur d’eau h, a I’exutoire on dispose d’'un moyen
commode et précis d’estimer le débit? Quelle précision pensez-vous obtenir ?
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Figure 4 —: Profil (adimensionnalisé) de pression a 'exutoire de la conduite: profil
hydrostatique (trait continu) et approximation d’un profil non hydrostatique (trait dis-
continu).



Correction du probléme 1

Question (a)

La conservation du débit nous impose
Q = B(x)h(z)u(z). (2)

La charge hydraulique s’écrit

=2
h—l—z+u—:H,

29
soit encore 0
h+z+ 298702 =H
On différentie par rapport a x et on introduiti = —2" et j = —H’

Q2 B/ h/ . '
A L R
W= pme\ )T

En regroupant les termes, on a

w? B’
_ . BB
(3 j gB

1—Fr2 7
avec Fr? = u?/(gh) = Q*/(gB*h?).

h = 3)

Question (b)

La hauteur normale h,, est définie comme la hauteur pour laquelle le numé-
rateur du rapport dans I’équation de la courbe de remous (3) est nul:
,az B/ . ﬂ/2 Qz B/

I B T T o T B2 B

0,

avec Ry, = Bh/(B + 2h) le rayon hydraulique. Autrement dit c’est la solution
de I’équation algébrique

B+2h 1B ih*B? "
C?2Bh  gB @




Pour la hauteur critique /., on est en terrain connu puisque 'on retrouve la
condition sur le dénominateur nul, qui donne

2
2 _ _ s @
FT—1:>hc—3ﬁ.

Un écoulement est supercritique quand

Question (c)

Fr>1.
En termes de vitesse cela impose
w? > gh,

or d’apres la loi de Chézy, on a u = C'v/ih, donc en substituant cette loi dans la
condition ci-dessus, on a

C% > g.
Il existe donc une pente critique

-9

le =73

telle que pour ¢ > i, I’écoulement est supercritique, et réciproquement pour
1 < 1. il est subcritique. Cela est indépendant du débit (contrairement a ce qui
est trouvé avec des lois plus réalistes comme Manning-Strickler).

Question (d)
Avec B(z) = By — kx et R, o< h, ’équation (4) devient

1 1k ik?B?

ch T yBT Q2

2 2
s Q kC?h
h _i0232(1+g B)’

Soit encore



On a donc

Q2 1/3 kEC2h 1/3
h:(—mm) (”5?) ’

et comme k est petit, on a au premier ordre en k

h = Q—2 v 1_{_150_%
- \iC?B? 3g B )’

En regroupant les termes en h et en faisant un nouveau développement limité
en k, on déduit

QQ 1/3 1kC? Q2 1/3
%:(imﬁ) 1*5;5(5%5) '

L’écoulement est supercritique lorsque h,, < h,, soit quand

QQ 1/3 1k C? Q2 1/3 , QQ
—_— 1+——— | —— —
in < he = (20232 "398 \icegz) ) T\ g2

En simplifiant on trouve

JLECT Q@ N fice
39 B \iC?B? g

Un développement limité donne une expression simplifiée

. q 1 Q2 1/3
> &g (o) o
~~

2c0

On a vu au (c) que si le canal était droit (k = 0), la condition i > i, = g/C? est
la condition usuelle pour observer un écoulement supercritique avec un frotte-
ment a la Chézy, et cela indépendamment du débit. On voit que la contraction
du radier avec un coeflicient k a pour effet d’augmenter la pente a partir de la-
quelle le régime supercritique est observé car le second terme dans le membre
de droite dans (5) est positif (quelle que soit la valeur de 7). Pour s’en convaincre
on peut poser ¢ = i + 07 avec 6¢ < 1. En reportant dans (5), on trouve

k 9 1/3
01 > a avec o = — Q— )
1+a/3 B \iC?B?

Le facteur correctif dépend du débit.




Question (e)

Le débit critique est

2
he =4 @& =2,16 m
9B
La hauteur normale est solution de I’équation.
Bh

2 24272

= B“C*ih
© " Bton

qui donne h,, = 43 cm. Si on fait 'approximation d’un canal large, alors

_ 2
hn: ¥ 7CQ2—82 :42,7cm.

Comme le régime est supercritique et que la condition initiale vérifie h. >
ho > hy,, on doit avoir une courbe de remous décroissante qui tend vers son
asymptote h,,. Si on intégre numériquement I’équation de la courbe de remous
(3) avec pour condition initiale 7(0) = hq on obtient la solution tracée sur la

figure 5.
Cette figure a été obtenue avec Mathematica en quelques lignes
Q = 500
B = 50
i=20.2
Ch = 80
q = Q/B
g = 9.81

eqn = NDSolve[{

=

>

Il

Il
—~

i - gq*r2/Ch”r2/h[x]73)/(1 - gr2/g/h[x]73)
}, h’ {X’ 0’ 200}]

Plot[h[x] /. eqn, {x, 0, 200}, Frame -> True, FrameLabel -> {"x", "h"},
BaseStyle -> {FontFamily -> "Times New Roman", 12} ]
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Figure 5 —: Courbe de remous.
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Correction du probléme 2

Question (a)

L’énergie totale au point 2 (en prenant le fond du canal comme référence

des z) est
2

= Azt hy+ 2,
29
avec hy = h. et us = Q/(Wshs). Comme F'r = 1, on en déduit que

QQ
hy = he = | =2
? g3

On adonc F'r =1 = u3/(2g) = h./2 et donc

3
EQ = Az + §h27
Question (b)
Par définition, on a ,
= Azt hy+ %

avec uy = Q/(Wihy).

Question (c)

Les deux points étant sur le méme plan, il y a égalité des énergies spécifiques
en I’absence de perte de charge. Donc

2 Q2 3 Q2
N T R T . S . A
zZ+h+ 2 2 1+ 29W12h% 5 gW22

2 2 3/2
W2, (h _@ 2)
3v/3 2gWihi

ou bien encore

Q=



Question (d)

AN: Q = 3,5 m?/s.

Question (e)

Comme I’écoulement est subcritique, on peut supposer que I’énergie ciné-
tique est bien plus faible que la pression, donc

Q2

h v
L 2gWihi

Il s’ensuit alors

2+/2
Q ~ \/——gWth/Q
3v3

AN @Q = 3,41 m3/s. L’erreur relative est donc

A 3,41 — 3.5
Q: ) ) :—2,6%
Q 3,5




Correction du probléme 6

Question (a)

La hauteur normale s’obtient en égalant force de frottement et composante
motrice de la gravité:

XTp = 0951,
et comme on utilise la loi de Manning-Strickler, il vient:
o9 @

X753 173 = 0951,
K Rh/

et apres élimination, on obtient une équation implicite

Q2 _ K2510/3X_4/3Z" (6)

Question (b)
Le calcul de la surface mouillée a été vu en cours. On considére une surface

infinitésimale

dS =2Rsinf x dz (7)

avec:

z = RcosOetdz = —Rsin6do.

h
0= 1—=.
arccos ( R)

S = R*(® — cosfsinf).

L’angle 6 est donné par

L’intégration donne

S et S sont deux fonctions croissantes de %, qui sont nulles pour h = 0 et
atteignent les valeurs maximales respectives (pour 6 = 7/2):

S = gRQ et S, —V2R2.



S/R?

h/R

Figure 6 —: Variation de S (trait continu) et S (trait discontinu) en fonction de h. Les
variables ont été adimensionnalisées.

L’erreur relative maximale commise est donc:
T D2
s 1 _

e=1-— =
V2R?

T
_ ~—11%.
22

On pourrait obtenir une meilleure approximation de la surface mouillée en
faisant un développement limité a 'ordre 2. En effet, on a

32
arccos & = V2/1 + —— + O (2°/? ,
Vit st 0 (@)

et

3 5/2
VA=) = VaVE -~ T4 0 (o),

On montre ainsi en posant £ = h/R que

4 4
S = §¢§1~2253/2 + O(xi°?) = g\/21%3 + O(xi°?).

Ce développement est plus précis pour h — 0, mais il ’est moins pour h — R
(Perreur atteignant 20 %).



Question (c)
La charge spécifique est

Q2

H,=h .
+ 2952

Comme S o« vh, ona H, < h™! quand h — 0 (domaine supercritique) et
H, « h quand h — oo (domaine subcritique). Il existe un minimum de H
atteint quand la dérivée de H s’annule:

2 2
i, 20745, ,_ @ d5
dh 2953 dh 953 dh

On peut transformer cette égalité en introduisant le nombre de Froude

b2 @2 dS

La hauteur h. qui vérifie F'r = 1 est la hauteur critique. C’est une équation
implicite.

Question (d)

Avec S = v/Dh3, on a d’aprés (6) et le développement asymptotique § =
arccos(1 — h/R) = y/2h/R pour h < R (Uerreur commise quand h — R est
de 'ordre de 10 %):

RK3)5/3
> 2103 —4/3; o2 (2RR%)
Q= K"S""x ’LNKZ(Qh 278

En regroupant les puissances de h, on déduit

Q2 — h13/3
2K?%iR "

On obtient la solution recherchée

- QQ 3/13
o= (sxom) ©



Pour la hauteur critique, on a moins de travail. D’apres (8) et en servant toujours

de S = v Dh3,0on a
Q2 3 1/2 B § QQ

Fri=1=——"—-"(2Rh)"? = .
" g(2RIB)3/2 5 (21h) 4 gRhA
On en déduit une approximation de la hauteur critique
3 Q2 1/4
he=|-—= : 10
(4 gR) 1o

Comme le montre la figure 7, 'approximation S = /Dh3 permet d’obtenir
les hauteurs normale et critique avec une erreur relative maximale de 13 % pour
la gamme de débits testés.

Question (e)

On fait application numérique et on trouve: h, = 13 cm, h, = 35 cm.
La résolution des équations implicites (6) et (8) donne h,, = 14,3 cm, h, =
32 cm. Le régime est supercritique puis que h,, < h.. L’ordre de grandeur de
I'incertitude est 10 %. L’écart entre h,, et h. est un ordre de grandeur supérieur
a cette incertitude, donc méme en résolvant les équations implicites (6) et (8),
le régime ne changera pas de nature. En régime supercritique, la condition a la
limite se place a 'amont.

Le nombre de Froude vaut:

13 Q?
T = ZW_7’3

En régime permanent, la charge s’écrit

Question (f)

Q?
2gS5?%
En différentiant par rapport a x, on obtient
dH _de dh @ dS
de  dr dx 2¢5% dx’

H=z+h+
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Figure 7 —: Variation de la hauteur normale h,, et de la hauteur critique h. en fonction
du débit (). Les courbes continues sont les solutions aux équations implicites (6) et (8),
respectivement, et les courbes en tireté sont les solutions approchées (9) et (10).

soit encore, apres introduction de la pente d’énergie j; et de la pente du fond :

a# ., 4 Q°dSdh
= dr ~ ¢S3dhds’



On reconnait le nombre de Froude (8), et on peut écrire:
dh  i—jy
dr  1— Fr?
Avec 'approximation S = /Dh3 et les expressions approchées (9) et (10)
des hauteur normale et critique, on a

—2

1 - Y _

dh | iK2R)/®

—_— =

dx ] 3 Q?
4 gRh*
Si on considére le numérateur, on a

9 10/3 _ 4/3

U Sn 7 X

iKzRi/S - §10/3 X;O/?,’

ou s, et x, sont les surface et périmetre mouillés. En servant de I’équation (9),

on peut simplifier
gl0/3

4/3
Xn/

— 2R

On peut fait de méme pour les autres termes et on trouve finalement

dh 1= (ha/h)P
dr  '1— (ho/R)’

avecp = 13/3 et g = 4.

Question (g)

Le calcul de la force de pression nécessite de reprendre les éléments de calcul
vus a la question (b). La force infinitésimale de pression s’écrit:

dF, = —p(z)ndS,

avec n = e, la normale a Sy, p = pg(hy — 2’) la pression hydrostatique, et
d.S donné par (7): dS = 2R?sin? #dh. On a z = R cosf (position par rapport a



I'axe de la conduite) et 2/ = R — z (position par rapport au fond de la conduite).
On a donc en projection sur 'axe x

dF, = 20gR*(hg — R + Rcos ) sin® §d6),
que l'on intégre sur [0,0y] avec 6y = arccos(1 — hy/R). L’intégration donne
o 1 3 .3 o T
F, = 3ggR (2sin*(0) + 3(¢ — 1)(0 — sin(6) cos(9))) ,

avec £ = h/R et § = arccos(1 — h/R). On peut aussi tout mettre en fonction
de 0

F,= %QQR3 (9sinf + sin(36) — 126 cos 0) , (11)
ou bien de &
Fy= 509k (V- 0F (€ 2 +3) +3( - Deos(1-6)) (1)

Comme le montre ’analyse rapide de (11), F}, est une fonction croissante de
6 (F,  6°). L’erreur est donc maximale quand 6 = TI/2, et on trouve alors que

9
@:§wm,

alors que 'approximation proposée dans I’énoncé donne

.3
F, = ZQQR?’,

soit une erreur relative de 12,5 %. L’approximation semble correcte. On peut
réitérer cela en deux ou trois points pour vérifier que ’approximation est cor-
recte.

On peut le démontrer de fagon plus rigoureuse en faisant un développement
limité a 'ordre 3 en £ = 0 de (12) donne

Fy= V3609 B + O(€7) (13

et une application numérique montre que

8
—V2=0,7542 =
15\/— ’

A~ w



On va donc pouvoir se servir de I’approximation de la force de pression sur Sj:
~ 3
Fy =€ g R’ (14)

avec {y = ho/R. La figure 8 montre le bon accord entre solution théorique et
approximation.

07¢
0.6
05
04

0.3F

F,/(0gR?)

02F

0.1F

0.0F

h/R

Figure 8 —: Variation de la force de pression F), en fonction de la hauteur /: calcul
exact représentant (12) (trait continu) et approché (13) (trait discontinu).

Question (h)
La projection du flux de quantité de mouvement a travers S, s’écrit
b= [ ou-e.fun)ds = oS,
So

puisque la vitesse est uniforme. La conservation du débit impose: ug = Q/.Sy.
D’ou le résultat demandé

Q2
by = —p—
0 QSO ?
et en se servant de approximation Sy = \/2Rh3, on déduit
2 2
by = ¢ _@ (15)

NG



Question (i)

Comme les hypotheses sont identiques a celles utilisées pour la question
(8), on déduit immédiatement

Q2
(I)e =05
et en se servant de 'approximation S, = 1/ 2Rh2, on déduit
= Q* Q°
b, = oL = , 16
05 =0 DR (16)
Question (j)
La conservation de la quantité de mouvement s’écrit
d
— [ oudV + / ou(u-n)dS = opVg+ / o -ndS, (17)
dt Jv s s

et donc en projetant sur z, en considérant un régime permanent (donc pas de
terme d’accélération) et les hypothéses de I’énonce, on aboutit a une équation

relativement simple
F,+ &)= .. (18)

On peut simplifier cette équation a I’aide des approximations (14), (15) et (16)
vues précédemment:

Fp‘{'(i)O:&)ea

soit encore Q2 Q2
RIS \2Rh3

3
Z?”wR”+@

On divise cette équation par F}:
L+ 4 Q? o Q?
3gR32RIGEG 3 gR3\/2RE3E™

Comme on a {y = hy/R, on peut tout exprimer en fonction de hg:

4 Q2 4 Q2 (hO)WQ

14 —
3gRV2ht 3 gR\V2h

he



On identifie le nombre de Froude donné dans I’énoncé et trouvé également a la
question (4), et cela nous conduit a

16
14+ —Fri= F 2y —3/2,
9v/2 9\/_

2/3
_ LFTO
1+9\[FT0 '

Soit encore, apres réarrangement des termes:

FTO 2/3
0,8 + Frg )

Avec les valeurs trouvées a la question (5), on trouve: Y = 0,99. C’est un ré-
sultat sans surprise: a grand nombre de Froude, la perturbation causée par la
formation d’un jet est minime. La figure 9 montre I’allure de la courbe Y.

Le résultat est immédiat

0.8+ B

06+ B

Y = he/ho

0.2+ B

0.0 B

FTO

Figure 9 —: Variation de la Y en fonction du nombre de Froude F'ry.



Question (k)

On a un régime supercritique. La condition a la limite est donnée par I’amont.
La condition initiale est entre les hauteurs normale h,, et critique h., donc la
courbe de remous va tendre vers h,, (voir figure 10).

S S ]
a0l ]

251 ]

h(z) [cm]

15} .

x [m]

Figure 10 —: Courbe de remous (trait continu) et hauteurs normale h,, (trait discontinu)
et critique h, (trait pointillé).

Question (1)

Sila conduite est suffisamment longue et le régime supercritique, la hauteur
d’eau a la sortie de la conduite est tres proche de la hauteur normale. On peut
donc calculer la courbe de débitance en servant de I’équation (9) de la hauteur
normale. Il s’agit d’'une approximation précise a environ 10 %. Avec une simple
regle, on peut mesurer la hauteur %, et en déduire () avec une précision de
I'ordre de 10 %.
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