
Mécanique des fluides
Section de génie civil
Écoulements en charge

Problème 1 : château d’eau

Les châteaux d’eau sont des réservoirs d’eau qui servent à stocker l’eau, à la
distribuer sous pression dans un réseau gravitaire, et à équilibrer les variations
de demandes et d’approvisionnement en eau. La figure 1 montre un château
d’eau, situé sur le plateau au nord de Lausanne, d’une hauteur de 40 m.

On étudie un réseau gravitaire simplifié alimenté par un château d’eau (ré-
servoir) qui alimente un village (point C) et qui est relié au réseau principal
d’adduction d’eau (point A).

Les caractéristiques du réseau sont les suivantes :

– rayon du château d’eau R = 20 m;
– hauteur d’eau dans le réservoir h = 20 m;
– cotes zf = 50 m, ze = 30 m, zd = zb = za = 0 m, et zc = 10 m;
– caractéristiques des conduites par tronçon

tronçon ED DB BA BC
diamètre d [cm] 50 50 30 20
longueur L [m] 100 500 200 100

Les coefficients de perte de charge singulière sont les suivants :

– rétrécissement brutal d’une section de diamètre d1 à une section de dia-
mètre d2 :

∆Hs = ζ
ū2
2

2g
avec ζ =

(
1− 1

0,59 + 0,41β6

)2

,

avec β = d2/d1 < 1 ;



Figure 1 –: Château d’eau de Goumoens-la-Ville (VD). Source : Wikimedia.

– élargissement brutal d’une section de diamètre d1 à une section de dia-
mètre d2 :

∆Hs = ζ
ū2
1

2g
avec ζ =

(
1− β−2

)2
avec β = d2/d1 > 1 ;

– coude en D (avec un angle θ = π/2) : ζ = sin2(θ/2) + 2 sin4(θ/2) = 1

– entrée dans un réservoir depuis une conduite : ζ = 1 (quelles que soient
les sections) ;

– entrée depuis un réservoir (de section S1) dans une conduite (de section
S2) : ζ = 0,57 ;

– embranchement d’une section S1 vers des conduites de section S2 et S3 :

∆Hs = ζ
ū2
1

2g
avec ζ = 1,3

https://tinyurl.com/f7vjxwwb


Figure 2 –: Schéma de fonctionnement du réseau gravitaire étudié.

(quelles que soient les sections et les vitesses à travers ses sections) ;
– sortie ou entrée des conduites en C et A : on prendra ζ = 0.

On utilisera la formule de Darcy-Weisbach pour la perte de charge régulière
pour une conduite de longueur L et diamètre D :

∆H = f
L

D

ū2

2g
,

avec un coefficient de frottement f = 0,005.

(a) [0,50] Dans un premier temps, on néglige les pertes de charge dans le réseau.



Écrire la conservation de la charge entre E (ou bien F) et A, puis entre E (ou F) et
C, en l’absence de pertes de charge. Que valent les débits à la sortie en A et en
C? (On supposera que ces deux sorties sont à une pression égale à la pression
atmosphérique).

(b) [0,50]Que vaut la vitesse en D si la sortie en C est fermée (la sortie en A restant
ouverte) et toujours dans l’hypothèse où les pertes de charge sont négligeables ?
Quelle est la pression qui s’exerce au point D du coude?

(c) [0,50] Calculer la vitesse en D et la pression si maintenant les deux sorties sont
ouvertes.

(d) [0,75] Refaire le calcul du débit en A en prenant en compte les pertes de charge
entre E et A, et en supposant que la sortie en C est fermée.

(e) [0,75] On considère maintenant qu’une pompe placée en A permet le remplis-
sage du réservoir du château d’eau. On considère que la sortie C est fermée.
Montrer que la perte de charge de l’écoulement de A vers E peut s’écrire sous
forme compacte :

∆HA→E = Γ
u2
E

2g

avec Γ une constante à déterminer et uE la vitesse dans la conduite DE. Écrire
la conservation de la charge entre A et E en tenant compte des pertes de charge,
de la charge fournie par la pompe, et du rapport de diamètre β = dBA/dEB ;
à cet effet, on continuera de supposer que (i) le débit est constant entre A et
E, (ii) la pression en A est la pression atmosphérique, (iii) la hauteur h dans le
réservoir reste constante. La courbe caractéristique de la pompe est de la forme :

Hp = γ − αQ2,

avec γ = 100 m la charge à vide et α = 0,5 s2·m−5. Montrer qu’on peut écrire
cette caractéristique sous la forme

Hp = γ − δ
u2
E

2g

et calculer δ. En déduire la vitesseuE en E en fonction de zf , γ,Γ et β. Déterminer
le débit refoulé par la pompe vers le réservoir.



Correction du problème 1

Question (a)

Si on néglige les pertes de charges et qu’on considère une ligne de courant
entre A et F, qu’on suppose l’écoulement permanent avec une vitesse en E nulle
(comme d ≪ 2R on peut appliquer la formule de Torricelli), alors on déduit

u2
A

2g
+ zA = zf ⇒ uA =

√
2gzf = 31,3 m/s

avec zf = 50 m (la question se pose s’il faut définir l’altitude de A comme
za = 0 ou bien comme le milieu de la conduite za = 15 cm, mais une simple
application numérique montre que cela ne change le résultat que de quelques
pourcent). Le débit sortant en A est :

QA = π
d2BA

4

√
2gzf = 2,2 m3/s.

On fait de même pour le point C

uC =
√
2g(zf − zc) = 28,0 m/s.

Le débit sortant en A est :

QC = π
d2BC

4

√
2g(zf − zc) = 0,88 m3/s.

Question (b)

On considère tout d’abord que la sortie C est fermée. En l’absence de pertes
de charge, l’équation de Bernoulli entre F et D s’écrit

zf + 0 + 0 = zd +
u2
D

2g
+

pD
ϱg

,

car la vitesse et la pression en F sont nulles, et on a posé zd = 0. La conservation
du débit implique que

π

4
d2EDuD =

π

4
d2BAuA ⇒ uD = β2uA



où β = dBA/dEB = 3/5.
On déduit

uD = β2
√
2gzf = 11,3 m/s

et

pD = ϱgzf −
1

2
ϱu2

D = ϱgzf −
1

2
ϱβ42gzf = ϱgzf (1− β4) = 427 kPa.

Question (c)

On considère maintenant que les sorties A et C sont ouvertes. L’équation
de Bernoulli entre F et D s’écrit

zf =
u2
D

2g
+

pD
ϱg

,

or la conservation du débit implique que le débit dans ED vaut la somme des
débits dans BA et BC

π

4
d2EDuD =

π

4
d2BAuA + πd2BCuC ⇒ uD = β2

auA + β2
cuC

où βa = dBA/dEB = 3/5 et βc = dBC/dEB = 2/5.
On déduit

uD = β2
a

√
2gzf + β2

c

√
2g(zf − zc) = 15,8 m/s

et
pD = ϱgzf −

1

2
ϱu2

D = 366 kPa.

Question (d)

On recommence le calcul en prenant en compte les pertes de charge en E et
A :

– Pertes de charge régulières le long des conduites

∆Hr = f
LEB

dEB

u2
E

2g
+ f

LBA

dBA

u2
A

2g
,



avec LEB = LED + LDB = 600 m la longueur totale de la conduite
entre les points E et B, et dEB = 0,5m son diamètre. On peut écrire cette
équation sous une forme ne faisant intervenir qu’une seule vitesse, par
exemple uE (le choix est arbitraire) :

∆Hr = f

(
LEB

dEB

+ β−4LBA

dBA

)
u2
E

2g
,

où β = dBA/dEB = 3/5 et l’on s’est servi de la conservation du débit :
π

4
d2DBuE =

π

4
d2BAuA ⇒ uA = β−2uE

– Pertes de charge singulières :
– en E (entrée dans une conduite depuis un réservoir) :

∆HE = ζe
u2
E

2g
avec ζe = 0,57

– en D (coude) :

∆HD = ζd
u2
E

2g
avec ζd = 1

– en B (embranchement) :

∆HB,1 = ζb,1
u2
E

2g
avec ζb,1 = 1,3

– en B (contraction) :

∆HB,2 = ζb,2
u2
A

2g
= ζb,2β

−4u
2
E

2g
avec ζb,2 = (1−1/(0,59+0,41β6))2 = 0,41.

La charge à la sortie A est

HA =
u2
A

2g
+ za + pa =

u2
A

2g
+ 0 + 0 = β−4u

2
E

2g
,

et celle en E (du côté du réservoir, donc juste au-dessus de l’entrée de la conduite,
ce qui implique uE = 0 ; pour éviter toute confusion, il peut être préférable de
prendre la ligne de courant AF)

HE =
u2
E

2g
+ zE + pE = 0 + ze + h.



La conservation de la charge entre les points E et A doit prendre en compte
les pertes de charge singulière et régulière :

β−4u
2
E

2g
+

(
f
LEB

dEB

+ β−4f
LBA

dBA

+ ζe + ζd + ζb,1 + β−4ζb,2

)
u2
E

2g
= ze + h. (1)

Comme ze + h = zf , on trouve facilement

uE =

√
2gzf

β−4 + f LEB

dEB
+ β−4f LBA

dBA
+ ζe + ζd + ζb,1 + β−4ζb,2

= 4,64 m/s,

ou encore
uA = β−2uE = 12,9 m/s.

Le débit sortant vaut
QA = π

d2BA

4
uA = 912 L/s.

Question (e)

La relation de perte charge entre A et E est identique à la perte de charge
utilisée dans l’équation (1)

∆HA→E =

(
f
LEB

dEB

+ β−4f
LBA

dBA

+ ζe + ζd + ζb,1 + β−4ζb,2

)
u2
E

2g
, (2)

que l’on peut écrire sous forme compacte :

∆HA→E = Γ
u2
E

2g
avec Γ = f

LEB

dEB

+ β−4f
LBA

dBA

+ ζe + ζd + ζb,1 + β−4ζb,2.

On prendra garde que l’écoulement se fait maintenant de A vers E, donc les
pertes de charge singulières en E et B sont différentes :

– en E (entrée depuis une conduite dans un réservoir) :

∆HE = ζe
u2
E

2g
avec ζe = 1

– en D (coude) :

∆HD = ζd
u2
E

2g
avec ζd = 1



– en B (embranchement) :

∆HB,1 = ζb,1
u2
E

2g
avec ζb,1 = 1,3

– en B (expansion) :

∆HB,2 = ζb,2
u2
A

2g
= ζb,2β

−4u
2
E

2g
avec ζb,2 = (1− β2)2 = 0,41.

On trouve donc que
Γ = 38,2.

La pompe a une charge

Hp = γ − αQ2 = γ − δ
u2
E

2g
avec δ = α

π2

8
gD4

ED = 0,38. (3)

En introduisant les deux équations (2) et (3) dans l’équation de Bernoulli consi-
dérée entre les points E et A, on a

HE +∆HA→E = Hp +HA, (4)

avec
HE =

u2
E

2g
+ h+ ze et HA =

u2
A

2g
= β−4u

2
E

2g

Quand on substitue dans l’équation (4) et comme ze + h = zf , on a

(1− β−4)
u2
E

2g
+ zf + Γ

u2
E

2g
= γ − δ

u2
E

2g
,

soit encore
u2
E

2g

(
1− β−4 + δ + Γ

)
= γ − zf ,

et de là on déduit la vitesse

uE =

√
2g(γ − zf )

1− β−4 + δ + Γ
= 5,55 m/s

Le débit de pompage est

Q = π
d2ED

4
uE = 1,09 m3/s.



Exercices suggérés

Problème 13 : fonctionnement d’un déversoir

On étude un déversoir de crue sur une digue en remblai. Ce déversoir est un
canal de section rectangulaire de largeur b = 3 m et de hauteur 8 m. Il évacue
les eaux d’un plan d’eau, dont le niveau des plus hautes eaux se situe à la cote
18 m. La crête du déversoir se situe à la cote za = 15m (point A sur la figure 1).
Il s’ensuit que la différence de hauteur d’eau au-dessus de la crête du déversoir
(en A) est∆h = 3m. Le niveau des plus hautes eaux est constant, et il est donc
possible de considérer l’écoulement comme permanent.

Le déversoir est constitué :

– d’un coursier raide en béton (entre A et B sur la figure 3), puis
– d’un tronçon horizontal également en béton (entre B et C sur la figure 3).

Le tronçon terminal se termine par un seuil de forme triangulaire (CDE sur la
figure 3, triangle isocèle en son sommet D) de hauteur a. La pente de chaque
côté du seuil est 5H:1V.

Le déversoir débouche sur un canal en terre battue (entre E et F sur la figure
3) de longueur L = 400 m et de pente i = 1 %. Le bief EF est de section
trapézoïdale avec des pentes latérales 1H:1V et une base ℓ = 2 m.

On néglige les pertes de charge par frottement sur tout le déversoir entre
les points A et E. En cas de formation d’un ressaut hydraulique, il faut prendre
en compte la perte de charge singulière associée au ressaut. On ignore toute
autre perte de charge singulière au niveau de la digue ou du seuil.

Pour le bief EF, le lit a une rugosité (Manning-Strickler) K = 50 m1/3/s.

(a) En supposant que la crête du déversoir est assimilable à un seuil, déduisez ce
que valent la hauteur et le débit Q en ce point.

(b) Calculer les charge hydraulique HB , hauteur hB et vitesse uB au point B. Quel
est le régime d’écoulement?

(c) Si on veut qu’il se forme un ressaut entre B et C, quelle est la longueur minimale
qu’il faut prévoir entre ces deux points ?

(d) On suppose que la condition sur la longueur entre B et C est vérifiée et qu’un
ressaut se forme.Que valent lesHC , hauteur hC et vitesse uC au point C?Quelle



Figure 3 –: Schéma de principe. L’échelle et les proportions ne sont pas respectées.
Le déversoir est un canal rectangulaire qui va du sommet A de la digue au sommet du
seuil D. Il se poursuit par un canal trapézoïdal de longueur L entre les points E et F.

est la perte de charge due au ressaut? Le ressaut est-il un moyen efficace de
dissiper l’énergie de l’écoulement? On supposera que la hauteur à l’amont du
ressaut est hB .

(e) Peut-on calculer les hauteurs critique et normale pour le tronçon horizontal
BC? (le cas échéant, les calculer). Calculer le nombre de Froude et caractériser
le régime d’écoulement.

(f) Quelle doit être la hauteur minimale du seuil pour que le régime passe de sub-
critique à supercritique au passage du seuil (en D)?

(g) Quelle est la hauteur en E? On fera le calcul en considérant que E soit dans le
déversoir à section rectangulaire ou dans le canal trapézoïdal.

(h) Calculer les hauteurs critique et normale dans le canal EF. Quel est le régime
d’écoulement?

(i) Tracer l’allure de la courbe de remous dans le déversoir AE. On placera les
hauteurs caractéristiques et on justifiera – autant que faire se peut (cela reste
un schéma) – l’allure proposée.

(j) Tracer l’allure de la courbe de remous dans le canal trapézoïdal EF. On placera
les hauteurs caractéristiques et on justifiera l’allure proposée.



Problème 14 : force exercée sur une vanne

On étudie le fonctionnement hydraulique d’une vanne plane dont l’ouver-
ture est a et qui est placée perpendiculairement à un fond horizontal (voir
schéma et notation sur la figure 4). Le débit (par unité de largeur) à l’amont
est constant et vaut q = h0u0 avec h0 la hauteur à l’amont de la vanne et u0 la
vitesse moyenne. Il y a deux modes de fonctionnement :

– Régime dénoyé – voir figure 4(a) – pour lequel l’écoulement à l’aval n’in-
fluence pas l’écoulement sous la vanne. Au passage de la vanne, on ob-
serve une contraction de l’écoulement et la hauteur atteint une valeur
h1 ≤ a. L’écoulement est supposé supercritique à l’aval immédiat de la
vanne. Il se forme donc un ressaut un peu plus en aval, dont la hauteur
aval est notée h2, qui permet d’assurer la transition du régime supercri-
tique à un régime subcritique.

– Régime noyé – voir figure 4(b) – pour lequel l’écoulement à l’aval in-
fluence l’écoulement sous la vanne. La hauteur à l’aval de la vanne est
notée h2. Le régime est subcritique de part et d’autre de la vanne.

Valeurs numériques

– hauteur h0 = 10 m et vitesse u0 = 50 cm/s à gauche de la vanne ;
– ouverture de la vanne a = 50 cm.

(a) En vous servant de la méthode de votre choix, faite l’analyse dimensionnelle du
problème où l’on cherche à calculer q connaissant les hauteurs du problèmes
(a, h0 et h2) dans les cas dénoyé et noyé.

(b) Utilisez le théorème de Bernoulli pour déduire la hauteur h1 connaissant h0 et
u0. On négligera la perte de charge singulière due à la contraction de la lame
d’eau au passage de la vanne. Faire l’application numérique.

(c) Tracez la charge spécifique Hs(h) pour le débit donné q = h0u0 et positionnez
les hauteurs h0 et h1 sur cette courbe. Déduisez-en le régime d’écoulement de
part et d’autre de la vanne.

(d) En examinant ce graphique, examinez si on peut toujours trouver h1 satisfaisant
le théorème de Bernoulli, c’est-à-dire qui puisse se placer sur la courbe Hs(h).
Quelle est la condition portant sur u0 et h0 (ou bien sur le nombre de Froude
Fr = u0/

√
gh0) pour qu’on puisse déterminer la hauteur h1 à partir de h0 en se

servant de la courbe Hs(h)?



Figure 4 –: Schéma de principe d’une vanne plane vertical à paroi mince. (a) régime
dénoyé. (b) régime noyé.

(e) On suppose maintenant que la charge hydraulique à l’amont de la vanne est
constante et vaut H0 = 10 m. La hauteur h0 et la vitesse u0 peuvent varier en
fonction du débit transitant par la vanne. Ce débit peut se calculer à l’aide de la
formule

q = aCd

√
2gh0,

avec Cd = 0,6 le coefficient de débit. En vous servant de la courbe spécifique
Hs(h), montrer que si on augmente l’ouverture a de la vanne, la hauteur amont
h0 diminue alors que la hauteur h1 augmente.

(f) Déterminer le débit seuil q et de l’ouverture a au-delà desquels on ne peut plus
reporter les hauteurs h0 et h1 sur la courbe Hs(h) (on pourra faire l’approxi-
mation H0 = h0 pour la charge à l’amont loin de la vanne).

(g) Calculer la hauteur h2 à l’aval du ressaut. Faire l’application numérique.
(h) On considère le volume de contrôle montré en hachuré de la figure 3. Écrire la

conservation de la masse, puis la conservation de la quantité de mouvement.



On supposera l’écoulement permanent, le profil de vitesse uniforme, et on né-
gligera le frottement au sol. On peut se contenter de projeter la conservation
de la quantité de mouvement sur l’axe horizontal.

(i) Calculer la force de pression hydrostatique sur la paroi immergée de la vanne
(on fera l’hypothèse d’une distribution hydrostatique des pressions comme su
l’eau était au repos). Faire l’application numérique.

(j) Faire le bilan de forces. En déduire la force totale (par unité de largeur) exer-
cée par l’écoulement sur la vanne. Faire l’application numérique. Comparer la
valeur obtenue avec la force de pression obtenue à la question précédente et
commenter le résultat.

(k) On suppose que l’ouverture a de la vanne est grande, et en conséquence la
condition trouvée à la question (6) est vérifiée. On dit alors que la vanne est
noyée – voir figure 2(b). En considérant la charge hydraulique entre l’amont
(H1) et la vanne et en supposant que la contribution de la pression (contribution
dite piézométrique) vaut h2, déterminer le débit q par unité de largeur pour la
vanne noyée.

(l) Dans la question précédente, on considère que la vanne est noyée car son ou-
verture est trop grande. Voyez-vous d’autres scénarios dans lesquels la vanne
sera considérée comme noyée, c’est-à-dire que le débit à travers elle dépend à
la fois des conditions amont et aval ?

Figure 5 –: Volume de contrôle englobant la vanne.



Correction du Problème 13

Question (1)

Si la crête du déversoir se comporte comme un seuil, alors la hauteur critique
hc est atteinte en A, et le nombre de Froude y vaut 1. Par ailleurs, cette hauteur
vaut ∆h = 3 m d’après les données du problème.

Pour un canal rectangulaire de largeur b, cela implique qu’en A, hA = hc =
∆h, et donc par définition du nombre de Froude

Fr = uA√
ghA

= 1 avec uA =
Q

bhA

,

soit encore en termes de débit

Q = bhA

√
ghA = b

√
gh

3/2
A = 48,8 m3/s. (5)

Le débit par unité est largeur est

q =
Q

b
= 16,3 m2/s. (6)

Question (2)

On néglige toute perte de charge entre A et B. La conservation de la charge
impose

HA = HB

or comme la hauteur est critique en A, on a

HA = zA + hA +
u2
A

2g
= zA +

3

2
hA = zA +

3

2
∆h = 19,5 m.

En B, on a donc

HB = zB + hB +
u2
B

2g
= 0 + hB +

q2B
2gh2

B

= 19,5 m.

C’est une équation polynomiale de degré 3. Elle admet trois racines, mais une
seule est à la fois positive et associée à un régime supercritique. On pose donc

hB = 85 cm. (7)



La vitesse en B est
uB =

q

hB

= 19,1 m/s. (8)

Le nombre de Froude en B est

FrB =
uA√
ghB

= 6,6. (9)

L’écoulement est donc supercritique.

Question (3)

Selon la formule (5.27) p. 152 des notes de cours, la longueur du ressaut est

L

hB

= 160 tanh FrB
20

− 12 = 39,1 m. (10)

On peut prendre 39 m comme longueur minimale entre B et C.

Question (4)

On se sert de l’équation de conjugaison (5.25) du cours

hC

hB

=
1

2

(√
1 + 8Fr2B − 1

)
⇒ hC = 7,6 m. (11)

On en déduit

uC = q/hC = 2,2 m/s, HC = zC+hC+
q2

2gh2
C

= 7,8 m et FrC =
uC√
ghC

= 0,25.

(12)
La perte de charge due au ressaut est

∆H = HC −HB = −11,7 m. (13)

Cela pourrait aussi se calculer à l’aide de l’équation (5.26) p. 152 des notes de
cours. Le ressaut permet de dissiper 60 % de la charge de l’écoulement, et on
peut donc considérer que c’est un moyen efficace de réduire la puissance de
l’eau avant qu’elle entre dans le canal en terre battue.



Question (5)

La hauteur normale n’existe que pour un canal de pente non nulle. La hau-
teur critique est constante quelle que soit la pente si la section ne change. Or
au sommet A du déversoir, on a posé hA = hc = 3 m. La hauteur critique est
donc

hc = 3 m. (14)
Le nombre de Froude est 0,25 en C. L’écoulement est subcritique.

Question (6)

Si la taille du seuil est trop petite, alors l’écoulement passe par-dessus lui
sans changer de régime (voir § 5.6.4 dans les notes de cours). Pour qu’il y ait
changement de régime, il faut que l’écoulement devienne critique au sommet
D du seuil. Il faut donc qu’au point D, on ait

hD = hc = 3 m. (15)

Par ailleurs, la charge hydraulique se conserve entre C et D, et donc on doit
avoir

HD = a+
3

2
hc = HC ⇒ a = 7,8− 1,5× 3 = 3,3 m. (16)

Question (7)

Si on néglige les pertes de charge et qu’on considère que la section d’écou-
lement est rectangulaire, alors la charge en E vaut celle en D et C

HE = HD ⇒ zE + hE +
q2

2gh2
E

= 7,8 m.

C’est un polynôme d’ordre 3, qui admet donc trois solutions. Seule la solution
positive et associée à un régime supercritique est possible. Donc on obtient

hE = 1,5 m. (17)

Si maintenant on considère une section trapézoïdale, on doit résoudre

zE + hE +
Q2

2gS2(hE)
= 7,8 m,



avec S(hE) = (ℓ + hE)hE . La solution est alors la seule qui soit positive et
associée à un écoulement supercritique

hE = 1,3 m. (18)

Question (8)

La hauteur critique est définie comme la hauteur pour laquelle le nombre
de Froude vaut 1. Or ce nombre est défini de façon générale comme

Fr = Q

S

√
g
S

B

,

avec pour une section trapézoïdale dont les pentes de talus sont 1H:1V :

B = ℓ+ 2h, S = h
B + ℓ

2
= (ℓ+ h)h et Rh =

(ℓ+ h)h

ℓ+ 2h
√
2
.

On doit donc résoudre l’équation polynomiale de degré 6, dont une seule racine
est positive et réelle

Q2B = gS3 ⇒ hc = 2,6 m. (19)

La hauteur normale satisfait l’équation de Manning-Strickler

Q = K
√
iSR

2/3
h ⇒ hn = 2,2 m. (20)

Question (9)

Pour tracer l’allure de la courbe de remous dans le déversoir, on se sert des
hauteurs calculées précédemment en A, B, C, et D.

Coursier. On sait que le long de la partie raide du coursier (entre A et B),
l’écoulement est supercritique, et la hauteur d’eau épouse (à peu près) la forme
du fond (on pourrait calculer ces hauteurs en considérant la conservation de la
charge).

Fond horizontal. La hauteur devient uniformément constante et égale à
hB = 85 cm. En effet, sur de courtes distances, il n’y a pas d’effet significatif



du frottement, et si le régime est permanent, la pente est nulle, alors rien ne
peut causer de changement de hauteur. Entre B et C, il se forme un ressaut qui
est représenté de façon très simplifiée par une discontinuité, un « mur d’eau »
faisant passer la hauteur de hB = 85 cm à hC = 7,6 m. La position du ressaut
n’est pas connue. Elle est en théorie fixée en recherchant (par la méthode de
conjugaison) l’intersection de la branche subcritique à l’aval du ressaut avec la
conjuguée de la courbe de remous à l’amont du ressaut. Or comme celle-ci est
une droite horizontale, sa conjuguée l’est aussi. En l’absence de frottement et
de pente, la branche aval subcritique doit rester horizontale jusqu’au point C.

Seuil. L’écoulement étant subcritique, la hauteur d’eau doit diminuer entre
C et D (voir § 5.2.1 dans les notes de cours) puis au passage du seuil, la hauteur
diminue jusqu’à atteindre la valeur critique hc = 3 m en D.

A B C D E

Figure 6 –: Allure de la courbe de remous le long du déversoir en béton. L’échelle et
les proportions ne sont pas respectées.

Question (10)

Le régime est supercritique dans le canal. La condition initiale est donc à
fixer à l’amont. On a trouvé précédemment qu’au point E, on a hE = 1,3 m;
cela sera la condition initiale. On intègre l’équation de la courbe de remous
(5.18) dans le cas d’un écoulement prismatique (∂xS = 0)

h′ = F (h) =
i− j

1− Q2B

gS3

avec j = Q2

K2R
4/3
h S2

(21)

La figure 2 montre la courbe de remous obtenue numériquement par inté-
gration de l’équation (21). On peut déterminer l’allure de cette courbe à partir



des éléments suivants :

– comme h′ > 0 en x = 0 (on pose x = 0 en E), la fonction h(x) est
croissante ;

– comme h0 = h(0) = hE < hn < hc, la courbe de remous doit tendre vers
la hauteur normale ;

– on peut obtenir une approximation de la courbe de remous sans résoudre
l’équation (21). Par exemple, on peut faire un développement à l’ordre 2

h(x) = h0 + xh′(0) +
x2

2
h′′(x) + · · · (22)

avec

h′(0) = F (h0) = 0,00496 et h′′(0) =
d2h
dx2

(0) =
dF
dx =

dF
dh

dh
dx = −8,9× 10−6

Comme le montre la figure 7, l’approximation (22) fournit une description cor-
recte de la solution pour les 100 premiers mètres et permet de voir que le rac-
cordement asymptotique vers hn se fait rapidement (la hauteur normale est
quasiment atteinte au bout de 300 m).

0 100 200 300 400

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Figure 7 –: Allure de la courbe de remous le long du canal trapézoïdal. On reporte
la solution numérique à l’équation (21) (courbe continue), la hauteur normale et la
hauteur critique. La courbe noire discontinue montre l’approximation (22).



Correction du Problème 14

Question (1)

Pour le régime dénoyé, on a 4 variables (q, h0, a, et g) et deux unités phy-
siques (m et s). Le rang de la matrice dimensionelle est 2, donc on peut for-
mer deux nombres sans dimension d’après le théorème de Vaschy-Buckingham.
L’intuition physique nous incite à poser

q

a
√
gh0

= f

(
a

h0

)
.

On peut raisonner de façon plus rapide en se disant que l’ordre de grandeur de
la vitesse sous la vanne est donné par la formule de Torricelli (u ∝

√
2gh0) et

comme l’ouverture est a, alors le débit par unité de largeur doit être propor-
tionnel à a

√
2gh0. Il existe donc une constante C telle que

q = Ca
√

2gh0.

Les deux méthodes donnent des résultats similaires. En effet, si on considère
que le rapport a/h0 est petit, alors f doit tendre vers une constante si on fait
l’hypothèse de similitude complète.

Pour le régime noyé, on a maintenant 5 variables (q, h0, a, h2 et g) et deux
unités physiques (m et s). Le rang de la matrice dimensionelle est toujours 2,
donc on peut former trois nombres sans dimension. On pose

q

a
√
gh0

= f

(
a

h0

,
h2

h0

)
.

Si on raisonne de façon physique, on se convainc facilement que le débit
doit dépendre de la différence h2 − h0 (si h2 = h0, il n’y a plus de gradient de
pression qui puisse mettre le fluide en mouvement sur un fond horizontal, et
donc hormis d’imaginer qu’on pousse le fluide depuis la gauche, il ne peut y
avoir d’écoulement). Cela incite à écrire

q = Ca
√

2g(h2 − h0). (23)



Question (2)

On considère une ligne de courant allant de la surface libre (hauteur d’eau
h0) à droite de la vanne jusqu’au creux de la lame d’eau, un creux caractérisé par
la hauteur h1. Les deux points ont le même potentiel gravitaire. La conservation
de la charge entraîne

H0 = H1 ⇒ h0 +
q2

2gh2
0

= h1 +
q2

2gh2
1

.

C’est une équation polynomiale de degré 3. Il existe trois racines, dont une seule
positive et en régime supercritique. On trouve

h1 = 36 cm. (24)

Question (3)

La figure 8 montre la courbe de charge spécifique. On voit que la hauteur
h0 est sur la branche subcritique alors que la hauteur h1 est sur la branche
supercritique.

Question (4)

Pour qu’on puisse placer les hauteurs h0 et h1 sur la courbe Hs(h), il faut
que ces hauteurs soient au-dessus du minimum de Hs. Ce minimum est atteint
pour h = hc et il vaut

minHs =
3

2
hc avec hc =

3

√
q2

g
.

On peut retrouver rapidement ce résultat en différentiant Hs(h) et en recher-
chant la hauteur pour laquelle H ′

s = 0 :

dHs

dh = h′ − q2

gh3
h′ = 0 ⇒ h = hc.

On recherche donc la condition sur les couples (h0, u0) qui vérifient

h0 ≥
3

2
hc ⇒ h3

0 ≥
27

8

h2
0u

2
0

g
.
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Figure 8 –: Variation de la charge spécifiqueHs avec la hauteur h. L’intersection avec
H0 = h0 + u20/(2g) = 10,01 cm donne h0 = 10 m et h1 = 36 cm.

On peut arranger les termes

Fr2 = u2
0

gh0

≤ 8

27
.

Il faut donc que le nombre de Froude soit plus petit que

Fr ≤ 2
√
2

3
√
3
= 0,54. (25)

Question (5)

La figure 9 montre la courbe de charge spécifique pour deux débits q =
5 m2/s et q∗ = 40 m2/s (choisis à titre d’illustration). On voit qu’à charge
constante, la hauteur à l’amont h0 diminue quand q (ou a) augmente alors que
la hauteur à l’aval h1 augmente. Cela correspond à l’intuition physique ordi-
naire (plus la vanne s’ouvre, plus le débit augmente, moins la hauteur d’eau à
l’amont de la vanne est grande, et plus la hauteur à l’aval croît).
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Figure 9 –: Variation de la charge spécifique Hs avec la hauteur h pour deux débits
q = 5 m2/s et q∗ = 40 m2/s. L’intersection avec H0 = 10 cm donne h0 = 10 m et
h1 = 36 cm lorsque q = 5 m2/s. L’intersection avec H0 = 10 cm donne h∗0 = 9 m et
h∗1 = 3,6 m lorsque q∗ = 40 m2/s.

Question (6)

On voit sur la figure 4 que plus on ouvre la vanne, plus le débit augmente
et donc à charge constante, plus H0 se rapproche du minimum de Hs qui vaut
3hc/2. La condition critique est atteinte lorsque

3

2
3

√
q2

g
= H0 ⇒ q =

√
g

(
2

3
H0

)3/2

.

Si le débit est supérieur à ce débit critique, alors il n’y a plus de solution au
problème posé. En se servant de l’équation du débit q = Cda

√
2gh0 et de l’ap-

proximation H0 = h0, on en déduit que l’ouverture maximale de la vanne est

a =
1

Cd

√
2h0

(
2

3
H0

)3/2

=
2

3Cd

√
3
H0. (26)

Lorsque a vérifie
a

H0

>
2

3Cd

√
3
≈ 2

3
,

la vanne est noyée.



Question (7)

On se sert de l’équation de conjugaison

h2

h1

=
1

2

(√
1 + 8Fr21 − 1

)
= 9,8 ⇒ h2 = 3,6 m (27)

avec Fr1 = q/
√

gh3
1 = 7,3.

Question (8)

La conservation de la masse impose

q = h0u0 = h2u2. (28)

Pour la quantité demouvement, on ne considère que les contributions qui agissent
selon l’horizontale ex. Pour la face amont (h0, u0) de normale n = −ex, le flux
de quantité de mouvement projeté sur ex s’écrit

Q0 = ex ·
∫ h0

0

ϱu(u · n)dy = −ϱu2
0h0,

alors que la force de pression est

P0 = −ex ·
∫ h0

0

pndy =
1

2
ϱgh2

0.

On fait la même chose pour la face aval (h2, u2) de normale n = ex, la
projection de la quantité de mouvement est

Q2 = ex ·
∫ h2

0

ϱu(u · n)dy = ϱu2
2h2,

alors que la force de pression est

P2 = −ex ·
∫ h2

0

pndy = −1

2
ϱgh2

2.



Question (9)

La pression a une distribution hydrostatique. On obtient facilement la ré-
sultante des forces de pression (par unité de largeur) exercée par le fluide sur la
paroi de la vanne entre y = a et y = h0

Pv =

∫ h0

a

ϱg(h0 − y)dy =
1

2
ϱg(h0 − a)2

A. N. On trouve
Pv = 442,7 kN/m.

Question (10)

Si on note F la force totale exercée par l’écoulement (forces de pression +
effets hydrodynamiques) sur la vanne et si on utilise le principe d’action et de
réaction, alors le bilan de quantité de mouvement projeté sur l’axe x s’écrit

Q0 +Q2 = P0 + P2 − F ⇒ −ϱu2
0h0 + ϱu2

2h2 =
1

2
ϱg(h2

0 − h2
2)− F

On déduit grâce à la conservation de la masse

F =
1

2
ϱg

(
h2
0 − h2

2

)
+ ϱq2

(
1

h0

− 1

h2

)
. (29)

A. N. On trouve
F = 423,5 kN/m.

On observe que F < Pv, ce qui implique que la résultante totale des forces est
inférieure à la force hydrostatique. L’écoulement produit une légère dépression
(l’écoulement réduit d’environ 5 % la pression hydrostatique).

Question (11)

On suppose que a/h0 > 2/3 (vanne noyée). On écrit la conservation de la
charge hydraulique entre l’amont

H1 = h1 +
q2

2gh2
1



et la vanne
Hv = h2 +

q2

2ga2
,

où l’on a considéré que la charge piézométrique valait h2. De la conservation
de la charge H1 = Hv, on déduit

q = a
√

2g(h1 − h2)
h√

h2
1 − a2

.

Remarque : cette forme est proche de la forme (23) obtenue par analyse dimen-
sionnelle. Si cette estimation du débit est correcte, cela revient à dire que le
coefficient C est en fait une fonction de h1 et a.

Question (12)

Si l’écoulement est subcritique à l’aval de la vanne, on peut avoir des hau-
teurs importantes sans qu’il soit possible de faire un raccord entre la hauteur
h2 du ressaut et cette branche subcritique. Le ressaut est alors poussé vers la
vanne, puis noyé par l’écoulement. À son tour la vanne est noyée.

Quoique cela ne soit pas strictement la même configuration d’écoulement,
l’expérience en ligne (voir 128.179.34.98:8888/LHE1.html) permet de voir l’effet
de la condition aval sur la position du ressaut, et en fin de compte sur le régime
d’écoulement noyé/dénoyé au niveau de l’obstacle.

http://128.179.34.98:8888/LHE1.html


(a)

(b)

(c)

Figure 10 –: Ressaut hydraulique à l’amont d’un obstacle. Sa position dépend de la
condition à la limite à l’aval qui est imposée par un seuil à paroi mince. (a) p = 10mm;
(b) p = 20 mm; (c) p = 30 mm. Source : 128.179.34.98:8888/LHE1.html.

http://128.179.34.98:8888/LHE1.html
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