mpre
= P N
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Section de génie civil

Ecoulements en charge

Probléme 1: chateau d’eau

Les chateaux d’eau sont des réservoirs d’eau qui servent a stocker 'eau, a la
distribuer sous pression dans un réseau gravitaire, et a équilibrer les variations
de demandes et d’approvisionnement en eau. La figure 1 montre un chéateau
d’eau, situé sur le plateau au nord de Lausanne, d'une hauteur de 40 m.

On étudie un réseau gravitaire simplifié alimenté par un chateau d’eau (ré-
servoir) qui alimente un village (point C) et qui est relié au réseau principal
d’adduction d’eau (point A).

Les caractéristiques du réseau sont les suivantes:

- rayon du chateau d’eau R = 20 m;
— hauteur d’eau dans le réservoir h = 20 m;
— coteszy =50m, ze =30m, 2g = 2, = 2, = Om, et z. = 10 m;
- caractéristiques des conduites par troncon
trongon |ED DB BA BC

diamétre d [cm] | 50 50 30 20
longueur L [m] | 100 500 200 100

Les coefficients de perte de charge singuliére sont les suivants:

— rétrécissement brutal d’une section de diamétre d; a une section de dia-
meétre dy:

e 1 2
AH, = ¢ gvece = (1o — L
G5y aVect ( 0,59 + 0,4156) !

avec § = dy/d; < 1;



Figure 1 —: Chéteau d’eau de Goumoens-la-Ville (VD). Source : Wikimedia.

élargissement brutal d’une section de diametre d; a une section de dia-
meétre ds:
ui

29

2

AH, =(— avec ( = (1 — 6_2)

avec § = dy/d; > 1;

coude en D (avec un angle 6 = 7/2): ¢ = sin*(/2) + 2sin*(6/2) = 1
entrée dans un réservoir depuis une conduite: ( = 1 (quelles que soient
les sections);

entrée depuis un réservoir (de section S7) dans une conduite (de section
S5): ( =0,57;

embranchement d’une section S; vers des conduites de section Ss et Ss:

52

AH, = Cﬂ avec ( = 1,3
29
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Figure 2 —: Schéma de fonctionnement du réseau gravitaire étudié.

(quelles que soient les sections et les vitesses a travers ses sections);
— sortie ou entrée des conduites en C et A: on prendra ¢ = 0.

On utilisera la formule de Darcy-Weisbach pour la perte de charge réguliere
pour une conduite de longueur L et diameétre D:

L @?
D 2g’

avec un coefficient de frottement f = 0,005.

AH = f

[0,50] Dans un premier temps, on néglige les pertes de charge dans le réseau.



(b)

(©)
(d)
(e)

Ecrire la conservation de la charge entre E (ou bien F) et A, puis entre E (ou F) et
C, en 'absence de pertes de charge. Que valent les débits a la sortie en A et en
C? (On supposera que ces deux sorties sont a une pression égale a la pression
atmosphérique).

[0,50] Que vaut la vitesse en D si la sortie en C est fermée (la sortie en A restant
ouverte) et toujours dans I’hypothese ot les pertes de charge sont négligeables ?
Quelle est la pression qui s’exerce au point D du coude ?

[0,50] Calculer la vitesse en D et la pression si maintenant les deux sorties sont
ouvertes.

[0,75] Refaire le calcul du débit en A en prenant en compte les pertes de charge
entre E et A, et en supposant que la sortie en C est fermée.

[0,75] On considere maintenant qu'une pompe placée en A permet le remplis-
sage du réservoir du chateau d’eau. On considére que la sortie C est fermée.
Montrer que la perte de charge de I’écoulement de A vers E peut s’écrire sous
forme compacte:
U2
AH A—E — £
29
avec I une constante & déterminer et u la vitesse dans la conduite DE. Ecrire
la conservation de la charge entre A et E en tenant compte des pertes de charge,
de la charge fournie par la pompe, et du rapport de diamétre 8 = dpa/dgp;
a cet effet, on continuera de supposer que (i) le débit est constant entre A et
E, (ii) la pression en A est la pression atmosphérique, (iii) la hauteur A dans le
réservoir reste constante. La courbe caractéristique de la pompe est de la forme:

Hp:,)/_anv

avec 7 = 100 m la charge a vide et « = 0,5 s*>m~°. Montrer qu’on peut écrire
cette caractéristique sous la forme
2
u
H,=~—6E
p Y 29
et calculer 0. En déduire la vitesse ux en E en fonction de z¢, v, I" et 5. Déterminer
le débit refoulé par la pompe vers le réservoir.



Correction du probléme 1

Question (a)

Si on néglige les pertes de charges et qu’on considere une ligne de courant
entre A et F, qu’on suppose I’écoulement permanent avec une vitesse en E nulle
(comme d < 2R on peut appliquer la formule de Torricelli), alors on déduit

2
g—A + 24 = zf = ua = /2925 = 31,3 m/s
g
avec 2y = 50 m (la question se pose s’il faut définir I'altitude de A comme

2o = 0 ou bien comme le milieu de la conduite z, = 15 cm, mais une simple
application numérique montre que cela ne change le résultat que de quelques
pourcent). Le débit sortant en A est:

2

Q= w%\/% =22m’/s.
On fait de méme pour le point C

uc = 1/2¢9(zf — z.) = 28,0 m/s.
Le débit sortant en A est:

d2
Qc = W% 29(2 — 2.) = 0,88 m?/s.

Question (b)

On considere tout d’abord que la sortie C est fermée. En I’absence de pertes
de charge, ’équation de Bernoulli entre F et D s’écrit
uh | Pp
A 04+0= 24+ -2+ 22,
29 o9

car la vitesse et la pression en F sont nulles, et on a posé z; = 0. La conservation
du débit implique que

T T
2 2 2
ZdEDuD = ZdBAUA = up = Sua



Oflﬁ = dBA/dEB = 3/5

On déduit
up = 52\/2ng = 11,3 m/s
et

1 1
Pp = 09%f — §Qu2D = 09z — §Qﬁ42ng = pgz(1 — 54) = 427 kPa.

Question (c)

On considere maintenant que les sorties A et C sont ouvertes. L’équation
de Bernoulli entre F et D s’écrit
2
u Pp
Zf — _D _|_ —,
29 o9

or la conservation du débit implique que le débit dans ED vaut la somme des
débits dans BA et BC

Zd%D“D = %d%AuA + ndpouc = up = foua + Bluc
ou 5a = dBA/dEB = 3/5 et ﬁc = dgc/dEB = 2/5
On déduit
up = B2\/292; + 821/ 29(zr — 2.) = 15,8 m/s
et
1 2
Pp = 09%z¢ — QQUD = 366 kPa.

Question (d)

On recommence le calcul en prenant en compte les pertes de charge en E et
A:

— Pertes de charge régulieres le long des conduites

AH, = LEB@ LBAﬁ’
dgB 29 dpa 2g



avec Lgp = Lgp + Lpp = 600 m la longueur totale de la conduite
entre les points E et B, et dgp = 0,5 m son diametre. On peut écrire cette
équation sous une forme ne faisant intervenir qu’une seule vitesse, par
exemple ug (le choix est arbitraire):

Lgp _4Lpa ) u?;
AH, = — + — | ==,
/ (dEB b dpa) 29
ou 3 =dga/dgp = 3/5 et'on s’est servi de la conservation du débit:
s

T
2 2 )
4dDBuE:—dBAuA:>uA:6 Ug

4
— Pertes de charge singulieres:
- en E (entrée dans une conduite depuis un réservoir):

2
AHgp = CQZ—E avec (. = 0,57
g

- en D (coude):
2

AHp = Cdu—E avec (g =1
29
- en B (embranchement):

2
AHp, = Cb,lg—E avec (1 = 1,3
g

- en B (contraction):

2 2
AHp, = Cbzg—; - gb,zﬁ—“;—j avec (o = (1—1/(0,59+0,418%))2 = 0,41.

La charge a la sortie A est

U2 U2 ’LL2
Ho= 2+ za+pa= 5> +0+0=57"2F,
29 29 29

et celle en E (du c6té du réservoir, donc juste au-dessus de ’entrée de la conduite,
ce qui implique up = 0; pour éviter toute confusion, il peut étre préférable de
prendre la ligne de courant AF)

2

u
HE:2—§+2E+pE:O+ze+h.



La conservation de la charge entre les points E et A doit prendre en compte
les pertes de charge singuliere et réguliére:

_47«4% Lgp —4 Lpa —4 UQE _ h
B %4- fEﬂLB fE+Ce+Cd+Cb,1+ﬁ Ch.2 %_Ze_‘_ . (1)

Comme 2, + h = 2y, on trouve facilement

2
ug = T T 921 = 4,64 m/s,
B4 fEEE + BAf A + (o + Cat G + 872

deB dpa
Oou encore
Uy = B_2uE = 12,9 m/s.

Le débit sortant vaut )

d
Qa= w%uA =912 L/s.

Question (e)

La relation de perte charge entre A et E est identique a la perte de charge
utilisée dans I’équation (1)
U

L L
AHy g = (fﬁ + 5_%(@}?:‘1 +Ce+Ci+ G+ /3_4@,2) 2 (2)

que 'on peut écrire sous forme compacte:

L L
T BT G Gt G+ 571G
B

2
AH g = FU—E avec' = f
2g dep

On prendra garde que I’écoulement se fait maintenant de A vers E, donc les
pertes de charge singuliéres en E et B sont différentes:

- en E (entrée depuis une conduite dans un réservoir):

U2
AHgp = Ce—E avec (, =1
29

- en D (coude):
2

AHp = Cdu—E avec (g =1
29



- en B (embranchement):

2
AHp, = cb,lg—E avec (1 = 1,3
g

- en B (expansion):

u? ul
AHpo = (o2 = (a2 avec G = (1 — 8%)* = 0,41.
2g 2g

On trouve donc que
I' =38,2.
La pompe a une charge

2 2
Hp:'y—aQ2 :7—52—5 avec5:a%gD%D = 0,38. (3)

En introduisant les deux équations (2) et (3) dans 1’équation de Bernoulli consi-
dérée entre les points E et A, on a

Hp+AHpp = H,+ Hy, (4)
avec ) ) )
Hp=2E 4 ht zoet Hy = =24 = g42E
29 29 29
Quand on substitue dans I’équation (4) et comme z. + h = z¢,on a
uz u? uz
(1-5 )2g+2f+ 29 %%

soit encore

et de 14 on déduit la vitesse

29(v — 2y)
= = 5,55
ug \/1—6_4+5+F ,00 m/s

Le débit de pompage est

d2
Q= w%uE = 1,09 m?/s.



()
(b)

(d)

Exercices suggeérés

Probleme 13: fonctionnement d’un déversoir

On étude un déversoir de crue sur une digue en remblai. Ce déversoir est un
canal de section rectangulaire de largeur b = 3 m et de hauteur 8 m. Il évacue
les eaux d’un plan d’eau, dont le niveau des plus hautes eaux se situe a la cote
18 m. La créte du déversoir se situe a la cote 2z, = 15 m (point A sur la figure 1).
Il s’ensuit que la différence de hauteur d’eau au-dessus de la créte du déversoir
(en A) est Ah = 3 m. Le niveau des plus hautes eaux est constant, et il est donc
possible de considérer I’écoulement comme permanent.

Le déversoir est constitué:

— d’un coursier raide en béton (entre A et B sur la figure 3), puis
- d’un trongon horizontal également en béton (entre B et C sur la figure 3).

Le trongon terminal se termine par un seuil de forme triangulaire (CDE sur la
figure 3, triangle isocele en son sommet D) de hauteur a. La pente de chaque
coté du seuil est 5H:1V.

Le déversoir débouche sur un canal en terre battue (entre E et F sur la figure
3) de longueur L = 400 m et de pente ¢ = 1 %. Le bief EF est de section
trapézoidale avec des pentes latérales 1H:1V et une base { = 2 m.

On néglige les pertes de charge par frottement sur tout le déversoir entre
les points A et E. En cas de formation d'un ressaut hydraulique, il faut prendre
en compte la perte de charge singuliére associée au ressaut. On ignore toute
autre perte de charge singuliére au niveau de la digue ou du seuil.

Pour le bief EF, le lit a une rugosité (Manning-Strickler) X = 50 m'/3/s.

En supposant que la créte du déversoir est assimilable a un seuil, déduisez ce
que valent la hauteur et le débit () en ce point.

Calculer les charge hydraulique Hp, hauteur /iy et vitesse up au point B. Quel
est le régime d’écoulement ?

Si on veut qu’il se forme un ressaut entre B et C, quelle est la longueur minimale
qu’il faut prévoir entre ces deux points?

On suppose que la condition sur la longueur entre B et C est vérifiée et qu'un
ressaut se forme. Que valent les H ¢, hauteur /¢ et vitesse u¢ au point C? Quelle



(e)
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Figure 3 —: Schéma de principe. L’échelle et les proportions ne sont pas respectées.
Le déversoir est un canal rectangulaire qui va du sommet A de la digue au sommet du
seuil D. Il se poursuit par un canal trapézoidal de longueur L entre les points E et F.

est la perte de charge due au ressaut? Le ressaut est-il un moyen efficace de
dissiper 'énergie de 1’écoulement ? On supposera que la hauteur a 'amont du
ressaut est hp.

Peut-on calculer les hauteurs critique et normale pour le trongcon horizontal
BC? (le cas échéant, les calculer). Calculer le nombre de Froude et caractériser
le régime d’écoulement.

Quelle doit étre la hauteur minimale du seuil pour que le régime passe de sub-
critique a supercritique au passage du seuil (en D) ?

Quelle est la hauteur en E? On fera le calcul en considérant que E soit dans le
déversoir a section rectangulaire ou dans le canal trapézoidal.

Calculer les hauteurs critique et normale dans le canal EF. Quel est le régime
d’écoulement ?

Tracer 'allure de la courbe de remous dans le déversoir AE. On placera les
hauteurs caractéristiques et on justifiera — autant que faire se peut (cela reste
un schéma) — l'allure proposée.

Tracer I'allure de la courbe de remous dans le canal trapézoidal EF. On placera
les hauteurs caractéristiques et on justifiera I’allure proposée.



(d)

Probléme 14: force exercée sur une vanne

On étudie le fonctionnement hydraulique d’'une vanne plane dont 'ouver-
ture est a et qui est placée perpendiculairement a un fond horizontal (voir
schéma et notation sur la figure 4). Le débit (par unité de largeur) a 'amont
est constant et vaut ¢ = hgug avec hq la hauteur a 'amont de la vanne et ug la
vitesse moyenne. Il y a deux modes de fonctionnement:

— Régime dénoyé — voir figure 4(a) — pour lequel I'écoulement a ’aval n’in-
fluence pas ’écoulement sous la vanne. Au passage de la vanne, on ob-
serve une contraction de ’écoulement et la hauteur atteint une valeur
hy < a. L’écoulement est supposé supercritique a I’aval immédiat de la
vanne. Il se forme donc un ressaut un peu plus en aval, dont la hauteur
aval est notée hy, qui permet d’assurer la transition du régime supercri-
tique a un régime subcritique.

— Régime noyé — voir figure 4(b) — pour lequel I’écoulement a I’aval in-
fluence I'écoulement sous la vanne. La hauteur a ’aval de la vanne est
notée hy. Le régime est subcritique de part et d’autre de la vanne.

Valeurs numériques

- hauteur ~y = 10 m et vitesse uy = 50 cm/s a gauche de la vanne;

— ouverture de la vanne ¢ = 50 cm.

En vous servant de la méthode de votre choix, faite ’analyse dimensionnelle du
probléme ou I'on cherche a calculer ¢ connaissant les hauteurs du problemes
(a, ho et hy) dans les cas dénoyé et noyé.

Utilisez le théoréeme de Bernoulli pour déduire la hauteur h; connaissant h et
up. On négligera la perte de charge singuliere due a la contraction de la lame
d’eau au passage de la vanne. Faire I’application numérique.

Tracez la charge spécifique H,(h) pour le débit donné ¢ = houg et positionnez
les hauteurs hg et hy sur cette courbe. Déduisez-en le régime d’écoulement de
part et d’autre de la vanne.

En examinant ce graphique, examinez si on peut toujours trouver h; satisfaisant
le théoréme de Bernoulli, c’est-a-dire qui puisse se placer sur la courbe H(h).
Quelle est la condition portant sur ug et hg (ou bien sur le nombre de Froude
Fr = uy/+/gho) pour qu’on puisse déterminer la hauteur h; a partir de & en se
servant de la courbe H,(h)?
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Figure 4 —: Schéma de principe d’'une vanne plane vertical a paroi mince. (a) régime
dénoyé. (b) régime noyé.

On suppose maintenant que la charge hydraulique a 'amont de la vanne est
constante et vaut Hy = 10 m. La hauteur hg et la vitesse u, peuvent varier en
fonction du débit transitant par la vanne. Ce débit peut se calculer a ’aide de la

formule
q= ClCd V 29h0,

avec Cy = 0,6 le coefficient de débit. En vous servant de la courbe spécifique
H(h), montrer que si on augmente I'ouverture a de la vanne, la hauteur amont
ho diminue alors que la hauteur /h; augmente.

Déterminer le débit seuil ¢ et de 'ouverture a au-dela desquels on ne peut plus
reporter les hauteurs hg et hy sur la courbe H¢(h) (on pourra faire 'approxi-
mation Hy = hg pour la charge a ’amont loin de la vanne).

Calculer la hauteur hs a I’aval du ressaut. Faire ’application numérique.

On consideére le volume de controle montré en hachuré de la figure 3. Ecrire la
conservation de la masse, puis la conservation de la quantité de mouvement.



(i)

§)

On supposera I’écoulement permanent, le profil de vitesse uniforme, et on né-
gligera le frottement au sol. On peut se contenter de projeter la conservation
de la quantité de mouvement sur ’axe horizontal.

Calculer la force de pression hydrostatique sur la paroi immergée de la vanne
(on fera ’hypothese d’une distribution hydrostatique des pressions comme su
I’eau était au repos). Faire I’application numérique.

Faire le bilan de forces. En déduire la force totale (par unité de largeur) exer-
cée par ’écoulement sur la vanne. Faire I’application numérique. Comparer la
valeur obtenue avec la force de pression obtenue a la question précédente et
commenter le résultat.

On suppose que 'ouverture a de la vanne est grande, et en conséquence la
condition trouvée a la question (6) est vérifiée. On dit alors que la vanne est
noyée — voir figure 2(b). En considérant la charge hydraulique entre I’'amont
(H,) etla vanne et en supposant que la contribution de la pression (contribution
dite piézométrique) vaut hy, déterminer le débit ¢ par unité de largeur pour la
vanne noyée.

Dans la question précédente, on considére que la vanne est noyée car son ou-
verture est trop grande. Voyez-vous d’autres scénarios dans lesquels la vanne
sera considérée comme noyée, c’est-a-dire que le débit a travers elle dépend a
la fois des conditions amont et aval ?

ho
)

Figure 5 —: Volume de contrdle englobant la vanne.



Correction du Probléme 13

Question (1)

Sila créte du déversoir se comporte comme un seuil, alors la hauteur critique
h. est atteinte en A, et le nombre de Froude y vaut 1. Par ailleurs, cette hauteur
vaut Ah = 3 m d’apres les données du probléme.

Pour un canal rectangulaire de largeur b, cela implique qu’en A, hy = h, =
Ah, et donc par définition du nombre de Froude

uUa

Fr:mzlavecw‘:%,
soit encore en termes de débit
Q = bhar/gha = by/gh’/* = 48 8 m®/s. (5)
Le débit par unité est largeur est
q= % = 16,3 m?/s. (6)

Question (2)

On néglige toute perte de charge entre A et B. La conservation de la charge
impose
Hy = Hp
or comme la hauteur est critique en A, on a

2

3 3
HA:zA—i—hA+u—A:zA+—hA:zA+—Ah:19,5m.
2g 2 2
En B, on a donc
H PSR S S SRSTY
=2z — = = m.
B B B 29 B QQh% ’

C’est une équation polynomiale de degré 3. Elle admet trois racines, mais une
seule est a la fois positive et associée a un régime supercritique. On pose donc

hg = 85 cm. (7)



La vitesse en B est

up = L =191 m/s. ®)
hp
Le nombre de Froude en B est
Frp = 4 = 6,6, 9)

Vghp B

L’écoulement est donc supercritique.

Question (3)

Selon la formule (5.27) p. 152 des notes de cours, la longueur du ressaut est

L FI‘B
. —160tanh —2 — 12 = 39.1 m. 10
hp 90 - (10)

On peut prendre 39 m comme longueur minimale entre B et C.

Question (4)

On se sert de I’équation de conjugaison (5.25) du cours

he 1
2 (14 8FE 1) = he =7,6m. (11)
he 2

On en déduit

2

q uc
uc =q/he =2,2m/s, Ho = zc+hc+ =T78met Fro = = 0,25.
/ 2gh, Vghe
(12)
La perte de charge due au ressaut est
AH:Hc—HB: —11,711’1. (13)

Cela pourrait aussi se calculer a 'aide de I’équation (5.26) p. 152 des notes de
cours. Le ressaut permet de dissiper 60 % de la charge de ’écoulement, et on
peut donc considérer que c’est un moyen efficace de réduire la puissance de
I’eau avant qu’elle entre dans le canal en terre battue.



Question (5)

La hauteur normale n’existe que pour un canal de pente non nulle. La hau-
teur critique est constante quelle que soit la pente si la section ne change. Or
au sommet A du déversoir, on a posé hy = h, = 3 m. La hauteur critique est
donc

he =3 m. (14)

Le nombre de Froude est 0,25 en C. L’écoulement est subcritique.

Question (6)

Si la taille du seuil est trop petite, alors ’écoulement passe par-dessus lui
sans changer de régime (voir § 5.6.4 dans les notes de cours). Pour qu’il y ait
changement de régime, il faut que I’écoulement devienne critique au sommet
D du seuil. Il faut donc qu’au point D, on ait

hD = hc =3 m. (15)
Par ailleurs, la charge hydraulique se conserve entre C et D, et donc on doit

avoir

3
HD:a+§hc:Hc:>a:7,8—1,5><3:3,3m. (16)

Question (7)

Si on néglige les pertes de charge et qu’on considere que la section d’écou-
lement est rectangulaire, alors la charge en E vaut celle en D et C

2
Hg=Hp = 2+ hg + —=—> = 7,8 m.
2gh7;
C’est un polyndéme d’ordre 3, qui admet donc trois solutions. Seule la solution
positive et associée a un régime supercritique est possible. Donc on obtient

Si maintenant on considére une section trapézoidale, on doit résoudre

Q2

h
ZE+ E+ QQSQ(hE)

= 7,8 m,



avec S(hg) = (£ + hg)hg. La solution est alors la seule qui soit positive et
associée a un écoulement supercritique

hE = 1,3 m. (18)

Question (8)

La hauteur critique est définie comme la hauteur pour laquelle le nombre
de Froude vaut 1. Or ce nombre est défini de fagon générale comme

avec pour une section trapézoidale dont les pentes de talus sont 1H:1V:

B+ (0 + h)h
B=(+2h S=h2 5 (t4mhetR, = W
y— — (L hhet fp =272

On doit donc résoudre I’équation polynomiale de degré 6, dont une seule racine
est positive et réelle
Q*B =gS® = h, = 2,6 m. (19)

La hauteur normale satisfait I'équation de Manning-Strickler

Q= KViSR* = h, =22m. (20)

Question (9)

Pour tracer 'allure de la courbe de remous dans le déversoir, on se sert des
hauteurs calculées précédemment en A, B, C, et D.

Coursier. On sait que le long de la partie raide du coursier (entre A et B),
I’écoulement est supercritique, et la hauteur d’eau épouse (a peu pres) la forme
du fond (on pourrait calculer ces hauteurs en considérant la conservation de la

charge).

Fond horizontal. La hauteur devient uniformément constante et égale a
hp = 85 cm. En effet, sur de courtes distances, il n'y a pas d’effet significatif



du frottement, et si le régime est permanent, la pente est nulle, alors rien ne
peut causer de changement de hauteur. Entre B et C, il se forme un ressaut qui
est représenté de facon tres simplifiée par une discontinuité, un « mur d’eau »
faisant passer la hauteur de hp = 85 cm a h¢ = 7,6 m. La position du ressaut
n’est pas connue. Elle est en théorie fixée en recherchant (par la méthode de
conjugaison) I'intersection de la branche subcritique a ’aval du ressaut avec la
conjuguée de la courbe de remous a 'amont du ressaut. Or comme celle-ci est
une droite horizontale, sa conjuguée I’est aussi. En 'absence de frottement et
de pente, la branche aval subcritique doit rester horizontale jusqu’au point C.

Seuil. L’écoulement étant subcritique, la hauteur d’eau doit diminuer entre
C et D (voir § 5.2.1 dans les notes de cours) puis au passage du seuil, la hauteur
diminue jusqu’a atteindre la valeur critique h. = 3 m en D.

Figure 6 —: Allure de la courbe de remous le long du déversoir en béton. L’échelle et
les proportions ne sont pas respectées.

Question (10)

Le régime est supercritique dans le canal. La condition initiale est donc a
fixer a 'amont. On a trouvé précédemment qu’au point E, on a hp = 1,3 m;
cela sera la condition initiale. On intégre I’équation de la courbe de remous
(5.18) dans le cas d’'un écoulement prismatique (9,5 = 0)

W =F(h) = it avec j = @ (21)
QB K?R)/*5?
g5?

La figure 2 montre la courbe de remous obtenue numériquement par inté-
gration de I’équation (21). On peut déterminer ’allure de cette courbe a partir



des éléments suivants:

- comme i/ > O enx = 0 (on pose x = 0 en E), la fonction h(z) est
croissante;

- comme hy = h(0) = hg < h,, < h,, la courbe de remous doit tendre vers
la hauteur normale;

— on peut obtenir une approximation de la courbe de remous sans résoudre
I’équation (21). Par exemple, on peut faire un développement a I'ordre 2

2
h(z) = ho + xh'(0) + %h”(m) + - (22)
avec

d2h dF  dFdh
R (0) = F(hy) = 0,00496 et h"(0) = =—= = —89x107°

BT T T
Comme le montre la figure 7, ’approximation (22) fournit une description cor-
recte de la solution pour les 100 premiers metres et permet de voir que le rac-
cordement asymptotique vers h,, se fait rapidement (la hauteur normale est
quasiment atteinte au bout de 300 m).

h(x) [m]

0 100 200 300 400

x [m]

Figure 7 —: Allure de la courbe de remous le long du canal trapézoidal. On reporte
la solution numérique a I’équation (21) (courbe continue), la hauteur normale et la
hauteur critique. La courbe noire discontinue montre I’approximation (22).



Correction du Probléme 14

Question (1)

Pour le régime dénoyé, on a 4 variables (g, ho, a, et g) et deux unités phy-
siques (m et s). Le rang de la matrice dimensionelle est 2, donc on peut for-
mer deux nombres sans dimension d’apres le théoréme de Vaschy-Buckingham.
L’intuition physique nous incite a poser

4 _4( 2
av/gho / (h0> .
On peut raisonner de facon plus rapide en se disant que ’ordre de grandeur de
la vitesse sous la vanne est donné par la formule de Torricelli (v o \/2ghg) et

comme l'ouverture est a, alors le débit par unité de largeur doit étre propor-
tionnel a av/2ghy. Il existe donc une constante C' telle que

q = Can/2ghy.

Les deux méthodes donnent des résultats similaires. En effet, si on considére
que le rapport a/hg est petit, alors f doit tendre vers une constante si on fait
I’hypothese de similitude complete.

Pour le régime noyé, on a maintenant 5 variables (g, ho, a, hs et g) et deux
unités physiques (m et s). Le rang de la matrice dimensionelle est toujours 2,
donc on peut former trois nombres sans dimension. On pose

_JL_:f(E_@)
av/gho ho  ho)

Si on raisonne de facon physique, on se convainc facilement que le débit
doit dépendre de la différence hy — hg (si ha = hg, il n’y a plus de gradient de
pression qui puisse mettre le fluide en mouvement sur un fond horizontal, et
donc hormis d’imaginer qu’on pousse le fluide depuis la gauche, il ne peut y
avoir d’écoulement). Cela incite a écrire

¢ = Cav/2g(h; — ho). (23)



Question (2)

On considére une ligne de courant allant de la surface libre (hauteur d’eau
ho) a droite de la vanne jusqu’au creux de la lame d’eau, un creux caractérisé par
la hauteur h;. Les deux points ont le méme potentiel gravitaire. La conservation

de la charge entraine
¢ g’

:h1—|——
2ghg

Hy=H, = h
0 1 o+ 2912

C’est une équation polynomiale de degré 3.1l existe trois racines, dont une seule
positive et en régime supercritique. On trouve

hy = 36 cm. (24)

Question (3)

La figure 8 montre la courbe de charge spécifique. On voit que la hauteur
ho est sur la branche subcritique alors que la hauteur h; est sur la branche
supercritique.

Question (4)

Pour qu’on puisse placer les hauteurs hq et hy sur la courbe H(h), il faut
que ces hauteurs soient au-dessus du minimum de H;. Ce minimum est atteint
pour h = h. et il vaut

2
min H; = §hc avec h. = { £y
2 \ 9

On peut retrouver rapidement ce résultat en différentiant H,(h) et en recher-
chant la hauteur pour laquelle H. = 0:

dH 7>
S =h - —h' = h = he.
ah gt ==
On recherche donc la condition sur les couples (hg, 1) qui vérifient

3 27 h2u?
ho > —h. = hd > —-970
0=79 = 0=3 g




20 - N

151 .

Figure 8 —: Variation de la charge spécifique H; avec la hauteur h. L’intersection avec
Hy=ho+ u%/(2g) = 10,01 cm donne hg = 10 m et h; = 36 cm.

On peut arranger les termes

Il faut donc que le nombre de Froude soit plus petit que

2v/2

Fr < =2 = 0,54. (25)

3v/3

Question (5)

La figure 9 montre la courbe de charge spécifique pour deux débits ¢ =
5 m?/s et ¢* = 40 m?%/s (choisis a titre d’illustration). On voit qu'a charge
constante, la hauteur a ’'amont A diminue quand ¢ (ou a) augmente alors que
la hauteur a I'aval h; augmente. Cela correspond a I'intuition physique ordi-
naire (plus la vanne s’ouvre, plus le débit augmente, moins la hauteur d’eau a
I’amont de la vanne est grande, et plus la hauteur a ’aval croit).



Figure 9 —: Variation de la charge spécifique H, avec la hauteur i pour deux débits
q = 5 m?/s et ¢* = 40 m?/s. L’intersection avec Hy = 10 cm donne hg = 10 m et
hy = 36 cm lorsque ¢ = 5 m?/s. L’intersection avec Hy = 10 cm donne A = 9 m et
h% = 3,6 m lorsque ¢* = 40 m%/s.

Question (6)

On voit sur la figure 4 que plus on ouvre la vanne, plus le débit augmente
et donc a charge constante, plus H, se rapproche du minimum de H; qui vaut
3h¢/2. La condition critique est atteinte lorsque

33 q2 9 3/2
2\/ g 04 \/§<3 0)

Si le débit est supérieur a ce débit critique, alors il n’y a plus de solution au
probléeme posé. En se servant de I’équation du débit ¢ = Cya+/2ghy et de I'ap-
proximation Hy = hg, on en déduit que 'ouverture maximale de la vanne est

1 2 \*? 2
o=——_(2§m - ° W, 26
Cav/2hy (3 0) 3CV/3 ° (26)
Lorsque a vérifie
a 2 2

—_ > ) -,
HO 3Cd\/§ 3

la vanne est noyée.



Question (7)

On se sert de I’équation de conjugaison

h 1
h_2:§<\/1+8Fr%—1>:9,8$h2:376m (27)
1

avec Fr; = q/+/gh3 = 7.3.

Question (8)
La conservation de la masse impose
q = houo = haus. (28)

Pour la quantité de mouvement, on ne considere que les contributions qui agissent
selon I’horizontale e,. Pour la face amont (hg, u¢) de normale n = —e,, le flux
de quantité de mouvement projeté sur e, s’écrit

ho
Qo= e, - / ou(u - n)dy = —oudhy,
0
alors que la force de pression est

ho 1 )
Py=—e;- / pndy = 5@9’10‘
0

On fait la méme chose pour la face aval (hy, u2) de normale n = e,, la
projection de la quantité de mouvement est

ha
Qr=e, - / ou(u-n)dy = gu%hg,
0

alors que la force de pression est

h
2 1
Py =—e,- / pndy = —§Q9h§-
0



Question (9)

La pression a une distribution hydrostatique. On obtient facilement la ré-
sultante des forces de pression (par unité de largeur) exercée par le fluide sur la
paroi de la vanne entre y = a et y = hy

ho 1
P, = / 0g9(ho — y)dy = §Qg(h0 —a)®

A. N. On trouve
P, =44277 kN/m.

Question (10)

Si on note F' la force totale exercée par I’écoulement (forces de pression +
effets hydrodynamiques) sur la vanne et si on utilise le principe d’action et de
réaction, alors le bilan de quantité de mouvement projeté sur 'axe x s’écrit

1
Q0+Q2:P0+P2—F=>—ngho+gugh2:éQg(h(QJ_hg)_F

On déduit grace a la conservation de la masse

1 11
F = Zog (h§ — h3) + o0q® (— — —) . (29)

ho  he
A. N. On trouve
F =423,5kN/m.

On observe que F' < P,, ce qui implique que la résultante totale des forces est
inférieure a la force hydrostatique. L’écoulement produit une légere dépression
(Pécoulement réduit d’environ 5 % la pression hydrostatique).

Question (11)

On suppose que a/hy > 2/3 (vanne noyée). On écrit la conservation de la
charge hydraulique entre 'amont

e
Hi =h —
1 1+29h%



et la vanne
e
H, = hy + 2ga%
ou l'on a considéré que la charge piézométrique valait hs. De la conservation

de la charge H; = H,, on déduit

h
=ay/2g9(hy — hy) ——.
q a g( 1 2)\/@

Remarque: cette forme est proche de la forme (23) obtenue par analyse dimen-
sionnelle. Si cette estimation du débit est correcte, cela revient a dire que le
coeflicient C est en fait une fonction de h; et a.

Question (12)

Si I’écoulement est subcritique a 1’aval de la vanne, on peut avoir des hau-
teurs importantes sans qu’il soit possible de faire un raccord entre la hauteur
hs du ressaut et cette branche subcritique. Le ressaut est alors poussé vers la
vanne, puis noyé par I’écoulement. A son tour la vanne est noyée.

Quoique cela ne soit pas strictement la méme configuration d’écoulement,
I'expérience en ligne (voir 128.179.34.98:8888/LHE1.html) permet de voir l'effet
de la condition aval sur la position du ressaut, et en fin de compte sur le régime
d’écoulement noyé/dénoyé au niveau de I'obstacle.


http://128.179.34.98:8888/LHE1.html

(©
Figure 10 —: Ressaut hydraulique & I’amont d’un obstacle. Sa position dépend de la
condition a la limite & ’aval qui est imposée par un seuil a paroi mince. (a) p = 10 mm;
(b) p = 20 mm; (c) p = 30 mm. Source: 128.179.34.98:8888/LHE1.html.


http://128.179.34.98:8888/LHE1.html
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