
Mécanique des fluides
Section de génie civil

Équations de Navier-Stokes

Exercice 1 : écoulement laminaire entre deux
plans parallèles

Dans cet exercice, nous allons considérer l’écoulement d’un fluide newto-
nien entre deux plaques horizontales séparées d’une distance 2b. Voir figure 1.
L’écoulement se fait selon l’axe x, la longueur des plaques L ainsi que leur lar-
geur ℓ sont beaucoup plus grandes que l’espace 2b qui les séparent (L ≫ 2b,
ℓ ≫ 2b), si bien que l’on peut considérer que les plaques sont de taille infinie
selon x et z. Une pompe impose un gradient de pression dp/dx dans la direc-
tion x. Le fluide est de masse volumique ϱ et de viscosité µ. On suppose que
l’écoulement est permanent, laminaire et on néglige les effets de la pesanteur.
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Figure 1 –: Schéma de principe.

1. Déterminer le champ de vitesse au sein de l’écoulement. Pour cela, partir
des équations de Navier-Stokes, projeter les dans le repère xyz puis élimi-
ner tous les termes nuls et intégrer l’équation différentielle pour obtenir
le champ de vitesse.
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Figure 2 –: Vue en coupe

2. Déterminer le débit par unité de largeur transitant dans la conduite, en
déduire la vitesse moyenne de l’écoulement.

3. Déterminer la contrainte de cisaillement τ dans l’écoulement.
4. Déterminer la puissance dissipée.

Exercice 3 : vidange d’un réservoir de fluide
visqueux

Un réservoir de glycérol dont le niveau est maintenu à une hauteur H =
10 cm alimente une conduite circulaire de rayon r = 2 mm et de longueur
L = 5 cm. Déterminer, à l’aide des réponses de l’exercice 2 :

1. Le débit de sortie.
2. La vitesse moyenne et maximale de l’écoulement
3. La force totale de frottement sur le tube

Exercice 5 : viscosimètre de type Couette

On se propose de mesurer expérimentalement la viscosité d’un fluide new-
tonien. Pour ce faire on dispose d’un viscosimètremuni d’une géométrie de type
Couette (voir figure 4). Il s’agit en fait de deux cylindres concentriques d’axe z
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Figure 3 –: Vue en coupe

entre lesquels se trouve le fluide. Le cylindre intérieur de rayon R1 = 5,0 cm
est en rotation à vitesse angulaire constante Ω1, tandis que le cylindre exté-
rieur de rayon R2 = 5,5 cm est fixe (Ω2 = 0). Pour entretenir la rotation, on
doit appliquer un couple C constant sur le cylindre intérieur.

Hypothèses : écoulement laminaire, gravité négligée.

1. Déterminer les composantes non nulles du champs de vitesse au sein du
fluide à l’aide de considérations de symétrie et de l’équation de conser-
vation de la masse.

2. Simplifier les équations de conservation de la quantité de mouvement.
3. Établir la relation
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4. Donner l’expression du champ de vitesse dans la cellule grâce aux condi-
tions limites.

5. Déterminer la relation entre le couple qu’il faut exercer pour maintenir la
vitesse de rotation du cylindre intérieur constante et la viscosité du fluide
sachant que les cylindres ont une hauteur h = 10 cm. Calculer ensuite la
viscosité du fluide sachant que pour Ω1 = 0,1 rad/s on mesure un couple
C = 2,42 · 10−3 N m.
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Figure 4 –: Vue et représentation schématique d’une géométrie de type Couette.



Problème 1 : écoulement granulaire dans un
canal

Au LHE, un doctorant étudie les écoulements granulaires. À cet effet, il uti-
lise un canal incliné dont le fond est mobile (c’est un tapis roulant) ; voir figure 5.
Avec ce dispositif, il peut créer des écoulements permanents d’épaisseur uni-
forme h. La vitesse du fond est notée u0. L’écoulement granulaire est supposé
isochore. Il est constitué de grains dont le diamètre est d ; la masse volumique
moyenne du mélange est ϱ. La pente du canal est noté θ. Le fond est rugueux et
il y a adhérence à la paroi. L’air n’exerce aucune contrainte sur la surface libre.
Voir figure 6.

Figure 5 –: Vue du canal incliné composé d’un tapis roulant. Dans cette expérience,
un fluide interstitiel est utilisé afin de rendre le mélange iso-indice (donc transparent).
Les particules sont marquées avec un colorant fluorescent qui réfléchit la lumière d’une
nappe laser émise dans une certaine longueur d’once, permettant ainsi de les repérer.

(a) Écrire les équations de conservation de la quantité de mouvement et les sim-
plifier en tenant compte des symétries du problème. Comment s’écrivent les
conditions aux limites ?



(b) En déduire une relation pour la contrainte normale totale Σy = σy − p et la
contrainte tangentielle τ après intégration en fonction de y.

(c) En première approximation, le doctorant suppose que le matériau granulaire
se comporte comme un fluide newtonien de viscosité dynamique µ. Intégrer la
relation τ(y) en tenant compte des conditions aux limites afin d’obtenir le profil
de vitesse u(y). Calculer le débit (par unité de largeur) associé à ce profil.

(d) Il suppose maintenant que le matériau granulaire se comporte comme un fluide
non newtonien dont la viscosité µ(γ̇) peut être estimée à partir de la loi empi-
rique dite « µ(I) » qui généralise la loi de Coulomb en supposant que le frotte-
ment varie avec le taux de cisaillement γ̇

τ = µ(I)|σy| avec I =
dγ̇√
|σy|/ϱ

(I est un nombre adimensionnel appelé le plus souvent « nombre inertiel »). Le
calage sur des données de laboratoire a permis de proposer une loi (dite loi de
Jop), qui a la forme suivante

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
,

avec µ1 et µ2 deux constantes correspondant aux frottements en statique et dy-
namique, et I0 une autre constante (reflétant un critère de transition entre ré-
gimes). On supposera que la pression est nulle (p = 0) à travers toute la couche
(dans ce modèle, on suit le principe de Terzaghi, c’est-à-dire la contrainte totale
Σy = σy − p résulte de la superposition d’une contrainte fluide p – supposée
isotrope – et d’une contrainte σy dite effective représentant les contraintes dans
le milieu granulaire). Intégrer τ(y) et obtenir u(y) en tenant compte des condi-
tions aux limites. Tracer l’allure du profil de vitesse ainsi obtenu et le comparer
avec le profil newtonien.
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Figure 6 –: Schéma de principe du canal incliné composé d’un tapis roulant.



Problème 2 : écoulement de Poiseuille-plan

On considère l’écoulement permanent d’un fluide newtonien incompres-
sible de viscosité cinématique ν entre deux plans parallèles de grandes dimen-
sions, placés horizontalement, et séparés d’une distance d (voir figure 7). Le
fluide est mû par un gradient de pression constant ∂px = −a < 0 (avec a une
constante positive). L’axe x est orienté dans le sens de l’écoulement.

(a) En supposant que l’écoulement est en régime laminaire, écrire les équations de
Navier-Stokes et les conditions aux limites. Les simplifier en tenant compte des
symétries simples du problème.

(b) Résoudre les équations : déterminer le profil de vitesse en fonction de a, le tracer.
Quelle est la vitesse moyenne du fluide ū?

(c) Calculer la contrainte de cisaillement et tracer son profil.
(d) Le coefficient de Darcy-Weisbach f est lié aux pertes de charges (ici le gradient

de pression qu’il faut imposer pour mouvoir le fluide) de telle sorte que

|∆p| = 1

2
f
L

Dh

ϱū2

avec Dh = d le diamètre hydraulique, L la longueur sur laquelle est appliqué
le gradient de pression (si ∆p est la différence de pression entre deux points
séparés de L, alors ∂xp = ∆p/L = −a), ϱ la masse volumique du fluide.
Calculer f en régime laminaire en fonction du nombre de Reynolds Re =
4Dhū/ν.

(e) On considère maintenant que l’écoulement est en régime turbulent. On adopte
une équation algébrique de fermeture de type « longueur de mélange » pour la
viscosité turbulente. Quelle est la forme du profil de vitesse moyennée près de
la paroi (on supposera que la contrainte est constante et égale à la contrainte
pariétale).

Correction détaillée de l’exercice 1

Question (a)

Tout d’abord, le fluide considéré est un fluide newtonien avec une masse
volumique ϱ et une viscosité dynamique µ. L’écoulement est supposé laminaire,
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Figure 7 –: Écoulement entre deux plaques parallèles.

et le champ de vitesse peut donc s’écrire sous la formeu =
(
u, v, w

)
; comme

il est supposé permanent, les fonctions u, v etw ne dépendent pas du temps. De
plus, une pompe impose un gradient de pression dp/dx dans la direction x. Les
effets de pesanteur sont négligés. En considérant les équations de Navier-Stokes
dans le système (x, y, z), on a :

ϱ

(
∂u

∂t
+ u∇u

)
= ϱg −∇p+ 2µ∇ ·D.

Dans le cas d’un fluide incompressible, les équations deNavier-Stokes s’écrivent :

ϱ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ϱgx −

∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
,

ϱ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ϱgy −

∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
,

ϱ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ϱgz −

∂p

∂z
+ µ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
.

De plus, le champ de vitesse doit vérifier l’équation de continuité :

∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.



L’écoulement est unidirectionnel selon x, c’est-à dire que seule la composante
u du champ de vitesse est non nulle : u =

(
u, 0, 0

)
. L’équation de continuité

se réduit simplement à :
∂u

∂x
= 0.

Reprenons les hypothèses afin de simplifier au maximum les équations de
Navier-Stokes :

– l’écoulement est permanent : le champ de vitesse ne dépend pas du temps,
ainsi les termes de la forme ∂t· = 0 ;

– l’écoulement est unidirectionnel donc v = 0 et w = 0 ;
– la conduite est supposée de dimension infinie dans la direction z, on se

ramène donc à un problème en 2D (x, y), les termes sous la forme ∂z· = 0
et ∂zz· = 0 ;

– les effets de pesanteur sont négligés : les termes ϱgx, ϱgy et ϱgz sont nuls ;
– l’équation de continuité nous dit que ∂xu = 0 et donc ∂xxu = 0 .

Avec les simplifications citées ci-dessus, les équations de Navier-Stokes se
réduisent à :

0 = −∂p

∂x
+ µ

∂2u

∂y2
,

0 = −∂p

∂y
.

La deuxième équation nous permet de savoir que le champ de pression n’est
pas fonction de y. En intégrant successivement la première équation, il est pos-
sible de déterminer le champ de vitesse.

∂2u

∂y2
=

1

µ

∂p

∂x
,

∂u

∂y
=

1

µ

∂p

∂x
y + C1,

u(y) =
1

µ

∂p

∂x

y2

2
+ C1y + C2,

où C1 et C2 sont les constantes d’intégration déterminées par les conditions
aux limites :



{
u(y = 0) = 0
u(y = 2b) = 0

d’où

 C2 = 0

C1 = − b

µ

∂p

∂x

Ainsi le champ de vitesse s’exprime par u =


1

µ

∂p

∂x

(
y2

2
− by

)
0
0



Question (b)

Le débit infinitésimal est défini tel que :

dq = u(y)dS.

On s’intéresse au débit par unité de largeur q. On considère donc dS = 1 ×
dy, ainsi le débit par unité de largeur infinitésimale est défini de la manière
suivante :

dq
dy = u(y).

Par intégration, on obtient :

q =

∫ 2b

0

1

µ

∂p

∂x

(
y2

2
− by

)
dy,

=
1

µ

∂p

∂x

[
1

2

y3

3
− by2

2

]2b
0

,

= −2

3

b3

µ

∂p

∂x
.

La vitesse moyenne se déduit directement du débit par unité de largeur,
grâce à la relation suivante :

u =
q

2b
= −1

3

b2

µ

∂p

∂x
.



Question (c)

Dans le cas d’un écoulement laminaire et en considérant un fluide newto-
nien, la contrainte de cisaillement τ est telle que :

τ = µγ̇ = µ
∂u

∂y
= µ

(
1

µ

∂p

∂x
y − b

µ

∂p

∂x

)
=

∂p

∂x
(y − b) .

Question (d)

La puissance dissipée infinitésimale correspondante au volume dV = 1 ×
dy × 1 est telle que :

dϕ = τ γ̇dV

=
1

µ

(
∂p

∂x

)2

(y − b)2 dy

En intégrant cette expression, on obtient que la puissance dissipée est égale
à :

ϕ =
1

µ

(
∂p

∂x

)2 ∫ 2b

0

(y − b)2 dy

=
1

µ

(
∂p

∂x

)2 [
y3

3
+ b2y − by2

]2b
0

=
2

3

b3

µ

(
∂p

∂x

)2

.

Correction détaillée de l’exercice 3

Question (a)

En se référant à l’exercice précédent, le débit est donné par :

Q = −πR4

8µ

∂p

∂z



La différence de pression au niveau de la conduite est approchée par ∆p =
−ϱgH . Ainsi, le gradient de pression correspond donc à

∂p

∂z
=

∆p

∆z
=

−ϱgH

L
.

Finalement, nous avons :

Q =
πR4

8µ

ϱgH

L
= 1,6× 10−7 m3.

Question (b)

La vitessemoyenne dans la conduite est simplement calculée par la formule :

u =
Q

S
=

Q

πR2
= 0,0128 m/s.

En considérant le profil de vitesse dans la conduite comme une parabole, la
vitesse maximale est atteinte en r = 0. D’après les réponses démontrées lors
de l’exercice 2, on a :

umax = uz(r = 0) = −∂p

∂z

R2

4µ
= 0,0255 m/s.

Question (c)

Les contraintes de cisaillement orientées selon la normale er et dans la di-
rection ez sont données par :

τrz = µ

(
∂ur

∂z
+

∂uz

∂r

)
,



avec ∂ur

∂z
= 0. La force de frottement sur le tube s’exprime donc par :

F = −
∫ ∫

τrz(r = R)dS,

= −
∫ L

0

∫ 2π

0

τrz(r = R)dzRdθ,

= −Lµ2πR
∂p

∂z

R

2µ
,

= −πR2∆p,

= 0,016 N.

Correction détaillée de l’exercice 5

Question (a)

Le mouvement est un mouvement de rotation, et les composantes de vitesse
ur et uz sont donc nulles. Le champ de vitesse se réduit à :

u =

 0
uθ(r,θ,z)

0


De plus, la conservation de la masse dans le système de coordonnées cylin-

driques s’exprime par :
1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
+

∂uz

∂z
= 0,

∂uθ

∂θ
= 0.

La vitesse est donc uniforme selon la composante θ.

Question (b)

Pour rappel, dans un système de coordonnées cylindriques, les équations
de Navier-Stokes s’expriment par :

ϱ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

(
1

r

∂ur

∂θ
− uθ

r

)
+ uz

∂ur

∂z

)
= ϱgr−

∂p

∂r
+
1

r

∂rTrr

∂r
+
1

r

∂Trθ

∂θ
+
∂Trz

∂z
−Tθθ

r
,



ϱ

(
∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

(
1

r

∂uθ

∂θ
+

ur

r

)
+ uz

∂uθ

∂z

)
= ϱgθ−

1

r

∂p

∂θ
+

1

r2
∂r2Trθ

∂r
+
1

r

∂Tθθ

∂θ
+
∂Tθz

∂z
,

ϱ

(
∂uz

∂t
+ ur

∂uz

∂r
+

uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

)
= ϱgz−

∂p

∂z
+
1

r

∂rTrz

∂r
+
1

r

∂Tθz

∂θ
+
∂Tzz

∂z
.

où T est le tenseur des extra-contraintes :

T = 2µ



∂ur

∂r

1

2

(
1

r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
1

2

(
∂ur

∂z
+

∂uz

∂r

)
1

2

(
1

r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
1

r

∂uθ

∂θ
+

ur

r

1

2

(
∂uθ

∂z
+

∂uz

∂r

)
1

2

(
∂ur

∂z
+

∂uz

∂r

)
1

2

(
∂uθ

∂z
+

∂uz

∂r

)
∂uz

∂z
.


En outre, en supposant que le poids est négligeable et que l’on est dans un
régime d’écoulement permanent, on peut simplifier les équations de Navier-
Stokes :

ϱ

(
−u2

θ

r

)
= −∂p

∂r
,

0 = −1

r

∂p

∂θ
+

1

r2
∂r2Trθ

∂r
,

0 = −∂p

∂z
.

Finalement, on a donc :

ϱ

(
u2
θ

r

)
=

∂p

∂r
,

1

r

∂p

∂θ
= µ

(
1

r

∂

∂r

(
r
∂uθ

∂r

)
− uθ

r2

)
,

0 =
∂p

∂z
.



Question (c)

En développant le terme de droite, nous avons :

∂

∂r

(
1

r

∂(ruθ)

∂r

)
=

∂

∂r

(
uθ

r
+

∂uθ

∂r

)
=

∂

∂r

(uθ

r

)
+

∂

∂r

(
∂uθ

∂r

)
=

1

r

∂uθ

∂r
− uθ

r2
+

∂

∂r

(
∂uθ

∂r

)
=

1

r

(
∂uθ

∂r
+ r

∂

∂r

(
∂uθ

∂r

))
− uθ

r2

=
1

r

(
∂r

∂r

∂uθ

∂r
+ r

∂

∂r

(
∂uθ

∂r

))
− uθ

r2

=
1

r

(
∂

∂r

(
r
∂uθ

∂r

))
− uθ

r2
.

Question (d)

Le champ de pression n’est fonction que de r, c’est-à-dire p = p(r). Ainsi :

∂p

∂θ
= 0,

∂p

∂z
= 0.

De cette manière, nous avons par intégration successive :

∂

∂r

(
1

r

∂(ruθ)

∂r

)
= 0.

1

r

∂(ruθ)

∂r
= C1,

d(ruθ) = C1rdr,

ruθ =
C1

2
r2 + C2,



uθ =
C1

2
r +

C2

r
.

Les conditions aux limites sont telles que :{
uθ(R2) = 0,

uθ(R1) = R1Ω1,

d’où {
C2 = −C1

R2
2

2
,

Ω1 =
C1

2

(
1− R2

2

R2
1

)
.

Ainsi :

C1 =
2Ω1

1− R2
2

R2
1

C2 = −Ω1
R2

2

1− R2
2

R2
1

Finalement :

uθ =
Ω1r

1− R2
2

R2
1

(
1− R2

2

r2

)

Question (e)

La contrainte de cisaillement est donnée par :

τrθ = µ

(
r
∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ

)
,

= µ

(
r
∂

∂r

(uθ

r

))
,

= 2µ
R2

2

r2
Ω1

1− R2
2

R2
1

.



La contrainte au niveau du cylindre intérieur est donc :

τrθ(r = R1) = 2µ
Ω1

1− R2
2

R2
1

R2
2

R2
1

.

Le couple C appliqué au niveau du cylindre intérieur s’exprime par :

C =

∫
dM

=

∫
r × dF

=

∫
R1τrθ(r = R1)dS

=

∫ 2π

0

∫ h

0

R1τrθ(r = R1)dz ×R1dθ

= 4πhµR2
1

Ω1

1− R2
2

R2
1

(
R2

2

R2
1

)

= 4πhµR2
2

Ω1

1− R2
2

R2
1

.

La viscosité du fluide peut être déduite de l’équation précédente :

µ =
C

4πhR2
2

1− R2
2

R2
1

Ω1

= 1,34 Pa · s.



Correction du problème 1

Question (a)

La conservation de la quantité de mouvement s’écrit

ϱ
d
dtu = ϱg −∇p+∇ · σ.

Comme on est en régime permanent uniforme, les termes en ∂x et ∂t dispa-
raissent. Donc on peut simplifier grandement. Par ailleurs l’équation de conti-
nuité impose que v = 0 (voir démonstration du cours). La projection de cette
équation dans un repère cartésien nous donne

0 = ϱg sin θ + dτ
dy ,

et
0 = −dp

dy − ϱgy cos θ +
dσy

dy .

Question (b)

En tenant compte de τ(h) = 0 et Σy(h) = 0, l’intégration est triviale et
nous indique que le champ de contraintes est linéaire avec la profondeur, et
cela indépendamment de la forme de la loi de comportement

τ(y) = ϱg sin θ(h− y), (1)

Σy(h) = σy − p = −ϱg cos θ(h− y). (2)

Question (c)

La loi de comportement est τ = µγ̇ que l’on égale à la distribution (1) :

γ̇ =
du
dy =

ϱ

µ
g sin θ(h− y),



soumis à u(0) = −u0. L’intégration donne le profil parabolique

u(y) =
ϱ

µ
g sin θ

(
hy − 1

2
y2
)
+ C

avec la constante d’intégration telle que u(0) = −u0, donc C = −u0. Le profil
est donc

u(y) =
ϱ

µ
g sin θ

(
hy − 1

2
y2
)
− u0. (3)

Une nouvelle intégration donne le débit par unité de largeur :

q =

∫ h

0

u(y)dy =

[
ϱ

µ
g sin θ

(
1

2
hy2 − 1

6
y3
)
− u0y

]h
0

=
gh3 sin θ

3ν
− hu0,

avec ν = µ/ϱ.

Question (d)

La loi de comportement est τ = µ(I)σy que l’on égale à la distribution (1) :

τ = µ(I)|σy| = ϱg sin θ(h− y),

soumis à u(0) = −u0. On a pris p = 0 et donc σy est donné par (2). On a donc

µ(I) = tan θ.

Comme on utilise la loi empirique de Jop

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
,

on tire la relation entre I et θ :

I = I0
tan θ − µ1

µ2 − tan θ .

Un écoulement permanent n’est possible que sur la plage de pentes : µ2 ≥
tan θ ≥ µ1. En utilisant la définition de I , on en déduit le taux de cisaillement :

γ̇ =
I0
d

√
g cos θ(h− y)

tan θ − µ1

µ2 − tan θ .



L’intégration donne le profil en loi puissance 3/2

u(y) = C − a
√
g cos θ(h− y)3 avec a =

2I0
3d

tan θ − µ1

µ2 − tan θ

avec la constante d’intégration telle queu(0) = −u0, doncC = −u0+a
√

g cos θh3.
Le profil est donc

u(y) = −u0 + a
√
g cos θh3

(
1−

(
1− y

h

)3/2
)
. (4)

La figure 8 compare les deux profils, qui ont des formes assez similaires (ce
qui est normal car l’un varie en (h− y)2 et l’autre en (h− y)3/2) en dépit de la
différence de rhéologie.
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Figure 8 –: Profil de vitesse pour un fluide newtonien (trait discontinu) – donné par
le profil (3) – et granulaire (trait continu) – donné par le profil (4) – ; les unités sont
arbitraires. Les paramètres ont été choisis en sorte que la vitesse au fond et celle à la
surface libre prennent les mêmes valeurs pour les deux rhéologies.



Correction du problème 2

Question (a)

Comme l’écoulement est permanent, on ∂t = 0. De même l’invariance en
x fait que l’on cherche u(y) et on pose directement v = w = 0 ; le champ de
vitesse a une seule composante non nulle (celle selon x) et elle ne dépend que
de la variable y. Seule la pression peut dépendre de x, toutes les autres variables
ne peuvent en dépendre. Donc la conservation de la masse est trivialement sa-
tisfaite

∂u

∂x
= 0.

La conservation de la quantité de mouvement dans la direction x se simplifie
considérablement

0 = −∂p

∂x
+ ϱgx + µ

∂2u

∂y2
,

et comme on a une dépendance u(y) et ∂xp = −a, alors l’équation du mouve-
ment est

u′′(y) = −a

µ
.

Les conditions aux limites imposent l’adhérence aux parois

u(d) = u(0) = 0.

Question (b)

L’équation du mouvement s’intègre facilement

u(y) =
a

2µ
y2 + by + c,

avec b et c deux constantes. Les conditions aux limites imposent : c = 0 et
b = ad/(2µ). Donc

u(y) =
a

2µ
y(d− y)

Le profil de vitesse est parabolique. Par intégration on trouve :

ū =
1

h

∫ h

0

u(y)dy =
a

12µ
d2.



Question (c)

Par définition, la contrainte de cisaillement est

τ = µ
du
dy =

a

2
(d− 2y).

Le profil de contrainte est donc linéaire.

Question (d)

De la relation donnant la vitesse moyenne on tire

|∆p| = 12
µūL

d2

et en égalant cette relation avec la définition de f on tire

f = 24
Dν

ūd2
=

96

Re
.

Question (e)

Par définition on a en y = 0

τp = ϱκ2y2
∣∣∣∣d⟨u⟩dy

∣∣∣∣2 = ad

2
.

Pour simplifier les notations on introduit la vitesse de glissement u∗ =
√

τp/ϱ.
On peut donc mettre l’équation précédente sous la forme

d⟨u⟩
u∗

=
dy
κ

qui s’intègre facilement
u(y) =

u∗

κ
ln y

y0
,

avec y0 une constante d’intégration. Le profil de vitesse est logarithmique près
de la paroi.
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