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Problème 10 : hydraulique de la grotte de
Milandre

La grotte de Milandre est située dans la commune de Boncourt (Jura) à la
frontière franco-suisse. Elle est constituée d’un réseau karstique de conduites,
gouffres et siphons, qui s’étend sur plus de 10 km (voir figure 1). La rivière
souterraine (la Milandrine) est un affluent de l’Allaine. On s’intéresse au gouffre
de Bâme, et plus particulièrement aux crues qui remplissent ce gouffre.

À cet effet, on étudie le fonctionnement hydraulique simplifié du gouffre
(voir figure 2) : le gouffre est alimenté par un débit Q en son sommet D. Le
gouffre est assimilable à un réservoir cylindrique de rayon 2R, dont le plancher
est à la cote 0 (segment AB à la figure 2). L’eau est évacuée par un boyau (seg-
ment BC à la figure 2) dont la longueur projetée est ℓ, de diamètre d, et dont
l’angle par rapport à l’horizontale est θ. Lors d’une crue, le gouffre se remplit
d’eau, le trop-plein d’eau est évacuée par le boyau et resurgit en C (source de la
Milandrine).

Les dimensions sont les suivantes :

– débit entrant Q = 400 L/s ;
– longueur projetée ℓ = 500 m;
– θ = 0,30◦ l’angle que fait le boyau par rapport à l’horizontale ;
– zc position de la source C par rapport au plancher AB du gouffre ;
– hauteur initiale d’eau h = 12 m;
– rayon du gouffre R = 20 m;
– rayon du boyau d = 50 cm.



Figure 1 –: Réseau karstique de la Milandrine. La zone d’étude est le gouffre de Bâme.
Source : C. Vuilleumier, Hydraulics and sedimentary processes in the karst aquifer of
Milandre (Jura Mountains, Switzerland), thèse de doctorat, Université de Neuchâtel,
2017.

Si nécessaire, on peut prendre les coefficients de perte de charge singulière
suivante en compte :

– rétrécissement brutal en B : ζ1 = 0,5 ;
– coude en B : ζ2 = sin2(θ/2) + 2 sin4(θ/2).

Pour les pertes de charge dans le boyau, on utilisera la formule de Darcy-
Weisbach avec un coefficient de frottement f = 0,05.

(a) [0,50] En appliquant le théorème de Bernoulli (formule de Torricelli), quel serait
le débit initial dans la source si on néglige les pertes de charge et tout effet
d’instationnarité ?

(b) [0,50] Refaire le calcul en prenant en compte les pertes de charge.
(c) [0,50] En déduire l’équation différentielle qui régit la hauteur d’eau dans le

gouffre en supposant qu’on est suffisamment proche d’un régime permanent
pour que le théorème de Bernoulli soit valable. Est-ce que vous considérez que
l’hypothèse de régime quasi permanent est réaliste ?



Figure 2 –: Schéma du gouffre. L’échelle n’est pas respectée.

(d) [0,50] Quelle est la hauteur d’eau à l’équilibre dans le gouffre (telle que le débit
sortant au niveau de la source soit égal au débit Q entrant dans le gouffre).



Problème 11 : seuil de la Matte

Les déversoirs latéraux – appelés aussi seuils latéraux – sont des ouvrages
hydrauliques qui servent à déverser le trop-plein d’eau d’un canal principal vers
un canal secondaire – appelé aussi canal de dérivation – dans le but de protéger
contre les crues ou bien de dévier une partie d’un cours d’eau pour l’irrigation
ou l’industrie. Un exemple historique de tels ouvrages est le seuil de la Matte
(Mattenschwelle) sur l’Aar à Berne (voir figure 3). Ce déversoir a été construit
au Moyen Âge en confortant un seuil naturel de la rivière. Il a servi à détourner
l’eau de l’Aar vers le quartier de la Matte pour un usage industriel, et depuis la
fin du xxe siècle, il sert aussi pour la production hydroélectrique.

On se propose ici d’étudier le fonctionnement hydraulique de tels ouvrages
(voir figure 4). Le canal principal est supposé être à section rectangulaire constante
de largeur b, de pente i. Il déverse une partie de l’eau dans un canal secondaire
par le biais d’un déversoir latéral de longueur L et de pelle p. On suppose que
l’écoulement dans le canal secondaire est sans influence sur l’écoulement prin-
cipal (déversoir dénoyé). La hauteur d’eau est notée h(x), et le débitQ(x) est le
débit total. On notera Hs la charge spécifique et u la vitesse moyenne dans le
canal principal. Le débit entrant (juste à l’amont du déversoir) est Q0. Le point
x = 0 (origine) marque le début (amont) du déversoir latéral.

Les dimensions sont les suivantes :

– débit entrant Q0 = 200 m3/s ;
– largeur du canal principale b = 40 m;
– pente du canal principale i = 0,5 ‰;
– longueur du déversoir latéral L = 10 m;
– pelle du déversoir latéral p = 2 m;
– coefficient de débit c = 0,3 ;
– diamètre de la rugosité du lit d90 = 5 mm.

(a) [0,40] Calculer pour le canal principal : la hauteur normale, la hauteur critique,
la charge spécifique à l’amont immédiat du déversoir.

(b) [0,40] Calculer le nombre de Froude. Quel est le régime d’écoulement? Tracer
l’allure de Hs en fonction de h, et placer le point correspondant à la condition
hydraulique entrante.



(a)

(b)

Figure 3 –: Le seuil de la Matte sur l’Aar à Berne. (a) vue plongeante depuis le pont
de Kirchenfeld. (b) orthophotoplan du seuil de la Matte. Source : (a) C. Ancey, et (b)
map.geo.admin.ch.

(c) [0,40] En supposant que la charge spécifique peut être considérée comme constante
sur de petites distances, déterminer l’expression du débit Q en fonction de la
hauteur h et de la charge spécifique Hs, et g la constante de la gravité.

https://s.geo.admin.ch/90f9769bf0
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Figure 4 –: (a) Vue de dessus de la dérivation. (b) Vue de côté.

(d) [0,40] Toujours en supposant que la charge spécifique ne varie pas de façon
significative le long du déversoir, établir l’équation différentielle régissant la
variation de hauteur d’eau infinitésimale h′(x) en fonction de h(x), Q(x) et
Q′(x).

(e) [0,40] En supposant que le débit dQ transitant par unité de longueur dx du
déversoir peut être estimé à l’aide de la formule du seuil dénoyé :

dQ(x) = −c
√

2g(h− p)3/2dx

(à noter : (i) le signe − compte tenu du fait qu’il s’agit du débit perdu par le
canal principal, (ii) c est le coefficient de débit), établir l’équation différentielle
exprimant h′ en fonction de Hs et h.

(f) [0,40] Adimensionnaliser cette équation différentielle en introduisant la hau-
teur adimensionnelle η = h/Hs et l’abscisse adimensionnelle ξ = x/L. En sup-
posant qu’on est à petit nombre de Froude, et on suppose donc que ζ = 1 − η



est petit devant 0. Faire un développement limité en ζ pour obtenir une ap-
proximation de l’équation différentielle. On définira aussi la pelle et la largeur
adimensionnelle pour simplifier la notation :

p̂ =
p

Hs

, b̂ =
b

L
et Q̂ =

Q

b
√

gH3
s

.

On rappelle que (1 + x)n = 1 + nx+O(x2).
(g) [0,40] En considérant qu’en x = 0, la hauteur d’écoulement est la hauteur

normale, résoudre l’équation différentielle approchée. Faire l’application nu-
mérique et tracer la hauteur h(x) le long du déversoir. En déduire la hauteur
d’eau en ξ = 1 (x = L) et le débit qui transite par le canal principal. En déduire
le débit dévié dans le canal secondaire.



Problème 12 : saut du Doubs

On étudie l’exutoire du lac des Brenets emprunté par le Doubs jusqu’à la
cascade appelé « Saut du Doubs » (figure 5). On fait une étude hydraulique
simplifiée du bief juste à l’amont de la cascade. Les caractéristiques sont les
suivantes :

– débit Q = 28 m3/s ;
– largeur du lit b = 7 m;
– pente du bief i = 1 ‰;
– forme trapézoïdale avec des berges de pente p = 3 H: 2 V (figure 6) ;
– diamètre de la rugosité du lit d50 = 21 mm.

Figure 5 –: Vue sur le saut du Doubs à la frontière entre France et Suisse (Le Locle,
NE).

(a) [0,40] Que vaut le coefficient de Manning-Strickler (on arrondira à l’entier le
plus proche) ?

(b) [0,40] Donner les expressions analytiques de la section mouillée, du périmètre
mouillé, et du rayon hydraulique.

(c) [0,40] Calculer les hauteurs normale et critique.



Figure 6 –: Section simplifiée du bief étudié.

(d) [0,40] Calculer le nombre de Froude. Quel est le régime d’écoulement?
(e) [0,40] Tracer la courbe de remous en amont de la chute d’eau.



Correction du Problème 10

Question (a)

Si on néglige les pertes de charges et qu’on considère une ligne de courant
entre E et C, qu’on suppose l’écoulement permanent avec une vitesse en E nulle
(comme d ≪ 2R on peut appliquer la formule de Torricelli), alors on déduit

u2
C

2g
+ zc = ze,

avec ze = h = 12 m et zc = ℓ tan θ = 2,6 m (la question se pose s’il faut ap-
pliquer en C ou bien au milieu, mais une simple application numérique montre
que cela ne change le résultat que de 1 % environ). Le débit sortant en C est :

QC = π
d2

4

√
2g(h− zc) = 2,67 m3/s.

Question (b)

On recommence le calcul en prenant en compte les pertes de charge :

– régulièrement réparties le long du boyau

∆Hr = f
L

d

u2

2g
,

avec L = ℓ/ cos θ la longueur du boyau ;
– singulières en C :

∆Hs = (ζ1 + ζ2)
u2

2g
.

u2
C

2g
+ zc +∆Hr +∆Hs = ze.

On trouve facilement

uc =

√
2g(h− zc)

1 + f L
d
+ ζ1 + ζ2

,

et donc comme débit sortant

Qc = π
d2

4
uc = 369 L/s.



Question (c)

L’équation différentielle s’obtient en faisant un bilan de masse. Pendant un
laps de temps dt, il y a un volume d’eau qui entre en E : Qdt, et un volume qui
sort en C : Qcdt. La différence des deux provoque une variation de volume :

dV = πR2dh = (Q−Qc)dt,

soit encore
dV
dt = πR2dh

dt = Q−Qc,

que l’on peut exprimer entièrement en fonction de h :

dh
dt =

Q

πR2
− d2

4R2

√
2g(h− zc)

1 + f L
d
+ ζ1 + ζ2

,

Comme d ≪ 2R, il semble a priori correct de supposer un régime permanent car
la vitesse de la surface libre varie en (d/R)2 de la vitesse au point de résurgence
C.

Question (d)

La hauteur d’équilibre est atteinte lorsque les débits entrant et sortant sont
égaux. Cela revient à considérer dh/dt = 0, donc

Q = π
d2

4

√
2g(h− zc)

1 + f L
d
+ ζ1 + ζ2

⇔ h = 13,6 m.



Correction du Problème 11

Question (a)

La hauteur normale est la solution de l’équation implicite :

Q = K
√
ibh

(
bh

2h+ b

)2/3

⇒ hn = 2,23 m

La hauteur critique dans un canal prismatique à section rectangulaire est

hc =
3

√
q2

g
⇒ hc = 1,37 m

et donc la charge spécifique en x = 0 est

Hs = hn +
u2

2g
= 2,49 m,

avec u = Q/b/hn = 2,24 m/s la vitesse moyenne.

Question (b)

Le Froude est dans un canal prismatique à section rectangulaire

Fr =
u√
gh

= 0,48,

et donc on est en régime subcritique car Fr < 1. On trace la charge spécifique
Hs en fonction de h et on reporte les conditions hydrauliques (hn, Hs(hn)). La
figure 7montre comment varieHs en fonction deh. Pour la branche subcritique,
on a u2/(2g) ≪ h et donc Hs ∝ h.

Question (c)

La charge spécifique est par définition

Hs =
u2

2g
+ h,

avec ici u = Q/(bh), donc on a :

u =
√

2g(Hs − h) ⇒ Q = bh
√
2g(Hs − h). (1)
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Figure 7 –: Variation de la charge spécifique avec la hauteur h (courbe continue). La
courbe tiretée montre la variation asymptotique Hs ∝ h.

Question (d)

La charge spécifique est supposée constante

Hs =
Q2

2gh2b2
+ h,

donc sa différentielle est nulle

H ′
s = 2

QQ′

2gh2b2
− 2

Q2h′

2gh3b2
+ h′ = 0.

En regroupant les termes on trouve

h′ = − QQ′

gh2b2
(
1− Q2

gh3b2

) .

On peut réarranger les termes

h′ = −h
QQ′

gh3b2 −Q2 . (2)



Question (e)

On utilise la relation du seuil dénoyé pour estimer la perte de débit Q′

Q′(x) = −c
√

2g(h− p)3/2,

qu’on substitue dans l’équation différentielle (2) :

h′ = h
Q

gh3b2 −Q2 c
√

2g(h− p)3/2.

On élimine Q en se servant de l’équation (1) :

Q = bh
√

2g(Hs − h),

pour obtenir

h′ = 2
c

b

√
(Hs − h)(h− p)3

3h− 2Hs

. (3)

Question (f)

Avec les notations proposées dans l’énoncé, on trouve après substitution
dans l’équation

η′ =
dη
dξ = 2

c

b̂

√
(1− η)(η − p̂)3

3η − 2
. (4)

Cette équation peut aussi se mettre sous la forme :

ζ ′ = −dη
dξ = −2

c

b̂

√
ζ(1− ζ − p̂)3

3− 3ζ − 2
.

Au premier ordre en ζ , on a immédiatement

ζ ≪ 1 ⇒ 3− 3ζ − 2 = 1 et 1− ζ − p̂ = 1− p̂.

On a finalement
ζ ′ = −2

c

b̂

√
ζ(1− p̂)3, (5)

ou bien encore
− ζ ′

2
√
ζ
=

c

b̂
(1− p̂)3/2

qui est une équation différentielle à variable séparable (facile à intégrer).



Question (g)

L’intégration de l’équation (5) fournit

ζ1/2 = a+
c

b̂
(1− p̂)3/2ξ ⇒ ζ =

(
a+

c

b̂
(1− p̂)3/2ξ

)2

avec a une constant d’intégration. La constante d’intégration a est déterminée
en posant qu’en ξ = 0, on a

ζ(0) = ζ0 = 1− hn

Hs

⇒ a = ζ
1/2
0 .

A.N. : a = ζ
1/2
0 = 0,32. La hauteur adimensionnelle est

η = 1− ζ = 1−
(
a+

c

b̂
(1− p̂)3/2ξ

)2

,

ou sous forme dimensionnelle

h(x) = Hs

1−

(
a+

cx

b

(
1− p

Hs

)3/2
)2
 .

La figure 8 montre la courbe de remous le long du déversoir latéral.
La hauteur en ξ = 1 est donc

ζ(1) =

(
ζ20 +

c

b̂
(1− p̂)3/2

)2

⇒ η(1) = η1 = 1−
(
ζ20 +

c

b̂
(1− p̂)3/2

)2

.

A.N. : η1 = 0,89, et donc h1 = 2,22 m en x = 10 m.
Le débit dans le canal principal est obtenu en adimensionnalisant l’équation

(1)
Q̂ =

Q

b
√

gH3
s

=
√
2η(1− η),

et en donc ξ = 1, on a

Q̂1 = Q̂(ξ = 1) =
√
2η1(1− η1).
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Figure 8 –: Variation de la hauteur h le long du déversoir.

A.N. : Q1 = b
√

gH3
s

√
2η1(1− η1) = 84,7 m3/s.

Le débit dérivé qui transite par le canal secondaire s’obtient par différence
du débit entrant Q et du débit Q1 :

Qd = Q−Q1 = Q− b
√

gH3
s

√
2η1(1− η1) = 200− 84,7 = 115,3 m3/s.



Correction du Problème 12

Question (a)

On prend la formule de Strickler (5.6) du cours :

K =
21,1

d
1/6
50

= 40 m1/3 · s−1.

Question (b)

On considère un canal prismatique à section trapézoïdale. La sectionmouillée
S d’une section trapézoïdale de « fruit 1 » m = p−1 = 3/2 est

S =
1

2
(b+B)h = (b+mh)h

avec B = b+ 2mh la largeur au miroir (figure 9).

Figure 9 –: Section simplifiée du bief étudié et notation.

Le périmètre mouillé est

χ = b+ 2
√

h2 + (mh)2 = b+ 2h
√
1 +m2 = b+ h

√
13.

Le rayon hydraulique est

Rh =
S

χ
= h

b+mh

b+ 2h
√
1 +m2

.

1. Le fruit m d’un talus est l’inverse de sa pente p.



Question (c)

Il faut résoudre l’équation (non linéaire) du régime permanent uniforme

Q = KR
2/3
h S

√
i.

On trouve
hn = 1,86 m.

La hauteur critique est donnée par la définition (5.21) p. 122 des notes de cours
(canal prismatique de section quelconque) en résolvant :

Fr = 1 ⇒ g
S3(hc)

B(hc)
= Q2.

Soit encore
g (b+mhc)

3 h3
c = Q2(b+ 2mhc).

On trouve
hc = 1,08 m.

Question (d)

Le nombre de Froude est donné par la définition (5.20) p. 122 :

Fr = Q

S

√
g
S

B

= 0,4.

On a Fr < 1 : le régime est subcritique (ce que l’on pouvait voir aussi en notant
que hn > hc).

Question (e)

Le régime étant subcritique, l’écoulement dépend d’une condition à la limite
placée à l’aval. La seule possible ici est la chute d’eau au Saut du Doubs : la
hauteur doit y être critique. La courbe de remous est une branche de type M2
sur le tableau de la figure 5.35 (p. 120) des notes de cours.



Pour tracer la courbe de remous, on considère l’équation (5.17) des notes de
cours (p. 115) :

h′(x) =
jf − i

Fr2 − 1
(6)

soumise à une condition à la limite en aval h = hc + ϵ (numériquement il faut
prendre une valeur un peu plus grande pour pouvoir résoudre numériquement
l’équation). La solution est une branche M2 qui part de h = hc en un point
(posons arbitrairement x = 0) et tend vers hn = 1,86 m quand on va dans
le sens des x décroissants. La figure 12 montre une solution numérique avec
Mathematica (le script est donné à la figure 11).

(Pour l’examen on se contente d’un tracé qualitatif. On va ici un peu plus
loin.)
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Figure 10 –: Solution numérique de l’équation de la courbe de remous (6).



Figure 11 –: Script de résolution de l’équation de la courbe de remous (6).
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Figure 12 –: Courbe de remous du problème considéré. La courbe continue est la solu-
tion numérique de l’équation de la courbe de remous (6). La courbe tiretée représente
la solution idéalisée du problème 1 telle qu’on peut la déduire de l’analyse de la figure
1.
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