
Session 09 • Alok Menghrajani

EPFL, CIVIL-127
Programming and software development for engineers

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

How’s final project coming along?

2

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Estimated timeline for your final project

3

● By the end of this week (4.5.2025)
○ Your agent should be picking up passengers and dropping them off – your algorithm should be

able to score points in a room with just itself

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Estimated timeline for your final project

4

● By the end of this week (4.5.2025)
○ Your agent should be picking up passengers and dropping them off – your algorithm should be

able to score points in a room with just itself

● By the end of next week (11.5.2025)
○ Your agent should be beating at least one of the staff's bots – it's likely that your algorithm is as

good or better than a human player with a keyboard

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Estimated timeline for your final project

5

● By the end of this week (4.5.2025)
○ Your agent should be picking up passengers and dropping them off – your algorithm should be

able to score points in a room with just itself

● By the end of next week (11.5.2025)
○ Your agent should be beating at least one of the staff's bots – it's likely that your algorithm is as

good or better than a human player with a keyboard

● Following week (18.5.2025)
○ Start cleaning up your code – make sure you have comments, tests, etc. – think about what you

are going to put in your one pager

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Estimated timeline for your final project

6

● By the end of this week (4.5.2025)
○ Your agent should be picking up passengers and dropping them off – your algorithm should be

able to score points in a room with just itself

● By the end of next week (11.5.2025)
○ Your agent should be beating at least one of the staff's bots – it's likely that your algorithm is as

good or better than a human player with a keyboard

● Following week (18.5.2025)
○ Start cleaning up your code – make sure you have comments, tests, etc. – think about what you

are going to put in your one pager

● Submission deadline: May 23rd, 2025 @ 6pm

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Type Hints

7

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Types are contracts between callees and
callers

8

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Types are contracts between callees and callers

9

def f1(a: int) -> int:

 return a * 2

def f2():

 print(f1(123))

● Contract == agreement
● caller == code calling a function or method
● callee == function or method being called
● Example

○ f1 will behave correctly when called with an
integer. It’ll return an integer.

○ The last line honors the contract, it calls f1
with an integer.

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

One time setup

● pip install mypy
● Install mypy VSCode extension
● Configure python.analysis.typeCheckingMode in your project’s

.vscode/settings.json file
○ off → no type checking
○ strict → type hints needed for all code
○ basic / standard → partial use of type hints

● note: mypy has many configuration options, the tool’s behavior can therefore
vary from project to project / use-case to use-case

10

https://marketplace.visualstudio.com/items?itemName=ms-python.mypy-type-checker

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Documentation

● https://docs.python.org/3.12/library/typing.html (Support for type hints)
○ Type hints cheat sheet
○ Type System Reference
○ Static Typing with Python
○ Specification for the Python type system

11

https://docs.python.org/3.12/library/typing.html
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://mypy.readthedocs.io/en/stable/index.html
https://typing.python.org/en/latest/
https://typing.python.org/en/latest/spec/index.html

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Pros of using type hints

● Better code clarity
○ Types serve as documentation.
○ E.g. -> int is less characters than """returns an integer"""

● Forces better code structure
● Early bug detection

○ Type-hints are well structured and can be processed by tools (such as a type checker)
○ Detect bugs in your code automatically and without running the code (static analysis)

12

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Pros of using type hints

● Improves IDE experience
○ Go to a type definition
○ Find where a type is used
○ Autocompletion

● Can potentially result in faster code
○ The Python runtime can potentially use type information to generate more optimal code

● Optional
○ Type hints can be used only where desired

13

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Cons of using type hints

● Learning curve
○ Type hints have been part of Python since 2015, but some people aren’t yet familiar with them
○ Python 3.12 doesn’t retain or enforce the types when the code runs

● It’s a retrofit, with some drawbacks
○ Types are dropped at runtime, they aren’t enforced when the code runs
○ Many minor tradeoffs

● Optional
○ Can lead to false sense of safety when a codebase is partially typed

14

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Type hints make the code easier to read

15

def center(x1, y1, x2, y2):

 """

 Calculates the center of a rectangle

 x1, y1 are the first corner (integer values).

 x2, y2 are the opposite corner (integer values).

 Returns a tuple of integers

 """

 dx = (x2 - x1) / 2

 dy = (y2 - y1) / 2

 return (x1 + dx, y1 + dy)

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Type hints make the code easier to read

def center(x1: int, y1: int, x2: int, y2: int) -> tuple[float, float]:

 """

 Returns the center of a rectangle given two

 opposite corners.

 """

 dx = (x2 - x1) / 2

 dy = (y2 - y1) / 2

 return (x1 + dx, y1 + dy)

16

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Detect bugs earlier

17

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

1998 Mars Climate Orbiter

18

● $300 million NASA robotic space probe
● Software mixed meters (metric) and feets (imperial) during a critical

calculation resulting in permanent loss of the spacecraft

Open question: would some software development techniques
have caught this bug during the development phase?

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Improved IDE experience

19

class Stack:

 def __init__(self):

 self.s: list[int] = []

 def push(self, x: int):

 self.s.append(x)

 def pop(self) -> int:

 return self.s.pop()

 def max(self) -> int:

 return max(self.s)

● We annotate our Stack class from a few
weeks ago

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Improved IDE experience

20

def foo(s: Stack):

 print(s.max())

● We annotate our variable s, to be of type
Stack

● Typing s. then lists all the available
methods and their arguments

● Tools such as Copilot can potentially use
the type hints to provide better
suggestions

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Improved IDE experience

21

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Where can type hints appear?

● Function and method parameters
○ def foobar(x: str):

● Function and method return type
○ def foobar(x) -> int:

● Function and method parameters + return type
○ def foobar(x: str) -> int:

22

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Where can type hints appear?

class Stack:

 def __init__(self) -> None:

 self.s: list[int] = []

23

● Instance variables can be assigned types
in the __init__ method

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Where can type hints appear?

24

● Local variable have their types inferred
● In some rare cases, you need to help the

type inference system

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Where can type hints appear?

25

● Local variable have their types inferred
● In some cases, the type cannot be

inferred
● x: list[int] = [] specifies that x

has type list[int]

import random

def foobar(x: int) -> None:

 print(x)

x: list[int] = []

while True:

 x.append(random.randint(0, 9))

 if sum(x) == 100:

 break

foobar(len(x))

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Where can type hints appear?

26

● Local variable have their types inferred
● In some cases, the type cannot be

inferred
● x = list[int]() is equivalent

import random

def foobar(x: int) -> None:

 print(x)

x = list[int]()

while True:

 x.append(random.randint(0, 9))

 if sum(x) == 100:

 break

foobar(len(x))

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Type derived from a class

class Stack:

 def __init__(self) -> None:

 self.s: list[int] = []

 def push(self, x: int) -> None:

 self.s.append(x)

 def pop(self) -> int:

 return self.s.pop()

 def max(self) -> int:

 return max(self.s)

def foobar(x: Stack) -> None:

 print(x)

foobar(Stack())

27

● Every class defines a type with the same
name

● class Stack defines a Stack type
● Instance attributes and their types are

derived from the body of __init__

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

bool type

def foobar(x: bool) -> None:

 print(x)

foobar(True)

foobar(False)

28

● True and False have type bool

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

int type

def foobar(x: int) -> None:

 print(x)

foobar(0)

foobar(123)

29

● 0 and 123 have type int

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

float type

def foobar(x: float) -> None:

 print(x)

foobar(4.56)

30

● 4.56 has type float

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

int subtype of float

def foobar(x: float) -> None:

 print(x)

foobar(40)

31

● int is a subtype of float, you can use an
int whenever you need a float

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

str type

def foobar(x: str) -> None:

 print(x)

foobar("hello")

32

● "hello" has type str

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

tuple type

def foobar(x: tuple[int, str]) -> None:

 print(x)

foobar((1, "x"))

33

● (1, "x") has type tuple[int, str]

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

union type

def foobar(x: int | str) -> None:

 print(x)

foobar(1)

foobar("x")

34

● type1 | type2 | type3 | … defines
a union type

● A union type is a type which matches
either of several choices

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

union type

from typing import Union

def foobar(x: Union[int, str]) -> None:

 print(x)

foobar(1)

foobar("x")

35

● Union[type1, type2, type3] is an
equivalent syntax

● Union[type1, Union[type2,
type3]] would also be equivalent

● | is more readable (?)

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

list type

def foobar(x: list[int]) -> None:

 print(x)

foobar([1, 2, 3])

36

● Homogenous lists can be typed with
list[type]

● [1, 2, 3] has type list[int]

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

list type

def foobar(x: list[int | str]) -> None:

 print(x)

foobar([1, "foo", 3])

37

● Non-homogenous lists can be typed using
union types

● Such non-homogenous lists are code
smells: something is poorly designed

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

set type

def foobar(x: set[str]) -> None:

 print(x)

foobar({"e", "h", "l", "o"})

38

● {"e", "h", "l", "o"} has type
set[str]

● As with lists:
○ Use a union type for non-homogenous

sets
○ Non-homogenous sets are code smells

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

dict type

def foobar(x: dict[str, int]) -> None:

 print(x)

foobar({"a": 1, "b": 10})

39

● {"a": 1, "b": 10} has type
dict[str, int]

● This type is usually not enough
○ You usually want to describe the

dictionary’s shape – which keys are
required and the associated types for their
values

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

TypedDict

from typing import NotRequired, TypedDict

class Star(TypedDict):

 pos: tuple[int, int]

 name: NotRequired[str]

def foobar(x: Star) -> None:

 print(x)

foobar({"pos": (10, 15)})

foobar({"pos": (10, 15), "name": "alpha"})

40

● A class which extends TypedDict
becomes a regular dict at runtime

● Attributes are used to define the shape of
the dictionary

● NotRequired indicates optional keys

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Enum

from enum import StrEnum

class Color(StrEnum):

 Red = "red"

 Blue = "blue"

def foobar(x: Color) -> None:

 print(x.value)

foobar(Color.Red) # prints red

41

● Use Enum if you don’t care about the
value’s type

● Use StrEnum if the values are strings
● Use IntEnum if the values are integers

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Remember, most type hints don’t exist at runtime

def foobar(x: list[int]) -> None:

 print(type(x))

foobar([1, 2, 3]) # prints <class 'list'>

● At runtime
○ Python keeps track of primitive types and

classes
○ The exact type hints are lost

42

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Any

from typing import Any

def foobar(x: Any) -> None:

 print(x)

foobar("foobar")

foobar(123)

43

● Any is a type which matches everything
● Almost equivalent to not using type hints
● Almost equivalent to using object, the

base class for standard types and all
classes

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Optional
from typing import Optional

def foobar(x: Optional[str]) -> None:

 print(x)

foobar(None) # prints None

foobar("abc") # prints abc

44

● Optional[type] is equivalent to type
| None

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Alias

type Foo = list[tuple[str, int]]

def foobar(x: Foo) -> None:

 print(x)

foobar([("a", 1), ("b", 10)])

45

● type Foo = … creates an alias
● Makes the code less verbose and more

readable

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

NewType

from typing import NewType

Sciper = NewType('Sciper', int)

def foobar(x: Sciper) -> None:

 print(x)

foobar(Sciper(123))

46

● foo = NewType(...) creates a new
type

● A way to “mask” the underlying type
● Sciper behaves like an int, but you can’t

accidentally use some variable which
happens to also be an int

● Note: “Sciper” is repeated twice, once as
the first parameter for NewType and once
as the actual type.

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Callable

from typing import Callable

def foobar(x: Callable[[str], int]) -> None:

 print(x("foobar"))

foobar(len) # prints 6

foobar(lambda x: x.count("o")) # prints 2

47

● You’ll rarely type hint a callable (we
already discussed using classes reduces
the need to have functions or lambdas as
parameters!)

● Callable[[str], int] is the type of a
function or lambda which takes a str and
returns an int

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Generic classes

class Stack[T]:

 def __init__(self) -> None:

 self.s: list[T] = []

 def push(self, x: T):

 self.s.append(x)

 def pop(self) -> T:

 return self.s.pop()

48

● [T] can be used to parameterize a class
● T will get replaced by an actual type when

the class is instantiated
● You can use any identifier instead of T.

Typically, single letter and capitalized (e.g.
T, U, K, and V. T1, T2, … is also common)

● You will probably not write generic
classes, but you will read code which uses
generics

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Generic classes

def foobar() -> None:

 s = Stack[int]()

 s.push(1)

 s.push(2)

 print(s.pop()) # prints 2

foobar()

49

● s = Stack[int]() causes the
replacement of T with int

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Generic classes

def foobar() -> None:

 s: Stack[int] = Stack()

 s.push(1)

 s.push(2)

 print(s.pop()) # prints 2

foobar()

50

● s: Stack[int] = Stack() is
equivalent

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

51

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

match
def f1(x: str) -> None:

 print(x, x)

def f2(x: int) -> None:

 print(x * 2)

def foobar(x: str | int) -> None:

 match x:

 case str():

 f1(x)

 case int():

 f2(x)

foobar("abc") # prints abc abc

foobar(12) # prints 24

52

● match destructures union types
● Within each case, the type of x becomes

more specific
○ Inside case str(): the type for x

becomes str
○ Inside case int(): the type for x

becomes int
● Only works for types which are preserved

at runtime

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

● match combined with assert_never, can be used to statically enforce that
every permutation for a type has been handled

● Most useful when combined with enums
● In the next example, we forgot a case statement for Color.Blue

53

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

54

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Nominal vs structural typing

55

● Usually, a type system is either nominal or structural
● Nominal == two classes which have the same methods are considered

different types
● Structural == two classes which have the same methods are considered the

same type
● Python is mostly nominal, except for some convenient cases when it becomes

structural

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Nominal vs structural typing

56

Session 09 • Alok Menghrajani EPFL • CIVIL-127• 2025

Nominal vs structural typing

57

from typing import Protocol

class Foo(Protocol):

 def f(self) -> int:

 return 1

class Bar:

 def f(self) -> int:

 return 2

def foobar(x: Foo) -> None:

 print(x.f())

foobar(Bar()) # prints 2

● Extending Protocol enables a class to
use structural typing

