EPFL, CIVIL-127

Programming and software development for engineers

Session 09 - Alok Menghrajani



How’s final project coming along?

Session 09 « Alok Menghrajani 2 EPFL - CIVIL-127- 2025



Estimated timeline for your final project

e By the end of this week (4.5.2025)

o Your agent should be picking up passengers and dropping them off — your algorithm should be
able to score points in a room with just itself

Session 09 « Alok Menghrajani 3 EPFL - CIVIL-127- 2025



Estimated timeline for your final project

e By the end of next week (11.5.2025)

o Your agent should be beating at least one of the staff's bots — it's likely that your algorithm is as
good or better than a human player with a keyboard

Session 09 « Alok Menghrajani 4 EPFL - CIVIL-127- 2025



Estimated timeline for your final project

e Following week (18.5.2025)

o  Start cleaning up your code — make sure you have comments, tests, etc. — think about what you
are going to put in your one pager

Session 09 « Alok Menghrajani 5 EPFL - CIVIL-127- 2025



Estimated timeline for your final project

e Submission deadline: May 23rd, 2025 @ 6pm

Session 09 « Alok Menghrajani 6 EPFL - CIVIL-127- 2025



Type Hints

Session 09 « Alok Menghrajani 7 EPFL - CIVIL-127- 2025



Types are contracts between callees and
callers

Session 09 « Alok Menghrajani 8 EPFL - CIVIL-127- 2025



Types are contracts between callees and callers

fl(a: int) —-> int: ® Contract == agreement
® caller == code calling a function or method
return a * 2 . :
® callee == function or method being called
® Example
o  T1 will behave correctly when called with an
£2(): integer. Itll return an integer.
) o  The last line honors the contract, it calls f1
print (£1 (123)) with an integer.

Session 09 « Alok Menghrajani 9 EPFL - CIVIL-127- 2025



One time setup

e pip install mypy
e [nstall mypy VSCode extension
e Configure python.analysis.typeCheckingMode in your project’s
.vscode/settings.json file
o off » no type checking

o strict » type hints needed for all code
o basic / standard - partial use of type hints

e note: mypy has many configuration options, the tool's behavior can therefore
vary from project to project / use-case to use-case

Session 09 - Alok Menghrajani 10 EPFL - CIVIL-127- 2025


https://marketplace.visualstudio.com/items?itemName=ms-python.mypy-type-checker

Documentation

e https://docs.python.org/3.12/library/typing.html (Support for type hints)
o Type hints cheat sheet
o Type System Reference
o  Static Typing with Python
o Specification for the Python type system

Session 09 - Alok Menghrajani 11 EPFL - CIVIL-127- 2025


https://docs.python.org/3.12/library/typing.html
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
https://mypy.readthedocs.io/en/stable/index.html
https://typing.python.org/en/latest/
https://typing.python.org/en/latest/spec/index.html

Pros of using type hints

e Better code clarity
o Types serve as documentation.
o E.g.-> 1intisless characters than

e [orces better code structure
e Early bug detection

o Type-hints are well structured and can be processed by tools (such as a type checker)
o Detect bugs in your code automatically and without running the code (static analysis)

returns an integer

Session 09 -« Alok Menghrajani 12 EPFL - CIVIL-127- 2025



Pros of using type hints

e Improves IDE experience

o Go to a type definition

o Find where a type is used

o Autocompletion
e Can potentially result in faster code

o The Python runtime can potentially use type information to generate more optimal code
e Optional

o  Type hints can be used only where desired

Session 09 - Alok Menghrajani 13 EPFL - CIVIL-127. 2025



Cons of using type hints

e Learning curve

o Type hints have been part of Python since 2015, but some people aren't yet familiar with them
o Python 3.12 doesn't retain or enforce the types when the code runs

e It's a retrofit, with some drawbacks

o Types are dropped at runtime, they aren't enforced when the code runs
o Many minor tradeoffs

e Optional

o Can lead to false sense of safety when a codebase is partially typed

Session 09 -« Alok Menghrajani 14 EPFL - CIVIL-127- 2025



Type hints make the code easier to read

center (x1, yl, x2, y2):
Calculates the center of a rectangle
x1, yl are the first corner (integer values).

x2, y2 are the opposite corner (integer values).

Returns a tuple of integers

(x2 - x1) / 2
(y2 - yl) / 2

return (x1 + dx, yl + dy)

EPFL - CIVIL-127- 2025

Session 09 - Alok Menghrajani



Type hints make the code easier to read

center (x1: int, yl: int, x2: int, y2: int) -> tuple[float, float]:
Returns the center of a rectangle given two

opposite corners.

(x2 - x1) / 2
(y2 - yl) / 2

return (x1 + dx, yl + dy)

EPFL - CIVIL-127- 2025

Session 09 - Alok Menghrajani



Detect bugs earlier

def center(x1l: int, yl: int, x2: int, y2: int) -> tuplel[int, int]:

Returns the center of a rectangle given two opposite corners.
dx = (x2 — x1) / 2
dy = (y2 - y1) / 2 -

7 ® return [(x1 + dx, y1 + dy))

type_hints.py 1 of 2 problems

Type "tuple[float, float]l"™ is not assignable to return type "tuplel[int, int]"
"float" is not assignable to "int"
"float" is not assignable to "int" Pylance(

Session 09 « Alok Menghrajani EPFL - CIVIL-127- 2025



1998 Mars Climate Orbiter

e $300 million NASA robotic space probe
e Software mixed meters (metric) and feets (imperial) during a critical
calculation resulting in permanent loss of the spacecraft

Open guestion: would some software development techniques
have caught this bug during the development phase?

Session 09 - Alok Menghrajani 18 EPFL - CIVIL-127. 2025



Improved IDE experience

Stack: e \We annotate our Stack class from a few
init (self): weeks ago

self.s: list[int] = []

push(self, x: int):

self.s.append(x)

pop (self) -> int:

return self.s.pop()

max (self) -> int:

return max(self.s)

Session 09 « Alok Menghrajani 19 EPFL - CIVIL-127- 2025



Improved IDE experience

foo(s: Stack): e We annotate our variable s, to be of type
Stack

e Typing s. then lists all the available
methods and their arguments

e Tools such as Copilot can potentially use
the type hints to provide better
suggestions

print (s.max () )

Session 09 « Alok Menghrajani 20 EPFL - CIVIL-127- 2025



Improved IDE experience

ef foo(s: Stack):
print(s.max())

Session 09 - Alok Menghrajani 21 EPFL - CIVIL-127. 2025



Where can type hints appear?

e Function and method parameters
o def foobar(x: str):

e Function and method return type
o def foobar(x) -> int:

e Function and method parameters + return type
o def foobar(x: str) -> int:

Session 09 - Alok Menghrajani 22 EPFL - CIVIL-127. 2025



Where can type hints appear?

Stack: e Instance variables can be assigned types

init (self) —-> inthe __init__ method

self.s: list[int]

Session 09 « Alok Menghrajani 23 EPFL - CIVIL-127- 2025



Where can type hints appear?

import random e Local variable have their types inferred
e |n some rare cases, you need to help the
type inference system

def foobar(x: int) -> None:
print(x)

x = []
while True:
x.append(random.randint(@, 9))
if sum(x) == 100:
break
foobar(len(x))

Session 09 - Alok Menghrajani 24 EPFL - CIVIL-127. 2025



Where can type hints appear?

import random

foobar (x: int) ->

print (x)

X: list[int] = []

while

X .append (random.randint (0,

1f sum(x) == 100:
break

foobar (len (x))

Session 09 - Alok Menghrajani

9))

25

Local variable have their types inferred
In some cases, the type cannot be
inferred

x: list[int] = [] specifies that x
has type 1ist[int]

EPFL - CIVIL-127- 2025



Where can type hints appear?

e Local variable have their types inferred

e |n some cases, the type cannot be
inferred

-> : e x = list[int]() isequivalent

import random

foobar (x: 1int)

print (x)

list[int] ()

while

x.append (random.randint (0, 9))

1f sum(x) == 100:
break

foobar (len (x))

Session 09 « Alok Menghrajani 26 EPFL - CIVIL-127- 2025



Type derived from a class

Stack: e Every class defines a type with the same
__init (self) -> : name
self.s: listlint] e class Stack defines a Stack type
| e Instance attributes and their types are
PEER(SELE, & SmE) = : derived from the body of __init__

self.s.append(x)

pop(self) -> int:

return self.s.pop()

max (self) -> int:

return max(self.s)

foobar(x: Stack

print (x)

foobar(Stack

Session 09 - Alok Menghrajani 27 EPFL - CIVIL-127. 2025



bool type

foobar (x: bool) -> . e TrueandFalse have type bool

print (x)

foobar (

foobar (

Session 09 « Alok Menghrajani 28 EPFL - CIVIL-127- 2025



1nt type

foobar (x: int) -> g e 0Oand 123 have type int

print (x)

foobar (0)

foobar (123)

Session 09 « Alok Menghrajani 29 EPFL - CIVIL-127- 2025



float type

foobar (x: float) -> : e 4.56 hastype float

print (x)

foobar (4.506)

Session 09 - Alok Menghrajani 30 EPFL - CIVIL-127- 2025



int subtype of float

foobar (x: float) -> 0 e 1intisasubtype of float, you can use an
int whenever you need a float

print (x)

foobar (40)

Session 09 « Alok Menghrajani 31 EPFL - CIVIL-127- 2025



str type

foobar (x: str) -> 3 e "hello" hastype str

print (x)

foobar ("hello™)

Session 09 « Alok Menghrajani 32 EPFL - CIVIL-127- 2025



tuple type

foobar (x: tuple[int, str]) -> : e (1, "x") hastype tuple[int, str]

print (x)

foobar ((1, "x"))

Session 09 - Alok Menghrajani 33 EPFL - CIVIL-127- 2025



union type

foobar (x: int | str) -> e e typel | type2 | type3 | ..defines
print (x) a union type
e Aunion type is a type which matches

either of several choices

foobar (1)

foobar ("x")

Session 09 « Alok Menghrajani 34 EPFL - CIVIL-127- 2025



union type

from typing import Union

foobar (x: Union[int, str])

print (x)

foobar (1)

foobar ("x")

Session 09 - Alok Menghrajani

35

Union[typel, type2, type3]isan

equivalent syntax

Union[typel, Union[type2,
type3]] would also be equivalent

| is more readable (?)

EPFL - CIVIL-127- 2025



list type

foobar (x: list[int]) -> : e Homogenous lists can be typed with
list[type]
e [1, 2, 3]hastypelist[int]

print (x)

foobar ([1, 2, 3])

Session 09 - Alok Menghrajani 36 EPFL - CIVIL-127- 2025



list type

foobar (x: list[int | str]) -> : e Non-homogenous lists can be typed using
union types

e Such non-homogenous lists are code
smells: something is poorly designed

print (x)

foobar ([1, "foo",

Session 09 « Alok Menghrajani 37 EPFL - CIVIL-127- 2025



set type

foobar (x: set[str]) -> : e {"e", "h", "1", "0"} hastype
set[str]
e Aswith lists:
o  Use aunion type for non-homogenous
sets
o  Non-homogenous sets are code smells

print (x)

foobar({"e", "h", "l", HOH})

Session 09 - Alok Menghrajani 38 EPFL - CIVIL-127- 2025



dict type

foobar(x: dict[str, int]) -> : e {"a": 1, "b": 10} hastype
print (x) dl.Ct[Str’ int]
e This type is usually not enough
o  You usually want to describe the

dictionary’s shape — which keys are

required and the associated types for their
foobar({"a": 1, "b": 10}) values

Session 09 - Alok Menghrajani 39 EPFL - CIVIL-127- 2025



TypedDict

from typing import NotRequired, TypedDict Y A class which extends TypeleC‘t
becomes a regular dict at runtime

e Attributes are used to define the shape of
the dictionary

e NotRequired indicates optional keys

pos: tuple[int, int]

name: NotRequired [str]

foobar (x: Star) ->

print (x)

foobar ({"pos": (10, 15)1)

foobar ({"pos": (10, 15), "name": "alpha"})

Session 09 « Alok Menghrajani 40 EPFL - CIVIL-127- 2025



Enum

from enum import StrEnum e Use Enum if you don't care about the
value's type
e Use StrEnum if the values are strings
Color (StrEnum) : e Use IntEnum if the values are integers

Red = "red"

Blue = "blue"

foobar (x: Color) ->

print (x.value)

foobar (Color.Red)

Session 09 - Alok Menghrajani 41 EPFL - CIVIL-127. 2025



Remember, most type hints don’t exist at runtime

foobar (x: list[int]) -> g PY At runtime
print (type (x)) o  Python keeps track of primitive types and
classes
o  The exact type hints are lost

Session 09 - Alok Menghrajani 42 EPFL - CIVIL-127. 2025



from typing import Any

foobar (x: Any) ->

print (x)

foobar ("foobar")

foobar (123)

Session 09 - Alok Menghrajani

43

Any is a type which matches everything
Almost equivalent to not using type hints
Almost equivalent to using object, the
base class for standard types and all
classes

EPFL - CIVIL-127- 2025



Optional

from typing import Optional () Optlonal [ type] |S eqL“VaIent to type
| None

foobar (x: Optional[str])

print (x)

foobar ( )

foobar ("abc")

Session 09 « Alok Menghrajani 44 EPFL - CIVIL-127- 2025



Alias

type Foo = list[tuple[str, int]] e type Foo = .. createsanalias
e Makes the code less verbose and more
readable

foobar (x: Foo) —>

print (x)

foobar ([ ("a", 1),

Session 09 « Alok Menghrajani 45 EPFL - CIVIL-127- 2025



NewTlype

from typing import NewType e foo = NewType(...) createsanew
type
e A way to “mask” the underlying type
Sciper = NewType ('Sciper', int) e Sciper behaves like an int, but you can’t

accidentally use some variable which
happens to also be an int

foobar (x: Sciper) -> : e Note: “Sciper” is repeated twice, once as
the first parameter for NewType and once

print (x) as the actual type.

foobar (Sciper (123))

Session 09 « Alok Menghrajani 46 EPFL - CIVIL-127- 2025



Callable

from typing import Callable ° You'll rare|y type hint a callable (We
already discussed using classes reduces
foobar (x: Callable[[str], int]) -> : the need to have functions or lambdas as

parameters!)

e Callable[[str], int]isthetypeofa
function or lambda which takes a str and
returns an int

print (x ("foobar"))

foobar (len)

foobar ( X: x.count ("o"))

Session 09 - Alok Menghrajani 47 EPFL - CIVIL-127. 2025



Generic classes

Stack[T] : e [T] can be used to parameterize a class
init  (self) : o T willget .re.placed.by an actual type when
— — the class is instantiated
self.s: 1list|[T] e You can use any identifier instead of T.
Typically, single letter and capitalized (e.g.
T,U,K,andV.T1, T2, ...is also common)

push (self, x: T): e You will probably not write generic
classes, but you will read code which uses
self.s.append (x) .
generics

pop (self) -> T:

return self.s.pop ()

Session 09 « Alok Menghrajani 48 EPFL - CIVIL-127- 2025



Generic classes

foobar () -> : e s = Stack[int]() causes the
, replacement of T with int

s = Stack[int] ()

s.push (1)

s.push (2)

print (s.pop())

foobar ()

Session 09 « Alok Menghrajani 49 EPFL - CIVIL-127- 2025



Generic classes

foobar () -> : e s: Stack[int] = Stack()is
s: Stack[int] = Stack () equivalent
s.push (1)

s.push (2)

print (s.pop())

foobar ()

Session 09 - Alok Menghrajani 50 EPFL - CIVIL-127- 2025



def f1(x: str) — None:
print(x, x)

def f2(x: int) —> None
print(x x 2)

def foobar(x: str | int) -> None:
f1(x)

type_hints.py 1 of 2 problems

Argument of type "str | int" cannot be assigned to parameter "x" of type "str" in function "f1"
Type "str | int" is not assignable to type "str"
"int" is not assignable to "str" P '

Session 09 « Alok Menghrajani EPFL - CIVIL-127- 2025



e match destructures union types

print(x, x) e Within each case, the type of x becomes
more specific
£2(x: int) -> : o Inside case str(): the type for x

becomes str
o Inside case int() : the type for x
becomes int
e Only works for types which are preserved
at runtime

Session 09 « Alok Menghrajani 52 EPFL - CIVIL-127- 2025



match

e match combined with assert_never, can be used to statically enforce that
every permutation for a type has been handled

e Most useful when combined with enums

e Inthe next example, we forgot a case statement for Color .Blue

Session 09 - Alok Menghrajani 53 EPFL - CIVIL-127- 2025



from enum import Enum
from typing import assert_never

class Color(Enum):
Red = "red"
Black = "black"
Blue = "blue"

lef foobar(x: Color) —> None:
match x:

case Color.Red:
pass

case Color.Black:
pass

case _

16 assert_never(x)

type_hints.py 1 of 2 problems
Argument of type "Literal[Color.Blue]" cannot be assigned to parameter "arg" of type "Never" in function "assert_never"

Type "Literal[Color.Blue]" is not assignable to type "Never"

Session 09 « Alok Menghrajani EPFL - CIVIL-127- 2025




Nominal vs structural typing

e Usually, a type system is either nominal or structural
e Nominal == two classes which have the same methods are considered

different types

e Structural == two classes which have the same methods are considered the
same type

e Python is mostly nominal, except for some convenient cases when it becomes
structural

Session 09 -« Alok Menghrajani 55 EPFL - CIVIL-127- 2025



Nominal vs structural typing

class Foo:
def f(self) —> int:
return 1

class Bar:
def f(self) —> int:
return 2

def foobar(x: Foo) -> None:
print(x.f())

9 e -
15  foobari(Bar())|

type_hints.py 1 of 2 problems

Argument of type "Bar" cannot be assigned to parameter "x" of type "Foo" in function "foobar"
"Bar" is not assignable to "Foo"

Session 09 - Alok Menghrajani 56 EPFL - CIVIL-127- 2025



Nominal vs structural typing

from typing import Protocol

Foo (Protocol) :
f(self) -> int:

return 1
Bar:
f(self) -> int:

return 2

foobar (x: Foo) ->

print (x.f())

foobar (Bar ())

Session 09 - Alok Menghrajani

57

Extending Protocol enables a class to

use structural typing

EPFL - CIVIL-127- 2025



