
Session 07 • Alok Menghrajani

EPFL, CIVIL-127
Programming and software development for engineers

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Final Project

2

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 20253

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Final Project

4

● You have to implement a train controller. Your train can turn left, right, or go
straight. You score points by picking up and dropping off passengers

● The code runs as a client + server
○ The server runs the game logic
○ One or more clients connect to the server to play against each other

● You can run your own server locally for debugging purpose
● Submission

○ You will be submitting client/agent.py
○ Don’t modify other files
○ You can add new files
○ Update requirements.txt if you need additional packages

● Do report any bugs you find in the server code!

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Final Project

5

● Two-student teams
● Deadline May 23rd, 2025, 6pm to submit your code
● Grading

○ Does your code run and do something?
○ Description of your implementation, in one slide
○ Beat the staff’s implementations

■ You’ll earn points per staff’s AI you beat
○ Is your code well structured, documented, and tested (when applicable)

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Final Project

6

● You can use the server to practice as many times as you wish
● You can also play against each other
● We expect each submission to be unique

○ You can discuss ideas with your peers but you shouldn’t be sharing code with each other

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Networking Basics

7

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Networking Basics

● Computer networks enable exchanging data by implementing protocols
● A protocol is an agreement on how to behave on a network
● Modern computer networks use layers of protocols

○ With layers, we can have the same higher level protocol (e.g. http) work on top of different
physical layers (e.g. 5G, wifi, Ethernet, etc.)

○ Each layer provides a specific functionality
■ E.g. the lowest level defines radio frequencies, voltage levels, and how to avoid everyone

talking at the same time
■ Higher level protocols define how to talk to computers located anywhere in the world

● We’ll only talk about UDP/IP today

8

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Networking Basics

● Alice’s computer wants to say “hi” to Bob’s computer
● Every computer on our network has a unique address, allowing each computer

to communicate with each other
○ Alice has address AA
○ Bob has address BB

9

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Networking Basics

● Alice can send a packet to Bob. A packet contains the source, destination, and
data (and some other things):
○ Source: AA
○ Destination: BB
○ Data: "hi"

● When Bob receives the message from Alice, the packet’s source address can
be used to send a response:
○ Source: BB
○ Destination: AA
○ Data: "howdy?"

10

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Networking Basics

● If Alice’s computer is not directly connected to Bob’s, she can send her packet
to her router. The router forwards the data to another router, until it eventually
reaches Bob

● Routers are just computers, interconnected with two or more links. Each router
maintains dynamic routing tables so it knows where each address is located in
an ever changing network

11

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP

12

● UDP/IP is a packet-based, switched, communication protocol
● A server, identified by an IP address, listens for connections on a given port
● A client, identified by an IP address, connects to the server on the agreed upon

port
● IP addresses are numbers. An IP address can be an IPv4 or an IPv6

○ IPv4 is 32-bits, e.g. 172.217.168.14
○ IPv6 is 128-bits long, e.g. 2001:db8:3333 :4444:5555:6666:7777:8888

● Ports are 16 bits numbers (1-65535)
○ We’ll use 5555 for the project

● IP addresses can be public (routable over the internet) or local (private)
○ If your computer has a private IP address, it can connect to Internet servers by having a router

shuffle traffic between the public and private networks. This is the typical home network setup

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP

13

● Packet-based == data is sent in small chunks. Each chunk contains
○ Source IP address
○ Destination IP address
○ Source port
○ Destination port
○ A couple things you don’t need to care about
○ Data

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP

14

● Switched network == your packet gets sent to various routers before (maybe)
reaching its destination
○ (typically) Your home router has one upstream internet connection, it therefore forwards every

incoming packet to the upstream internet connection
○ Internet routers are interconnected in a mesh fashion. Each router has multiple ways to forward

packets. Routers implement protocols to establish routing tables and then use those tables to
decide where a packet must go

● You can use traceroute (Mac/Linux) or tracert (Windows) to observe a
route your packets are taking. The route changes dynamically

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP
$ traceroute google.com

traceroute to google.com (142.250.203.110), 64 hops max, 52 byte packets

 1 192.168.1.1 (192.168.1.1) 3.932 ms 3.466 ms 4.202 ms

 2 10.245.32.1 (10.245.32.1) 6.767 ms 5.003 ms 8.052 ms

 3 172.22.100.9 (172.22.100.9) 31.527 ms 4.490 ms 4.112 ms

 4 37.0.32.181 (37.0.32.181) 4.433 ms 30.128 ms 4.506 ms

 5 213.230.56.68 (213.230.56.68) 5.249 ms 4.695 ms

 213.230.56.70 (213.230.56.70) 4.544 ms

 6 10.248.107.10 (10.248.107.10) 35.346 ms

 10.248.7.10 (10.248.7.10) 7.033 ms

 10.248.107.10 (10.248.107.10) 7.518 ms

 7 10.253.245.1 (10.253.245.1) 7.555 ms 44.885 ms

 100.65.99.5 (100.65.99.5) 6.785 ms

 8 213.230.54.254 (213.230.54.254) 7.599 ms

 100.65.99.5 (100.65.99.5) 9.188 ms 8.237 ms

 9 213.230.52.147 (213.230.52.147) 103.117 ms

 213.230.54.254 (213.230.54.254) 8.281 ms

 213.230.52.147 (213.230.52.147) 11.335 ms

10 74.125.51.48 (74.125.51.48) 11.791 ms

 213.230.52.147 (213.230.52.147) 13.224 ms 12.316 ms

11 142.251.245.165 (142.251.245.165) 12.244 ms

 142.251.76.107 (142.251.76.107) 13.639 ms

 74.125.51.48 (74.125.51.48) 12.003 ms

12 142.251.70.185 (142.251.70.185) 11.874 ms

 142.251.245.165 (142.251.245.165) 13.537 ms 13.060 ms

13 zrh04s16-in-f14.1e100.net (142.250.203.110) 95.542 ms 12.145 ms

 142.251.70.187 (142.251.70.187) 12.725 ms

15

● Packets between my home and Google’s
servers

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP

● Communication Protocol == there’s an agreed upon way computers to talk to
each other

● Servers: listens for incoming packets
● Clients: picks a random source port and sends an initial packet
● The client and server can then send data to each other
● Connection terminates after some amount of inactivity (timeout)

16

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP

● UDP is a best effort protocol
○ Packets can get dropped
○ Packets can arrive out of order
○ Packets can be duplicated
○ When using UDP, it is the application’s responsibility to deal with these scenarios

● UDP is useful for real-time communication (voice, video) or when the
application layer is able to deal with unreliable packet delivery

17

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP

● You can start a server on your local computer and have it listen on a port, e.g.
127.0.0.1:5555 or localhost:5555
○ 127.0.0.1 or localhost refer to your computer
○ Only clients on your local computer will be able to connect to this server
○ Your firewall might tell you about this activity

● You can then start a client and have it connect to 127.0.0.1:5555 or
localhost:5555

18

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

UDP/IP

● If you start your server on 0.0.0.0:5555
○ Any client on the same network as you will be able to connect to this server
○ You might have to configure your firewall

19

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Path Finding

20

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202521

Problem Statement

● Given a grid with walls and two
points (X and Y):
○ Find the shortest path between X

and Y

● Variations:
○ Find a “reasonable” path (e.g. no

longer than 2x shortest)
○ Walls are moving (dynamic

environment)
○ etc.

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Existing Algorithms

● Floodfill
● Dijkstra’s algorithm
● A* algorithm
● D* algorithm
● And more…

○ …but you can also invent your own algorithm!

22

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Floodfill

● Set every cell’s value to ∞
● Set the value at X to 0
● Until there’s no more changes

○ Loop over every cell which isn’t a wall
■ Set each cell’s value to min(neighbors) + 1

23

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202524

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202525

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202526

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202527

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202528

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202529

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202530

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202531

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202532

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202533

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Floodfill

● Once completed, the shortest path starts from the destination and goes to a
neighboring cell with value exactly one less

● Floodfill is a “slow” algorithm but
○ Relatively small to implement
○ Gives you the shortest path from X to every other point

34

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Dijkstra’s Algorithm

● Uses a queue
● Set every cell’s value which isn’t a wall to ∞
● Set the value at X to 0
● Put X in the queue
● Until you haven’t reached Y:

○ Dequeue next element from queue
○ Update each neighbor’s distance and put them in the queue

Note: Dijkstra’s algorithm is usually described for graphs with weights on each edge
(which is a more complicated case)

35

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202536

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202537

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202538

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202539

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202540

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202541

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202542

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202543

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202544

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202545

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202546

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202547

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202548

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

Dijkstra’s Algorithm

● Notice how we didn’t visit every cell
○ Think of a wave spreading from the starting point

● Cells are visited at most once, making Dijkstra’s Algorithm more efficient than
floodfill in almost every scenario

49

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

A* Algorithm

● Similar to Dijkstra’s Algorithm, but with a heuristic to guide the search
● For each cell, track its current distance and a total distance estimate

○ Total distance estimate = current distance + remaining distance if there were no walls
(known as Manhattan distance)

● Prioritize cells which have the lowest total distance estimate

50

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202551

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202552

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202553

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202554

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202555

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202556

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202557

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202558

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202559

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202560

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202561

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202562

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202563

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202564

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202565

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202566

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202567

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202568

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202569

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202570

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202571

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202572

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 202573

Session 07 • Alok Menghrajani EPFL • CIVIL-127• 2025

A* Algorithm

● We visited even less cells than Dijkstra’s Algorithm (less than half in this case)
● Efficient when a good heuristic exists, degrades to Dijkstra’s Algorithm

otherwise

74

