EPFL, CIVIL-127

Programming and software development for engineers

Session 06 « Alok Menghrajani

L.ambdas

e Lambdas are anonymous functions with
an implied return

e No parenthesis around parameters

fl(x): e This lambda takes one parameter (x) and
returns the length of x[1] (if x is a tuple,
it'll return len of the second element)

e This lambda is equivalent to 1

return len (x[1])

Session 06 - Alok Menghrajani 2 EPFL - CIVIL-127- 2025

L.ambdas

e Lambdas are mostly used as arguments to
specific functions/methods

Session 06 - Alok Menghrajani 3 EPFL - CIVIL-127- 2025

L.ambdas

1 = sorted([(1, "blue"), e Useful e.g. with sort and sortedto
customize the sorting behavior

e Note: sortedislike sort but returns a

(10, "green")], new list instead of mutating the existing

key= x: len(x[1]1)) list

(4’ llredll),

Session 06 - Alok Menghrajani 4 EPFL - CIVIL-127- 2025

L.ambdas

normalize case = s: s.casefold() e Don't use if you are going to assign the
lambda to a variable. Use a regular

function definition instead

Session 06 - Alok Menghrajani 5 EPFL - CIVIL-127- 2025

L.ambdas

1 = sorted(["blue", "red", "green"], e Don't use alambda when you can simply
key=len) use the function name or operator (see
operators module)

print (1)

Session 06 - Alok Menghrajani 6 EPFL - CIVIL-127- 2025

https://docs.python.org/3.12/library/operator.html

L.ambdas

e Don't use if writing the code on multiple lines will be easier to read
e Lambdas generally hurt

o Readability
o Testablility
o Reusability

e Weigh the pros/cons before using them

Session 06 - Alok Menghrajani 7 EPFL - CIVIL-127- 2025

L.ambdas

e Lambdas capture scope, and you can
control when the variable will get bound

for x in range (5) :

e Output:
s .append (: 16
16
16
for x in range (5): 16
16
s .append (0
1
. 4
for 1 1n s: 9
print (i ()) 16

Session 06 - Alok Menghrajani 8 EPFL - CIVIL-127- 2025

Control Flow

if

for
while
match

Session 06 - Alok Menghrajani 9 EPFL - CIVIL-127- 2025

Control flow enables automation — the core
reason for writing programs.

Session 06 - Alok Menghrajani 10 EPFL - CIVIL-127- 2025

if, elif, elif, elif, else

if some_condition: e Youcan have just an if statement

Session 06 - Alok Menghrajani 11 EPFL - CIVIL-127. 2025

if, elif, elif, elif, else

if some_condition: e You can have an if statement with an
else branch

Session 06 - Alok Menghrajani 12 EPFL - CIVIL-127. 2025

if, elif, elif, elif, else

if color == "blue": e You can put if statement inside else
branches, but your code can become hard
to read

else:

if color == "red":

else:

if color == "green

Session 06 - Alok Menghrajani 13 EPFL - CIVIL-127- 2025

if, elif, elif, elif, else

if color == "blue": e Useelif instead, to lower the
indentation and increase readability

elif color == "red":

w .

elif color == "green

Session 06 - Alok Menghrajani 14 EPFL - CIVIL-127. 2025

if, elif, elif, elif, else

e Don't comment above the conditional

if some condition: statements

e Put your comments inside the
if/elif/else statements, reducing

elif some other condition: redundancy

elif yet another condition:

Session 06 - Alok Menghrajani 15 EPFL - CIVIL-127- 2025

if, elif, elif, elif, else

if some condition: e Comment your code inside the
if/elif/else branches to remove
redundancy

elif some other condition:

elif yet another condition:

Session 06 - Alok Menghrajani 16 EPFL - CIVIL-127- 2025

if, elif, elif, elif, else

foo () : e When you return from the first if block,

. . you don't need an elif or else block.
1f some condition:

return

if some other condition:

return

Session 06 - Alok Menghrajani 17 EPFL - CIVIL-127. 2025

Conditional Expression

a 1 e It'slike an if/else but as an expression

. e Some programmers like this feature
b "foo" 1f a == 1 else "bar"

print (b)

Session 06 - Alok Menghrajani 18 EPFL - CIVIL-127- 2025

Nested Loops

for i in range (10) :

for j in range (10) :

if J == 1i:

continue

if § + i == 10:

break
print (i, 3Jj)
if 1 % 3 == 0:

continue

Session 06 « Alok Menghrajani

19

break and continue, to break or

continue iterating

You can't break or continue the outer loop
from within the inner loop, you must

refactor your code

EPFL - CIVIL-127- 2025

Nested Loops

foobar () :

for i in range (10) :

for j in range (10) :

if j == 1i:
continue
if 3 + 1 ==

return

print (i, 7J)

Qo

I R

continue

Session 06 « Alok Menghrajani

10:

20

You can't break or continue the outer loop
from within the inner loop, you must
refactor your code and use a return

statement

EPFL - CIVIL-127- 2025

while loops

If you know how many times you want to
. loop, use for

while | e Otherwise, use while

You can use break and continue with
while loops in a way similar to what you
can do with for loops

prompt yes or no (prompt=""): o

a = input (prompt) o

11

11

if == "vyes

return a

Session 06 - Alok Menghrajani 21 EPFL - CIVIL-127. 2025

match

match input () : e Replacesmany if, elif, elif, else
statements

W

case

Session 06 - Alok Menghrajani 22 EPFL - CIVIL-127. 2025

match

match input () : e Combine multiple cases with | (acts like
an or expression)

case |

Session 06 - Alok Menghrajani 23 EPFL - CIVIL-127- 2025

e You can destructure tuples
e First matching case wins
e _ inthe case statement means match
match a: anything
e X in the case statement means match
case ((1,), "bar"): . .
— anything and assign to x.
print ("1."™) e Usecase _: tohandlethe default case

e Moreinfo

case ((x, 2), "foo"): https://peps.python.org/pep-0636/

print ("2.", X)

case

print (a)

Session 06 - Alok Menghrajani 24 EPFL - CIVIL-127. 2025

https://peps.python.org/pep-0636/

Error handling: error value

e Functions and methods can indicate errors by returning an error value. E.g.

empty, None, or one or more error states (see sokoban solutions exercise_3_3)
o Callers must then check the return value and handle the error case. It is common for callers to
then propagate the error value.

Session 06 - Alok Menghrajani 25 EPFL - CIVIL-127. 2025

https://github.com/vita-epfl/civil127-2025/blob/main/solutions/exercise_3_3_solution1/sokoban_model.py#L18

Error handling: error value

from math import sqgrt
sd sqgrt (d)
quadratic (a, b, c): sl (-b - sd) / (2 * a)
"o s2 (-b + sd) / (2 * a)
Calculates both solutions to ax"2 + bx + return sl, s2
c == 0, where a, b, and ¢ are numbers.
Returns None or a 2-tuple with each print (quadratic (1, -7,

solution. print (quadratic (1, -7,

mman

= Db ** 2 - 4 * g * ¢
if d < O:

return

Session 06 - Alok Menghrajani EPFL - CIVIL-127- 2025

Error handling: error value

closest(x, a, b, c): e Error handling with error values
" o Error handling code is needed everywhere

o You might forget to handle an error case
Returns closest point p to x such that

ap”2t+aptc == 0 or None.

mwow

r = quadratic(a, b, c)
if r ==

return

sl, s2 = r
if abs(x - sl) < abs(x - s2):
return sl

return s2

Session 06 - Alok Menghrajani 27 EPFL - CIVIL-127. 2025

Error handling: exceptions

from math import sqgrt
sd sqgrt (d)
quadratic (a, b, c): sl (-b - sd) / (2 * a)
"o s2 (-b + sd) / (2 * a)
Calculates both solutions to ax"2 + bx + return sl, s2
c == 0, where a, b, and ¢ are numbers.
Returns a 2-tuple with each solution or print (quadratic (1, -7,

raises ValueError. print (quadratic (1, -7,

mman

= Db ** 2 - 4 * g * ¢
if d < O:

raise ValueError ("no solutions")

Session 06 - Alok Menghrajani EPFL - CIVIL-127- 2025

Error handling: exceptions

closest (x, a, b, c):
Returns closest point p to x
such that ap”®2+ap+c == 0 or raises

ValueError.

sl, s2 = quadratic(a, b, c)

1if abs(x - sl) < abs(x - s2):
return sl

return s?2

Session 06 « Alok Menghrajani

29

Error handling with exceptions

(©]
(©]

Callers can let the exception propagate
You should document the fact that an
exception can happen

This documentation is almost good: we
forgot to mention the code will raise
ZeroDivisionError if parameter a is zero
We also don't document what happens if
both solutions are equidistant

EPFL - CIVIL-127- 2025

Error handling: exceptions

foo () : e Error handling with exceptions
o Any caller in the call chain can handle the
try: exception
closest (10 o except tells the runtime which specific
! exception you want to handle
except ValueError: o Usetry:andexcept <name>:

print ("no closest point")

Session 06 - Alok Menghrajani 30 EPFL - CIVIL-127- 2025

Error handling: exceptions

ot Exception as

ck.print exception(e)

Session 06 « Alok Menghrajani

31

ValueError isn't special, you can use
any of the predefined exceptions or
create your own

See standard exceptions

Use except Exception: to catch most
exceptions

EPFL - CIVIL-127- 2025

https://docs.python.org/3.12/library/exceptions.html#concrete-exceptions

Error handling: exceptions

e ValueError isn't special, you can use
any of the predefined exceptions or
create your own

e See standard exceptions

e Useexcept Exception: to catch most
exceptions

.print exception(e)

Session 06 - Alok Menghrajani 32 EPFL - CIVIL-127- 2025

https://docs.python.org/3.12/library/exceptions.html#concrete-exceptions

Error handling: exceptions

e ValueError isn't special, you can use
any of the predefined exceptions or
create your own

e See standard exceptions

e Useexcept Exception: to catch most

evbEroE () exceptions

ot Exception as e:

ck.print exception(e)

Session 06 - Alok Menghrajani 33 EPFL - CIVIL-127- 2025

https://docs.python.org/3.12/library/exceptions.html#concrete-exceptions

Error handling: exceptions

raise Foo e You canraise a class, which is equivalent

. to raising an instance
ralise Foo ()

raise Foo ("some message")

Session 06 - Alok Menghrajani 34 EPFL - CIVIL-127- 2025

Handling multiple exceptions

e Use multiple except blocks to handle

different exceptions
e There's a hierarchy of exceptions, which

should help with error handling

except MyException:

. handle MyException ...

except IOError:

. handle IOError(e.g. file not found) ...

EPFL - CIVIL-127- 2025

Session 06 - Alok Menghrajani 35

Catching all

e |Ifyouexcept BaseException, you'll
catch all the exceptions. Including

Lry: someone trying to quit your application
withctrl-c

e You almost never want to do this

except BaseException:

Session 06 - Alok Menghrajani 36 EPFL - CIVIL-127- 2025

Catching all

e except without an exception type also
catches all exceptions
e You almost never want to do this

Session 06 - Alok Menghrajani 37 EPFL - CIVIL-127- 2025

Catching all

e |Ifyouexcept Exception, you'll catch
most exceptions

Lry: e Usually, you'll want to be more precise but

catching most exceptions is useful in

some cases

except Exception:

Session 06 - Alok Menghrajani 38 EPFL - CIVIL-127- 2025

Finally

foo () : e Finally always runs
R e Enables cleaning things up
Y- e This code prints 1, 2, and then an

exception with a stack trace

print (1)

raise Exception ()
finally:
print (2)

Session 06 - Alok Menghrajani 39 EPFL - CIVIL-127- 2025

Finally

foo () : e Finally always runs
e Enables cleaning things up

try: e Thiscode prints1,2,3

print (1)

raise Exception ()
except Exception:

print (2)

finally:

print (3)

Session 06 - Alok Menghrajani 40 EPFL - CIVIL-127- 2025

Finally

e If there are multiple return statements,

the value from finally is returned
o Don't write convoluted code like this!

e Output:
1
3
one: 4
1
2

return n * 3

e Exception()

return n * 2

finally: two: 8
print (3)

return n *

print("one:", foo(l))

"

print("two:

Session 06 - Alok Menghrajani 41 EPFL - CIVIL-127. 2025

Simulating a for loop with a while loop

= range (10)

iterator
try:
while

n = iterator. next @)

print (n)

except Stoplteration:

pass

Session 06 « Alok Menghrajani

42

Please don't write code like this

EPFL - CIVIL-127- 2025

Simulating a while loop with a for loop

e Nor code like this

__init (self, expr):

self.expr = expr

___iter (self):

return self

__next (self):
if self.expr():

raise Stoplteration

Session 06 - Alok Menghrajani 43 EPFL - CIVIL-127- 2025

with

with open(xsb file, "r") as f: e Thewith construct is related to
exceptions
e SeePEP-343

Session 06 - Alok Menghrajani 44 EPFL - CIVIL-127- 2025

https://peps.python.org/pep-0343/

with

HosloEes) ¢ e __enter__and__exit__ arealways
et (E9hE, el ¢ called, even if there's an exception inside
self.id = id the with block
print(self.id, "_init called™) e This makes with construct useful for

anything which requires cleaning up (e.g.

closing a file after we are done using it)

__enter (self):
print (self.id, " enter called")

return self

__exit (self):

print(self.id, "

Session 06 - Alok Menghrajani 45 EPFL - CIVIL-127- 2025

Assertions

e Use assertions to express assumptions
e When an assert is incorrect, an exception will be raised
Assertions are a cheap way to make code more readable and reduce likelihood

of bugs

Session 06 - Alok Menghrajani 46 EPFL - CIVIL-127. 2025

Assertions

foobar (x) : foobar (x) :

assert x != it x == 0:

raise AssertionError

print (10 / x)
print (10 / x)

These two pieces of code are roughly equivalent. Left side is more readable

Session 06 - Alok Menghrajani EPFL - CIVIL-127- 2025

Assertions

e Assertions are useful when handling external data. E.g. in Sokoban, while
loading the level:
Assert that there's only one player in the level file

Assert that there is an equal number of boxes and goals (equal or more also works)
Assert that there are no unknown characters in the file

Assert that each line is the same width (or handle the case if it's not)
o Etc

e Assertions are useful for ensuring your internal state is consistent. E.qg.

(depending on your state representation) you can assert that the player is not
on top of a box.

e Implement your assertions while you are writing your code (that's when you
are thinking about your assumptions) — don't try to add them later

O O O O

Session 06 - Alok Menghrajani 48 EPFL - CIVIL-127- 2025

Assertions

from emum import Enum e assert False # unreachableis
useful to indicate that a line of code
should never be reached

e Useful in match statements

Dir (Enum) :

UP = "up"

match dir:

>~ Dir.UP:

Session 06 - Alok Menghrajani 49 EPFL - CIVIL-127- 2025

Assertions

len (a) : e Very useful in complicated if statements
. e The code here is (simplified) from a piece
return of real world code

- len (a)

assert

return

- len (b)

assert

return

Session 06 - Alok Menghrajani 50 EPFL - CIVIL-127- 2025

