
Session 06 • Alok Menghrajani

EPFL, CIVIL-127
Programming and software development for engineers



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

2

lambda x: len(x[1])

def f1(x):

   return len(x[1])

● Lambdas are anonymous functions with 
an implied return

● No parenthesis around parameters
● This lambda takes one parameter (x) and 

returns the length of x[1] (if x is a tuple, 
it’ll return len of the second element)

● This lambda is equivalent to f1



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

3

foo(lambda x: len(x[1]), ...) ● Lambdas are mostly used as arguments to 
specific functions/methods



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

4

l = sorted([(1, "blue"),

           (4, "red"),

           (10, "green")],

          key=lambda x: len(x[1]))

print(l)  # [(4, 'red'), (1, 'blue'), 

(10, 'green')]

● Useful e.g. with sort and sorted to 
customize the sorting behavior

● Note: sorted is like sort but returns a 
new list instead of mutating the existing 
list



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

5

normalize_case = lambda s: s.casefold() ● Don’t use if you are going to assign the 
lambda to a variable. Use a regular 
function definition instead



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

6

l = sorted(["blue", "red", "green"],

  key=len)

print(l) # ['red', 'blue', 'green']

● Don’t use a lambda when you can simply 
use the function name or operator (see 
operators module)

https://docs.python.org/3.12/library/operator.html


Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

7

● Don’t use if writing the code on multiple lines will be easier to read
● Lambdas generally hurt

○ Readability
○ Testability
○ Reusability

● Weigh the pros/cons before using them



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

8

s = []

for x in range(5):

   s.append(lambda: x**2)

for x in range(5):

   s.append(lambda n=x: n**2)

for i in s:

   print(i())

● Lambdas capture scope, and you can 
control when the variable will get bound

● Output:
16
16
16
16
16
0
1
4
9
16



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Control Flow

9

● if
● for
● while
● match



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 202510

Control flow enables automation – the core 
reason for writing programs.



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

11

if some_condition:

   ... # this will run if some_condition is truthy

... # this will usually always run

● You can have just an  if statement



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

12

if some_condition:

   ... # this will run if some_condition is truthy

else:

   ... # this will run if some_condition is fasly

... # this will always run

● You can have an if statement with an 
else branch



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

13

if color == "blue":

 ...

else:

 if color == "red":

   ...

 else:

   if color == "green":

     ...

   else:

     ...

● You can put if statement inside else 
branches, but your code can become hard 
to read



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

14

if color == "blue":

   ...

elif color == "red":

   ...

elif color == "green":

   ...

else:

   ...

● Use elif instead, to lower the 
indentation and increase readability



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

15

# explain we go left when some_condition is true

if some_condition:

   ...

# explain we go right when some_other_condition is true

elif some_other_condition:

   ...

# more comment explaining yet_another_condition

elif yet_another_condition:

   ...

# reject

else:

   ...

● Don’t comment above the conditional 
statements

● Put your comments inside the 
if/elif/else statements, reducing 
redundancy



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

16

if some_condition:

   # go left

   ...

elif some_other_condition:

   # go right

   ...

elif yet_another_condition:

   # do something

   ...

else:

   # reject

   ...

● Comment your code inside the 
if/elif/else branches to remove 
redundancy



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

17

def foo():

   if some_condition:

       ...

       return

   # else is implied

   if some_other_condition:

       ...

       return

   ...

● When you return from the first if block, 
you don’t need an elif or else block.



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Conditional Expression

18

a = 1

b = "foo" if a == 1 else "bar"

print(b) # foo

● It’s like an if/else but as an expression
● Some programmers like this feature



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Nested Loops

for i in range(10):

   for j in range(10):

       if j == i:

           continue

       if j + i == 10:

           break

       print(i, j)

   if i % 3 == 0:

       continue

● break and continue, to break or 
continue iterating

● You can’t break or continue the outer loop 
from within the inner loop, you must 
refactor your code

19



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Nested Loops

def foobar():

   for i in range(10):

       for j in range(10):

           if j == i:

               continue

           if j + i == 10:

               return

           print(i, j)

       if i % 3 == 0:

           continue

● You can’t break or continue the outer loop 
from within the inner loop, you must 
refactor your code and use a return 
statement

20



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

while loops

def prompt_yes_or_no(prompt=""):

   while True:

       a = input(prompt)

       if a == "yes" or a == "no":

           return a

● If you know how many times you want to 
loop, use for

● Otherwise, use while
● You can use break and continue with 

while loops in a way similar to what you 
can do with for loops

21



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

match input():

   case "w":

       ...

   case "d":

       ...

   case "a":

       ...

   case "s":

       ...

● Replaces many if, elif, elif, else 
statements

22



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

match input():

   case "w" | "i":

       ...

   case "d" | "k":

       ...

   case "a" | "j":

       ...

   case "s" | "l":

       ...

● Combine multiple cases with | (acts like 
an or expression)

23



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

a = ((1, 2), "foo")

match a:

   case ((1, _), "bar"):

       print("1.")

   case ((x, 2), "foo"):

       print("2.", x)

   case _:

       print(a)

● You can destructure tuples
● First matching case wins
● _ in the case statement means match 

anything
● x in the case statement means match 

anything and assign to x.
● Use case _: to handle the default case
● More info 

https://peps.python.org/pep-0636/

24

https://peps.python.org/pep-0636/


Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: error value

● Functions and methods can indicate errors by returning an error value. E.g. 
empty, None, or one or more error states (see sokoban solutions exercise_3_3)
○ Callers must then check the return value and handle the error case. It is common for callers to 

then propagate the error value.

25

https://github.com/vita-epfl/civil127-2025/blob/main/solutions/exercise_3_3_solution1/sokoban_model.py#L18


Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: error value

from math import sqrt

def quadratic(a, b, c):

   """

   Calculates both solutions to ax^2 + bx +  

c == 0, where a, b, and c are numbers.

   Returns None or a 2-tuple with each  

solution.

   """

   # Check if a solution exists

   d = b ** 2 - 4 * a * c

   if d < 0:

       return None

● Functions and methods can indicate an 
error in two different ways
○ You can return an error value
○ You can raise an exception

26

   # Compute d's square root only once

   sd = sqrt(d)

   s1 = (-b - sd) / (2 * a)

   s2 = (-b + sd) / (2 * a)

   return s1, s2

print(quadratic(1, -7, 12))  # (3.0, 4.0)

print(quadratic(1, -7, 50))  # None



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: error value

def closest(x, a, b, c):

   """

   Returns closest point p to x such that 

ap^2+ap+c == 0 or None.

   """

   r = quadratic(a, b, c)

   if r == None:

       return None

   s1, s2 = r

   if abs(x - s1) < abs(x - s2):

       return s1

   return s2

● Error handling with error values
○ Error handling code is needed everywhere
○ You might forget to handle an error case

27



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: exceptions

from math import sqrt

def quadratic(a, b, c):

   """

   Calculates both solutions to ax^2 + bx +  

c == 0, where a, b, and c are numbers.

   Returns a 2-tuple with each solution or  

raises ValueError.

   """

   # Check if a solution exists

   d = b ** 2 - 4 * a * c

   if d < 0:

       raise ValueError("no solutions" )

● Functions and methods can indicate an 
error in two different ways
○ You can return an error value
○ You can raise an exception

28

   # Compute d's square root only once

   sd = sqrt(d)

   s1 = (-b - sd) / (2 * a)

   s2 = (-b + sd) / (2 * a)

   return s1, s2

print(quadratic(1, -7, 12))  # (3.0, 4.0)

print(quadratic(1, -7, 50))  # ValueError



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: exceptions

def closest(x, a, b, c):

   """

   Returns closest point p to x  

such that ap^2+ap+c == 0 or raises  

ValueError.

   """

   s1, s2 = quadratic(a, b, c)

   if abs(x - s1) < abs(x - s2):

       return s1

   return s2

● Error handling with exceptions
○ Callers can let the exception propagate
○ You should document the fact that an 

exception can happen
○ This documentation is almost good: we 

forgot to mention the code will raise 
ZeroDivisionError if parameter a is zero

○ We also don’t document what happens if 
both solutions are equidistant

29



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: exceptions

def foo():

   try:

       closest(10, 1, -7, 50)

   except ValueError:

       print("no closest point" )

● Error handling with exceptions
○ Any caller in the call chain can handle the 

exception
○ except tells the runtime which specific 

exception you want to handle
○ Use try: and except <name>:

30



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: exceptions

class MyException(Exception):

   pass   

def foo():

   try:

       raise MyException()

       ...

   except Exception as e:

       traceback.print_exception(e)

● ValueError isn’t special, you can use 
any of the predefined exceptions or 
create your own

● See standard exceptions
● Use except Exception: to catch most 

exceptions

31

https://docs.python.org/3.12/library/exceptions.html#concrete-exceptions


Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: exceptions

class MyException(Exception):

   pass   

def foo():

   try:

       raise IndexError("12 is out of bounds")

       ...

   except Exception as e:

       traceback.print_exception(e)

● ValueError isn’t special, you can use 
any of the predefined exceptions or 
create your own

● See standard exceptions
● Use except Exception: to catch most 

exceptions

32

https://docs.python.org/3.12/library/exceptions.html#concrete-exceptions


Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: exceptions

class MyException(Exception):

   pass   

def foo():

   try:

       raise KeyError()

       ...

   except Exception as e:

       traceback.print_exception(e)

● ValueError isn’t special, you can use 
any of the predefined exceptions or 
create your own

● See standard exceptions
● Use except Exception: to catch most 

exceptions

33

https://docs.python.org/3.12/library/exceptions.html#concrete-exceptions


Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error handling: exceptions

raise Foo

raise Foo()

raise Foo("some message")

34

● You can raise a class, which is equivalent 
to raising an instance



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Handling multiple exceptions

def foo():

   try:

       ...

   except MyException:

       ... handle MyException ...

   except IOError:

       ... handle IOError(e.g. file not found) ...

● Use multiple except blocks to handle 
different exceptions

● There’s a hierarchy of exceptions, which 
should help with error handling

35



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Catching all

def foo():

   try:

       ...

   except BaseException:

       ...

● If you except BaseException, you’ll 
catch all the exceptions. Including 
someone trying to quit your application 
with ctrl-c

● You almost never want to do this

36



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Catching all

def foo():

   try:

       ...

   except:

       ...

● except without an exception type also 
catches all exceptions

● You almost never want to do this

37



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Catching all

def foo():

   try:

       ...

   except Exception:

       ...

● If you except Exception, you’ll catch 
most exceptions

● Usually, you’ll want to be more precise but 
catching most exceptions is useful in 
some cases

38



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Finally

def foo():

   try:

       print(1)

       raise Exception()

   finally:

       print(2)

foo()

● Finally always runs
● Enables cleaning things up
● This code prints 1, 2, and then an 

exception with a stack trace

39



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Finally

def foo():

   try:

       print(1)

       raise Exception()

   except Exception:

       print(2)

   finally:

       print(3)

foo()

● Finally always runs
● Enables cleaning things up
● This code prints 1, 2, 3

40



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Finally

def foo(n):

   try:

       print(1)

       if n == 2:

           raise Exception()

       return n * 2

   except Exception:

       print(2)

       return n * 3

   finally:

       print(3)

       return n * 4

print("one:", foo(1))

print("two:", foo(2))

● If there are multiple return statements, 
the value from finally is returned
○ Don’t write convoluted code like this!

● Output:
1
3
one: 4
1
2
3
two: 8

41



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Simulating a for loop with a while loop

a = range(10)

iterator = a.__iter__()

try:

   while True:

       n = iterator.__next__()

       print(n)

except StopIteration:

   pass

● Please don’t write code like this

42



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Simulating a while loop with a for loop

class Cond:

   def __init__(self, expr):

       self.expr = expr

   def __iter__(self):

       return self

   def __next__(self):

       if not self.expr():

           raise StopIteration

s = 0

n = 0

for _ in Cond(lambda: s < 10):

   print(n)

   n += 1

   s += n

● Nor code like this

43



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

with

with open(xsb_file, "r") as f:

  ...

● The with construct is related to 
exceptions

● See PEP-343

44

https://peps.python.org/pep-0343/


Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

with

class Foobar():

   def __init__(self, id):

       self.id = id

       print(self.id, "__init__ called")

   def __enter__(self):

       print(self.id, "__enter__ called")

       return self

   def __exit__(self):

       print(self.id, "__exit__ called")

with Foobar(1) as f:

   print("inside with" )

with Foobar(2) as f:

   print("inside with" )

   raise Exception()

● __enter__ and __exit__ are always 
called, even if there’s an exception inside 
the with block

● This makes with construct useful for 
anything which requires cleaning up (e.g. 
closing a file after we are done using it)

45



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Assertions

● Use assertions to express assumptions
● When an assert is incorrect, an exception will be raised
● Assertions are a cheap way to make code more readable and reduce likelihood 

of bugs

46



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Assertions

def foobar(x):

   assert x != 0

   print(10 / x)

47

def foobar(x):

   if x == 0:

       raise AssertionError

   print(10 / x)

These two pieces of code are roughly equivalent. Left side is more readable



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Assertions

● Assertions are useful when handling external data. E.g. in Sokoban, while 
loading the level:
○ Assert that there’s only one player in the level file
○ Assert that there is an equal number of boxes and goals (equal or more also works)
○ Assert that there are no unknown characters in the file
○ Assert that each line is the same width (or handle the case if it’s not)
○ Etc

● Assertions are useful for ensuring your internal state is consistent. E.g. 
(depending on your state representation) you can assert that the player is not 
on top of a box.

● Implement your assertions while you are writing your code (that’s when you 
are thinking about your assumptions) – don’t try to add them later

48



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Assertions

from enum import Enum

class Dir(Enum):

   UP = "up"

   DOWN = "down"

   LEFT = "left"

   RIGHT = "right"

match dir:

   case Dir.UP:

       ...

   case Dir.DOWN:

       ...

   case Dir.LEFT:

       ...

   case Dir.RIGHT:

       ...

   case _:

       assert False  # unreachable

49

● assert False # unreachable is 
useful to indicate that a line of code 
should never be reached

● Useful in match statements



Session 06 • Alok Menghrajani EPFL • CIVIL-127• 2025

Assertions

if len(a) == 0 and len(b) == 0:

   ...

   return

if len(a) == 0:

   assert len(b) != 0

   ...

   return

if len(b) == 0:

   assert len(a) != 0

   ...

   return

assert len(a) != 0 and len(b) != 0

...

50

● Very useful in complicated if statements
● The code here is (simplified) from a piece 

of real world code


