
Session 05 • Alok Menghrajani

EPFL, CIVIL-127
Programming and software development for engineers



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Indicative Student Feedback on Teaching
→ https://isa.epfl.ch

2

https://isa.epfl.ch


Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Revising previous labs
part 2

3



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

2.3: send + more = money

for s in range(1, 10):

   for e in range(10):

       if e == s:

           continue

       for n in range(10):

           if n == s or s == e:

               continue

           for d in range(10):

               if d == s or d == e or d == n:

                   continue

               ...

               send = 1000*s+100*e+10*n+d

               more = 1000*m+100*o+10*r+e

               money = 10000*m+1000*o+100*n+10*e+y

               if send + more == money:

                 print(send, more, money)

4

● We can find the solution using brute force 
(checking every possibility) – there are 
less than 2^27 possibilities

● Watch the start condition for the loops
○ range(1, 10) for s and m
○ range(10) for e, n, d, o, r, y

● Check if e.g. d has a given value with
○ or operator: if d == s or d == e or 

d == n:
○ Using a set: if d in {s, e, n}:

● Is this code clean, elegant, or clever?
○ No, but it works!
○ You can bruteforce upto 2^50-ish in a day



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

2.4: N people in a ring

def remove_every_k_element(N, K):

   active = K  # which person will be removed next

   people = list(range(N))

   while len(people) > 1:

       print("removing", people[active])

       people = people[:active]+people[active+1:]

       active = (active + K - 1) % len(people)

       print("remaining:", people)

remove_every_k_element(5, 2)

5

● Lists can be sliced with 
list[start:end]

● + on lists creates a new list with a copy of 
all the elements from both lists

● people = people[:active] + 
people[active+1:] to remove an 
element from the list

● Our solution is not very efficient. O(N) 
operation to remove each person, making 
it O(N^2) overall. We also need O(N) 
memory. We can do much better!



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

3.1: Stack

class Stack:

   def __init__(self):

       self.s = []

   def push(self, n):

       self.s.append(n)

   def pop(self):

       return self.s.pop()

   def max(self):

       if self.s == []:

           raise IndexError("empty stack")

       return max(self.s)

6

● Lists implement stack-like operations 
(pushing and popping)

● max(list) and min(list) are O(N) 
because they have to traverse the list



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

3.1: Stack in O1

class StackO1:

   def __init__(self):

       self.s = []

       self.max_stack = []

       self.min_stack = []

   def push(self, n):

       self.s.append(n)

       new_max = n

       if self.max_stack != []:

           new_max = max(self.max(), n)

       self.max_stack.append(new_max)

   [...]

   def max(self):

       if self.s == []:

           raise IndexError("empty stack")

       return self.max_stack[-1]

7

● We could store max/min as attributes. 
push()/max()/min() would be O(1) 
operations but pop() would require 
recomputing the attributes (O(N)) if the 
value being popped equals the current 
max or min

● We could store max/min and 
max_count/min_count (to count how 
many times the max/min values have been 
seen, but we still have pop taking O(N) 
when the counts hit zero

● We can store the current max/min in their 
own stacks, all operations become O(1)



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

3.5: wrap_underscores

import unittest

def wrap_underscores (word):

   '''

   Adds an underscore between each letter.  

E.g. "hello" becomes "_h_e_l_l_o_".

   If word is empty, returns an empty  

string.

   '''

   if word == "":

       return ""

   r = "_"

   for i in range(len(word)):

       r += word[i] + "_"

   return r
8

● Forgetting a character (e.g. typing = 
instead of +=) is a common mistake, 
resulting in incorrect code

● Use your debugger, go step by step, and 
check if the variables have their expected 
value



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

3.5: wrap_underscores

import unittest

class 

TestWrapUnderscores (unittest.TestCase):

   def test(self):

       a = wrap_underscores ("hello")

       self.assertEqual(a, "_h_e_l_l_o_")

   def testEmpty(self):

       

self.assertEqual(wrap_underscores (""), "")

9

● When writing tests, think about edge 
cases, for strings
○ Empty string
○ Strings with repeated substrings

● For numbers
○ 0 value
○ Negative value
○ Large/boundary values



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

3.6: coins

def permutations(coinage, sum):

   solutions = []

   permutations2(coinage, sum, [], 

solutions)

   for i, solution in enumerate(solutions):

       print("{}. {}".format(i+1, solution))

permutations([2, 3, 7], 40)

10

● permutations calls permutations2 
which does the actual search



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

3.6: coins

def permutations2(coinage, remaining, used, 

solutions):

   if remaining == 0:

       # we have found a solution

       solutions.append(", ".join(used))

       return

   elif coinage == []:

       # we don't have any more coins left

       return

   ...

11

● This problem can be solved recursively
● If we have reached the desired sum, we 

have a solution
● If we don’t have any more coins left, we 

are done
● Otherwise, we recurse with 0, 1, 2, … coins
● The maximum coins we can consider is 

remaining // coin



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

3.6: coins

   ...

   current_coin = coinage[0]

   max = remaining // current_coin

   for i in range(1, max+1):

       permutations2(coinage[1:], remaining 

- i * current_coin, used + ["${} x 

{}".format(current_coin, i)], solutions)

   # i=0 case

   permutations2(coinage[1:], remaining, 

used, solutions)

12

● Otherwise, we recurse by taking 0, 1, 2, … 
coins

● The maximum coins we can consider is 
remaining // current_coin

● Why don’t we print the solutions as we 
go?
○ We don’t know if the solution we are 

considering is going to work or not!
● Be careful about mutating state when 

writing recursive functions
● This solution is inefficient, we might 

revisit it later



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

More Python Features

13



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Statements and expressions

14

x = 1 + y + bar()

def foo():

   pass

● Statements
○ Assignments, loops, conditionals, 

function/class definitions
○ Have side effects (typically)
○ x = 1 + y + bar() is a statement
○ pass is a statement (placeholder)

● Expressions
○ Produces a value when evaluated
○ 1 is an expression (literal)
○ y is an expression (identifier)
○ bar() is an expression (function call)
○ 1 + y + bar() is an expression



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Statements and expressions

15

a = b = 1

while (value := input()) != "exit":

   print(f"You entered: {value}")

● This can become confusing!
○ Expressions are statements but not the 

other way
○ Chained assignments are statements

● := is called the walrus operator and 
provides a way to have assignments inside 
expressions

● A piece of code is an expression if you 
can assign it or wrap it in print(...)

● Why isn’t everything an expression?



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Built-in data types

16

● Boolean
● Numbers (int, float, complex, and more)
● Strings
● Lists
● Tuple
● Dictionaries
● Sets



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Boolean

● 2 values
○ x = True
○ y = False

● 3 operators
○ x or y
○ x and y
○ not x

● or evaluates second operand only if first is Falsy
● and evaluates second operand only if first is Truthy

17



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Boolean: Falsy

● None
● 0, 0.0, 0j
● ""
● (), {}, [], set()
● range(0), …
● Usually, the empty instance is 

considered Falsy (can be customized 
with __bool__)

● Considered False in an if or 
while statement

if []:
    print(1)
else:
    print(2) # prints 2

18

● Comparing values between different 
types usually results in False
○ 0 == [] is False
○ but 0 == False is True



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Boolean: Truthy

● 1, 2, 3, 1.0, 2.3, 1j
● "Foobar"
● (1)
● {1, 2, 3}
● [1, 2, 3]
● range(1)
● Considered True in an if or while 

statement

if 1.5:
    print(1) # prints 1
else:
    print(2)

19

● Comparing values between different 
types usually results in False
○ 1 == [1] is False
○ but 1 == True is True



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Boolean

a = True or print(1)

b = True and print(2)

c = False or print(3)

d = False and print(4)

print("a:", a, "b:", b, "c:", c, "d:", d)

What’s the output?

20



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Boolean

a = True or print(1)

b = True and print(2)

c = False or print(3)

d = False and print(4)

print("a:", a, "b:", b, "c:", c, "d:", d)

Output:
2
3
a: True b: None c: None d: False

21



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Boolean

def foo1():

   if bar():

       ...

       return True

   else:

       ...

       return False

def foo2():

   if bar():

       ...

       return True

   ...

   return False

● foo1() and foo2() are equivalent
● I prefer foo2() – less code, easier to read

22



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Boolean: pro-tip

def foo(x):

   return x.imag or x

print(foo(4 + 2j))  # 2.0

print(foo(12))  # 12

print(foo(4 + 0j))  # (4+0j)

● Pro-tip: don’t use and and or with 
non-boolean values – it’ll come back and 
bite you

● Use conditional expressions instead, or 
just write longer but correct code

● In general, don’t write “clever” code, 
follow the KISS principle (Keep It Simple 
Stupid) and write correct code

● This is a real world example which caused 
a bug

23



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Numbers

● Integers
○ x = 123 # decimal
○ x = 12_000_000 # decimal
○ x = 0x7b # hex
○ x = 0o173 # octal
○ x = 0b1111011 # binary

● Floating point
○ x = 45.6

● Complex
○ x = 7.8 + 0.9j

● fractions.Fraction
● decimal.Decimal
● Lots of operators

○ +, -, *, /, //, %, **
○ And more with import math

● Bitwise operators
○ |, ^, &, <<, >>, ~

24

● abs, bin, divmod, hex, oct, round
see https://docs.python.org/3.12/library/functions.html

https://docs.python.org/3.12/library/functions.html


Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Numbers

a = 0.1

b = 0.2

c = 0.3

print("1.", a + b == c)

print("2.", abs(a + b - c) < 0.001)

● Be careful about precision loss when 
doing floating point calculations!

● Outputs:
1. False
2. True

25



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Operator precedence

print(3 < 4 == 2 < 3) # False

print(3<4 == 2<3) # False

print((3 < 4) == (2 < 3)) # True

print(3 < (4 == 2) < 3) # False

26

● See 
https://docs.python.org/3/reference/expr
essions.html#operator-precedence

● Operator precedence rules differ between 
programming languages, careful if you are 
porting code

● When in doubt, use parenthesis

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence


Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Dictionaries

● Key-value data structure
● d = {"foo": 123, "bar": 567}
● Empty dictionary

○ d = {}
● Dictionary comprehension

○ d = {x[0]: x for x in ["foo", "bar"]}
○ Equivalent to d = {'f': 'foo', 'b': 'bar'} in this example

27



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sets

● Mutable data structure
● s = set("hello") or s = {"e", "h", "l", "o"}
● s.add(), s.remove(), and s.discard()
● "x" in s, "x" not in s
● isdisjoint()
● issubset(), <=, <
● issuperset(), >=, >
● union(), |
● intersection(), &
● difference(), -
● symmetric_difference(), ^
● Empty set

○ set()

28



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sets

s = "hello"

if len(s) == len(set(s)):

   ...

29

● set() takes an iterable
● Use len() on a string and its conversion 

to a set
○ Checks if there are any repeated 

characters



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Functions/methods

30

def foo(a, b):

   print("a:", a, "b:", b)

foo(1, 2)

foo(a=1, b=2)

foo(b=2, a=1)

foo(1, b=2)

● You can call functions by respecting the 
parameter order (positional argument)

● You can call functions by providing the 
parameter name (keyword argument)

● You can mix the two, but positional 
arguments must come first

● Implicit return None at the end



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Functions/methods: default values

31

def foo(a, b, c=99):

   print("a:", a, "b:", b, "c:", c)

foo(1, 2)

foo(1, 2, 3)

foo(a=1, b=2)

foo(b=2, a=1, c=3)

foo(1, b=2, c=3)

● Function parameters can have default 
values

● E.g. with print(), there’s are default 
behaviors you can override – sep=' ', 
end="\n"…



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Functions/methods: default values

32

def foo(a, b=[]):

   b.append(a)

   return b

x = foo(1, [])

y = foo(2)

z = foo(3)

print(x, y, z)  # [1] [2, 3] [2, 3]

● Be very careful if a default value is 
mutable

● Mutations might have unintended 
consequences since there’s only one copy



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Functions/methods: variadic
def foo(*args):

   s = 0

   for i in args:

       s += i

   return s

print(foo(1, 2, 3, 4, 5))  # 15

● Functions can take a variable number of 
positional parameters, that’s how 
print() works

● args becomes a tuple, you can iterate on 
it or call len

33



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Functions/methods: variadic
def foo(**args):

   for k, v in args.items():

       print(k, v)

foo(a=1, b=2, c=3, d=4, e=5)

● Functions can take a variable number of 
keyword parameters, that’s how print() 
works

● args becomes a dict

34



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

/ and * in function/methods definitions

def combined_example (pos_only, /, standard, *, 

kwd_only):

   print(pos_only, standard, kwd_only)

35

● If / and * are not present in the 
function definition, arguments may 
be passed to a function by position 
or by keyword

● A slash in the argument list of a 
function denotes that the 
parameters prior to it are 
positional-only

● A star in the argument list of a 
function denotes that the 
parameters after it are keyword-only

● Don’t confuse the star by itself with 
variadic



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Functions/methods: decorators

import datetime

def time_of_day_greeting(func):

   def wrapper(name):

       if datetime.datetime.now().hour < 12:

           func("Good morning " + name)

       else:

           func("Hello " + name)

   return wrapper

@time_of_day_greeting

def greet(name):

   print(name)

greet("Joe")  # Good morning Joe

# or Hello joe, depending on the computer's clock

● @decorator_name above 
function/method definition

● Decorators enable intercepting the 
execution of functions

● Creating decorators is difficult (typically 
needs to work with any function), so you’ll 
rarely create decorators but you might 
use them

● A function/method can have multiple 
decorators

36



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Functions/methods: decorators

from functools import cache

@cache

def fib(n):

   if n < 2:

       return n

   return fib(n-1) + fib(n-2)

fib(36)

● @cache is a useful decorator
○ It will record the function’s arguments and 

response. If a future call is made with the 
same arguments, the response is returned 
from memory storage instead of being 
re-computed

○ It’s yet another CPU⇔memory tradeoff
● Without caching, this code takes ~1.5 

seconds to run
● With caching, it takes <1ms

37



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Function assignment

def foo():

   print("foo")

def bar():

   print("bar")

x = input("call foo? ")

if x == "y":

   y = foo

else:

   y = bar

y()

● You can assign functions to variables and 
call them later…

● …but you must favor OOP over this kind of 
dynamic dispatch

38



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Function inside function

def foo(a, b):

   def bar(c):

       print(a, b, c)

   bar(3)

foo(1, 2)

● You can define a function inside another 
function

● But don’t
○ Testing is harder
○ Can’t reuse the function from outside
○ Use classes to group related functions

39



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

40

l = sorted([(1, "blue"),

           (4, "red"),

           (10, "green")],

          key=lambda x: len(x[1]))

print(l)  # [(4, 'red'), (1, 'blue'), 

(10, 'green')]

● Lambdas are anonymous functions with 
an implied return

● Useful e.g. with sort and sorted to 
customize the sorting behavior



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

41

# anti-patterns

normalize_case = lambda s: s.casefold()

l = sorted(["blue", "red", "green"],

  key=len)

print(l) # ['red', 'blue', 'green']

● Don’t use
○ If you are going to assign the lambda to a 

variable. Use a regular function definition 
instead

○ Use a lambda when you can simply use the 
function name (see operators module)

○ If writing the code on multiple lines will be 
easier to read

● Lambdas generally hurt
○ Readability
○ Testability
○ Reusability

● So weigh the pros/cons before using 
them

https://docs.python.org/3.12/library/operator.html


Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Lambdas

42

s = []

for x in range(5):

   s.append(lambda: x**2)

for x in range(5):

   s.append(lambda n=x: n**2)

for i in s:

   print(i())

● Lambdas capture scope, you can control 
when the variable will get bound

● Output:
16
16
16
16
16
0
1
4
9
16



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Control Flow

43

● if
● for
● while
● match



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 202544

Control flow enables automation – the core 
reason for writing programs.



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

45

if some_condition:

   # go left

   ...

elif some_other_condition:

   # go right

   ...

elif yet_another_condition:

   # do something

   ...

else:

   # reject

   ...

● Comment your code inside the if/elif/else 
to remove redundancy

● You can have multiple elif statements



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

if, elif, elif, elif, else

46

def foo():

   if some_condition:

       ...

       return

   # don't need an else case here

   if some_other_condition:

       ...

       return

   ...

● When you return from the first if block, 
you don’t need an elif or else block.



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

conditional expression

47

a = 1

b = "foo" if a == 1 else "bar"

print(b) # foo

● Some people like this feature



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Nested loops

for i in range(10):

   for j in range(10):

       if j == i:

           continue

       if j + i == 10:

           break

       print(i, j)

   if i % 3 == 0:

       continue

● break and continue, to break or 
continue iterating

● You can’t break or continue the outer loop 
from within the inner loop, you must 
refactor your code

48



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

Nested loops

def foobar():

   for i in range(10):

       for j in range(10):

           if j == i:

               continue

           if j + i == 10:

               return

           print(i, j)

       if i % 3 == 0:

           continue

● You can’t break or continue the outer loop 
from within the inner loop, you must 
refactor your code and use a return 
statement

49



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

while loops

def prompt_yes_or_no(prompt=""):

   while True:

       a = input(prompt)

       if a == "yes" or a == "no":

           return a

● If you know how many times you want to 
loop, use for

● Otherwise, use while
● You can use break and continue, like 

you would with for loops

50



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

match input():

   case "w":

       ...

   case "d":

       ...

   case "a":

       ...

   case "s":

       ...

● Replaces many if, elif, elif, else 
statements

51



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

match input():

   case "w" | "i":

       ...

   case "d" | "k":

       ...

   case "a" | "j":

       ...

   case "s" | "l":

       ...

● Combine multiple cases, replacing or 
expressions

52



Session 05 • Alok Menghrajani EPFL • CIVIL-127• 2025

match

a = ((1, 2), "foo")

match a:

   case ((1, _), "bar"):

       print("1.")

   case ((x, 2), "foo"):

       print("2.", x)

   case _:

       print(a)

● Destructure tuples, first case wins
● Use case _: to handle the default case
● More info 

https://peps.python.org/pep-0636/

53

https://peps.python.org/pep-0636/

