EPFL, CIVIL-127

Programming and software development for engineers

Session 05 « Alok Menghrajani



Indicative Student Feedback on Teaching
> https://isa.epfl.ch

Session 05 « Alok Menghrajani 2 EPFL - CIVIL-127- 2025


https://isa.epfl.ch

Revising previous labs
part 2

Session 05 « Alok Menghrajani 3 EPFL - CIVIL-127- 2025



2.3: send + more = money

continue
~ d in range (10) :
if d == s

continue

send = 1000*s+100*e+10*n+d

more = 1000*m+100*0+10*r+e

money = 10000*m+1000*0+100*n+10*e+y

if send + more == money:

print (send, more, money)

Session 05 « Alok Menghrajani

We can find the solution using brute force
(checking every possibility) — there are
less than 2727 possibilities
Watch the start condition for the loops

o range(1, 10) forsandm

o range(10) fore,n,d, o, r,y
Check if e.g. d has a given value with

o oroperator:if d == s or d == e or

d == n:

o Usingaset:if d in {s, e, n}:
Is this code clean, elegant, or clever?

o No, but it works!

o  You can bruteforce upto 2*50-ish in a day

EPFL - CIVIL-127- 2025



2.4: N people in a ring

remove_every k element(N, K): e Lists can be sliced with
active = K list[start:end]
people = list(range(N)) e + onlists creates a new list with a copy of
all the elements from both lists
while len(people) > 1: e people = people[:active] +

people[active+1:] toremove an
element from the list

e Our solution is not very efficient. O(N)
operation to remove each person, making
it O(N*2) overall. We also need O(N)
memory. We can do much better!

print ("removing", peoplelactive])
people people[:active] +tpeople[activetl:]
active (active + K = 1) % len(people)

print ("remaining:", people)

remove every k element(5, 2)

Session 05 « Alok Menghrajani 5 EPFL - CIVIL-127- 2025



Stack: e Lists implement stack-like operations

_init_ (self): (pushing and popping)

. e max(list)andmin(list) are O(N)
because they have to traverse the list

self.s =

push (self, n):
self.s.append (n)

pop (self) :

return self.s.pop ()

max (self) :
if self.s == []:

LA

raise IndexError ("empty

return max (self.s)

Session 05 « Alok Menghrajani 6 EPFL - CIVIL-127- 2025



3.1: Stack in O1

StackOl:

__init (self):

We could store max/min as attributes.
push()/max()/min() would be O(1)

operations but pop () would require

self.max_stack recomputing the attributes (O(N)) if the
self.min stack .
- value being popped equals the current
max or min

h(self, n): i
push (self, n e We could store max/min and

max_count/min_count (to count how
many times the max/min values have been
seen, but we still have pop taking O(N)
when the counts hit zero

e We can store the current max/min in their
own stacks, all operations become O(1)

self.s.append(n)
new max = n
if self.max stack != []:

new max = max(self.max(), n)

self.max stack.append(new max)
..

max (self) :

if self.s == []:
raise Ind

return self.max stack[-1]

Session 05 « Alok Menghrajani 7 EPFL - CIVIL-127- 2025



3.5: wrap_underscores

import unittest

wrap underscores (word) :

Adds an undersc
.g. "hello" becomes " h e 1 1 o
If worc is empty,
string.
LI B |

if word ==

return

range (len (word) ) :

" "

word[i] +

return
Session 05 « Alok Menghrajani

Forgetting a character (e.g. typing =
instead of +=) is a common mistake,
resulting in incorrect code

Use your debugger, go step by step, and
check if the variables have their expected
value

EPFL - CIVIL-127- 2025



3.5: wrap_underscores

import unittest

TestWrapUnderscores (unittest.Tes
test (self) :
a = wrap underscores ("hello")

self.assertEqual (a,

testEmpty (self) :

self.assertEqual (wrap underscores (""),

Session 05 « Alok Menghrajani

When writing tests, think about edge
cases, for strings

(©]
(©]

(©]
(©]
(©]

Empty string

Strings with repeated substrings
For numbers

O value
Negative value
Large/boundary values

EPFL - CIVIL-127- 2025



3.6: coins

permutations (coinage, sum) :

solutions = []

permutations? (coinage, sum, [],

solutions)
for i, solution in enumerate (solutions) :

\AJ

print (" .format (i+1, solution))

permutations ([2, 3, 7], 40)

Session 05 « Alok Menghrajani 10

permutations calls permutations?2

which does the actual search

EPFL - CIVIL-127- 2025



3.6: coins

permutationsZ (coinage, remaining, used, e This problem can be solved recursively
solutions) : e If we have reached the desired sum, we
if remadndng — 0 have a solution
e If we don't have any more coins left, we
are done

solutions .append (", ".join (used))

e Otherwise, we recurse with O, 1, 2, ... coins
e The maximum coins we can consider is
remaining // coin

return

elif coinage ==

return

Session 05 - Alok Menghrajani 11 EPFL - CIVIL-127. 2025



3.6: coins

current coin = coinage [0]

max = remaining // current coin

for i in range (1, max+1):

permutations2 (coinage [1l:], remaining

- 1 * current coin, used + ["S X

".format (current coin, 1)], solutions)

permutations? (coinage[l:], remaining,

used, solutions)

Session 05 « Alok Menghrajani

12

Otherwise, we recurse by taking O, 1, 2, ...
coins
The maximum coins we can consider is
remaining // current_coin
Why don't we print the solutions as we
go?

o  We don't know if the solution we are

considering is going to work or not!

Be careful about mutating state when
writing recursive functions

This solution is inefficient, we might
revisit it later

EPFL - CIVIL-127- 2025



More Python Features

Session 05 - Alok Menghrajani 13 EPFL - CIVIL-127. 2025



Statements and expressions

e Statements
o  Assignments, loops, conditionals,
function/class definitions
o  Have side effects (typically)
o x =1+ vy + bar() isastatement
o passis a statement (placeholder)
e Expressions
o  Produces a value when evaluated
o 1isan expression (literal)
o vy isan expression (identifier)
o bar() is an expression (function call)
o 1 + y + bar() isanexpression

Session 05 - Alok Menghrajani 14 EPFL - CIVIL-127. 2025



Statements and expressions

e This can become confusing!
o  Expressions are statements but not the
other way

while (value := input()) != "exit": o  Chained assignments are statements

e :=|s called the walrus operator and
provides a way to have assignments inside
expressions

e A piece of code is an expression if you
can assignitorwrapitinprint(...)

e Why isn't everything an expression?

print (f"You entered: {value}")

Session 05 « Alok Menghrajani 15 EPFL - CIVIL-127- 2025



Built-in data types

Boolean

Numbers (int, float, complex, and more)
Strings

Lists

Tuple

Dictionaries

Sets

Session 05 « Alok Menghrajani 16 EPFL - CIVIL-127- 2025



Boolean

e 2 values
o X = True
o vy = False

e 3 operators

o X ory
o X and vy
o not X

e Or evaluates second operand only if first is Falsy
e and evaluates second operand only if first is Truthy

Session 05 - Alok Menghrajani 17 EPFL - CIVIL-127. 2025



Boolean: Falsy

e None e Comparing values between different
e 0,000 types usually results in False

° o B == []isFalse

o () {}LIl set() o but® == FalseisTrue

e range(O), ..

e Usually, the empty instance is

considered Falsy (can be customized
with __bool__)

e Considered Falseinan if or
while statement

if []:
print(1)
else:
print(2) # prints 2

Session 05 - Alok Menghrajani 18 EPFL - CIVIL-127- 2025



Boolean: Truthy

1,2,3,1.0,2.3,1] e Comparing values between different
"Foobar” types usually results in False

(1) o 1 == [1]isFalse

(1,2, 3} o but1 == TrueisTrue

[1,2, 3]

range(1)

Considered True inan if or while

statement

if 1.5:

print(1) # prints 1
else:

print(2)

Session 05 - Alok Menghrajani 19 EPFL - CIVIL-127- 2025



Boolean

What's the output?

Session 05 « Alok Menghrajani 20 EPFL - CIVIL-127- 2025



Boolean

Output:

2

3

a: True b: None c: None d: False

Session 05 - Alok Menghrajani 21 EPFL - CIVIL-127. 2025



Boolean

e fo001() and foo2() are equivalent
e |prefer foo2() —less code, easier to read

Session 05 - Alok Menghrajani 22 EPFL - CIVIL-127. 2025



Boolean: pro-tip

foo (x) : e Pro-tip: don't use and and or with
. non-boolean values — it'll come back and
return xX.1mag bite you

e Use conditional expressions instead, or
just write longer but correct code

print (foo (4 + 23)) e Ingeneral, don't write “clever” code,

follow the KISS principle (Keep It Simple

Stupid) and write correct code

print (foo (4 + 07)) e Thisis areal world example which caused

a bug

print (foo(12))

Session 05 « Alok Menghrajani 23 EPFL - CIVIL-127- 2025



Numbers

e Integers e abs,bin,divmod, hex, oct, round
o X = 123 # decimal see https://docs.python.org/3.12/library/functions.html
o X = 12_000_000 # decimal
o X = B0x7b # hex
o X = 00173 # octal
o x = 0b1111011 # binary
e Floating point
o X = 45.6

e Complex

o x =7.8+0.9j
e fractions.Fraction
e decimal.Decimal

e Lots of operators
o+, =%/, /], % **
o And more with import math

e Bitwise operators
o |, A, & <<,>>, ~

Session 05 - Alok Menghrajani 24 EPFL - CIVIL-127- 2025


https://docs.python.org/3.12/library/functions.html

0.1 e Be careful about precision loss when
doing floating point calculations!

.2
. e Outputs:
0.3 1. False
2. True

print ("1.", a + b == c)

print ("2.", abs(a + b - ¢c) < 0.001)

Session 05 « Alok Menghrajani 25 EPFL - CIVIL-127- 2025



Operator precedence

print (3 < 4 == 2 < 3) e See
. https://docs.python.org/3/reference/expr
print (3<4 == 2<3) essions.html#operator-precedence
print ((3 < 4) e Operator precedence rules differ between
programming languages, careful if you are
print (3 < (4 porting code

e When in doubt, use parenthesis

Session 05 « Alok Menghrajani 26 EPFL - CIVIL-127- 2025


https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence

Dictionaries

e Key-value data structure
e d = {"foo": 123, "bar": 567}
e Empty dictionary
o d = {}
e Dictionary comprehension
o d = {x[0]: x for x in ["foo", "bar"]}
o Equivalenttod = {'f': '"foo', 'b': 'bar'} inthisexample

Session 05 - Alok Menghrajani 27 EPFL - CIVIL-127. 2025



Sets

Mutable data structure

s = set("hello")ors = {"e", "h", "1", "o"}
s.add(),s.remove(),amjs.discard()
"x" in s, "x" not in s
isdisjoint()

issubset(), <=, <

issuperset(), >=,

union(), |

intersection(), &

difference(), -
symmetric_difference(), *

Empty set

o set()

Session 05 - Alok Menghrajani 28 EPFL - CIVIL-127- 2025



e set() takes an iterable
e Use len() onastring and its conversion

== Jlen(set(s)):

to a set
o  Checks if there are any repeated
characters

Session 05 « Alok Menghrajani 29 EPFL - CIVIL-127- 2025



Functions/methods

foo(a, b): e You can call functions by respecting the
parameter order (positional argument)

e You can call functions by providing the
parameter name (keyword argument)

e You can mix the two, but positional

foo (1, 2) arguments must come first

b=2) e Implicit return None at the end

print ("a:",

foo (a=1,
foo(b=2, a=1)
foo(l, b=2)

Session 05 - Alok Menghrajani 30 EPFL - CIVIL-127. 2025



Functions/methods: default values

foo(a, b, ¢c=99): e Function parameters can have default
values

e E.g withprint(), there's are default
behaviors you can override — sep="
end="\n"..

print ("a:", a, "b:",

foo (1, 2)

foo(l, 2, 3)
foo(a=1, b=2)

foo (b=2, a=1, c=3)

foo(l, b=2, c=3)

Session 05 « Alok Menghrajani 31 EPFL - CIVIL-127- 2025



Functions/methods: default values

foo(a, b=[]): e Be very careful if a default value is
b.append(a) nunapm . .
e Mutations might have unintended
return b consequences since there's only one copy

foo (1, [])
foo (2)
foo (3)

print (x, vy, 2z)

Session 05 « Alok Menghrajani 32 EPFL - CIVIL-127- 2025



Functions/methods: variadic

e Functions can take a variable number of
positional parameters, that's how
print() works

e args becomes a tuple, you can iterate on
it or call Len

return s

print (foo (1,

Session 05 - Alok Menghrajani 33 EPFL - CIVIL-127. 2025



Functions/methods: variadic

Functions can take a variable number of
keyword parameters, that's how print()

foo(**args) :

for k, v in args.items{() :

print (k, wv)

foo(a=1l, b=2, c=3, d=4, e=5)

Session 05 « Alok Menghrajani

34

works
args becomes a dict

EPFL - CIVIL-127- 2025



/ and * in function/methods definitions

combined example (pos only, /, standard,

kwd only) :

print (pos only, standard,

Session 05 « Alok Menghrajani

kwd only)

*

4

35

If / and * are not present in the
function definition, arguments may
be passed to a function by position
or by keyword

A slash in the argument list of a
function denotes that the
parameters prior to it are
positional-only

A star in the argument list of a
function denotes that the
parameters after it are keyword-only
Don't confuse the star by itself with
variadic

EPFL - CIVIL-127- 2025



Functions/methods: decorators

import datetime

time of day greeting(func) :

wrapper (name) :

if datetime.datetime. () .hour < 12:

" + name)

func("Hello " + name)

return wrapper

@time of day greeting

greet (name) :

print (name)

greet ("Joe")

Session 05 « Alok Menghrajani

36

@decorator_name above
function/method definition

Decorators enable intercepting the
execution of functions

Creating decorators is difficult (typically
needs to work with any function), so you'll
rarely create decorators but you might
use them

A function/method can have multiple
decorators

EPFL - CIVIL-127- 2025



Functions/methods: decorators

from functools import cache

@cache
fib(n) :
if n < 2:
return n

return fib (n-1)

fib (36)

Session 05 « Alok Menghrajani

+ fib (n-2)

e (@cache is a useful decorator
o It will record the function's arguments and
response. If a future call is made with the
same arguments, the response is returned
from memory storage instead of being
re-computed
o It's yet another CPU<memory tradeoff
e Without caching, this code takes ~1.5
seconds to run

e With caching, it takes <1ms

37 EPFL - CIVIL-127- 2025



Function assignment

foo () : e You can assign functions to variables and
print ("foo") call them later...
e ..but you must favor OOP over this kind of
dynamic dispatch

Session 05 - Alok Menghrajani 38 EPFL - CIVIL-127. 2025



Function inside function

e You can define a function inside another
function
e Butdon't
o Testing is harder
o  Can't reuse the function from outside
o  Use classes to group related functions

Session 05 - Alok Menghrajani 39 EPFL - CIVIL-127. 2025



L.ambdas

1 = sorted([(1, "blue™), e Lambdas are anonymous functions with
an implied return

e Useful e.g. with sort and sortedto

(10, "green")], customize the sorting behavior

(4’ llredll) ,

key= x: len(x[1]))

Session 05 « Alok Menghrajani 40 EPFL - CIVIL-127- 2025



L.ambdas

e Don'tuse
o If you are going to assign the lambda to a
variable. Use a regular function definition
instead
o  Use alambda when you can simply use the
function name (see operators module)
key=len) o  If writing the code on multiple lines will be
easier to read

normalize case = s: s.casefold()

1l = sorted(["blue", "red", "green"],

print (1)
e |ambdas generally hurt
o  Readability
o  Testability

o  Reusability
e So weigh the pros/cons before using
them

Session 05 - Alok Menghrajani 41 EPFL - CIVIL-127. 2025


https://docs.python.org/3.12/library/operator.html

L.ambdas

e Lambdas capture scope, you can control
when the variable will get bound

for x in range (5) :

e Output:

s .append ( : 16

16

16

for x in range (5): 16
16

s .append ( 0

1

for 1 in s: g
print (i ()) 16

Session 05 - Alok Menghrajani 42 EPFL - CIVIL-127. 2025



Control Flow

if

for
while
match

Session 05 « Alok Menghrajani 43 EPFL - CIVIL-127- 2025



Control flow enables automation — the core
reason for writing programs.

Session 05 - Alok Menghrajani 44 EPFL - CIVIL-127- 2025



if, elif, elif, elif, else

if some condition: e Comment your code inside the if/elif/else
to remove redundancy
e You can have multiple elif statements

elif some other condition:

elif yet another condition:

Session 05 « Alok Menghrajani 45 EPFL - CIVIL-127- 2025



if, elif, elif, elif, else

foo () : e When you return from the first if block,

. . you don't need an elif or else block.
1f some condition:

return

if some other condition:

return

Session 05 « Alok Menghrajani 46 EPFL - CIVIL-127- 2025



conditional expression

a 1 e Some people like this feature

b "foo" if a == 1 else "bar"

print (b)

Session 05 - Alok Menghrajani 47 EPFL - CIVIL-127. 2025



Nested loops

for i in range (10) :

for j in range (10) :

if J == 1i:

continue

if § + i == 10:

break
print (i, 3Jj)
if 1 % 3 == 0:

continue

Session 05 « Alok Menghrajani

48

break and continue, to break or

continue iterating

You can't break or continue the outer loop
from within the inner loop, you must

refactor your code

EPFL - CIVIL-127- 2025



Nested loops

foobar () :

for i in range (10) :

for j in range (10) :

if j == 1i:
continue
if 3 + 1 ==

return

print (i, 7J)

Qo

I R

continue

Session 05 « Alok Menghrajani

10:

49

You can't break or continue the outer loop
from within the inner loop, you must
refactor your code and use a return

statement

EPFL - CIVIL-127- 2025



while loops

e If you know how many times you want to

while : Ioop,ugafor .
e Otherwise, usewhile
e Youcanusebreak and continue, like
you would with for loops

prompt yes or no (prompt=""):

a = input (prompt)

if == "vyes

return a

Session 05 - Alok Menghrajani 50 EPFL - CIVIL-127. 2025



match

match input () : e Replacesmany if, elif, elif, else
statements

W

case

Session 05 « Alok Menghrajani 51 EPFL - CIVIL-127- 2025



match

match input () : e Combine multiple cases, replacing or
expressions

case |

Session 05 « Alok Menghrajani 52 EPFL - CIVIL-127- 2025



match a:

case ((1, ), "bar"):

print ("1.")

case ((x, 2), "foo"):

print ("2.", X)

case

print (a)

Session 05 « Alok Menghrajani

53

Destructure tuples, first case wins
Use case
More info
https://peps.python.org/pep-0636/

EPFL - CIVIL-127- 2025

: to handle the default case


https://peps.python.org/pep-0636/

