EPFL, CIVIL-127

Programming and software development for engineers

Session 03 - OOP and testing « Alok Menghrajani EPFL - CIVIL-127- 2025

Grading

e Lab 4 isgraded
o due Friday, March 14th, 2025
o 10% of final grade
o Lab6
o due Friday, March 28th, 2025
o Up to one bonus point, counts towards lab 4
e Midterm
o Tuesday, April 15th, 2025 at 11am
o MCQ
o 50% of final grade
e Final project
o due Friday, May 23rd, 2025
o 40% of final grade

Session 03 « OOP and testing + Alok Menghrajani 2

EPFL - CIVIL-127. 2025

Jupyter notebooks

e Web-based, interactive Python environment
e VS Code is a much more powerful environment

O O O O

(@)

Code formatters

Linters

Refactoring tools

Built-in debugger

A large ecosystem of packages

e Some labs might not work in Jupyter

Session 03 « OOP and testing + Alok Menghrajani

EPFL - CIVIL-127. 2025

Object Oriented Programming

Session 03 - OOP and testing « Alok Menghrajani 4 EPFL - CIVIL-127- 2025

Object Oriented Programming (OOP) is the most important paradigm to manage
software complexity. It has been used in a beneficial way for software of all sizes
and all domains, since the 1960s.

Session 03 « OOP and testing + Alok Menghrajani 5 EPFL - CIVIL-127- 2025

OOP: example application

If we want to implement a gravity simulator
e We can model planets and moons as
objects
e Each object has many properties
(position, velocity, mass, color)
e We can instantiate as many copies of an
object as we want

Session 03 - OOP and testing + Alok Menghrajani

makeagifcom

EPFL - CIVIL-127- 2025

What is a Class?

A Class is a blueprint for creating objects. It defines what attributes and methods an object should
have

Why use Classes?

e Helps organize code (groups related data (attributes) and code (methods) together)
e Makes code reusable (create multiple objects from the same blueprint)
e Supports Object-Oriented Programming (OOP) principles like encapsulation and inheritance

Session 03 « OOP and testing + Alok Menghrajani 7 EPFL - CIVIL-127- 2025

Defining a class

RunningSum: e class: keyword, defines the class
e RunningSum: pick a name, usually
init (self) : singular, CamelCase, capitalized
e e e __init__:initializer /
self.s = 0 o self.siscalled an attribute

e recordand sum: RunningSum's methods
e self: reference to the instance

record(self, n):

self.s += n

sum(self) :

return self.s

Session 03 - OOP and testing « Alok Menghrajani 8 EPFL - CIVIL-127- 2025

Using a class

RunningSum:

init (self) :

self.s =

record (self, n):

self.s += n

sum (self) :

return self.s

Session 03 - OOP and testing + Alok Menghrajani

blue cars = RunningSum ()
blue cars.record (10)
blue cars.record (20)

print (blue cars.sum())

EPFL - CIVIL-127- 2025

Functions vs methods

e Tfisafunction
e misamethod, belonging to class Foo and
takes self as the first parameter (*)

Session 03 - OOP and testing « Alok Menghrajani 10 EPFL - CIVIL-127- 2025

Parameters vs arguments

Session 03 - OOP and testing + Alok Menghrajani

e n,self,and x are parameters

e 10,Foo(),and 20 are arguments

e Some people/programming languages use
the terms formal and actual parameters

1 EPFL - CIVIL-127- 2025

camel vs snake vs Pascal vs Kebab case

e Snake case
o fancy_thing
o Use it for naming local variables and parameters
o Use it for filenames
o Use it for function and method names
e Camel case
o fancyThing
o the capital letters make humps, like a camel
e Pascal case
o FancyThing
o Camel case with first letter also capitalized
o Use it for class names
o (some people call this camel case or StudlyCaps)
e Kebab case
o fancy-thing
o Some people use it for filenames

When in doubt, check PEP 8 or see what other pieces of code are doing

Session 03 « OOP and testing + Alok Menghrajani 12 EPFL - CIVIL-127- 2025

https://peps.python.org/pep-0008/

Class == Namespace + dict

running sum init() :

return {"s": 0}

running sum record(running sum, n):

running sum["s"] += n

running sum sum(running sum) :

return running sum["s"]

blue cars= running sum init()
running sum record(blue cars, 5)

print(running sum sum(blue cars))

RunningSum:
__init (self):

self.s =

record(self, n):

self.s += n

sum(self) :

return self.s

blue cars = RunningSum()
blue cars.record(5)

print(blue cars.sum())

You can think of a class as a namespace with a dictionary to store attributes

Session 03 - OOP and testing + Alok Menghrajani

- CIVIL-127- 2025

Benefits

Object Oriented Programming provides several benefits, such as:
e Data encapsulation
e Multiple instantiation
e Modularity

Session 03 « OOP and testing + Alok Menghrajani 14 EPFL - CIVIL-127- 2025

Benefits: Data Encapsulation

RunningSum:

init (self) :

self.s =

record (self, n):

self.s += n

sum (self) :

return self.s

You can visually inspect that self is keeping track of the running sum by only looking at the code in
RunningSum (*)

Session 03 - OOP and testing « Alok Menghrajani 15 EPFL - CIVIL-127- 2025

Benefits: Multiple Instantiation

RunningSum: blue cars = RunningSum ()
__init (self): red cars = RunningSum()
self.s =0 blue cars.record(l)

blue cars.record(l)

record(self, n): red cars.record(l)

self.s += n print(blueicars.sum(), red cars.sum())

sum(self) :

return self.s

You can create as many instances of a class as you want. Each one gets its own copy of self.

Session 03 - OOP and testing + Alok Menghrajani

EPFL - CIVIL-127- 2025

Benefits: Modularity

® Reuse objects across different projects
o E.g. generic Particle object can be used to simulate planets, fire, water, snow, etc.
o E.g. generic PlayingCards can be used for different types of card games

® Swap implementations
o E.g., different Grid implementations

Session 03 « OOP and testing + Alok Menghrajani 17 EPFL - CIVIL-127- 2025

Code layout

Everything in one file, main. py

RunningSum :

__init (self):

self.s =

record (self, n):

self.s += n

sum (self) :

return self.s
a = RunningSum ()
a.record (10)

a.record (20)

print (a.sum())

Session 03 - OOP and testing « Alok Menghrajani 18 EPFL - CIVIL-127- 2025

Code layout

Split across multiple files. In file main.py: In file running_sum.py:

from running sum import RunningSum RunningSum:
__init (self):

self.s =

a = RunningSum ()

a.record (10) record(self, n):

a.record (20) self.s +=n

print (a.sum()) sum(self) :

return self.s

You also need an empty __init__.py file!

Session 03 - OOP and testing « Alok Menghrajani 19 EPFL - CIVIL-127- 2025

Commenting your code

RunningSum:

mwown

Tracks the sum of values seen so far. Starting with an initial sum of 0. """

__init (self):

self.s = 0

record(self, n):

mwown

Record that n has been seen by including it in the sum. """

self.s += n

sum(self) :

Returns the current sum. """

return self.s

Session 03 - OOP and testing « Alok Menghrajani EPFL - CIVIL-127- 2025

Commenting your code

e Focus on class and methods comments
o That's what people will read first
o Tools can extract those comments
e Explain why you are doing something
o The code already explains the how
o Example:

for 1 in range (3,

[¢)

if n % 1 ==

Session 03 - OOP and testing « Alok Menghrajani 21 EPFL - CIVIL-127- 2025

Instances are assigned by reference

from running sum 1mport RunningSum ® There is on|y one instance of
RunningSum in this code snippet
= RunningSum () e aand b both refer to the same instance
el (LS ° When you mutate a, b also changes and
VICEe-Versa

.record (456)

print (a.sum(), b.sum())

Session 03 - OOP and testing « Alok Menghrajani 22 EPFL - CIVIL-127- 2025

Instances are assigned by reference

e |t isthe exact same behavior as lists, dicts,
etc.
.append (4)

print(x, V)

Session 03 - OOP and testing « Alok Menghrajani 23 EPFL - CIVIL-127- 2025

Instances are passed by reference

RunningSum: e Inthis snippet, there is only one instance
_ it : of RunningSum; blue_cars and x are
self.s therefore the same

e Tfoo0 increments the same instance as
record(self, n): blue cars
self.s += n
e Thisis the same behavior as with lists,
dicts, etc.

sum(self) :

return self.s

foo (x) :

x.record (1)

blue cars = RunningSum()

blue cars.record(10)

foo(blue cars)

print(blue cars.sum())

Session 03 - OOP and testing « Alok Menghrajani 24 EPFL - CIVIL-127- 2025

Each instance is unique

from running sum import RunningSum Y EachinstanceiSLnﬂque
e == pbetween different instances returns
False

blue cars = RunningSum ()

e Need to be careful if you want specific
behavior with dicts/sets or want to sort
lists

red cars = RunningSum ()

print (blue cars == red cars)

Session 03 - OOP and testing « Alok Menghrajani 25 EPFL - CIVIL-127- 2025

dunder methods

RunningSum: e Short for “double underscore methods”
Lot e g e Also called “magic” methods
self.s = e Customize the behavior of equality, type
conversions, etc.
RGO (SSLg) ¢ e Nearly 100 different methods!

self.s += n

sum(self) :

return self.s

__eq (self, other):

return self.s == other.s

blue cars = RunningSum ()

red cars = RunningSum()

print (blue cars == red cars)

Session 03 - OOP and testing « Alok Menghrajani 26 EPFL - CIVIL-127- 2025

Common dunder methods

Method Purpose

__init__() Constructor (initialize an object)
__str__() String representation (print(obj))
__repr__() Official string representation (repr(obj))
__len__() Define behavior of 1en(obj)
__getitem__() Access items like obj [index]
__setitem__() Set item value obj[index] = value
__delitem__() Delete item with del obj[index]
——eq__(), __1t__(), —_gt__() Compare objects (==, <, >)

__add__(), __sub__() Define behavior for + and -

Session 03 - OOP and testing « Alok Menghrajani 27 EPFL - CIVIL-127- 2025

private attributes and methods

RunningSum: e By default, attributes and methods can be
init (self): accessed from outside a class
self.s = e |f we had named our attribute sum, we
wouldn’t need to define a method to
record(selt, n): access self.s

self.s += n

e In Python, we consider that data
encapsulation is not broken because of
the “We are all responsible users”
philosophy

sum(self) :

return self.s

blue cars = RunningSum ()

blue cars.s = 100
blue cars.record(1l)

print (blue cars.sum())

Session 03 - OOP and testing « Alok Menghrajani 28 EPFL - CIVIL-127- 2025

private attributes and methods

RunningSum: e Single underscore is a convention
—eite(e958)8 e Indicates that an attribute or method is

self. s = meant to be private

o But does not make it private!
record(self, n):

self. s += n

sum(self) :

return self. s

blue cars = RunningSum ()

blue cars. s = 100
blue cars.record(1l)

print (blue cars.sum())

Session 03 - OOP and testing « Alok Menghrajani 29 EPFL - CIVIL-127- 2025

private attributes and methods

BRSPS e e Double underscores for attributes and

—eite(e958)8 methods makes them private (*)
self. s =0

record(self, n):

sum(self) :

return self. s

blue cars = RunningSum ()
blue cars. s = 100
blue cars.record(1l)

print (blue cars.sum())

print (blue cars. s)

Session 03 - OOP and testing « Alok Menghrajani 30 EPFL - CIVIL-127- 2025

Inheritance

Foo (Bar) : e Inheritance allows a new (child) class to
extend behavior from an existing (parent)
class

e For example, Foo (the child class) inherits
Bar (the parent class); we can also say
Foo extends Bar

e Foo inherits all the attributes and
methods from Bar

Session 03 - OOP and testing « Alok Menghrajani 31 EPFL - CIVIL-127- 2025

e Enum (Enumeration) is used as a parent
class

e Useful when you have a variable that can
take one of a limited selection of values
(e.g. days of the week, colors, error states,
etc.)

e Deriving from Enum improves code
readability; values are grouped together

p4154") .name)

Session 03 - OOP and testing « Alok Menghrajani 32 EPFL - CIVIL-127- 2025

Testing code

Automatically run code to check that it behaves as expected

Session 03 « OOP and testing + Alok Menghrajani 33 EPFL - CIVIL-127- 2025

Unit testing

e Test each component of your software, one unit at a time
e Aunitis:
o Usually a single class
o Sometimes a group of related classes
e Run your tests whenever you want to check if your code is still behaving
correctly

Session 03 « OOP and testing + Alok Menghrajani 34 EPFL - CIVIL-127- 2025

Example Unit Test

import unittest

from running sum import RunningSum

TestRunningSum (unittest.TestCase) :

testRecordAndSum (self) :
s = RunningSum ()
s.record(10)
s.record(20)

self.assertEqual (s.sum(), 30)

if name

unittest.main ()

Session 03 - OOP and testing + Alok Menghrajani

35

unittest is Python's built-in testing
framework used for writing and running
unit tests

Unit tests help verify that individual
pieces of code (functions or methods)
work correctly

To use it, import unittest and create test
methods by inheriting from
unittest.TestCase

Name your test class “Test” + class name
Test methods must begin with “test”

Use self.assertEqual,
self.assertTrue, etc. to validate code

EPFL - CIVIL-127- 2025

Example Unit Test: it passes

import unittest

. . 0 Ran 1 test in ©.000s
from running sum 1mport RunningSum oK

TestRunningSum (unittest.TestCase) :
testRecordAndSum (self) :

s = RunningSum ()

s.record(10)

s.record(20)

self.assertEqual (s.sum(), 30)

if name ==

unittest.main ()

Session 03 - OOP and testing « Alok Menghrajani 36 EPFL - CIVIL-127- 2025

Example Unit Test: it fails

import unittest F

))) FAIL: testRecordAndSum (__main__.TestRunningSum.testRecordAndSum)
from running sum lmport RunnlngSum --
__ Traceback (most recent call last):
File "[...]test_running_sum.py", line 12, in testRecordAndSum
self.assertEqual(s.sum(), 25)

~~~~~~~~~~~~~~~~ ANANNNANNNANN

TestRunningSum (unittest.TestCase) : AssertionError: 30 != 25

testRecordAndSum (self) : ﬁ;;?:;&igﬁ
s = RunningSum ()

s.record(10)

s.record(20)

self.assertEqual (s.sum(), 25)

if  name

unittest.

Session 03 - OOP and testing « Alok Menghrajani 37 EPFL - CIVIL-127- 2025



Unit testing caveats

import unittest
RunningSum:

record(self, n):

TestRunningSum (unittest.TestCase) :
testRecordAndSum (self) :
RunningSum ()
s.record(1l)
s.record (1)

~

.assertEqual (s.sum(), 2)

o

' main

unittest.main ()

Session 03 - OOP and testing + Alok Menghrajani

e Unit testing does not cover every possible
combination

e Itiscommon to miss edge cases

e Asyou discover bugs, you can add test
cases to avoid regressions

38 EPFL - CIVIL-127- 2025



Writing testable code

from datetime import

print your age ():
birth date str = input ("Enter your birth
date (dd-mm-yyyy): ")
birth date =
datetime.strptime (birth date str,
"$d-%m-%Y") .date ()

today = date.today ()

time difference = today - birth date

print (£f"You are {time difference .days

days old.")

Session 03 - OOP and testing « Alok Menghrajani 39 EPFL - CIVIL-127- 2025



Writing testable code

from datetime import date, datetim Difficult to test!
e input/output
print your age () : © lnPUt()
- - o print()
birth date str = input ("Enter your birth ° Dependency on external state
date (dd-mm-yyyy): ") o date.today()

birth date =
datetime.strptime (birth date str,
"$d-%m-%Y" ) .date ()

today = date.today ()

time difference = today - birth date

print (£f"You are {time difference .days

days old.")

VS

Session 03 - OOP and testing « Alok Menghrajani 40 EPFL - CIVIL-127- 2025



Step 1: refactor

etime import date, datetime

your age(user input, today) :

birth date = datetime.strptime(user input,

"$d-sm-%Y") .date ()

time difference = today - birth date
return ) are {time difference.days} days

da."

print your age() :

birth date str = input("Enter your birth date
(dd-mm-yyyy) : ")

r = your age(birth date str, date.today())

print(r)

Session 03 - OOP and testing + Alok Menghrajani 41

your_age is going to be testable
o We remove the I/O
o We inject our dependency (today)

print_your_age canremain untested

EPFL - CIVIL-127- 2025



Step 2: implement tests

from datetime import datetime
import unittest

from your age import your age

TestYourAge(unittest.TestCase) :

test (self):

today = datetime.strptime("26-02-2025", "%$d-%m-%
r = your age("01-01-2025", today)

self.assertEqual("You are 56 days old.", r)

if  name

unittest.main()

Session 03 - OOP and testing « Alok Menghrajani EPFL - CIVIL-127- 2025



Other testing strategies: test doubles

e TJest doubles
o Mocks, spies, stubs, fakes, etc.

e Replace code being tested with a simpler implementation
e /I you might no longer be testing the actual implementation
e Stubbing out date.today() isn't easy

Session 03 - OOP and testing « Alok Menghrajani 43 EPFL - CIVIL-127- 2025



Other testing strategies: test doubles

from io import StringIO

import unittest

from datetime import date, datetime
from unittest.mock import Mock, patch

from your age import print your age

TestYourAge (unittest.TestCase) :
test (self) :
with patch('builtins.input', return value="01-01-2025"):
with patch('sys.stdout', new=StringIO()) as fake stdout:
datetime mock = Mock (wraps=datetime)
datetime mock.today.return value = date (2025, 2, 26)
with patch('your age.date', new=datetime mock) :
print your age ()
self.assertEqual (fake stdout.getvalue() .rstrip(

"\r\n"), "You are 56 days old.")

Session 03 - OOP and testing + Alok Menghrajani

EPFL - CIVIL-127- 2025




Test coverage

Test coverage provides information on which lines of code were tested

$ coverage run test_running_sum.py

o
e S pip install coverage
o
o

$ coverage html

Coverage for running_sum.py: 100%

7 statements  7run | O missing | | 0 excluded

«prev “index » next coverage.py v7.6.12, created at 2025-02-27 11:56 +0100

| class RunningSum:
""" Tracks the running sum. """

def __init__ (self):
self.s = @

def record(self, n):
self.s +=n

def sum(self):
return self.s

«prev “index » next coverage.py v7.6.12, created at 2025-02-27 11:56 +0700

Session 03 - OOP and testing + Alok Menghrajani

45

EPFL - CIVIL-127- 2025



Test coverage caveats

. inside a test ... return
foo ( ’ )
. inside a test ...

foo ( ’ )

Code coverage typically measures coverage at the line-level. Two snippets can be
functionally equivalent, but have different coverage

Session 03 - OOP and testing « Alok Menghrajani 46 EPFL - CIVIL-127- 2025



Beyond Unit Testing

e A piece of code working in isolation is no
guarantee that the code will work once
part of a larger system

e This can be addressed by performing
integration testing

Session 03 « OOP and testing + Alok Menghrajani

47

2 UN['I.TEST

y
‘S‘: O INTEGRATIONTESTS |~

EPFL - CIVIL-127. 2025



Design patterns

e Reusable design for many software organization problems
e Helps with figuring out how to name your classes

Session 03 « OOP and testing + Alok Menghrajani 48 EPFL - CIVIL-127- 2025



Model-View-Controller

Common pattern for Ul applications

Model-View-Controller (MVC) is a way to organize graphical applications
The Model is responsible for the internal representation of information

The View is responsible for displaying the model; has access to the model
The Controller contains the model and view. It proxies input to the model and
calls the view.

Session 03 « OOP and testing + Alok Menghrajani 49 EPFL - CIVIL-127- 2025



Model-View-Controller: Sokoban example

Sokobantiodet: e SokobanModel models the playing field

—tnit_(self): and implements player movement rules
self.board =

load(self, level data):

getPlayerPosition (self) :

isEmpty(self, x,

isBox (self, x, vy):

move (self, dx,

Session 03 - OOP and testing « Alok Menghrajani 50 EPFL - CIVIL-127- 2025



Model-View-Controller: Sokoban example

SokobanView : e SokobanView displays the state of the
game

print (self, model) :

Session 03 - OOP and testing « Alok Menghrajani 51 EPFL - CIVIL-127- 2025



Model-View-Controller: Sokoban example

anController:

__init (self):

self.model = S«

self.view = SokobanView ()

readFile (self, xsb file):
with open(xsb file, "r") as f:

self.model.load (f)

gameLoop (self) :
while

self.view.print (self.model)

sokoban

= ontroller ()
sokoban.readFile ("levell.xsb"™)

sokoban.gameLoop ()

Session 03 - OOP and testing + Alok Menghrajani

SokobanController instantiates the
model and view
SokobanController reads the level file
SokobanController runs the game
loop:

o Tell view to display the current state

o  Gets userinput
o  Updates model

EPFL - CIVIL-127- 2025



Model-View-Controller: Sokoban example

SokobanModel: SokobanController:
__init (self):

self.board =

__init (self):
self.model = SokobanModel ()

load(self, level data): self.view = SokobanView ()

readFile (self, xsb file):
getPlayerPosition(self) : —
with open(xsb file, "r") as f:
self.model.load (f)
isEmpty(self, x, y):
gameLoop (self) :
isBox(self, x, y): while
self.view.print (self.model)

move (self, dx, dy):

sokoban = SokobanController ()

SokobanView: sokoban.readFile("levell.xsb")

print (self, model) : sokoban.gameLoop ()

Session 03 - OOP and testing « Alok Menghrajani EPFL - CIVIL-127- 2025



