
Session 03 • OOP and testing • Alok Menghrajani EPFL • CIVIL-127• 2025

EPFL, CIVIL-127
Programming and software development for engineers

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Grading

● Lab 4 is graded
○ due Friday, March 14th, 2025
○ 10% of final grade

● Lab 6
○ due Friday, March 28th, 2025
○ Up to one bonus point, counts towards lab 4

● Mid term
○ Tuesday, April 15th, 2025 at 11am
○ MCQ
○ 50% of final grade

● Final project
○ due Friday, May 23rd, 2025
○ 40% of final grade

2

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Jupyter notebooks

● Web-based, interactive Python environment
● VS Code is a much more powerful environment

○ Code formatters
○ Linters
○ Refactoring tools
○ Built-in debugger
○ A large ecosystem of packages

● Some labs might not work in Jupyter

3

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Object Oriented Programming

4

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Object Oriented Programming (OOP) is the most important paradigm to manage
software complexity. It has been used in a beneficial way for software of all sizes
and all domains, since the 1960s.

5

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

OOP: example application

6

If we want to implement a gravity simulator
● We can model planets and moons as

objects
● Each object has many properties

(position, velocity, mass, color)
● We can instantiate as many copies of an

object as we want

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

What is a Class?

A Class is a blueprint for creating objects. It defines what attributes and methods an object should
have

7

Why use Classes?
● Helps organize code (groups related data (attributes) and code (methods) together)
● Makes code reusable (create multiple objects from the same blueprint)
● Supports Object-Oriented Programming (OOP) principles like encapsulation and inheritance

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Defining a class

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

8

● class: keyword, defines the class
● RunningSum: pick a name, usually

singular, CamelCase, capitalized
● __init__: initializer 🪄

○ self.s is called an attribute
● record and sum: RunningSum’s methods
● self: reference to the instance

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Using a class

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

9

blue_cars = RunningSum()

blue_cars.record(10)

blue_cars.record(20)

print(blue_cars.sum()) # prints 30

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Functions vs methods

def f(n):

 ...

class Foo:

 def m(self, x):

 ...

10

● f is a function
● m is a method, belonging to class Foo and

takes self as the first parameter (*)

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Parameters vs arguments

def f(n):

 ...

class Foo:

 def m(self, x):

 ...

f(10)

Foo().m(20)

11

● n, self, and x are parameters
● 10, Foo(), and 20 are arguments
● Some people/programming languages use

the terms formal and actual parameters

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

camel vs snake vs Pascal vs Kebab case

12

● Snake case
○ fancy_thing
○ Use it for naming local variables and parameters
○ Use it for filenames
○ Use it for function and method names

● Camel case
○ fancyThing
○ the capital letters make humps, like a camel

● Pascal case
○ FancyThing
○ Camel case with first letter also capitalized
○ Use it for class names
○ (some people call this camel case or StudlyCaps)

● Kebab case
○ fancy-thing
○ Some people use it for filenames

When in doubt, check PEP 8 or see what other pieces of code are doing

https://peps.python.org/pep-0008/

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Class == Namespace + dict

def running_sum_init():

 return {"s": 0}

def running_sum_record(running_sum, n):

 running_sum["s"] += n

def running_sum_sum(running_sum):

 return running_sum["s"]

blue_cars= running_sum_init()

running_sum_record(blue_cars, 5)

print(running_sum_sum(blue_cars)) # prints 5

13

●

You can think of a class as a namespace with a dictionary to store attributes

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

blue_cars = RunningSum()

blue_cars.record(5)

print(blue_cars.sum()) # prints 5

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Benefits

Object Oriented Programming provides several benefits, such as:
● Data encapsulation
● Multiple instantiation
● Modularity

14

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Benefits: Data Encapsulation

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

15

You can visually inspect that self is keeping track of the running sum by only looking at the code in
RunningSum (*)

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Benefits: Multiple Instantiation

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

16

You can create as many instances of a class as you want. Each one gets its own copy of self.

blue_cars = RunningSum()

red_cars = RunningSum()

blue_cars.record(1)

blue_cars.record(1)

red_cars.record(1)

print(blue_cars.sum(), red_cars.sum())

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Benefits: Modularity

● Reuse objects across different projects
○ E.g., generic Particle object can be used to simulate planets, fire, water, snow, etc.
○ E.g., generic PlayingCards can be used for different types of card games

● Swap implementations
○ E.g., different Grid implementations

17

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Code layout

Everything in one file, main.py

18

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

a = RunningSum()

a.record(10)

a.record(20)

print(a.sum())

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Code layout

Split across multiple files. In file main.py:

19

In file running_sum.py:

You also need an empty __init__.py file!

from running_sum import RunningSum

a = RunningSum()

a.record(10)

a.record(20)

print(a.sum())

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Commenting your code
class RunningSum:

 """ Tracks the sum of values seen so far. Starting with an initial sum of 0. """

 def __init__(self):

 self.s = 0

 def record(self, n):

 """ Record that n has been seen by including it in the sum. """

 self.s += n

 def sum(self):

 """ Returns the current sum. """

 return self.s

20

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Commenting your code

● Focus on class and methods comments
○ That’s what people will read first
○ Tools can extract those comments

● Explain why you are doing something
○ The code already explains the how
○ Example:

21

n isn’t divisible by 2; only check odd numbers

for i in range(3, …, 2):

 if n % i == 0:

 …

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Instances are assigned by reference

from running_sum import RunningSum

a = RunningSum()

a.record(123)

b = a

b.record(456)

print(a.sum(), b.sum()) # prints 579, 579

22

● There is only one instance of
RunningSum in this code snippet

● a and b both refer to the same instance
● When you mutate a, b also changes and

vice-versa

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Instances are assigned by reference

x = [1, 2, 3]

y = x

y.append(4)

print(x, y) # prints [1, 2, 3, 4] [1, 2, 3, 4]

23

● It is the exact same behavior as lists, dicts,
etc.

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Instances are passed by reference

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

def foo(x):

 x.record(1)

blue_cars = RunningSum()

blue_cars.record(10)

foo(blue_cars)

print(blue_cars.sum())

● In this snippet, there is only one instance
of RunningSum; blue_cars and x are
therefore the same

● foo increments the same instance as
blue_cars

● This is the same behavior as with lists,
dicts, etc.

24

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Each instance is unique

from running_sum import RunningSum

blue_cars = RunningSum()

red_cars = RunningSum()

print(blue_cars == red_cars) # prints False

25

● Each instance is unique
● == between different instances returns

False
● Need to be careful if you want specific

behavior with dicts/sets or want to sort
lists

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

dunder methods

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

 def __eq__(self, other):

 return self.s == other.s

blue_cars = RunningSum()

red_cars = RunningSum()

print(blue_cars == red_cars) # prints True

26

● Short for “double underscore methods”
● Also called “magic” methods
● Customize the behavior of equality, type

conversions, etc.
● Nearly 100 different methods!

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Common dunder methods

27

Method Purpose

__init__() Constructor (initialize an object)

__str__() String representation (print(obj))

__repr__() Official string representation (repr(obj))

__len__() Define behavior of len(obj)

__getitem__() Access items like obj[index]

__setitem__() Set item value obj[index] = value

__delitem__() Delete item with del obj[index]

__eq__(), __lt__(), __gt__() Compare objects (==, <, >)

__add__(), __sub__() Define behavior for + and -

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

private attributes and methods

class RunningSum:

 def __init__(self):

 self.s = 0

 def record(self, n):

 self.s += n

 def sum(self):

 return self.s

blue_cars = RunningSum()

blue_cars.s = 100

blue_cars.record(1)

print(blue_cars.sum()) # prints 101

28

● By default, attributes and methods can be
accessed from outside a class

● If we had named our attribute sum, we
wouldn’t need to define a method to
access self.s

● In Python, we consider that data
encapsulation is not broken because of
the “We are all responsible users”
philosophy

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

private attributes and methods

class RunningSum:

 def __init__(self):

 self._s = 0

 def record(self, n):

 self._s += n

 def sum(self):

 return self._s

blue_cars = RunningSum()

blue_cars._s = 100

blue_cars.record(1)

print(blue_cars.sum()) # prints 101

29

● Single underscore is a convention
● Indicates that an attribute or method is

meant to be private
○ But does not make it private!

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

private attributes and methods

class RunningSum:

 def __init__(self):

 self.__s = 0

 def record(self, n):

 self.__s += n

 def sum(self):

 return self.__s

blue_cars = RunningSum()

blue_cars.__s = 100 # creates a new attribute!

blue_cars.record(1)

print(blue_cars.sum()) # prints 1

print(blue_cars.__s) # prints 100

30

● Double underscores for attributes and
methods makes them private (*)

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Inheritance

class Foo(Bar):

 ...

● Inheritance allows a new (child) class to
extend behavior from an existing (parent)
class

● For example, Foo (the child class) inherits
Bar (the parent class); we can also say
Foo extends Bar

● Foo inherits all the attributes and
methods from Bar

31

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Enum

from enum import Enum

class Colors(Enum):

 BLUE_CRAYOLA = "1f75fe"

 BRICK_RED = "cb4154"

a = Colors.BLUE_CRAYOLA

b = Colors.BLUE_CRAYOLA

print(a == b) # prints True

print(a.value) # prints 1f75fe

print(Colors("cb4154").name) # prints BRICK_RED

32

● Enum (Enumeration) is used as a parent
class

● Useful when you have a variable that can
take one of a limited selection of values
(e.g. days of the week, colors, error states,
etc.)

● Deriving from Enum improves code
readability; values are grouped together

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Testing code

Automatically run code to check that it behaves as expected

33

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Unit testing

● Test each component of your software, one unit at a time
● A unit is:

○ Usually a single class
○ Sometimes a group of related classes

● Run your tests whenever you want to check if your code is still behaving
correctly

34

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Example Unit Test

import unittest

from running_sum import RunningSum

class TestRunningSum(unittest.TestCase):

 def testRecordAndSum(self):

 s = RunningSum()

 s.record(10)

 s.record(20)

 self.assertEqual(s.sum(), 30)

if __name__ == '__main__':

 unittest.main()

35

● unittest is Python’s built-in testing
framework used for writing and running
unit tests

● Unit tests help verify that individual
pieces of code (functions or methods)
work correctly

● To use it, import unittest and create test
methods by inheriting from
unittest.TestCase

● Name your test class “Test” + class name
● Test methods must begin with “test”
● Use self.assertEqual,

self.assertTrue, etc. to validate code

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Example Unit Test: it passes

import unittest

from running_sum import RunningSum

class TestRunningSum(unittest.TestCase):

 def testRecordAndSum(self):

 s = RunningSum()

 s.record(10)

 s.record(20)

 self.assertEqual(s.sum(), 30)

if __name__ == '__main__':

 unittest.main()

36

.

--

Ran 1 test in 0.000s

OK

EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Example Unit Test: it fails

import unittest

from running_sum import RunningSum

class TestRunningSum(unittest.TestCase):

 def testRecordAndSum(self):

 s = RunningSum()

 s.record(10)

 s.record(20)

 self.assertEqual(s.sum(), 25)

if __name__ == '__main__':

 unittest.main()

37

F
==
FAIL: testRecordAndSum (__main__.TestRunningSum.testRecordAndSum)
--
Traceback (most recent call last):
 File "[...]test_running_sum.py", line 12, in testRecordAndSum
 self.assertEqual(s.sum(), 25)
    ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^
AssertionError: 30 != 25
----------------------------------------------------------------------
Ran 1 test in 0.001s
FAILED (failures=1)



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Unit testing caveats

import unittest

class RunningSum:

   ...

   def record(self, n):

       self.s += 1

   ...

class TestRunningSum(unittest.TestCase):

   def testRecordAndSum(self):

       s = RunningSum()

       s.record(1)

       s.record(1)

       self.assertEqual(s.sum(), 2)

if __name__ == '__main__':

   unittest.main()

38

● Unit testing does not cover every possible 
combination

● It is common to miss edge cases
● As you discover bugs, you can add test 

cases to avoid regressions



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Writing testable code

from datetime import date, datetime

def print_your_age ():

   birth_date_str  = input("Enter your birth  

date (dd-mm-yyyy): " )

   birth_date = 

datetime.strptime(birth_date_str , 

"%d-%m-%Y").date()

   today = date.today()

   time_difference  = today - birth_date

   print(f"You are {time_difference .days} 

days old.")

39



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Writing testable code

from datetime import date, datetime

def print_your_age ():

   birth_date_str  = input("Enter your birth  

date (dd-mm-yyyy): " )

   birth_date = 

datetime.strptime(birth_date_str , 

"%d-%m-%Y").date()

   today = date.today()

   time_difference  = today - birth_date

   print(f"You are {time_difference .days} 

days old.")

Difficult to test!
● input/output

○ input()
○ print()

● Dependency on external state
○ date.today()

40



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Step 1: refactor

from datetime import date, datetime

def your_age(user_input, today):

   birth_date = datetime.strptime(user_input, 

"%d-%m-%Y").date()

   time_difference = today - birth_date

   return f"You are {time_difference.days} days 

old."

def print_your_age():

   birth_date_str = input("Enter your birth date 

(dd-mm-yyyy): ")

   r = your_age(birth_date_str, date.today())

   print(r)

● your_age is going to be testable
○ We remove the I/O
○ We inject our dependency (today)

● print_your_age can remain untested

41



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Step 2: implement tests

from datetime import datetime

import unittest

from your_age import your_age

class TestYourAge(unittest.TestCase):

   def test(self):

       today = datetime.strptime("26-02-2025", "%d-%m-%Y").date()

       r = your_age("01-01-2025", today)

       self.assertEqual("You are 56 days old.", r)

if __name__ == '__main__':

   unittest.main()

42



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Other testing strategies: test doubles

● Test doubles
○ Mocks, spies, stubs, fakes, etc.

● Replace code being tested with a simpler implementation
● ⚠ you might no longer be testing the actual implementation
● Stubbing out date.today() isn’t easy

43



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Other testing strategies: test doubles
from io import StringIO

import unittest

from datetime import date, datetime

from unittest.mock import Mock, patch

from your_age import print_your_age

class TestYourAge(unittest.TestCase):

   def test(self):

       with patch('builtins.input', return_value="01-01-2025"):

           with patch('sys.stdout', new=StringIO()) as fake_stdout:

               datetime_mock = Mock(wraps=datetime)

               datetime_mock.today.return_value = date(2025, 2, 26)

               with patch('your_age.date', new=datetime_mock):

                   print_your_age()

                   self.assertEqual(fake_stdout.getvalue().rstrip(

                       "\r\n"), "You are 56 days old.")

44



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Test coverage

● Test coverage provides information on which lines of code were tested
● $ pip install coverage
● $ coverage run test_running_sum.py
● $ coverage html

45



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Test coverage caveats

def foo(a, b):

   if a or b:

       return True

       ... inside a test ...

       foo(True, False)

46

Code coverage typically measures coverage at the line-level. Two snippets can be 
functionally equivalent, but have different coverage

def foo(a, b):

   if a:

       return True

   if b:

       return True

       ... inside a test ...

       foo(True, False)



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Beyond Unit Testing

● A piece of code working in isolation is no 
guarantee that the code will work once 
part of a larger system

● This can be addressed by performing 
integration testing

47



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Design patterns

● Reusable design for many software organization problems
● Helps with figuring out how to name your classes

48



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Model-View-Controller

● Common pattern for UI applications
● Model-View-Controller (MVC) is a way to organize graphical applications
● The Model is responsible for the internal representation of information
● The View is responsible for displaying the model; has access to the model
● The Controller contains the model and view. It proxies input to the model and 

calls the view.

49



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Model-View-Controller: Sokoban example

class SokobanModel:

   def __init__(self):

       self.board = None

   def load(self, level_data):

       ...

   def getPlayerPosition(self):

       ...

   def isEmpty(self, x, y):

       ...

   def isBox(self, x, y):

       ...

   def move(self, dx, dy):

       ...

50

● SokobanModel models the playing field 
and implements player movement rules



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Model-View-Controller: Sokoban example

class SokobanView:

   def print(self, model):

       ...

51

● SokobanView displays the state of the 
game



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Model-View-Controller: Sokoban example

class SokobanController:

   def __init__(self):

       self.model = SokobanModel()

       self.view = SokobanView()

   def readFile(self, xsb_file):

       with open(xsb_file, "r") as f:

           self.model.load(f)

   def gameLoop(self):

       while True:

           self.view.print(self.model)

           ...

sokoban = SokobanController()

sokoban.readFile("level1.xsb")

sokoban.gameLoop()

52

● SokobanController instantiates the 
model and view

● SokobanController reads the level file
● SokobanController runs the game 

loop:
○ Tell view to display the current state
○ Gets user input
○ Updates model



EPFL • CIVIL-127• 2025Session 03 • OOP and testing • Alok Menghrajani

Model-View-Controller: Sokoban example
class SokobanModel:

   def __init__(self):

       self.board = None

   def load(self, level_data):

       ...

   def getPlayerPosition(self):

       ...

   def isEmpty(self, x, y):

       ...

   def isBox(self, x, y):

       ...

   def move(self, dx, dy):

       ...

class SokobanView:

   def print(self, model):

       ...

53

class SokobanController:

   def __init__(self):

       self.model = SokobanModel()

       self.view = SokobanView()

   def readFile(self, xsb_file):

       with open(xsb_file, "r") as f:

           self.model.load(f)

   def gameLoop(self):

       while True:

           self.view.print(self.model)

           ...

sokoban = SokobanController()

sokoban.readFile("level1.xsb")

sokoban.gameLoop()


