
Session 12 • Alok Menghrajani

EPFL, CIVIL-127
Programming and software development for engineers

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

in-depth evaluation

● Log onto moodle and stay on the moodle home page (dashboard, not the
course page).

● Click on the arrow to the top right of the screen which will reveal a block that
contains the entitled “In-depth evaluation” tile (please note: all evaluations will
be together in the evaluation tile on the moodle home page, and not separate
in each course moodle page).

● Select your course and complete the feedback.

2

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Let's build GPT: from scratch, in code, spelled out.

● The best introduction you could ask for, by Andrej Karpathy
● https://www.youtube.com/watch?v=kCc8FmEb1nY

○ 2h video
○ Python code

3

https://www.youtube.com/watch?v=kCc8FmEb1nY

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

FizzBuzz

● Write a program which counts from 1 to 100 and prints
○ Fizz Buzz when i is a multiple of both, 3 and 5
○ Fizz if i is a multiple of 3 but not of 5
○ Buzz if i is a multiple of 5 but not of 3
○ i otherwise

● Use timeit to see how fast your implementation runs

4

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

v1

import timeit

import sys

def fizzbuzz(n):

 for i in range(1, n+1):

 if i % 3 == 0 and i % 5 == 0:

 print("Fizz Buzz")

 elif i % 3 == 0:

 print("Fizz")

 elif i % 5 == 0:

 print("Buzz")

 else:

 print(i)

result = timeit.timeit(lambda: fizzbuzz(100),

number=100000)

print(result, file=sys.stderr)

5

Time the first implementation:
$ python3 v1.py > /dev/null
2.581426207907498

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

v1 v2

import timeit

import sys

def fizzbuzz(n):

 j = 1

 for i in range(1, n+1):

 if j == 3 or j == 6 or j == 9 or j == 12:

 print("Fizz")

 elif j == 5 or j == 10:

 print("Buzz")

 elif j == 15:

 print("Fizz Buzz")

 j = 0

 else:

 print(i)

 j = j + 1

result = timeit.timeit(lambda: fizzbuzz(100), number=100000)

print(result, file=sys.stderr)

6

import timeit

import sys

def fizzbuzz(n):

 for i in range(1, n+1):

 if i % 3 == 0 and i % 5 == 0:

 print("Fizz Buzz")

 elif i % 3 == 0:

 print("Fizz")

 elif i % 5 == 0:

 print("Buzz")

 else:

 print(i)

result = timeit.timeit(lambda: fizzbuzz(100),

number=100000)

print(result, file=sys.stderr)

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Division is expensive, right?

import timeit

import sys

def fizzbuzz(n):

 j = 1

 for i in range(1, n+1):

 if j == 3 or j == 6 or j == 9 or j == 12:

 print("Fizz")

 elif j == 5 or j == 10:

 print("Buzz")

 elif j == 15:

 print("Fizz Buzz")

 j = 0

 else:

 print(i)

 j = j + 1

result = timeit.timeit(lambda: fizzbuzz(100), number=100000)

print(result, file=sys.stderr)

Let’s make sure both version give the same
result:
$ python3 v1.py > v1.out
$ python3 v2.py > v2.out
$ diff v1.out v2.out

Time the second implementation:
$ python3 v2.py > /dev/null
2.7923777499236166

It’s slower!

7

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Why is v2.py slower than v1.py?

8

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

v1 v3

import timeit

import sys

def fizzbuzz(n):

 for i in range(1, n+1):

 if i % 3 == 0:

 if i % 5 == 0:

 print("Fizz Buzz")

 else:

 print("Fizz")

 elif i % 5 == 0:

 print("Buzz")

 else:

 print(i)

result = timeit.timeit(lambda: fizzbuzz(100),

number=100000)

print(result, file=sys.stderr)

9

import timeit

import sys

def fizzbuzz(n):

 for i in range(1, n+1):

 if i % 3 == 0 and i % 5 == 0:

 print("Fizz Buzz")

 elif i % 3 == 0:

 print("Fizz")

 elif i % 5 == 0:

 print("Buzz")

 else:

 print(i)

result = timeit.timeit(lambda: fizzbuzz(100),

number=100000)

print(result, file=sys.stderr)

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Third implementation

import timeit

import sys

def fizzbuzz(n):

 for i in range(1, n+1):

 if i % 3 == 0:

 if i % 5 == 0:

 print("Fizz Buzz")

 else:

 print("Fizz")

 elif i % 5 == 0:

 print("Buzz")

 else:

 print(i)

result = timeit.timeit(lambda: fizzbuzz(100),

number=100000)

print(result, file=sys.stderr)

Again, first check that the result is the same:
$ python3 v3.py > v3.out
$ diff v1.out v3.out

Time the third implementation:
$ python3 v3.py > /dev/null
2.3346250830218196

It’s faster…

10

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Making programs run faster is hard

● Need to fully understand what’s going on
○ How the processors works (hint: there a many processors, each with many cores)
○ How the memory and caches work (hint: there are layers of caches)
○ How the operating system works
○ How the Python compiler/runtime works (hint: there’s a GIL)
○ How statistics work (hint: our differences might have been within the noise margin)

● Usually, optimized code is harder to write, read, and maintain
○ Write the simplest and correct implementation first
○ Only optimize once you know your bottleneck or if you don’t have other options
○ 99% of the time, you don’t need to over-optimize – computers are fast and typical applications

don’t process huge amounts of data

11

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Really fast FizzBuzz

● https://codegolf.stackexchange.com/questions/215216/high-throughput-fizz-
buzz/269772#269772

12

https://codegolf.stackexchange.com/questions/215216/high-throughput-fizz-buzz/269772#269772
https://codegolf.stackexchange.com/questions/215216/high-throughput-fizz-buzz/269772#269772

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

American Standard Code for Information Interchange (ASCII)

13

● Standardized in 1960s
● 128 symbols (0x00 to 0x7f)
● 1 byte per symbols
● Several special characters
● A-Z
● a-z
● 0-9
● a few common symbols

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Unicode

● Process began in early 1990s
● Today: 292531 codepoints (with room to expand ~4x)
● Support for almost all languages

○ Bonjour
○ 你好
○ مرحبًا
○ سلام
○ नमस्ते
○ こんにちは

● Emojis
○ 😂❤👍👻

14

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Ligatures and combining characters

● Font rendering engines can combine multiple characters
● Aesthetics

○ f + i => fi
● Skin-tones

○ 👍, 󰗨, 󰗧, 󰗦, 󰗥, 󰗤
● Flags

○ 🇨 + 🇭 => 󰎤

15

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

● The font defines the exact look for each character
● As a result, conversation across different devices can become confusing:

“Come and bring your ” (newer Samsung phones)
“Come and bring your “ (older Samsung phones)

“ “ (older iPhone)
“ “ (every other device)

Unicode doesn’t define the graphic

16

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Issues

● Supporting so many characters introduces hard problems
● Equivalent characters

○ e + ◌́ (é) is equivalent to é

● Identical looking characters
○ e (latin e) looks similar/same as е (cyrillic e)

● Sorting
○ é does not come after z (hopefully)

● Searching
● Password handling
● …

17

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 202518

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Search

19

● VSCode does not canonicalize Unicode characters
● In this example, we only find 20 out of the 40 occurrences of é

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Abusing Unicode!

e = 10

if True:

 е = 123

print(e) # prints 10

20

● This code does not do what you think it
does!

● Should programming languages forbid
using Unicode characters in source code?
In variable names? Only allow a subset of
Unicode?

● You can inspect what’s actually going on
using ord(), a hex-editor, or enabling
features in VSCode to draw boxes around
non-ascii characters.

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

UTF-8

● Encodes Unicode using a variable number of bytes (1 to 4 bytes)
● 1-byte UTF-8 coincides with ASCII (what were the odds!)

21

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Marble solitaire puzzle

22

Image source: Amazon product listing, maybe a copyright violation ¯_(ツ)_/¯

https://www.amazon.com/Marble-Solitaire-Made-in-USA/dp/B000CEMCFK

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Marble solitaire puzzle

23

● Rules
○ Goal is to be left with one marble
○ A marble can capture up, down, left, right by hopping over one other marble
○ O O . => . . O

● Try it online
● Can you write a computer program to find a solution?

https://www.echalk.co.uk/amusements/Games/solitaire/solitaire.html

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Marble solitaire puzzle: implementation sketch

class Board:

 ...

 def solve(self, depth) -> bool:

 if self.filled == 81:

 # We have one marble left, we are done

 return []

 moves = self.get_valid_moves()

 for move in moves:

 self.apply_move(move)

 t = solve(self, depth+1)

 if t is not None:

 # We have found a solution

 t.append(move)

 return t

 self.undo_move(move)

 # We don't have a solution

 return None

24

● Recursive solution
● We apply a move and then undo it if it

doesn’t yield a solution

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Pentominoes & co.

25

● Once you can write a marble solver, you
can write a pentominoes solver using the
exact same strategy!

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Given a list of numbers reach a sum
● E.g. [4, 5, 17, 9] + 144

○ (4 + 5) * 17 - 9
● You can solve this problem in the exact same way
● You recursively try to build different trees

26

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku

27

● Fill numbers from 1-9 so that there are no
duplicates among each row, column, and
smaller 3x3 squares

● Can you write a computer program to find
a solution?

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku

● “Easy” puzzles can be solved by only solving for “naked singles”
● Naked single == cell which can only take one value

28

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku

● “Hard” puzzles can be solved by solving for “naked singles” + “hidden singles”
● Hidden single == value which can only be assigned to a single cell

29

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku

● “Very hard” puzzles require making a guess and then backtracking if the guess
is incorrect

30

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku: data structures

● We need a board, which holds 9x9 cells
● To solve for naked singles:

○ Each cell starts with a set of possible numbers
○ When a cell gets a value v, all the other cells on the same row, column, and smaller square must

remove v from their set
○ If a cell only has one possible number left, it takes that value

● To solve for hidden singles:
○ We can try to create a data structure to keep track of hidden singles, but keeping the data

structure up-to-date can be complicated
○ It’s probably easiest to scan the rows, columns and inner squares for numbers where only one

possibility appears (243 scans, but there’s opportunities to early exit)

31

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku: implementation sketch

class Board:

 ...

 def solve(self) -> bool:

 if self.filled == 81:

 # We are done

 return self

 for c in self.cells():

 if len(c.choices) > 1:

 for choice in list(c.choices):

 self.pick(c, choice)

 t = board2.solve()

 if t is not None:

 return t

 # WE CAN'T UNDO!

 return None

32

● Recursive solution
● But we can’t undo!

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku: implementation sketch

class Board:

 ...

 def solve(self) -> bool:

 if self.filled == 81:

 # We are done

 return self

 for c in self.cells():

 if len(c.choices) > 1:

 for choice in list(c.choices):

 board2 = self.copy()

 board2.pick(c, choice)

 t = board2.solve()

 if t is not None:

 return t

 return None

33

● We can copy our entire state prior to
recursing

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sudoku: alternative implementation

● Z3 is a powerful SMT solver (a SMT solver is a superset of a SAT solver)
● See 4th solution to exercise 2.3

34

https://github.com/vita-epfl/civil127-2025/blob/main/solutions/exercise_2_3/send_more_money_4.py

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Regular Expressions (regexp)

● Patterns used to find/replace text
● Regular expressions work at the character level

35

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Regular Expressions (regexp)

● . wildcard, match any character
● Repetition (greedy by default)

○ + match previous character one or more times
○ * match previous character zero or more times
○ ? match previous character zero or one time
○ {min, max}where min and min are numbers

● [...] set of characters or ranges to match
○ [ax2] will match a, x, or 2
○ [a-m0-9] will match characters in the range a to m or 0 to 9

● [^...] set of characters or ranges to not match
○ [^ax2] will match everything except a, x, or 2
○ [^A-Z] will match everything except the range A to Z

● (...) grouping
○ \n enables matching previously matched groups, where n is a number

● | or operator
● ^ and $ anchor to start and end of line (or text)
● \. to match an actual dot ([.] also works)
● And more (read the docs)

36

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Regular Expressions

● Examples
○ [hc]?at will match "at", "cat", "hat". It will also match "sat"
○ f.+bar will match "xyzfobar", "foobar", "fooobar" but not "fbar"
○ [A-Z][a-z]* will match "Hi", "Hello" but not "hello"
○ (.)(.)\2\1 will match "abba" and "aaaa" but not "xyxy"
○ (foo)|(bar) will match "foo" and "bar"
○ (foo)|bar will match "fooar" and "bar" but not "foo"

● Regular expressions can be hard to decipher, make sure you comment them

37

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Regular Expressions: in VSCode

38

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Regular Expressions: command line

● grep, egrep
● sed

39

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Software-engineering(*) related methodologies

● At the individual level
○ Pomodoro
○ Getting Things Done (GTD)
○ How to email

● At the team level
○ Agile / Scrum
○ Waterfall
○ Lean / Kanban
○ …

* also used in other engineering fields

40

https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Getting_Things_Done
https://blog.xaviershay.com/articles/a-system-for-email.html
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Lean_manufacturing
https://en.wikipedia.org/wiki/Kanban_(development)

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Technical interviews

● Coding or problem solving puzzles
● Multiple phone screens

○ Coding interviews using coderpad or similar tool

● Multiple on-site interviews
○ White board coding
○ Design questions
○ Q&A sessions

● The technical interview is often similar across software engineering, data
analysts, ML, and product/project managers

● Candidates are usually allowed to pick their preferred programming language,
the interviewer has to adapt

● Use books, online resources, and mock interviews to practice

41

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Coding questions types

● Simple
○ Find first duplicate character in a file
○ Find or build palindromes
○ Combinatorics (e.g. all triplets which sum to N) or largest subsets

● Medium
○ Merge two sorted lists
○ Do something with trees or graphs in general
○ Min edit distance of two strings
○ Football scores and other DP problems

● Hard
○ Marble solver
○ Bignum library
○ Mini regular expression matcher
○ m-th smallest value in k sorted arrays

42

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Interview Tips

● Write clean, readable code. Even if it’s just an interview, pretend it’s code that
will need to be maintained

● Communicate. Explain your assumptions, your thought process, …
● Practice with books, online resources, friends, mock interviews
● Be comfortable with the data structures and algorithms which come up in your

field
● Get to a (partial or complete) solution first, then try to improve it
● Be honest, ask questions. Don’t try to outsmart your interviewers
● When in doubt, companies lean towards no-hire, so apply to lots of companies

43

https://www.youtube.com/watch?v=NRNB8MIdmcg

Session 12 • Alok Menghrajani EPFL • CIVIL-127• 2025

Gain coding experience
● Contribute to your favorite open source projects
● Advent of code: speed coding, easy to medium difficulty, with an emphasis on algorithms –

lots of discussions and solutions available on reddit and github
● TopCoder and CodeJam: hard problems, emphasis on algorithms – some of the solutions

might not be easy to find
● Project Euler: usually, difficult math problems
● Leet Code: organized by topics
● Code Golf: size optimization
● r/dailyprogrammer
● Cryptopals: hard, cryptography related puzzles
● Olympiads: hard. Google a country’s local chapter for sample questions
● ICFP Programming Contest: very hard (borderline research topics)
● And lots of other sites…

These puzzles often get used as coding interview questions

44

https://adventofcode.com/2024/events
https://archive.topcoder.com/ProblemArchive
https://github.com/google/coding-competitions-archive
https://projecteuler.net/archives
https://leetcode.com/explore/
https://codegolf.stackexchange.com/
https://www.reddit.com/r/dailyprogrammer/
https://cryptopals.com/

