EPFL, CIVIL-127

Programming and software development for engineers

Session 12 - Alok Menghrajani

in-depth evaluation

e Log onto moodle and stay on the moodle home page (dashboard, not the
course page).

e Click on the arrow to the top right of the screen which will reveal a block that
contains the entitled “In-depth evaluation” tile (please note: all evaluations will
be together in the evaluation tile on the moodle home page, and not separate
in each course moodle page).

e Select your course and complete the feedback.

Session 12 - Alok Menghrajani 2 EPFL - CIVIL-127- 2025

Let's build GPT: from scratch, in code, spelled out.

e The best introduction you could ask for, by Andrej Karpathy

e https://www.yvoutube.com/watch?v=kCc8FmEb1nY
o 2hvideo
o Python code

Session 12 + Alok Menghrajani 3 EPFL - CIVIL-127- 2025

https://www.youtube.com/watch?v=kCc8FmEb1nY

FizzBuzz

e Write a program which counts from 1to 100 and prints
o Fizz Buzz when i is a multiple of both, 3and 5
o Fizzifiisamultiple of 3 but not of 5
o Buzzifiis amultiple of 5 but not of 3
o iotherwise

e Use timeit to see how fast your implementation runs

Session 12 - Alok Menghrajani 4 EPFL - CIVIL-127- 2025

if i %
print ("Fizz
elif 1 % 3 ==
print ("Fizz")
elif 1 $ 5 == 0:
print ("Buzz")
ellse::

print (i)

result = timeit.timeit (

number=100000)

print (result, file=sys.

Session 12 - Alok Menghrajani

Time the first implementation:
$ python3 vi.py > /dev/null

2.581426207907498

EPFL - CIVIL-127- 2025

fizzbuzz (n) :
for i in range (1,

if 1 $ 3 =20
print ("Fizz Buzz")

elif 1 $ 3 == O0:
print ("Fizz")

elif 1 % 5
print ("Buzz")

else:

print (i)

result = timeit.timeit (
number=100000)

print (result, file=sys.stderr)

Session 12 - Alok Menghrajani

fizzbuzz (100),

import timeit

import sys

fizzbuzz(n) :

elif j == 15:

print ("Fizz Buzz")

print (i)

-3 +1

result = timeit.timeit(

print (result, file=sys.stderr)

fizzbuzz (100),

EPFL - CIVIL-127- 2025

number=100000)

Division is expensive, right?

port brnett Let’s make sure both version give the same
result:

$ python3 vl.py > vl.out

$ python3 v2.py > v2.out

$ diff vl.out v2.out

Time the second implementation:
$ python3 v2.py > /dev/null
2.7923777499236166

It's slower!

print (i)

J=3 + 1

result = timeit.timeit (: fizzbuzz (100), number=100000)

print(result, file=sys.stderr)

Session 12 + Alok Menghrajani 7 EPFL - CIVIL-127- 2025

Why i1s v2.py slower than v1.py?

Session 12 + Alok Menghrajani 8 EPFL - CIVIL-127- 2025

fizzbuzz (n) :
for i in range (1,
if i & 3 ==
print ("Fizz Buzz")
elif i & 3 ==
print ("Fizz")
elif i & 5 ==
print ("Buzz")
ellse::

print (i)

result = timeit.timeit (
number=100000)

print (result, file=sys.stderr)

Session 12 - Alok Menghrajani

fizzbuzz (100),

import timeit

import sys

fizzbuzz (n) :
for i in range(l, n+1):
if 1 § 3 ==
if 1 § 5 ==
print ("Fizz Buzz")
else:
print ("Fizz")
elif i % 5 ==
print ("Buzz")
else:

print (i)

result = timeit.timeit (: fizzbuzz (100),
number=100000)

print (result, file=sys.stderr)

EPFL - CIVIL-127- 2025

Third implementation

Again, first check that the result is the same:
$ python3 v3.py > v3.out
$ diff vl.out v3.out

Time the third implementation:
$ python3 v3.py > /dev/null
2.3346250830218196

It's faster...

result = timeit.timeit (

number=100000)

print (result, file=sys.stderr)

Session 12 + Alok Menghrajani 10 EPFL - CIVIL-127- 2025

Making programs run faster is hard

e Need to fully understand what's going on

How the processors works (hint: there a many processors, each with many cores)
How the memory and caches work (hint: there are layers of caches)

How the operating system works

How the Python compiler/runtime works (hint: there’s a GIL)

How statistics work (hint: our differences might have been within the noise margin)

e Usually, optimized code is harder to write, read, and maintain
o Write the simplest and correct implementation first
o Only optimize once you know your bottleneck or if you don't have other options
o 99% of the time, you don't need to over-optimize — computers are fast and typical applications
don't process huge amounts of data

O O O O O

Session 12 - Alok Menghrajani 11 EPFL - CIVIL-127- 2025

Really fast FizzBuzz

e https://codeqgolf.stackexchange.com/questions/215216/high-throughput-fizz-
buzz/269772#269772

Session 12 - Alok Menghrajani 12 EPFL - CIVIL-127- 2025

https://codegolf.stackexchange.com/questions/215216/high-throughput-fizz-buzz/269772#269772
https://codegolf.stackexchange.com/questions/215216/high-throughput-fizz-buzz/269772#269772

American Standard Code for Information Interchange (ASCII)

The hexadecimal set:

00 nul 01 soh

bs 09

dle 11 ‘ded’

19
21
29
31
39
41
49

Session 12 - Alok Menghrajani

ht

em

)
1
9
A
I
Q
\{
a
i
q
y

02
[“E]
12
la
22
2a
32
KE]
42
4a
52
5a
62
E]
72
7a

stx
nl
dc2
sub
*
2

N HWONDOQm:--

A XOPWMXRO~ W+

04 eot

oc

14 dc4

1c
24
2c
34
3c
44
4e
54
5¢c
64
6¢c
74
7c

np

fs
$

—rtHQ =1 OA>M-~

05 enq

ed

15 nak

1d
25
2d
35
3d

cr

gs
%

vYCc3o—=C=ZmIi ol

< I3 Hh><ZTVO-

13

Standardized in 1960s

128 symbols (0x00 to Ox7f)
1 byte per symbols

Several special characters
A-Z

a-z

0-9

a few common symbols

EPFL - CIVIL-127- 2025

Unicode

e Process began in early 1990s
e Today: 292531 codepoints (with room to expand ~4x)
e Support for almost all languages

o Bonjour

o {R&F

o s

o el

o dAHAEd

o CAlITBIE
e Emojis

o ©W4Y

Session 12 - Alok Menghrajani 14 EPFL - CIVIL-127- 2025

Ligatures and combining characters

e Font rendering engines can combine multiple characters
e Aesthetics
o f+i=>1fi
e Skin-tones
o k.4t b b b b
e Flags
o €+H-=>

Session 12 - Alok Menghrajani 15 EPFL - CIVIL-127. 2025

Unicode doesn’t define the graphic

e The font defines the exact look for each character
e As aresult, conversation across different devices can become confusing:

“Come and bring your €#" (newer Samsung phones)
“Come and bring your=8y’ (older Samsung phones)

@ (older iPhone)
"@)" (every other device)

Session 12 - Alok Menghrajani 16 EPFL - CIVIL-127. 2025

Issues

e Supporting so many characters introduces hard problems
e Equivalent characters

o e+ (é)isequivalenttoé
e |dentical looking characters

o e (latin e) looks similar/same as e (cyrillic e)

e Sorting

o & does not come after z (hopefully)
e Searching
e Password handling

Session 12 - Alok Menghrajani 17 EPFL - CIVIL-127- 2025

wikipedia.org

Wikipedia is hosted by the Wikimedia
Foundation, a non-profit organization that
also hosts a range of other projects.

You can support our work with a donation.

Download Wikipedia for Android or i0S

Save your favorite articles to read offline,

WiKIPEDIA

The Free Encyclopedia

English
6,974,000+ articles 267

B4
1,457,000+ S8

Deutsch
3.001.000+ Artikel

3574

1,470,000+ &8 | %E

Portugués
1.146.000+ artigos 16!

Read Wikipedia in your langua

Commons
Free media collection

‘) Wikibooks
Free textbooks

Lietuviy
Magyar

MakefnoHckn w o (‘)

Sren

Bahasa Melayu

Bahaso Minangkabau
[§§eo0mam
NELEERGE

B3

Norsk (bokmal)

Norsk (nynorsk)
Hoxuuith

O'zbekcha / Vabekua
Polski

Portugués

Kasakwa / Qazagsa / La31;6
Romand

Shaip

Simple English
Sinugboanong Binisaya
Slovencina
Slovens¢ina

Cpncku [Srpski
Srpskohrvatski / Cpnckoxpeatcku
Suomi

Svenska

S

Tatapua / Tatarga
BentH

mmlng

Toymki

LEST Y

Tiirkge

= Wiktionary
YkpaiHcbka

Free dictionary
99l
Tiéng Viét
Winaray
Wikidata
£ Il

. Free knowledge base
Pycckuin

BiE

Search

e \VSCode does not canonicalize Unicode characters
e Inthis example, we only find 20 out of the 40 occurrences of é

Aa ab, J* 20 of 20

gegeeeceeeee

Session 12 + Alok Menghrajani 19 EPFL - CIVIL-127- 2025

Abusing Unicode!

e This code does not do what you think it
does!

e Should programming languages forbid
using Unicode characters in source code?
In variable names? Only allow a subset of
Unicode?

e You can inspect what's actually going on
using ord(), a hex-editor, or enabling
features in VSCode to draw boxes around
non-ascii characters.

Session 12 + Alok Menghrajani 20 EPFL - CIVIL-127- 2025

UTF-8

e Encodes Unicode using a variable number of bytes (1to 4 bytes)
e 1-byte UTF-8 coincides with ASCII (what were the odds!)

Code point & UTF-8 conversion

First code point Last code point Byte 1 Byte 2
U+0000 U+007F | Oyyyzzzz
U+0080 U+@7FF | 110xxxyy 10yyzzzz
U+0800 U+FFFF | 1110wwww | 10xxxXxyy | 10yyzzzz
U+010000 U+10FFFF | 1111Quvv | 10vvwwww | 10xxXxxyy 10yyzzzz

Session 12 - Alok Menghrajani

21

EPFL - CIVIL-127. 2025

Marble solitaire puzzle

Image source: Amazon product listing, maybe a copyright violation "_(*)_/"

Session 12 + Alok Menghrajani 22 EPFL - CIVIL-127- 2025

https://www.amazon.com/Marble-Solitaire-Made-in-USA/dp/B000CEMCFK

Marble solitaire puzzle

e Rules
o Goal is to be left with one marble

o A marble can capture up, down, left, right by hopping over one other marble
o 00.=>..0

e Tryitonline
e Can you write a computer program to find a solution?

Session 12 - Alok Menghrajani 23 EPFL - CIVIL-127. 2025

https://www.echalk.co.uk/amusements/Games/solitaire/solitaire.html

Marble solitaire puzzle: implementation sketch

e Recursive solution
e We apply a move and then undo it if it

doesn't yield a solution
solve (self, depth) -> bool:

if self.filled == 81:

return []
moves = self.get valid moves ()
for move in moves:
self.apply move (move)
t = solve(self, depth+l)

if t

t.append (move)

return t

self.undo_move (move)

Session 12 - Alok Menghrajani 24 EPFL - CIVIL-127. 2025

Pentominoes & co.

e Once you can write a marble solver, you
can write a pentominoes solver using the

@ @ | exact same strategy!

SWART SMART to adult

GANES GAMES

Session 12 - Alok Menghrajani 25 EPFL - CIVIL-127. 2025

Given a list of numbers reach a sum

e Eg.[4,517,9]+144

o (4+5)*17-9
e You can solve this problem in the exact same way
e You recursively try to build different trees

Session 12 + Alok Menghrajani 26 EPFL - CIVIL-127- 2025

Sudoku

O(8/ 514 1 e Fill numbers from 1-9 so that there are no
duplicates among each row, column, and
3 smaller 3x3 squares
1 6 e Can you write a computer program to find
a solution?
5
4 2 3
6|13]|4
6
3 6 5
2 8

Session 12 - Alok Menghrajani 27 EPFL - CIVIL-127- 2025

Sudoku

Session 12 - Alok Menghrajani

“Easy” puzzles can be solved by only solving for “naked singles”
Naked single == cell which can only take one value

28

EPFL - CIVIL-127. 2025

Sudoku

e "Hard" puzzles can be solved by solving for “naked singles” + “hidden singles”
e Hidden single == value which can only be assigned to a single cell

Session 12 + Alok Menghrajani 29 EPFL - CIVIL-127- 2025

Sudoku

e “Very hard” puzzles require making a guess and then backtracking if the guess
Is incorrect

Session 12 - Alok Menghrajani 30 EPFL - CIVIL-127- 2025

Sudoku: data structures

e \We need a board, which holds 9x9 cells

e To solve for naked singles:
o Each cell starts with a set of possible numbers

o When a cell gets a value v, all the other cells on the same row, column, and smaller square must
remove v from their set

o If acell only has one possible number left, it takes that value
e To solve for hidden singles:

o We can try to create a data structure to keep track of hidden singles, but keeping the data
structure up-to-date can be complicated

o It's probably easiest to scan the rows, columns and inner squares for numbers where only one
possibility appears (243 scans, but there's opportunities to early exit)

Session 12 - Alok Menghrajani 31 EPFL - CIVIL-127- 2025

Sudoku: implementation sketch

e Recursive solution
e But we can't undo!

solve (self) -> bool:

if self.filled == 81:

return self
for ¢ in self.cells():
if len(c.choices) > 1:

for choice in list (c.choices):

self.pick(c, choice)

t = board2.solve ()
if t

return t

Session 12 + Alok Menghrajani 32 EPFL - CIVIL-127- 2025

Sudoku: implementation sketch

e We can copy our entire state prior to
recursing

solve (self) -> bool:

if self.filled == 81:

return self
for ¢ in self.cells():
if len(c.choices) > 1:

for choice in list (c.choices):

board2 = self.copy()

board2.pick(c, choice)

t = board2.solve ()
if t

return t

Session 12 - Alok Menghrajani 33 EPFL - CIVIL-127- 2025

Sudoku: alternative implementation

e Z3is apowerful SMT solver (a SMT solver is a superset of a SAT solver)
e See 4th solution to exercise 2.3

Session 12 + Alok Menghrajani 34 EPFL - CIVIL-127- 2025

https://github.com/vita-epfl/civil127-2025/blob/main/solutions/exercise_2_3/send_more_money_4.py

Regular Expressions (regexp)

e Patterns used to find/replace text
e Regular expressions work at the character level

Session 12 + Alok Menghrajani 35 EPFL - CIVIL-127- 2025

Regular Expressions (regexp)

e . wildcard, match any character
e Repetition (greedy by default)

o+ match previous character one or more times

o * match previous character zero or more times

o ? match previous character zero or one time

o {min, max}where min and min are numbers
e [...]set of characters or ranges to match

o [ax2] willmatch a, x, or 2

o [a-me-9] will match characters in the rangeatomorOto 9
e [~...]set of characters or ranges to not match

o [~ax2] will match everything except a, x, or 2

o [*A-Z] will match everything except the range A to Z

(...) grouping
o \n enables matching previously matched groups, where n is a number
| or operator
~and $ anchor to start and end of line (or text)
\. to match an actual dot ([.] also works)
And more (read the docs)

Session 12 - Alok Menghrajani 36 EPFL - CIVIL-127- 2025

Regular Expressions

e Examples

o [hc]?at will match "at", "cat", "hat". It will also match "sat"

o f.+bar will match "xyzfobar", "foobar", "fooobar" but not "fbar"
o [A-Z][a-z]* will match "Hi", "Hello" but not "hello"

o (.)(.)\2\1 will match "abba" and "aaaa" but not "xyxy"

o (foo)|(bar) will match "foo" and "bar"

o (foo)|bar will match "fooar" and "bar" but not "foo"

e Regqular expressions can be hard to decipher, make sure you comment them

Session 12 - Alok Menghrajani 37 EPFL - CIVIL-127- 2025

Regular Expressions: in VSCode

> | Find (N for history) Aa ab. J* | No results

Session 12 - Alok Menghrajani 38 EPFL - CIVIL-127- 2025

Regular Expressions: command line

® grep, egrep
e sed

Session 12 - Alok Menghrajani 39 EPFL - CIVIL-127- 2025

Software-engineering(*) related methodologies

e At the individual level
o Pomodoro
o Getting Things Done (GTD)
o How to email

o At the team level

Adile / Scrum

o Waterfall

o Lean/Kanban

@]

(@)

* also used in other engineering fields

Session 12 - Alok Menghrajani

40

EPFL - CIVIL-127. 2025

https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Getting_Things_Done
https://blog.xaviershay.com/articles/a-system-for-email.html
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Lean_manufacturing
https://en.wikipedia.org/wiki/Kanban_(development)

Technical interviews

e Coding or problem solving puzzles

e Multiple phone screens
o Coding interviews using coderpad or similar tool

e Multiple on-site interviews
o White board coding
o Design questions
o Q&A sessions

e The technical interview is often similar across software engineering, data
analysts, ML, and product/project managers

e Candidates are usually allowed to pick their preferred programming language,
the interviewer has to adapt

e Use books, online resources, and mock interviews to practice

Session 12 - Alok Menghrajani 41 EPFL - CIVIL-127- 2025

Coding questions types

e Simple
o Find first duplicate character in a file
o Find or build palindromes
o Combinatorics (e.qg. all triplets which sum to N) or largest subsets

e Medium
o Merge two sorted lists
o Do something with trees or graphs in general
o Min edit distance of two strings
o Football scores and other DP problems

e Hard

Marble solver

Bignum library

Mini regular expression matcher
m-th smallest value in k sorted arrays

O O O O

Session 12 - Alok Menghrajani 42 EPFL - CIVIL-127- 2025

Interview Tips

e Write clean, readable code. Even if it's just an interview, pretend it's code that
will need to be maintained

e Communicate. Explain your assumptions, your thought process, ...

e Practice with books, online resources, friends, mock interviews

e Be comfortable with the data structures and algorithms which come up in your
field

e Get to a (partial or complete) solution first, then try to improve it

e Be honest, ask questions. Don't try to outsmart your interviewers

e When in doubt, companies lean towards no-hire, so apply to lots of companies

Session 12 - Alok Menghrajani 43 EPFL - CIVIL-127- 2025

https://www.youtube.com/watch?v=NRNB8MIdmcg

Gain coding experience

e Contribute to your favorite open source projects
e Advent of code: speed coding, easy to medium difficulty, with an emphasis on algorithms —
lots of discussions and solutions available on reddit and github

e TopCoder and CodeJam: hard problems, emphasis on algorithms — some of the solutions
might not be easy to find

Project Euler: usually, difficult math problems

Leet Code: organized by topics

Code Golf: size optimization

r/dailyprogrammer

Cryptopals: hard, cryptography related puzzles

Olympiads: hard. Google a country’s local chapter for sample questions

ICFP Programming Contest: very hard (borderline research topics)

And lots of other sites...

These puzzles often get used as coding interview questions

Session 12 « Alok Menghrajani 44 EPFL - CIVIL-127. 2025

https://adventofcode.com/2024/events
https://archive.topcoder.com/ProblemArchive
https://github.com/google/coding-competitions-archive
https://projecteuler.net/archives
https://leetcode.com/explore/
https://codegolf.stackexchange.com/
https://www.reddit.com/r/dailyprogrammer/
https://cryptopals.com/

