
Session 11 • Alok Menghrajani

EPFL, CIVIL-127
Programming and software development for engineers

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Schedule

● Tuesday, May 13th
○ We’ll discuss writing maintainable code, data formats, databases, and cloud services

● Tuesday, May 20th
○ Are there any topics you would like to learn about?

● Friday, May 23rd
○ Project due at 6pm

● Tuesday, May 27th
○ Some of you will present your one-pager in front of the class

2

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Writing maintainable code

3

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Writing maintainable code

● Code is maintainable if your future self or someone else can easily fix bugs or
add features to the existing codebase
○ Knowledge currently in your head will be forgotten when you re-visit the code. Write down

information you think will be useful later

● For the final project:
○ “We'll review your code structure and comments. We want to see class-level and method-level

comments. You will earn up to 1 point for how your code is written.”

4

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Code comments

class Cal():

 def __init__(self):

 ...

 def print(self):

 ...

 def week_start(self, day):

 ...

 ...

5

● Comment your classes, methods, and
functions

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Code comments

Implements the API per

https://github.com/vita-epfl/…/Lab4_instructions.md

class Cal():

 # Initializes the class. The current month and year

are used by default.

 # The week starts with Monday.

 def __init__(self):

 ...

 # Sets the start day of the week. Raises an

exception if day is invalid.

 def week_start(self, day):

 ...

 def print(self):

 ...

 ...

6

● Use the correct comment style:
○ use ''' for class and

function/method comments
○ # for code comments

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Code comments

class Cal():

 '''

 Implements the API per

 https://github.com/vita-epfl/…/Lab4_instructions.md

 '''

 def __init__(self):

 '''

 Initializes the class. The current month and

year are used by default.

 The week starts with Monday.

 '''

 ...

 ...

7

● Make sure your comments are adding
value. E.g. no need to comment the
initializer if you don’t have anything to say

● Use links, as long as the links are public
● Explain why you are doing something
● Use drawings if they help explain

concepts
● Describe your assumptions!

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Writing maintainable code

● Real world example: lib/heapq.py
○ ~120 lines of comment at the top of the file, gives an overview
○ ASCII diagram
○ http links to additional resources
○ Every method is commented
○ Tricky pieces of the code are also commented

8

https://github.com/python/cpython/blob/27ed64575d34f04029ba1d353810f3db4f4f045b/Lib/heapq.py

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

General documentation

● https://diataxis.fr/
○ four forms of documentation: tutorials, how-to guides, technical reference, and explanation

● https://passo.uno/seven-action-model/
○ Seven-action Documentation Model

● https://docsfordevelopers.com/
● https://readthedocs.com and https://writethedocs.org/
● Lots of other projects aim to help software engineers write better

documentation

9

https://diataxis.fr/
https://passo.uno/seven-action-model/
https://docsfordevelopers.com/
https://about.readthedocs.com/?ref=readthedocs.com
https://writethedocs.org/

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Technical writing

● Technical writing is an important skill, for all fields of engineering
○ “You can have brilliant ideas, but if you can't get them across, your ideas won't get

you anywhere.” Lee Iacocca
● Like most other skills, you can invest time now to improve the skill for the rest

of your life
● Online resources

○ https://developers.google.com/tech-writing/one
○ https://developers.google.com/tech-writing/two
○ https://developers.google.com/tech-writing/error-messages
○ https://en.wikipedia.org/wiki/BLUF_(communication)

10

https://developers.google.com/tech-writing/one
https://developers.google.com/tech-writing/two
https://developers.google.com/tech-writing/error-messages
https://en.wikipedia.org/wiki/BLUF_(communication)

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Data Interchange Formats

11

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Data Interchange Formats

● Provide a shared format for computers to exchange data
● Enable storing data for later use
● It is less error prone and faster to use an existing format vs inventing your own

bespoke format

12

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

JavaScript Object Notation (JSON)

{

 "name": "John Doe",

 "age": 20,

 "isAsleep": false,

 "nationality": null,

 "hobbies": [

 "Cooking",

 "Football",

 "Coding"

],

 "address": {

 "country": "Switzerland",

 "state": "Vaud",

 "city": "Lausanne",

 "street": "Av. de la gare 10"

 }

}

13

● JSON is based on a very restricted subset
of JavaScript literals

● Very widely used file format
● E.g.: format for the project’s config file
● 6 datatypes

○ String
○ Floating point (*)
○ Boolean
○ Null
○ Array
○ Dictionary

* JavaScript float type can represent integers
from -(253 - 1) to (253 - 1). For 64-bit integers, it is
common to piggyback on strings

● https://www.rfc-editor.org/rfc/rfc8259

https://www.rfc-editor.org/rfc/rfc8259

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

JSON

14

Pros
● Very widely used
● Human readable
● Self-describing

Cons
● No comments
● Space inefficient
● Renaming fields can be hard

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Protocol Buffers (protobuf)
Schema
message Person {

 string name = 1;

 int32 age = 2;

 bool isAsleep = 3;

 optional string nationality = 4;

 repeated string hobbies = 5;

 Address address = 6;

}

message Address {

 string country = 1;

 string state = 2;

 string city = 3;

 string street = 4;

}

Value
0a084a6f686e20446f65101418002a07436f6f6b696e672a08466f6f7462616c6c2a06436f6469
6e6732300a0b537769747a65726c616e641204566175641a084c617573616e6e65221141762e20
6465206c612067617265203130

● Explicit schema
● Binary message format
● Widely used within data centers when

servers are communicating with each
other (e.g. microservices)

15

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Comma/Tab separated values (CSV/TSV)

name,age,address
John Doe,20,"Av. de la gare 10, Lausanne"
Alice,21,"Rte. de la Sorge 23, Lausanne"

● Used to represent tabular data
● Lots of data import issues in practice,

important to understand your specific
implementations limitations and test edge
cases
○ Not all implementations support newlines

within quotes or quotes inside quotes
○ Data type confusion (e.g. Excel

auto-converting text values to dates)

16

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Pickle

class Person:

 def __init__(self, name, age, is_asleep,

nationality, hobbies, address):

 self.name = name

 self.age = 20

 self.isAsleep = is_asleep

 self.nationality = nationality

 self.hobbies = hobbies

 self.address = address

john = Person(...)

800495e4000000000000008c085f5f6d61696e5f5f948c06506572736f6e9493942981947d9
4288c046e616d65948c084a6f686e20446f65948c03616765944b148c08697341736c656570
94898c0b6e6174696f6e616c697479944e8c07686f6262696573945d94288c07436f6f6b696e
67948c08466f6f7462616c6c948c06436f64696e6794658c0761646472657373947d94288c07
636f756e747279948c0b537769747a65726c616e64948c057374617465948c0456617564948c
0463697479948c084c617573616e6e65948c06737472656574948c1141762e206465206c6120
67617265203130947575622e

● Python’s native object
serializer/deserializer

● Warning: The pickle module is not
secure!

● Historically, all native object deserializers
have been prone to arbitrary code
execution. This has been true for Python,
Java, PHP, etc.

● Used in some cases to exchange ML data

17

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Extensible Markup Language (XML)

<?xml version="1.0"?>

<person name="John Doe" age="20">

 <isAsleep>false</isAsleep>

 <hobbies>

 <hobby>Cooking</hobby>

 <hobby>Football</hobby>

 <hobby>Coding</hobby>

 </hobbies>

 <address country="Switzerland" state="Vaud"

city="Lausanne" street="Av. de la gare 10"/>

</person>

● A tree of nodes
● Nodes are defined with an opening and

closing tag
● Nodes can have key-value attributes
● Nodes can have child nodes
● The document type definition (DTD)

specifies the schema for a document
● As an author: not always clear when to

use an attribute vs a child node
● Examples

○ Vector graphics (svg)
○ Microsoft Office XML formats (docx, xlsx)

18

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

HTML

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport"
content="width=device-width,
initial-scale=1">
 <title>HTML sample</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <h1>Page Title</h1>
 <script src="scripts.js"></script>
</body>
</html>

● Like XML with minor differences
○ Some tags don’t need a closing tag

● Used for web pages and web applications

19

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Markdown

20

Page title

- Bullet point 1

- Bullet point 2

Some text with [a link](https://…)

● Easy-to-read text format with support for
basic formatting

● Exact syntax and features differ between
implementations

● Tip: VSCode lets you preview markdown
files as you type

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

HTTP API server

21

● What is an API server?
○ HTTP Server which exposes endpoints (e.g. /foo and /bar)
○ Typically, takes a JSON request and returns a JSON response

● Two main choices for Python: Flask and Django

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

API Server

app = Flask("demo")

class Temperature(BaseModel):

 temp: int

 note: str

@app.route("/temp")

def temp():

 temp = 20

 if temp < 0:

 note = "it's freezing"

 elif temp < 18:

 note = "it's cold"

 else:

 note = "it's nice"

 t = Temperature(temp=temp, note=note)

 return t.model_dump_json()

22

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Databases

23

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Structured Query Language (SQL)

24

● Relational data is stored in a collection of tables
● SQL provides a language to insert, update, and query the data

○ In 2025, SQL might seem primitive but it is an industry-wide standard

● SQL is implemented by lots of engines: SQLite, MySQL/MariaDB, Postgres,
Microsoft SQL Server, Oracle, etc. These engines share a common set of
features

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

SQL

25

● Creating tables
○ CREATE TABLE table_name (field1_name field1_type, field2_name, field2_type, …)

● Inserting data
○ INSERT INTO table_name (field1_name, field2_name, …) VALUES (field1_value, field2_value, …)

● Viewing data
○ SELECT * FROM table_name
○ SELECT * FROM table_name WHERE some_condition

● Updating data
○ UPDATE table_name SET field1_name=new_value WHERE some_condition

● Programming languages typically offer object-relational mapper (ORM)
libraries, making it easier to interact with SQL databases

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Example: books + authors

● We want an authors table, with id and name columns
● CREATE TABLE authors(id integer primary key autoincrement, name string);

● INSERT INTO authors (name) VALUES ("Jeff Zentner")

● …
● sqlite> select * from authors;

+----+--------------------+

| id | name |

+----+--------------------+

| 1 | Jeff Zentner |

| 2 | Brittany Cavallaro |

| 3 | J. R. R. Tolkien |

+----+--------------------+

26

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Example: books + authors

● Next, we create a books table with id and title columns
● CREATE TABLE books (id integer primary key autoincrement, title string);

● INSERT INTO books (title) VALUES ("Sunrise Nights")

● …
● sqlite> select * from BOOKS;

+----+-----------------------+
| id | title |
+----+-----------------------+
1	Sunrise Nights
2	The Hobbit
3	The Lord of the Rings
+----+-----------------------+

27

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Example: books + authors
● Finally, we create a books_authors table. This table enable us to have multiple authors

per book and also track all the books a given has published
● CREATE TABLE books_authors (book_id integer, author_id integer);

● INSERT INTO books_authors (book_id, author_id) VALUES (1, 1)

● …
● sqlite> select * from books_authors;

+---------+-----------+
| book_id | author_id |
+---------+-----------+
1	1
1	2
2	3
3	3
+---------+-----------+

28

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Example: books + authors

● We can run queries to join data between different tables
● sqlite> select books.id, books.title, authors.id, authors.name from books_authors join books on

books_authors.book_id=books.id join authors on books_authors.author_id=authors.id;
+----+-----------------------+----+--------------------+

| id | title | id | name |

+----+-----------------------+----+--------------------+

| 1 | Sunrise Nights | 1 | Jeff Zentner |

| 1 | Sunrise Nights | 2 | Brittany Cavallaro |

| 2 | The Hobbit | 3 | J. R. R. Tolkien |

| 3 | The Lord of the Rings | 3 | J. R. R. Tolkien |

+----+-----------------------+----+--------------------+

29

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Example: books + authors

● We can filter rows, e.g. by authors who have published at least two books:
● sqlite> select authors.id, authors.name, count(1) as c from books_authors join authors on

books_authors.author_id=authors.id group by author_id having c>=2;
+----+------------------+---+
| id | name | c |
+----+------------------+---+
| 3 | J. R. R. Tolkien | 2 |
+----+------------------+---+

30

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Example: books + authors

● Or by books which were published by at least two authors:
● sqlite> select books.id, books.title, count(1) as c from books_authors join books on

books_authors.book_id=books.id group by book_id having c>=2;
+----+----------------+---+
| id | title | c |
+----+----------------+---+
| 1 | Sunrise Nights | 2 |
+----+----------------+---+

31

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Why do people love SQL?

● SQL’s main strength is that it enables building systems which are (usually) fast
at answering queries about the data

● This enables implementing complex computer systems today which can
service future needs (i.e. you don’t need to think about the shape of future
queries)

32

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Why do people love SQL?

● SQL provides transactions: a set of writes will either all succeed or fail (*) as
well as isolation

* different products provide vastly different transactional guarantees (see
https://jepsen.io/)

33

https://jepsen.io/

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

NoSQL

● Sometimes you just want a fast key-value store
● Or you want to store large json blobs
● Examples:

○ Redis
○ DynamoDB
○ Cassandra
○ MongoDB
○ etc.

● It can be hard to pick among these products!

34

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Realtime databases

● Applications are automatically informed as new data is added to the database
● Each query creates a data stream, which gets populated by the database

engine
● Example:

○ Parse
○ Firebase
○ RethinkDB
○ etc.

35

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Graph-oriented databases

● Most popular: GraphQL (older solutions, such as Neo4J, do exist)
● Minimizes bandwidth and round trips when dealing with graph-oriented data
● Can be used for reads only or reads+writes
● Typically also provides real time updates

36

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Analytics databases

● Query TB or PB-sized datasets
● Typically, query is split and processed on hundreds of servers at the same time
● Some analytics engines are able to instantly return approximate responses
● Some analytics products implement SQL, others work differently
● Examples

○ Hive
○ PrestoDB
○ etc.

37

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Time-series databases

● Store events
● Can quickly return counts, max, min, average over arbitrary windows
● Typically handles compressions and stores historical data at a coarser

granularity
○ E.g. 1-min resolution for last 7 days, 1-hour resolution for last 30 days, 1-day resolution for last

year.

● Typically coupled with monitoring and notifications

38

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Cloud Infrastructure

39

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Providers

● Big Three
○ Amazon Web Services (AWS)
○ Google Cloud Platform (GCP)
○ Microsoft Azure

● A whole bunch of smaller players
○ IBM Cloud, Oracle Cloud Infrastructure, Cloudflare, Salesforce, etc.

40

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Providers

● On-demand data storage and compute
○ Typically billed at a per-MB and per-second granularity

● In theory, cheaper than to buy or rent your own hardware and datacenter
space

● Makes sense for sporadic or unpredictable workloads
○ E.g. training a ML model, it’s cheaper to rent a GPU-month than to buy the hardware
○ Serverless functions provide a way to handle requests without having to allocate a fixed

number of servers

41

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Providers

● The industry is slowly moving towards standardization
● E.g.

○ Terraform to define resources
○ Containers to package applications
○ Kubernetes (K8s) to manage deployments
○ “Cattle vs Pets” mentality is spreading

● But in practice, moving from one cloud provider to another is difficult
○ Vendor lock-in!

42

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Amazon AWS database-related products

43

● Amazon Aurora
● Amazon DynamoDB
● Amazon ElastiCache
● Amazon Keyspaces (for Apache Cassandra)
● Amazon MemoryDB
● Amazon Neptune
● Amazon Relational Database Service
● Amazon RDS for Db2
● Amazon RDS on VMware
● Amazon Quantum Ledger Database (Amazon QLDB)
● Amazon Timestream
● Amazon DocumentDB (with MongoDB compatibility)
● Amazon Lightsail managed databases

● Amazon Athena
● Amazon CloudSearch
● Amazon DataZone
● Amazon EMR
● Amazon FinSpace
● Amazon Kinesis
● Amazon Data Firehose
● Amazon Managed Service for Apache Flink
● Amazon Kinesis Data Streams
● Amazon Kinesis Video Streams
● Amazon OpenSearch Service
● Amazon OpenSearch Serverless
● Amazon Redshift
● Amazon Redshift Serverless
● QuickSight
● AWS Clean Rooms
● AWS Data Exchange
● AWS Data Pipeline
● AWS Entity Resolution
● AWS Glue
● AWS Lake Formation
● Amazon Managed Streaming for Apache Kafka

(Amazon MSK)

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

Amazon AWS other major products

● EC2: elastic compute
● S3: key-value storage
● Lambda: serverless compute
● Cognito: user authentication layer
● SNS: email/SMS notifications
● SQS: queue
● Lots of ML and AI-related products

44

Session 11 • Alok Menghrajani EPFL • CIVIL-127• 2025

More about cloud providers

● AWS has over 200 products
● GCP and Azure have similar products, with different names
● Similar products can result in vastly different performance and costs
● Picking the right set of tools is hard!

45

