EPFL, CIVIL-127

Programming and software development for engineers

Session 11 « Alok Menghrajani

Schedule

e Tuesday, May 13th
o We'll discuss writing maintainable code, data formats, databases, and cloud services
e Tuesday, May 20th

o Are there any topics you would like to learn about?
e Friday, May 23rd

o Project due at 6pm

e Tuesday, May 27th

o Some of you will present your one-pager in front of the class

Session 11 « Alok Menghrajani 2 EPFL - CIVIL-127- 2025

Writing maintainable code

Session 11 « Alok Menghrajani 3 EPFL - CIVIL-127- 2025

Writing maintainable code

e Code is maintainable if your future self or someone else can easily fix bugs or

add features to the existing codebase
o Knowledge currently in your head will be forgotten when you re-visit the code. Write down
information you think will be useful later
e Forthe final project:
o "We'll review your code structure and comments. We want to see class-level and method-level
comments. You will earn up to 1 point for how your code is written.”

Session 11 - Alok Menghrajani 4 EPFL - CIVIL-127- 2025

Code comments

Cal): e Comment your classes, methods, and
functions

__init (self):

print (self) :

week start(self, day):

Session 11 « Alok Menghrajani 5 EPFL - CIVIL-127- 2025

Code comments

__init (self):

week start(self, day):

print (self) :

Session 11 « Alok Menghrajani

Use the correct comment style:

O

O

use for class and

function/method comments

for code comments

EPFL - CIVIL-127- 2025

Code comments

e Make sure your comments are adding
value. E.g. no need to comment the
initializer if you don't have anything to say

e Uselinks, as long as the links are public

e Explain why you are doing something

e Use drawings if they help explain
concepts

e Describe your assumptions!

Implements the API per

https: github.com/vita-epfl/../Lab4 instructions.md

__init (self):

LI B |

Initializes the class. The current month and
Fault.

¢ starts with Monday.

Session 11 « Alok Menghrajani 7 EPFL - CIVIL-127- 2025

Writing maintainable code

e Real world example: lib/heapg.py

(@)

O O O O

~120 lines of comment at the top of the file, gives an overview
ASCII diagram

http links to additional resources

Every method is commented

Tricky pieces of the code are also commented

Session 11 « Alok Menghrajani 8

EPFL - CIVIL-127. 2025

https://github.com/python/cpython/blob/27ed64575d34f04029ba1d353810f3db4f4f045b/Lib/heapq.py

General documentation

e https://diataxis.fr/
o four forms of documentation: tutorials, how-to guides, technical reference, and explanation

e https://passo.uno/seven-action-model/
o Seven-action Documentation Model

e https://docsfordevelopers.com/

https://readthedocs.com and https://writethedocs.org/

e Lots of other projects aim to help software engineers write better
documentation

Session 11 « Alok Menghrajani 9 EPFL - CIVIL-127- 2025

https://diataxis.fr/
https://passo.uno/seven-action-model/
https://docsfordevelopers.com/
https://about.readthedocs.com/?ref=readthedocs.com
https://writethedocs.org/

Technical writing

e Technical writing is an important skill, for all fields of engineering
o "You can have brilliant ideas, but if you can't get them across, your ideas won't get
you anywhere.” Lee lacocca
e Like most other skills, you can invest time now to improve the skill for the rest
of your life
e Online resources
https://developers.google.com/tech-writing/one
https://developers.google.com/tech-writing/two

https://developers.google.com/tech-writing/error-messages
https://en.wikipedia.org/wiki/BLUF_(communication)

o O O O

Session 11 - Alok Menghrajani 10 EPFL - CIVIL-127- 2025

https://developers.google.com/tech-writing/one
https://developers.google.com/tech-writing/two
https://developers.google.com/tech-writing/error-messages
https://en.wikipedia.org/wiki/BLUF_(communication)

Data Interchange Formats

Session 11 » Alok Menghrajani 11 EPFL - CIVIL-127. 2025

Data Interchange Formats

e Provide a shared format for computers to exchange data
e Enable storing data for later use

e [tisless error prone and faster to use an existing format vs inventing your own
bespoke format

Session 11 - Alok Menghrajani 12 EPFL - CIVIL-127- 2025

JavaScript Object Notation (JSON)

e JSON is based on a very restricted subset
‘namet: fJohn Doet of JavaScript literals
regEte A e \Very widely used file format
e E.g.: format for the project’s config file
e 6 datatypes
o String
Floating point (*)
Boolean
Null
Array
Dictionary

"isAsleep":
"nationality":
"hobbies": [

"Cooking",

o O O O O

"address": {

"country": "Switzerland",

* JavaScript float type can represent integers
from -(2%3 - 1) to (2% - 1). For 64-bit integers, it is
common to piggyback on strings

e https://www.rfc-editor.org/rfc/rfc8259

"state": "Vaud",

"Cj.TV"' "

"street": "Av. de la gare 10"

Session 11 « Alok Menghrajani 13 EPFL - CIVIL-127- 2025

https://www.rfc-editor.org/rfc/rfc8259

JSON

Pros
e Very widely used
e Human readable
e Self-describing

Session 11 « Alok Menghrajani

14

Cons

No comments
Space inefficient
Renaming fields can be hard

EPFL - CIVIL-127. 2025

Protocol Buffers (protobuf)

Schema e Explicit schema

e Binary message format

e Widely used within data centers when
\sleep = 3; servers are communicating with each
optional nationality = 4; other (e.g. microservices)

repeated hobbies = 5;

age Person {

name = 1;

Address address

Value
0a084a6f686e20446f65101418002a07436f6f6b696e672a0846616f7462616c6c2a06436f6469
6e6732300a0b537769747a65726c616e641204566175641a084c617573616e6e65221141762e20
6465206c612067617265203130

Session 11 « Alok Menghrajani 15 EPFL - CIVIL-127- 2025

Comma/Tab separated values (CSV/TSV)

name,age,address
John Doe,20,"Av. de la gare 10, Lausanne’
Alice,21,"Rte. de la Sorge 23, Lausanne”

Session 11 « Alok Menghrajani

e Used to represent tabular data

e Lots of data import issues in practice,
important to understand your specific
Implementations limitations and test edge

cases
o Not all implementations support newlines
within quotes or quotes inside quotes
o Data type confusion (e.g. Excel
auto-converting text values to dates)

16 EPFL - CIVIL-127- 2025

e Python's native object
__init_ (self, name, age, is_asleep, serializer/deserializer

nationality, hobbies, address): o arning: The pickle module is not
self.name = name secure!

self.age = 20 e Historically, all native object deserializers
have been prone to arbitrary code
execution. This has been true for Python,
Java, PHP, etc.

e Used in some cases to exchange ML data

self.isAsleep = is asleep

self.nationality = nationality
self.hobbies = hobbies

self.address = address

john = P (oo o

800495e4000000000000008c085f5f6d61696e5f5f948c06506572736f669493942981947d9
4288c046e616d65948c084a6f686e20446f65948c03616765944b148c08697341736c656570

94898c0b6e6174696f6e616c697479944e8c07686f6262696573945d94288c07436f6f6b696e

67948c08466f6f7462616c6c948c06436f64696e6794658c0761646472657373947d94288c07
636f756e747279948c0b537769747a65726c616e64948c057374617465948c045661756494 8¢
0463697479948c084c617573616e6€65948c06737472656574948c1141762e206465206¢c6120
67617265203130947575622e

Session 11 » Alok Menghrajani 17 EPFL - CIVIL-127. 2025

Extensible Markup Language (XML)

version=ti.0" e Atree of nodes
name="John Doe™ age="20" e Nodes are defined with an opening and

closing tag

e Nodes can have key-value attributes

e Nodes can have child nodes

e The document type definition (DTD)
specifies the schema for a document

e As an author: not always clear when to
use an attribute vs a child node

e Examples
o Vector graphics (svg)
o Microsoft Office XML formats (docx, xIsx)

false
Cooking
Football

Coding

country="Switzerland" state="Vaud"

city="Lausanne" street="Av. de la gare 10"

Session 11 « Alok Menghrajani 18 EPFL - CIVIL-127- 2025

<!DOCTYPE html> e Like XML with minor differences
< lang="en"> o Some tags don't need a closing tag

< ? e Used for web pages and web applications
< charset="utf-8">

< name="viewport"
content="width=device-width,
initial-scale=1">

< >HTML sample</ >

< rel="stylesheet" href="style.css">
</ >
>
>Page Title</hl1>
src="scripts.js"></

Session 11 « Alok Menghrajani 19 EPFL - CIVIL-127- 2025

Markdown

e [Easy-to-read text format with support for
basic formatting

e Exact syntax and features differ between

- Bullet point 1 Implementations

e Tip: VSCode lets you preview markdown

- Bull i 2 :
ullet point files as you type

Some text with [a link] (https://..)

Session 11 « Alok Menghrajani 20 EPFL - CIVIL-127- 2025

HTTP API server

e Whatis an APl server?
o HTTP Server which exposes endpoints (e.g. /foo and /bar)
o Typically, takes a JSON request and returns a JSON response

e Two main choices for Python: Flask and Django

Session 11 - Alok Menghrajani 21 EPFL - CIVIL-127- 2025

API Server

app = Flask ("demo")

Temperature (BaseModel) :
temp: int

note: str

Qapp.route ("/temp")
temp () :
temp = 20
if temp < O:
note = "it's freezing"
elif temp < 18:
note = "it's cold"
eleges

note

= Temperature (temp=temp, note=note)

return t.model dump json ()

Session 11 « Alok Menghrajani EPFL - CIVIL-127- 2025

Databases

Session 11 « Alok Menghrajani 23 EPFL - CIVIL-127- 2025

Structured Query Language (SQL)

e Relational data is stored in a collection of tables

e SQL provides a language to insert, update, and query the data
o In2025, SQL might seem primitive but it is an industry-wide standard

e SQL isimplemented by lots of engines: SQLite, MySQL/MariaDB, Postgres,
Microsoft SQL Server, Oracle, etc. These engines share a common set of
features

Session 11 - Alok Menghrajani 24 EPFL - CIVIL-127- 2025

SQL

e Creating tables

o CREATE TABLE table_name (field1_name field1_type, field2_name, field2_type, ...)
e Inserting data

o INSERT INTO table_name (field1_name, field2_name, ...) VALUES (field1_value, field2_value, ...)
e Viewing data

o SELECT * FROM table_name

o SELECT * FROM table_name WHERE some_condition

e Updating data
o UPDATE table_name SET field1l_name=new_value WHERE some_condition
e Programming languages typically offer object-relational mapper (ORM)
libraries, making it easier to interact with SQL databases

Session 11 - Alok Menghrajani 25 EPFL - CIVIL-127- 2025

Example: books + authors

We want an authors table, with 1id and name columns

[]

® CREATE TABLE authors(id integer primary key autoincrement, name string);
® INSERT INTO authors (name) VALUES ("Jeff Zentner")
[]
[]

sqlite> select * from authors;

| 1 | Jeff Zentner |
| 2 | Brittany Cavallaro |
| 3

| 3. R. R. Tolkien |
e T L +

Session 11 - Alok Menghrajani 26 EPFL - CIVIL-127. 2025

Example: books + authors

Next, we create a books table with id and title columns

[]

® CREATE TABLE books (id integer primary key autoincrement, title string);
® INSERT INTO books (title) VALUES ("Sunrise Nights")
[]
[]

sqlite> select * from BOOKS;

1	Sunrise Nights
2	The Hobbit
3	The Lord of the Rings
e T T +

Session 11 - Alok Menghrajani 27 EPFL - CIVIL-127- 2025

Example: books + authors

Finally, we create a books_authors table. This table enable us to have multiple authors
per book and also track all the books a given has published

® CREATE TABLE books_authors (book id integer, author_id integer);

® INSERT INTO books_ authors (book_id, author_id) VALUES (1, 1)
o

o

sqlite> select * from books_authors;

Hmmmm - Fmmmmmm - +
| book _id | author id |
Hmmmm - Fmmmmmm - +
1	1
1	2
2	3
3	3
Hmmmm - Fmmmmmm - +

Session 11 - Alok Menghrajani 28 EPFL - CIVIL-127. 2025

Example: books + authors

e We can run queries to join data between different tables

® sqglite> select books.id, books.title, authors.id, authors.name from books authors join books on
books authors.book id=books.id join authors on books authors.author_id=authors.id;

e T T e T L +
| id | title | id | name |
e T T e T L +
1	Sunrise Nights	1	Jeff Zentner
1	Sunrise Nights	2	Brittany Cavallaro
2	The Hobbit	3	3. R. R. Tolkien
3	The Lord of the Rings	3	J. R. R. Tolkien
e T T e T L +

Session 11 - Alok Menghrajani 29 EPFL - CIVIL-127. 2025

Example: books + authors

We can filter rows, e.g. by authors who have published at least two books:
o

sqlite> select authors.id, authors.name, count(1) as c from books authors join authors on
books authors.author_id=authors.id group by author_id having c>=2;

e T +---+
| id | name | c |
e T +---+
| 3 | 3. R. R. Tolkien | 2 |
e T +---+

Session 11 « Alok Menghrajani

30 EPFL - CIVIL-127. 2025

Example: books + authors

e Or by books which were published by at least two authors:
® sqglite> select books.id, books.title, count(l) as c from books authors join books on
books authors.book id=books.id group by book id having c>=2;
R it +---+
| id | title | c |
R it +---+
| 1 | Sunrise Nights | 2 |
R it +---+

Session 11 « Alok Menghrajani

31 EPFL - CIVIL-127. 2025

Why do people love SQL?

e SQL’'s main strength is that it enables building systems which are (usually) fast
at answering queries about the data

e This enables implementing complex computer systems today which can
service future needs (i.e. you don't need to think about the shape of future
queries)

Session 11 - Alok Menghrajani 32 EPFL - CIVIL-127- 2025

Why do people love SQL?

e SQL provides transactions: a set of writes will either all succeed or fail (*) as
well as isolation

* different products provide vastly different transactional guarantees (see
https://jepsen.io/)

Session 11 - Alok Menghrajani 33 EPFL - CIVIL-127- 2025

https://jepsen.io/

NoSQL

e Sometimes you just want a fast key-value store
e Or you want to store large json blobs
e Examples:

o Redis

o DynamoDB
o Cassandra
o MongoDB
o etc.

e |t can be hard to pick among these products!

Session 11 - Alok Menghrajani 34 EPFL - CIVIL-127- 2025

Realtime databases

e Applications are automatically informed as new data is added to the database
e Each query creates a data stream, which gets populated by the database

engine
e Example:
o Parse
o Firebase
o RethinkDB
o etc.

Session 11 - Alok Menghrajani 35 EPFL - CIVIL-127- 2025

Graph-oriented databases

Most popular: GraphQL (older solutions, such as Neo4J, do exist)

Minimizes bandwidth and round trips when dealing with graph-oriented data
Can be used for reads only or reads+writes

Typically also provides real time updates

Session 11 - Alok Menghrajani 36 EPFL - CIVIL-127- 2025

Analytics databases

e Query TB or PB-sized datasets

e Typically, query is split and processed on hundreds of servers at the same time
e Some analytics engines are able to instantly return approximate responses

e Some analytics products implement SQL, others work differently

o

Examples
o Hive
o PrestoDB
o etc.

Session 11 - Alok Menghrajani 37 EPFL - CIVIL-127- 2025

Time-series databases

e Store events

e Can quickly return counts, max, min, average over arbitrary windows
e Typically handles compressions and stores historical data at a coarser

granularity
o E.g.1-min resolution for last 7 days, 1-hour resolution for last 30 days, 1-day resolution for last
year.

e Typically coupled with monitoring and notifications

Session 11 - Alok Menghrajani 38 EPFL - CIVIL-127- 2025

Cloud Infrastructure

Session 11 - Alok Menghrajani 39 EPFL - CIVIL-127- 2025

Providers

e Big Three
o Amazon Web Services (AWS)
o Google Cloud Platform (GCP)
o Microsoft Azure
e A whole bunch of smaller players
o IBM Cloud, Oracle Cloud Infrastructure, Cloudflare, Salesforce, etc.

Session 11 - Alok Menghrajani 40 EPFL - CIVIL-127. 2025

Providers

e On-demand data storage and compute
o Typically billed at a per-MB and per-second granularity
e Intheory, cheaper than to buy or rent your own hardware and datacenter
space
e Makes sense for sporadic or unpredictable workloads

o E.g.training a ML model, it's cheaper to rent a GPU-month than to buy the hardware

o Serverless functions provide a way to handle requests without having to allocate a fixed
number of servers

Session 11 - Alok Menghrajani 41 EPFL - CIVIL-127- 2025

Providers

e The industry is slowly moving towards standardization

o EQ.
o Terraform to define resources
o Containers to package applications
o Kubernetes (K8s) to manage deployments

o “Cattle vs Pets” mentality is spreading

e But in practice, moving from one cloud provider to another is difficult
o Vendor lock-in!

Session 11 - Alok Menghrajani 42 EPFL - CIVIL-127- 2025

Amazon AWS database-related products

Amazon Aurora

Amazon DynamoDB

Amazon ElastiCache

Amazon Keyspaces (for Apache Cassandra)
Amazon MemoryDB

Amazon Neptune

Amazon Relational Database Service
Amazon RDS for Db2

Amazon RDS on VMware

Amazon Quantum Ledger Database (Amazon QLDB)

Amazon Timestream

Amazon DocumentDB (with MongoDB compatibility)

Amazon Lightsail managed databases

Session 11 « Alok Menghrajani

43

Amazon Athena

Amazon CloudSearch

Amazon DataZone

Amazon EMR

Amazon FinSpace

Amazon Kinesis

Amazon Data Firehose)
Amazon Managed Service for Apache Flink
Amazon Kinesis Data Streams

Amazon Kinesis Video Streams

Amazon OpenSearch Service

Amazon OpenSearch Serverless
Amazon Redshift

Amazon Redshift Serverless

QuickSight

AWS Clean Rooms

AWS Data Exchange

AWS Data Pipeline

AWS Entity Resolution

AWS Glue)

AWS Lake Formation)

Amazon Managed Streaming for Apache Kafka
(Amazon MSK?

EPFL - CIVIL-127. 2025

Amazon AWS other major products

EC2: elastic compute

S3: key-value storage

Lambda: serverless compute
Cognito: user authentication layer
SNS: email/SMS notifications
SQS: queue

Lots of ML and Al-related products

Session 11 » Alok Menghrajani 44 EPFL - CIVIL-127. 2025

More about cloud providers

AWS has over 200 products
GCP and Azure have similar products, with different names

Similar products can result in vastly different performance and costs
Picking the right set of tools is hard!

Session 11 - Alok Menghrajani 45 EPFL - CIVIL-127. 2025

