
Session 10 • Alok Menghrajani

EPFL, CIVIL-127
Programming and software development for engineers

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Project

● Did you register your group?
○ https://moodle.epfl.ch/mod/choicegroup/view.php?id=1335310

● Are you still looking for a partner?

2

https://moodle.epfl.ch/mod/choicegroup/view.php?id=1335310

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Random Number Generation (RNG)

3

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

How do you generate a pair of equal-probability outcomes
with an unfair coin?

4

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

What is a RNG?

5

● RNGs are the digital equivalent of tossing a coin. We want to choose among
two options with equal probability.

● Once you have one bit of randomness, you can repeat the process to generate
N-bits.

● If you want to generate random numbers between [0, 10]:
○ Generate 4 random bits (giving you a number between 0 and 15)
○ Discard 11, 12, 13, 14, 15, and repeat the above step

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

How does a deterministic machine generate
random numbers?

6

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Sources of randomness

7

● Unpredictable external events are used as sources of randomness
○ Thermal noise

■ E.g. amplify noise in a circuit + measure voltage
○ Time differences

■ E.g. run two or more oscillators and detect tiny variations due to analog imperfections and
environmental differences

○ Lava lamps
○ Time between network packet arrival
○ Time between keystrokes or mouse movement
○ etc.

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

More secure sources of randomness

● Some people need a source of randomness which cannot be tampered with
● Several quantum phenomena fill this need

○ E.g. Geiger counter, beam splitter, etc.

8

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Typical RNG setup

● Various chips provide random numbers
○ Processor
○ TPM
○ etc.

● The operating system will use these + other sources of randomness to slowly
and continuously fill an entropy pool

● The entropy pool gets used to seed a pseudo-random function. The result is a
fast RNG available to applications

● On Unix command lines, you can see this in action simply with cat
/dev/urandom

● With python, you can do import random followed by
print(random.randint(a, b))

9

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Pseudo-random function

class LCG:

 def __init__(self, seed):

 self.seed = seed

 def next(self):

 self.seed = (1103515245 * self.seed +

 12345) % (2**31)

 return self.seed

10

● A function which is seeded
○ A seed is random bytes which fill the

functions’ initial internal state
● Generates random-looking output
● Many simple constructions are weak

○ Without knowledge of the seed, given N
outputs: you don’t want to be able to
predict output N+1

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Typical software execution process (compiled code)

1. Code is written in an IDE or text editor
2. A compiler translates the code to machine code
3. (optional, for static linking) A linker combines libraries with the machine code
4. A binary file/archive is generated
5. The operating system loads the binary file in memory
6. (when dynamically linking) A linker combines libraries with the machine code
7. The processor runs the machine code, instruction-by-instruction. The software

uses libraries, which use services provided by the operating system.

Note: At any time, the operating system can pause a program being executed
and run another program. Enabling multiple applications to run at the same
time

11

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Typical software execution process (interpreted code)

1. Code is written in an IDE or text editor
2. The operating system loads an interpreter in memory
3. (when dynamically linked) A linker combines libraries used by the interpreter
4. The interpreter loads the code in memory
5. (optional) the code is transformed into bytecode
6. The interpreter executes the bytecode, instruction-by-instruction

12

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Typical software execution process (JIT compiler)

JIT = Just In Time compilation
1. Code is written in an IDE or text editor
2. The operating system loads a virtual machine (VM) in memory
3. (when dynamically linked) A linker combines libraries used by the VM
4. The VM loads the code in memory
5. (optional) the code is transformed into bytecode
6. The VM converts the bytecode into machine code and loads the machine code

into memory
7. The processor executes the machine code, instruction-by-instruction

13

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Compiled code vs interpreted vs JIT

Typically:
● Compiled code loads the fastest
● Interpreters are slightly easier to implement than compilers or a JIT. The code

however runs slower (overhead of the interpreter)
● Interpreters and JITs enable “write-once-run-everywhere” as well as

instrumentation

14

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

RNG applications

15

● for simulations
● for games
● to generate tokens or secrets
● for sampling
● etc.

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Reproducible experiments

For reproducible experiments, you want:
● A pseudo-random function

○ You can share the seed and other people can reproduce your experiment

● A high quality function
○ You don’t want patterns or biases in the random numbers

16

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Can you invent an algorithm to shuffle a list?

● Can you prove that your algorithm is correct (it does not drop or duplicate
items)?

● Can you prove that with your algorithm, every outcome is equi-probable?

17

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

More info about RNG

● https://www.rfc-editor.org/rfc/rfc4086.html
● https://csrc.nist.gov/projects/random-bit-generation
● https://www.bsi.bund.de/
● https://wiki.archlinux.org/title/Random_number_generation
● (and a ton of other resources, RNGs are a well documented topic)

18

https://www.rfc-editor.org/rfc/rfc4086.html
https://csrc.nist.gov/projects/random-bit-generation
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kryptografie/Zufallszahlengenerator/zufallszahlengenerator_node.html
https://wiki.archlinux.org/title/Random_number_generation

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Debugging

19

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Most software is filled with bugs

20

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Can you reliably reproduce the bug?

21

● Yes → good, you’ll soon understand why the issue is happening, enabling you
to fix the issue

● No → find ways to increase the likelihood of reproducing the issue

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Error messages

22

● Read the error message
● If there are many error messages, start with the first one
● Sometimes, error messages are misleading. E.g. “permission denied” might

mean “doesn’t exist”.
● Re-read the error message

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Reproduce the bug in a debugger

● Set breakpoints
● Set conditional breakpoints
● Once you have identified the line of code where the bug exists, look at the

variables
○ If any have an unexpected value, find where the incorrect value came from

● Some debuggers let you break when a variable changes (watchpoints)
● Some debuggers let you record/replay programs (time travelling)
● Debugger’s REPL lets you evaluate expressions at the break point

○ REPL (read-eval-print-loop) == python shell. Not to be confused with the Terminal / bash shell

23

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Trust nothing

24

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

When the bug is in your code

25

● Don’t assume your code is correct
● The majority of bugs are in your own code
● Try different inputs

○ Going from “this fails when X==1” to “this fails when X !=3” can be very helpful

● Add assertions as you go. You might be able to save these assertions and avoid
other bugs down the road

● Take a break and get back

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Consider writing tests

26

If you can write a failing test that demonstrates the bug:
● Reproducing the bug becomes easier (simply run the test)
● You can share your findings (hand the test to someone else)
● You can fix the bug and observe that the test goes from failing to passing
● You won’t accidentally re-introduce the bug (called a regression)

The process of writing tests first, then fixing code is sometimes called test driven
development (TDD)

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

When the bug is in a library

● Don’t assume your code is incorrect. In rare cases, bugs are actually in libraries
your program is using

● To ensure you are 100% correct, you can write a new, minimal, program that
demonstrates the bug

● It will be easier to experiment and explain to other people what’s going on
● You can even share the minimal program with the library author when filing a

bug report

27

Graphic source: “The Pocket Guide to Debugging” by Julia Evans

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Keep an engineering diary

● Write down what you have tried, what results you were expecting and what
results you observed

● Keep a copy of the error messages you have seen, screenshots, etc.
● Write down assumptions you are making
● Write down what debugging techniques and tools worked for you
● Learn something new from each bug you fix

28

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Explain the bug to someone else

29

● Sometimes, explaining the context and what you are seeing is enough for you
to figure out the answer. Explaining every step of your code and walking
through it can help pinpoint where things are going wrong

● Having another person talk through things is helpful but doing it alone also
works and is called rubberducking

Image: https://commons.wikimedia.org/wiki/File:Rubber_duck_assisting_with_debugging.jpg by Tom Morris, CC BY-SA 3.0

https://commons.wikimedia.org/wiki/File:Rubber_duck_assisting_with_debugging.jpg

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

git bisect

30

● If the bug is a regression (did not exist in a previous version of your code)
● And you are tracking your code in git

You can use git bisect to find which commit introduced the bug. Git bisect will
checkout various revisions and ask you if the bug exists or not. It’s binary search,
but over a graph!

git bisect can even be automated if you have a unittest!

git bisect works best when you keep your commits small. Each commit should do
one thing and only one thing.

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Heisenbug

31

● Bug that seems to disappear when you attempt to study it
● Typically caused by (usually) subtle or (sometimes) obvious differences

between a production and development environments
○ E.g. a bug which only happens under substantial load

● Can be caused by rare events (e.g. timing or race conditions)
● Can be caused by side effects when printing a variable

○ See https://github.com/numpy/numpy/issues/10382

https://github.com/numpy/numpy/issues/10382

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Print-based debugging vs logging-based debugging

● Something isn’t working as expected
● So you re-run the code but keep adding

print() statements as you go
● The output helps you locate the bug
● You fix the bug
● You then have to remove the print

statements

32

● Something isn’t working as expected
● So you re-run the code but you enable

additional logging. You might add new log
statements as you go.

● The output helps you locate the bug
● You fix the bug
● You then turn off the logger

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

Add lots of logging

● Sometimes my logging is descriptive, I keep those around forever. E.g.
logger.debug(f"pos: {pos}, passengers: {...}”)

● Sometimes I just log a number to make sure the code is running in the order I
think it’s running and that I’m sane. I remove these once I’m convinced things
are good. E.g.
logger.debug("here 1")
logger.debug("here 2")
logger.debug("here 3")

33

Session 10 • Alok Menghrajani EPFL • CIVIL-127• 2025

More info

● Julia Evans’ has written several comics
related to debugging (and other computer
science-related topics)

34

