EPFL, CIVIL-127

Programming and software development for engineers

Session 10 « Alok Menghrajani

Project

e Did you register your group?
o https://moodle.epfl.ch/mod/choicegroup/view.php?id=1335310
e Are you still looking for a partner?

Session 10 - Alok Menghrajani 2 EPFL - CIVIL-127- 2025

https://moodle.epfl.ch/mod/choicegroup/view.php?id=1335310

Random Number Generation (RNG)

Session 10 « Alok Menghrajani 3 EPFL - CIVIL-127- 2025

How do you generate a pair of equal-probability outcomes
with an unfair coin?

Session 10 - Alok Menghrajani 4 EPFL - CIVIL-127- 2025

What is a RNG?

e RNGs are the digital equivalent of tossing a coin. We want to choose among
two options with equal probability.

e Once you have one bit of randomness, you can repeat the process to generate
N-bits.

e If you want to generate random numbers between [0, 10]:

o Generate 4 random bits (giving you a number between 0 and 15)
o Discard 11,12, 13, 14, 15, and repeat the above step

Session 10 - Alok Menghrajani 5 EPFL - CIVIL-127- 2025

How does a deterministic machine generate
random numbers?

Session 10 « Alok Menghrajani 6 EPFL - CIVIL-127- 2025

Sources of randomness

e Unpredictable external events are used as sources of randomness
o Thermal noise
m E.g. amplify noise in a circuit + measure voltage

Time differences
m E.g.run two or more oscillators and detect tiny variations due to analog imperfections and

environmental differences
Lava lamps
Time between network packet arrival
Time between keystrokes or mouse movement
etc.

(@)

O O O O

Session 10 - Alok Menghrajani 7 EPFL - CIVIL-127- 2025

More secure sources of randomness

e Some people need a source of randomness which cannot be tampered with

e Several quantum phenomena fill this need
o E.g.Geiger counter, beam splitter, etc.

Session 10 « Alok Menghrajani 8 EPFL - CIVIL-127- 2025

Typical RNG setup

e Various chips provide random numbers
o Processor
o TPM
o etc.
e The operating system will use these + other sources of randomness to slowly
and continuously fill an entropy pool

e The entropy pool gets used to seed a pseudo-random function. The result is a
fast RNG available to applications

e On Unix command lines, you can see this in action simply with cat
/dev/urandom

e With python, you can do import random followed by
print(random.randint(a, b))

Session 10 - Alok Menghrajani 9 EPFL - CIVIL-127- 2025

Pseudo-random function

LCG: e A function which is seeded

_ init (self, seed): o A seedisrandom bytes which fill the

functions’ initial internal state

e Generates random-looking output
e Many simple constructions are weak
next (self): o Without knowledge of the seed, given N
self.seed = (1103515245 * self.seed + OUtp.UtSZ you don't want to be able to
predict output N+1

self.seed = seed

12345) % (2**31)

return self.seed

Session 10 « Alok Menghrajani 10 EPFL - CIVIL-127- 2025

Typical software execution process (compiled code)

NOUGPWN -

Code is written in an IDE or text editor

A compiler translates the code to machine code

(optional, for static linking) A linker combines libraries with the machine code
A binary file/archive is generated

The operating system loads the binary file in memory

(when dynamically linking) A linker combines libraries with the machine code
The processor runs the machine code, instruction-by-instruction. The software
uses libraries, which use services provided by the operating system.

Note: At any time, the operating system can pause a program being executed
and run another program. Enabling multiple applications to run at the same
time

Session 10 « Alok Menghrajani 11 EPFL - CIVIL-127. 2025

Typical software execution process (interpreted code)

Code is written in an IDE or text editor

The operating system loads an interpreter in memory

(when dynamically linked) A linker combines libraries used by the interpreter
The interpreter loads the code in memory

(optional) the code is transformed into bytecode

The interpreter executes the bytecode, instruction-by-instruction

DU WN

Session 10 « Alok Menghrajani 12 EPFL - CIVIL-127. 2025

Typical software execution process (JIT compiler)

JIT = Just In Time compilation
Code is written in an IDE or text editor
The operating system loads a virtual machine (VM) in memory

(when dynamically linked) A linker combines libraries used by the VM
The VM loads the code in memory

(optional) the code is transformed into bytecode

The VM converts the bytecode into machine code and loads the machine code
into memory

The processor executes the machine code, instruction-by-instruction

DU, WN

~N

Session 10 - Alok Menghrajani 13 EPFL - CIVIL-127- 2025

Compiled code vs interpreted vs JIT

Typically:

e Compiled code loads the fastest

e Interpreters are slightly easier to implement than compilers or a JIT. The code
however runs slower (overhead of the interpreter)

e Interpreters and JITs enable “write-once-run-everywhere” as well as
instrumentation

Session 10 - Alok Menghrajani 14 EPFL - CIVIL-127- 2025

RNG applications

for simulations

for games

to generate tokens or secrets
for sampling

etc.

Session 10 « Alok Menghrajani 15 EPFL - CIVIL-127- 2025

Reproducible experiments

For reproducible experiments, you want:

e A pseudo-random function
o You can share the seed and other people can reproduce your experiment
e A high quality function

o You don’t want patterns or biases in the random numbers

Session 10 - Alok Menghrajani 16 EPFL - CIVIL-127- 2025

Can you invent an algorithm to shuffle a list?

e Can you prove that your algorithm is correct (it does not drop or duplicate
items)?
e Can you prove that with your algorithm, every outcome is equi-probable?

Session 10 « Alok Menghrajani 17 EPFL - CIVIL-127. 2025

More info about RNG

https://www.rfc-editor.org/rfc/rfc4086.html
https://csrc.nist.gov/projects/random-bit-generation
https://www.bsi.bund.de/
https://wiki.archlinux.org/title/Random_number_generation

(and a ton of other resources, RNGs are a well documented topic)

Session 10 « Alok Menghrajani 18 EPFL - CIVIL-127- 2025

https://www.rfc-editor.org/rfc/rfc4086.html
https://csrc.nist.gov/projects/random-bit-generation
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kryptografie/Zufallszahlengenerator/zufallszahlengenerator_node.html
https://wiki.archlinux.org/title/Random_number_generation

Debugging

Session 10 « Alok Menghrajani 19 EPFL - CIVIL-127- 2025

Most software is filled with bugs

Session 10 « Alok Menghrajani 20 EPFL - CIVIL-127- 2025

Can you reliably reproduce the bug?

e Yes > good, you'll soon understand why the issue is happening, enabling you
to fix the issue
e No - find ways to increase the likelihood of reproducing the issue

Session 10 « Alok Menghrajani 21 EPFL - CIVIL-127. 2025

Error messages

e Read the error message
e [f there are many error messages, start with the first one

e Sometimes, error messages are misleading. E.g. “permission denied” might
mean “doesn’t exist”.

e Re-read the error message

Session 10 « Alok Menghrajani 22 EPFL - CIVIL-127. 2025

Reproduce the bug in a debugger

e Set breakpoints
e Set conditional breakpoints
e Once you have identified the line of code where the bug exists, look at the

variables
o If any have an unexpected value, find where the incorrect value came from

e Some debuggers let you break when a variable changes (watchpoints)
e Some debuggers let you record/replay programs (time travelling)

e Debugger's REPL lets you evaluate expressions at the break point
o REPL (read-eval-print-loop) == python shell. Not to be confused with the Terminal / bash shell

Session 10 - Alok Menghrajani 23 EPFL - CIVIL-127- 2025

Trust nothing

Session 10 « Alok Menghrajani 24 EPFL - CIVIL-127. 2025

When the bug is in your code

e Don't assume your code is correct
e The majority of bugs are in your own code
e Try different inputs

o Going from “this fails when X==1" to “this fails when X !=3" can be very helpful
e Add assertions as you go. You might be able to save these assertions and avoid
other bugs down the road
e TJake a break and get back

Session 10 - Alok Menghrajani 25 EPFL - CIVIL-127- 2025

Consider writing tests

If you can write a failing test that demonstrates the bug:
e Reproducing the bug becomes easier (simply run the test)
e You can share your findings (hand the test to someone else)
e You can fix the bug and observe that the test goes from failing to passing
e You won't accidentally re-introduce the bug (called a regression)

The process of writing tests first, then fixing code is sometimes called test driven
development (TDD)

Session 10 - Alok Menghrajani 26 EPFL - CIVIL-127- 2025

When the bug is in a library

e Don't assume your code is incorrect. In rare cases, bugs are actually in libraries
your program is using

e To ensure you are 100% correct, you can write a new, minimal, program that
demonstrates the bug

e It will be easier to experiment and explain to other people what's going on

e You can even share the minimal program with the library author when filing a

bug report
~J
@ —r X

ant b 20 lines of
giant buggy program buggy code

Graphic source: “The Pocket Guide to Debugging” by Julia Evans

Session 10 « Alok Menghrajani 27 EPFL - CIVIL-127. 2025

Keep an engineering diary

e Write down what you have tried, what results you were expecting and what
results you observed

Keep a copy of the error messages you have seen, screenshots, etc.
Write down assumptions you are making

Write down what debugging techniques and tools worked for you
Learn something new from each bug you fix

Session 10 - Alok Menghrajani 28 EPFL - CIVIL-127- 2025

Explain the bug to someone else

e Sometimes, explaining the context and what you are seeing is enough for you
to figure out the answer. Explaining every step of your code and walking
through it can help pinpoint where things are going wrong

e Having another person talk through things is helpful but doing it alone also
works and is called rubberducking

by Tom Morris, CC BY-SA 3.0

Session 10 « Alok Menghrajani 29 EPFL - CIVIL-127- 2025

https://commons.wikimedia.org/wiki/File:Rubber_duck_assisting_with_debugging.jpg

git bisect

e |If the bugis a regression (did not exist in a previous version of your code)
e And you are tracking your code in git

You canuse git bisect to find which commit introduced the bug. Git bisect will

checkout various revisions and ask you if the bug exists or not. It's binary search,
but over a graph!

git bisect can even be automated if you have a unittest!

git bisect works best when you keep your commits small. Each commit should do
one thing and only one thing.

Session 10 « Alok Menghrajani 30 EPFL - CIVIL-127- 2025

Heisenbug

e Bug that seems to disappear when you attempt to study it
e Typically caused by (usually) subtle or (sometimes) obvious differences

between a production and development environments
o E.g.abug which only happens under substantial load
e Can be caused by rare events (e.g. timing or race conditions)

e Can be caused by side effects when printing a variable
o See https://github.com/numpy/numpy/issues/10382

Session 10 « Alok Menghrajani 31 EPFL - CIVIL-127- 2025

https://github.com/numpy/numpy/issues/10382

Print-based debugging vs logging-based debugging

e Something isn't working as expected e Something isn't working as expected
e So you re-run the code but keep adding e So you re-run the code but you enable
print() statements as you go additional logging. You might add new log
e The output helps you locate the bug statements as you go.
e You fix the bug e The output helps you locate the bug
e You then have to remove the print e You fix the bug
statements e You then turn off the logger

Session 10 « Alok Menghrajani 32 EPFL - CIVIL-127- 2025

Add lots of logging

e Sometimes my logging is descriptive, | keep those around forever. E.g.
logger.debug(f"pos: {pos}, passengers: {...}")
e Sometimes | just log a number to make sure the code is running in the order |

think it's running and that I'm sane. | remove these once I'm convinced things
are good. E.g.

logger.debug("here 1")
logger.debug("here 2")
logger.debug("here 3")

Session 10 - Alok Menghrajani 33 EPFL - CIVIL-127- 2025

More info

e Julia Evans' has written several comics
related to debugging (and other computer
science-related topics)

Session 10 « Alok Menghrajani

34

(0N dE\)ugginS mon'rFes‘"O

1 2
Q inspect, don't squash | %eing stuck is femporarg|
v 3L 00 (T WILL NEVER FIGURE

o §THIS out

o
o - 2 minutes later...

&)
PN
~ wait, I haven't tried X...

Y
@’rrusf nobody and nothing | CP it's probably your code |

this library o %1 KNOW my code is right
can't be buggy... °°

or CAN 17777 ° .. 2 hours latfer ...

understand
what happened

ugh, my code WAS the
t-slow(g growing horror problem?11?
5 , _ 5 .
don't go it alone I there's always a reasonl

computers are
always logical, even
when it doesn't feel
that way

00010 "

WHAT 18
HAPPENING 717 % o B

7 8
Q build your toolkit I Q it can be an adventure

you wouldn't
BELIEVE the
weird bug 1
found...

wow, the CSS
inspector makes
debugging SO
MUCH EASIER

ebork
@omarieclaire more like this at https://wizardzines.com

