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Quasi-Fermi Level Splitting (QFLS) https://doi.org/10.1002/aenm.202303135

QFLS – excited e- in the CB and corresponding h+ in the VB have different chemical potential.
Related to the internal potential of semiconductor.

Depends on the population of the exited e- and h+.

Increasing the excited carrier population in the bands increases the difference in chemical potential between e-

and h+, which generates an internal voltage. 

QFLS & Voc are related – ideally QFLS ≈ Voc

Bottlenecks are non-radiative recombination losses, non-selective charge collecting layers, resistances at the 

ETL/AL/HTL interfaces.

𝑄𝐹𝐿𝑆 = 𝑘𝐵𝑇 ln 𝑃𝐿𝑄𝑌 ×
𝐽𝐺

𝐽0,𝑟𝑎𝑑

Generation current

Radiative current in the dark

https://doi.org/10.1002/aenm.202303135
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Quasi-Fermi Level Splitting (QFLS) https://doi.org/10.1002/aenm.202303135

𝑉𝑜𝑐
𝑄𝐹𝐿𝑆

=
𝜌𝑐,𝑚𝑖𝑛
𝑟

𝜌𝑐,𝑚𝑖𝑛
𝑟 + 𝜌𝑐,𝑚𝑎𝑗

𝑟 = 𝑆𝑒,𝑚𝑎𝑗

𝜌𝑐,𝑚𝑖𝑛
𝑟 /𝜌𝑐,𝑚𝑎𝑗

𝑟

Device contact resistances for majority 

and minority carries

𝑆𝑒,𝑚𝑎𝑗 ∈ {0,1}

Selectivity for majority carries

e-/h+ electrical current density at  

each point in the devices
𝐽𝑒/ℎ = 𝐽𝑒/ℎ,𝑑𝑟𝑖𝑓𝑡 + 𝐽𝑒/ℎ,𝑑𝑖𝑓𝑓 =−/+

𝜎𝑒/ℎ∇𝐸𝑓,𝑒/ℎ
𝑒

Metallic electrodes / degenerated doped semiconductors – QFL has to collapse

Voc steady state 𝐽 = 𝐽𝑒 + 𝐽ℎ = 0 → 𝐽ℎ = −𝐽𝑒 = 𝐽𝑅

𝜎ℎ
𝜎𝑒

= −
∇𝐸𝑓,𝑒
∇𝐸𝑓,ℎ

At Voc, e- and h+ QFL gradients are inversely 

proportional to the ratio of the carriers’ conductivities.

Recombination current

ETLALHTL ETLALHTLETLAL

Q
F

L
S

https://doi.org/10.1002/aenm.202303135
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Voc-QFLS mismatch in PSC https://doi.org/10.1002/aenm.202303135

https://doi.org/10.1002/ange.202417432

Large offset for the majority carriers
Contact region without energetic selectivity

Passivator layer with strong dipole 
Reducing of QFLS-Voc mismatch

Energy injection barrier formation 
The majority carriers go back into perovskites

Built-in field reduction across the device

3D perovskite mobility ~1 cm2V-1s-2

2D/3D perovskites 

Very low out-of-plane mobility: carriers do not 

diffuse fast enough to the interface, and rapid non-

radiative recombinationHTL ETLAL

HTL ETLAL

SnO2

FAPbI3

FAPbI3

BNMA

Q
F

L
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https://doi.org/10.1002/aenm.202303135
https://doi.org/10.1002/ange.202417432
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Voc-QFLS mismatch in PSC https://doi.org/10.1002/aenm.202303135

https://doi.org/10.1016/j.isci.2020.101415

Light soaking and ion migrations 
Charge accumulation that is detrimental for the 

internal functioning of the device; charges’ 

resistivities become more similar

HTL ETLAL

HTL ETLAL

Passivator layer thickness
Carriers’ density at the interface become more 

similar, increasing the interface recombination

Q
F

L
S

https://doi.org/10.1002/aenm.202303135
https://doi.org/10.1016/j.isci.2020.101415
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Charge carriers
Free electron model – free e- confined into a cubic box of side L

෡𝐻 = −
ℏ2

2𝑚
∇2 𝜓𝒌 𝒓 = 𝐴𝑒𝑖𝒌⋅𝒓 𝒌 =

2𝜋𝑛𝑥
𝐿

,
2𝜋𝑛𝑦
𝐿

,
2𝜋𝑛𝑧
𝐿

Hamiltonian Solution Boundary conditions

𝜖𝒌 =
ℏ2𝑘2

2𝑚
𝑁 𝜖 =

𝑉

2𝜋2
2𝑚𝜖

ℏ2

3
2

→ 𝑔 𝜖 =
𝑑𝑁 𝜖

𝑑𝜖
=

𝑉

2𝜋2
2𝑚

ℏ2

3
2

𝜖

Energy eigenvalues # orbitals  up to 𝜖𝒌 # orbitals / 𝜖𝒌 (Density of states)

෤𝑔 𝜖𝒌

𝜖𝒌

𝑛𝑒(𝜖)𝑔 𝜖 = 𝑛

𝜖𝑭

𝑛𝑒 𝜖 =
1

𝑒
𝜖−𝜖𝐹
𝑘𝐵𝑇

Fermi-Dirac 

distribution
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Charge carriers

+

-

CB

VB

F
R

E
E

-E
L
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Low-temperature regime

𝜖 − 𝜖𝐹 ≫ 𝑘𝐵𝑇

𝜖𝑐 = 𝐸𝑐 +
ℏ2𝑘2

2𝑚𝑒

𝜖𝑣 = 𝐸𝑣 −
ℏ2𝑘2

2𝑚ℎ

𝑔𝑒 𝜖 =
𝑉

2𝜋2
2𝑚𝑒

ℏ2

3
2

𝜖 − 𝐸𝑐 𝑔ℎ 𝜖 =
𝑉

2𝜋2
2𝑚ℎ

ℏ2

3
2

𝐸𝑣 − 𝜖

𝑛 = න
𝐸𝑐

∞

𝑔𝑒 𝜖 𝑛𝑒(𝜖) =𝑁𝑐𝑒
𝜖𝐹−𝐸𝑐
𝑘𝐵𝑇 𝑝 = න

−∞

𝐸𝑣

𝑔ℎ 𝜖 𝑛ℎ(𝜖) =𝑁ℎ𝑒
𝐸𝑣−𝜖𝐹
𝑘𝐵𝑇

Carriers’ density at equilibrium: 

𝑛 ⋅ 𝑝 = 𝑁𝑐𝑁𝑣 𝑒
−𝐸𝑔

𝑘𝐵𝑇 = 𝑛𝑖
2 𝜖𝐹 =

𝐸𝑔
2
+
3

4
𝑘𝐵𝑇 ln

𝑚ℎ

𝑚𝑒

Carriers’ density at out-of-equilibrium: 

𝑛 = 𝑁𝑐𝑒
𝐸𝐹𝑐−𝐸𝑐
𝑘𝐵𝑇 𝑝 = 𝑁ℎ𝑒

𝐸𝑣−𝐸𝐹𝑣
𝑘𝐵𝑇

𝑛 ⋅ 𝑝 = 𝑁𝑐𝑁𝑣 𝑒
𝐸𝐹𝐶−𝐸𝑐
𝑘𝐵𝑇 𝑒

𝐸𝑣−𝐸𝐹𝑣
𝑘𝐵𝑇

Related to Voc
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How to simulate a material
Material – collection of interacting atoms
Nucleus: neutrons, protons (+)
Electrons (-)

𝐻 =
𝒑2

2𝑚
+ 𝑉(𝒓)

Many-body Schrödinger equation

𝐻 𝜓 𝒓 , 𝑹 = 𝐸𝜓({𝒓}, 𝑹 )

Ab initio – no need of any empirical parameters
Nucleus: number (NI), charge (ZIe), mass (MI) 
Electrons: number (N), charge (- e), mass (m) 

The Hamiltonian of a generical physical system is:

𝐻 = 𝑇𝑒 𝒑 + 𝑇𝑁 𝑷 + 𝑉𝑒𝑒 𝒓 + 𝑉𝑁𝑁 𝑹 + 𝑉𝑒𝑁 𝒓 , 𝑹

𝑇𝑒 𝒑 =෍

𝑖=1

𝑁
𝒑𝑖
2

2𝑚 𝑇𝑁 𝑷 =෍

𝐼=1

𝑁𝐼
𝑷𝐼
2

2𝑀𝐼

𝑉𝑒𝑒 𝒓 =
1

2
෍

𝑖≠𝑗

𝑒2

|𝒓𝑖 − 𝒓𝑗|
𝑉𝑁𝑁 𝑹 =

1

2
෍

𝐼≠𝐽

𝑍𝐼𝑍𝐽𝑒
2

|𝑹𝑖 − 𝑹𝑗|

𝑉𝑒𝑁 𝒓 , 𝑹 = −෍

𝑖=1

𝑁

෍

𝐼=1

𝑁𝐼
𝑍𝐼𝑒

2

|𝒓𝑖 − 𝑹𝐼|
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How to simulate a material

Born-Oppenheimer approximation – 𝑀𝐼 ≫ 𝑚

Many-body Schrödinger equation

𝐻 𝜓 𝒓 , 𝑹 = 𝐸𝜓({𝒓}, 𝑹 )
𝐻𝑒 𝜓 𝒓 ; 𝑹 = 𝐸({𝑹})𝜓( 𝒓 ; 𝑹 )

𝑹 is a parameter: fix potential energy surface

𝐻𝑒 = 𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉𝑒𝑁 + 𝑉𝑁𝑁

Using the Hellmann-Feynman theorem we can compute the force  𝑭𝐼 acting on the nuclei 

𝑑𝐸𝜆
𝑑𝜆

=
𝑑

𝑑𝜆
𝜓𝜆 𝐻𝜆 𝜓𝜆 =

𝑑𝜓𝜆
𝑑𝜆

𝐻𝜆 𝜓𝜆 + 𝜓𝜆 𝐻𝜆
𝑑𝜓𝜆
𝑑𝜆

+ 𝜓𝜆
𝑑𝐻𝜆
𝑑𝜆

𝜓𝜆

= 𝐸𝜆
𝑑𝜓𝜆
𝑑𝜆

𝜓𝜆 + 𝐸𝜆 𝜓𝜆
𝑑𝜓𝜆
𝑑𝜆

+ 𝜓𝜆
𝑑𝐻𝜆
𝑑𝜆

𝜓𝜆

= 𝜓𝜆
𝑑𝐻𝜆
𝑑𝜆

𝜓𝜆

𝑭𝐼 = −
𝑑𝐸 𝑹

𝑑𝑹𝐼
= − 𝜓 𝒓 ; 𝑹

𝑑𝐻𝑒
𝑑𝑹𝐼

𝜓 𝒓 ; 𝑹 = − 𝜓 𝒓 ; 𝑹 ∇𝑹𝐼𝐻𝑒 𝜓 𝒓 ; 𝑹

= 𝐸𝜆
𝑑

𝑑𝜆
𝜓𝜆 𝜓𝜆 + 𝜓𝜆

𝑑𝐻𝜆
𝑑𝜆

𝜓𝜆

𝜓 𝒓 , 𝑹 = 𝜓 𝒓 ; {𝑹} 𝜙 𝑹
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Molecular dynamics (MD)

2PACz

MPA

FTO layer

Classical MD – atoms are classical spheres that 

are moved according the Newton equation.

Deterministic trajectories that sample the phase 

space according to statistical mechanics.

𝑭𝐼 = −∇𝑹𝐼𝑈({𝑹𝐼})

𝑈({𝑹𝐼}) – classical potential: all the physics is 

embedded in the potential. No quantum mechanics 

is involved (no charge transfer, tunnelling, charge 

hopping…).

Ab initio MD – atoms are quantum objects with 

electron density and nuclei.

𝑭𝐼 = − 𝜓 𝒓 ; 𝑹 ∇𝑹𝐼𝐻𝑒 𝜓 𝒓 ; 𝑹

∇𝑹𝐼𝐻𝑒 – ground state for the electrons is computed 

at each step of the MD in the Born-Oppenheimer 

approximation after moving the nuclei.
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Density Functional Theory (DFT)
DFT – ground state method to solve the many-body Schrödinger equation 
From 3N (N = # electrons) variable to 3 (electron density in 3D).
Based on the two Höhenberg-Kohn theorems.

Theorem I – For any system of interacting particles in an external potential 𝑉𝑒𝑥𝑡, 𝑉𝑒𝑥𝑡 is 

determined uniquely, apart from a constant, by the ground state density 𝑛0(𝒓).

Theorem II – For any external potential 𝑉𝑒𝑥𝑡, it is possible to define the energy of the system 

as a functional of the density 𝑛 𝒓 : 𝐸 = 𝐸[𝑛]. The ground state energy of the system is the 
minimum value of this functional and the density that minimizes 𝐸[𝑛], keeping the # of 
electrons N constant, is the ground state density 𝑛0(𝒓).

𝑉𝑒𝑥𝑡

𝜓𝑖({𝒓}) 𝜓𝑜({𝒓})

𝑛𝑜(𝒓)
H-K
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Density Functional Theory (DFT)

DFT – 𝑉𝑒𝑁 = 𝑉𝑒𝑥𝑡 = σ𝑖 𝑣𝑒𝑥𝑡(𝒓𝑖)B-O approximation –𝐻𝑒= 𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉𝑒𝑁 + 𝑉𝑁𝑁

𝐸 𝑛 = 𝑇𝑒 𝑛 + 𝑉𝑒𝑒 𝑛 + න𝑑𝒓 𝑣𝑒𝑥𝑡 𝒓 𝑛(𝒓) + 𝐸𝑁𝑁 = 𝐹[𝑛] + න𝑑𝒓 𝑣𝑒𝑥𝑡 𝒓 𝑛(𝒓) + 𝐸𝑁𝑁

no explicit universal functional form

Kohn-Sham approach – one-to-one correspondence between electronic density of the 

interacting system and that of some non-interacting system with an opportune fictitious 
potential.

𝐸 𝑛 = 𝑇𝑠 𝑛 + න𝑑𝒓 𝑣𝑒𝑥𝑡 𝒓 𝑛(𝒓) + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝑛 + 𝐸𝑁𝑁 + 𝐸𝑥𝑐[𝑛]

𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝑛 =
𝑒2

2
න𝑑𝒓𝑑𝒓′

𝑛 𝒓 𝑛(𝒓′)

|𝒓 − 𝒓′|

Classical Coulomb 
𝑛 𝒓 self-interaction

𝐸𝑥𝑐 𝑛 = 𝑇 𝑛 − 𝑇𝑠 𝑛 + 𝑉𝑒𝑒 𝑛 − 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝑛

Exchange-correlation: 
many-body effects
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Density Functional Theory (DFT)

N – # of electrons in the system 𝑛 𝒓 =෍

𝑖=1

𝑁

𝜓𝑖 𝒓
2

𝑇𝑠[𝑛] =
1

2
෍

𝑖=1

𝑁

∇𝜓𝑖 𝒓
2

D
F
T

 –
K

-S
 A

P
P

R
O

X
IM

A
T

IO
N

𝐻𝐾𝑆 = −
ℏ2

2𝑚
∇2 + 𝑣𝑒𝑥𝑡 𝒓 + 𝑒2න𝑑𝒓′

𝑛(𝒓′)

|𝒓 − 𝒓′|
+ 𝑣𝑥𝑐 𝒓 = −

ℏ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓 𝒓

𝐻𝐾𝑆 𝜓𝑖(𝒓) = 𝜖𝑖 𝜓𝑖(𝒓)

non-classical electron interaction

𝑣𝑥𝑐[𝑛] =
𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝒓)

Many-body interaction problem has been reduced to the computation of independent-particle 

equation to be resolved self-consistently with the resulting 𝑛 𝒓 .

Up to now, no approximation has been done.
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Plane wave (PW) basis set
P

L
A

N
E

 W
A

V
E

S

𝜓𝑖,𝒌 𝒓 =෍

𝑮

𝑐𝑖, 𝒌+𝑮 𝜙𝑖, 𝒌+𝑮=
1

𝑉
෍

𝑮

𝑐𝑖, 𝒌+𝑮 𝑒
𝑖 𝒌+𝑮 ⋅𝒓

𝑹 = 𝑛1𝒓𝟏 + 𝑛2𝒓𝟐 + 𝑛3𝒓𝟑 , 𝑛𝑖 ∈ ℤ

𝑮 = 𝑙1𝒌𝟏 + 𝑙2𝒌𝟐 + 𝑙3𝒌𝟑 , 𝑙𝑖 ∈ ℤ

Reciprocal lattice 

Crystal

𝒓𝒊 ∙ 𝒌𝒋 = 2𝜋𝛿𝑖𝑗

PW are the simplest basis set for the 𝐻𝐾𝑆 eigenstates expansion that allows to transform the 

KS equations in a matrix diagonalization problem:

෍

𝑮

𝜙𝑖, 𝒌+𝑮 ∇𝑹𝐼𝐻𝐾𝑆 𝜙𝑖, 𝒌+𝑮′ − 𝜖𝑖,𝒌𝛿𝑮,𝑮′ 𝑐𝑖, 𝒌+𝑮′ = 0

Bloch vector in the first Brillouin zone

generic vector of the reciprocal lattice
band index
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k • p approach for III-V semiconductors

One-electron Sch. equation

Pauli SOC Crystalline + 

ext. potential

2 components spinor 

Bravais lattice 

periodic functions

Envelope functions
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k • p approach for III-V semiconductors

• In III-V semiconductors compound like GaAs there are 8 outer electrons per unit cell which contribute to chemical bonds.

• The 8 outermost electrons hybridize to form tetrahedral bonds between one kind of atoms (Ga) and its four nearest 

neighbors (As).

• As a result, bonding (p-like, 6 electrons) and antibonding orbitals (s-like, 2 electrons) form the bands of the 

semiconductors.

• In absence of SOC the top of the valence (at Γ) band formed by the three p-like orbitals is six-fold degenerate.

• SOC splits the six-fold degenerate state and gives rise to a quadruplet (J=3/2) and a doublet (J=1/2).

Spin-orbit gap
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dx.doi.org/10.1021/jz401532q | J. Phys. Chem. Lett. 2013, 4, 2999−3005

• The calculated band-gap at GGA-PBE level is in 

good agreement with experiments. 

SOC leads to a correction of about 1.1 eV

• Conduction band edge with SOC is the 2-fold 

degenerate split-off (SO) state. This leads to 

isotropic and strong optical transitions with the 

even s-like valence band edge states.

room-temperature Pm3m cubic phase
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