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B QFLS
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Quasi-Fermi Level Splitting (QFLS) s coososnem s

QFLS - excited e in the CB and corresponding h* in the VB have different chemical potential.
Related to the internal potential of semiconductor.
Depends on the population of the exited e~ and h*.

Increasing the excited carrier population in the bands increases the difference in chemical potential between e

and h*, which generates an internal voltage.

1.25 _Experiment
H —s=— Best Voc
Generation current QFLS
/ % 120} i
Jo 2
QFLS = kgT In| PLQY X CL!_ILJ 1.15 ]
0,rad
g
8 110 i
\ R
Radiative current in the dark 1.05 . .
107 10" 10° 10'

PMMA concentration (mg/mL)

QFLS & V. arerelated — ideally QFLS = V.
Bottlenecks are non-radiative recombination losses, non-selective charge collecting layers, resistances at the
ETLU/AL/HTL interfaces.
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=PrL Quasi_Fem‘i Level spliﬂing (QHS) https://doi.ora/10.1002/aenm.202303135

Metallic electrodes / degenerated doped semiconductors — QFL has to collapse
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=PtV .-QFLS mismatch in PSC

Low Mobility Absorber
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B QFLS

3D perovskite mobility ~1 cm?V-is?

2D/3D perovskites

Very low out-of-plane mobility: carriers do not
diffuse fast enough to the interface, and rapid non-
radiative recombination

Large offset for the majority carriers
Contact region without energetic selectivity

Passivator layer with strong dipole
Reducing of QFLS-V,. mismatch

Energy injection barrier formation
The majority carriers go back into perovskites

Built-in field reduction across the device

https://doi.org/10.1002/aenm.202303135
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=PtV .-QFLS mismatch in PSC

"~ Low Mobility Interlayer
QFLS > Vo,

Mobile ions

B OFLS

Passivator layer thickness
Carriers’ density at the interface become more
similar, increasing the interface recombination

Light soaking and ion migrations
Charge accumulation that is detrimental for the
internal functioning of the device; charges’
resistivities become more similar
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B FREE-ELECTRON MODEL

Charge camiers

Free electron model — free e confined into a cubic box of side L

2 .
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B FREE-ELECTRON MODEL

Charge camiers
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Carriers’ density at equilibrium:
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Carriers’ density at out-of-equilibrium:

Epc—Ec Ey—EFry
n = N.e ksT p = Nye ksT

@ic @ Related to Vo,
n-p=N.N, e *BT ¢ ks
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=FL " How to simulate a matenial

2
Material — collection of interacting atoms _ b
Nucleus: neutrons, protons (+) H = 2m + V(T)
Electrons (-)
Many-body Schrddinger equation Ab initio — no need of any empirical parameters
Hy({r}, {R})) = Ey({r}, {R}) —_— Nucleus: number (N,), charge (Z,e), mass (M,)

Electrons: number (N), charge (- €), mass (m)

The Hamiltonian of a generical physical system is:

H =T, ({p}) + Ty({PY) + Ve ({r}) + Vyy({R}) + Ven ({7}, {R})

ChE-701 / Section EDCH
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B Born-Oppenheimer approximation

How to simulate a matenal

Born-Oppenheimer approximation - M; > m —» Y {RY) = w({rqb({R})
He =Te + Voo + Vey + Vi

Many-body Schrodinger equation _
By ) = Epry, iy e VD = E D

{R} is a parameter: fix potential energy surface

Using the Hellmann-Feynman theorem we can compute the force F; acting on the nuclei

%_a(wmﬂw) <d¢A|HA|¢A> <1/J/1‘H/1 d%>+< dHA‘%)

dH,
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Molecular dynamics (MD)
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Deterministic trajectories that sample the phase
space according to statistical mechanics.

Classical MD — atoms are classical spheres that
are moved according the Newton equation.

F;= —VR,U({RI})

U({R;}) — classical potential: all the physics is
embedded in the potential. No quantum mechanics
is involved (no charge transfer, tunnelling, charge

hopping...).

Ab initio MD — atoms are quantum objects with
electron density and nuclei.

F; = —(p{r}; {RD| Vg, Ho|p({1}; {RD)

Vg, H. — ground state for the electrons is computed
at each step of the MD in the Born-Oppenheimer
approximation after moving the nuclei.
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B DFT - H-K THEOREMS

Density Functional Theory (DFT)

DFT — ground state method to solve the many-body Schrodinger equation

From 3N (N =# electrons) variable to 3 (electron density in 3D).
Based on the two Hohenberg-Kohn theorems.

Theorem | — For any system of interacting particles in an external potential V¢, Voy: 1S
determined uniquely, apart from a constant, by the ground state density ny (7).

H-K
Vext ~———— (1)

Yi({r) —— Yo ({r})

Theorem Il — For any external potential V,,;, itis possible to define the energy of the system
as a functional of the density n(r): E = E[n]. The ground state energy of the system is the
minimum value of this functional and the density that minimizes E[n], keeping the # of
electrons N constant, is the ground state density ny(r).
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[
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B DFT - K-S APPROXIMATION

Density Functional Theory (DFT)

B-O approximation —H,= T, + V,, + Voy + Vyn DFT = Voy = Vext = i Vexe (1)

mﬂ=nw+mMHJﬁmhm%vwww=<:HjW%MﬂMﬂ+mN

no explicit universal functional form
Kohn-Sham approach — one-to-one correspondence between electronic density of the

interacting system and that of some non-interacting system with an opportune fictitious
potential.

HM=MM+IW%MﬂMﬂ+%mMMHEM+&mﬂ

e? n(r)n(r")
Exartree [n] = ?fdrdr W Exc[n] = T[n] - Ts[n] + Vee[n] - EHartree[n]
Classical Coulomb Exchange-correlation:

n(r) self-interaction many-body effects

=Y
N
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=P*L  Density Functional Theory (DFT)

B DFT - K-S APPROXIMATION

N
N — # of electrons in the system n(r) = Z|¢i(r)|2 T,[n] = %Z|Vl/)i(r)|2
i=1 i=1

K2 @) K2
HKS = —%Vz + vext(r) + e? j dr |1" _ r,l +: —%VZ + veff(r)

non-classical electron interaction

_ B[]
eeln] = 5203

Many-body interaction problem has been reduced to the computation of independent-particle
equation to be resolved self-consistently with the resulting n(r).

Hgs ¥i(r) = €; (1)

Up to now, no approximation has been done.
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B PLANE WAVES

Plane wave (PW) basis set

() () ) () () Crystal

PRIMITIVE CELL R =nyry + nyry +nzr3, n; €L

@ @ @ @ Reciprocal lattice

G = llkl +l2k2 +13k3, li S/
@ @ @

ri- k] = 27T5ij
Bloch vector in the first Brillouin zone

\
i (1") = Cl, 4 ¢L, e e— N el@x@r

) generic vector of the reciprocal lattice
band index

PW are the simplest basis set for the Hi eigenstates expansion that allows to transform the
KS equations in a matrix diagonalization problem:

2(( bi w+6|Vr,His| 91 kv6r) — €ik06,67)Ci keg’ =0
G
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B WELCOME TO EPFL

SOC

k » p approach for llI-V semiconductors

One-electron Sch. equation /_\

2 components spinor

, W(r) =3 ghu(r)Uu(r)
r J Er . _ 1 "'1
[_Q—?TIOV 4m362 (o x VV).(—hV)+ V(r)] U(r)=EY(r) / \
L Y J k_Y_J .
ol SOC Crystalline + Envelope functions E:r\i\c/)adlii I:Jt::g:ons

ext. potential

s ¥ () — Zm (r) - Vi (r) +ZHW,.(T)¢U(T) Epy(r)
1
Hyu (1) = Ty + Hp3 (1) + Vi (1) Hpp'* = o d*r U3" (r)H"* (r)U, (r)
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B WELCOME TO EPFL

SOC

k » p approach for llI-V semiconductors

. In I1I-V semiconductors compound like GaAs there are 8 outer electrons per unit cell which contribute to chemical bonds.

. The 8 outermost electrons hybridize to form tetrahedral bonds between one kind of atoms (Ga) and its four nearest

neighbors (As).

. As aresult, bonding (p-like, 6 electrons) and antibonding orbitals (s-like, 2 electrons) form the bands of the

semiconductors.

. In absence of SOC the top of the valence (at I') band formed by the three p-like orbitals is six-fold degenerate.
. SOC splits the six-fold degenerate state and gives rise to a quadruplet (J=3/2) and a doublet (J=1/2).
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=P 80C effects in CsPbl,

Without SOC With SOC

Andrea Vezzosi

2.4 \ \ /
1.8+ 4 L |3l/2,i\f2> I The calculated band-gap at GGA-PBE level is in
) good agreement with experiments.
SOC leads to a correction of about 1.1 eV
i 4 L |3/2,£3/2> |
1.2
. |CBM{1-3> Conduction band edge with SOC is the 2-fold
Q 1 L ] degenerate split-off (SO) state. This leads to
';: 0.6 —(a) CSFbIS (b CSPbIS isotropic and strong optical transitions with the
even s-like valence band edge states.
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room-temperature Pm3m cubic phase

B WELCOME TO EPFL

dx.doi.org/10.1021/z401532q | J. Phys. Chem. Lett. 2013, 4, 2999-3005
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=PrL soc

w oa Without \si/ With SOC W @U -

Andrea Vezzosi
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