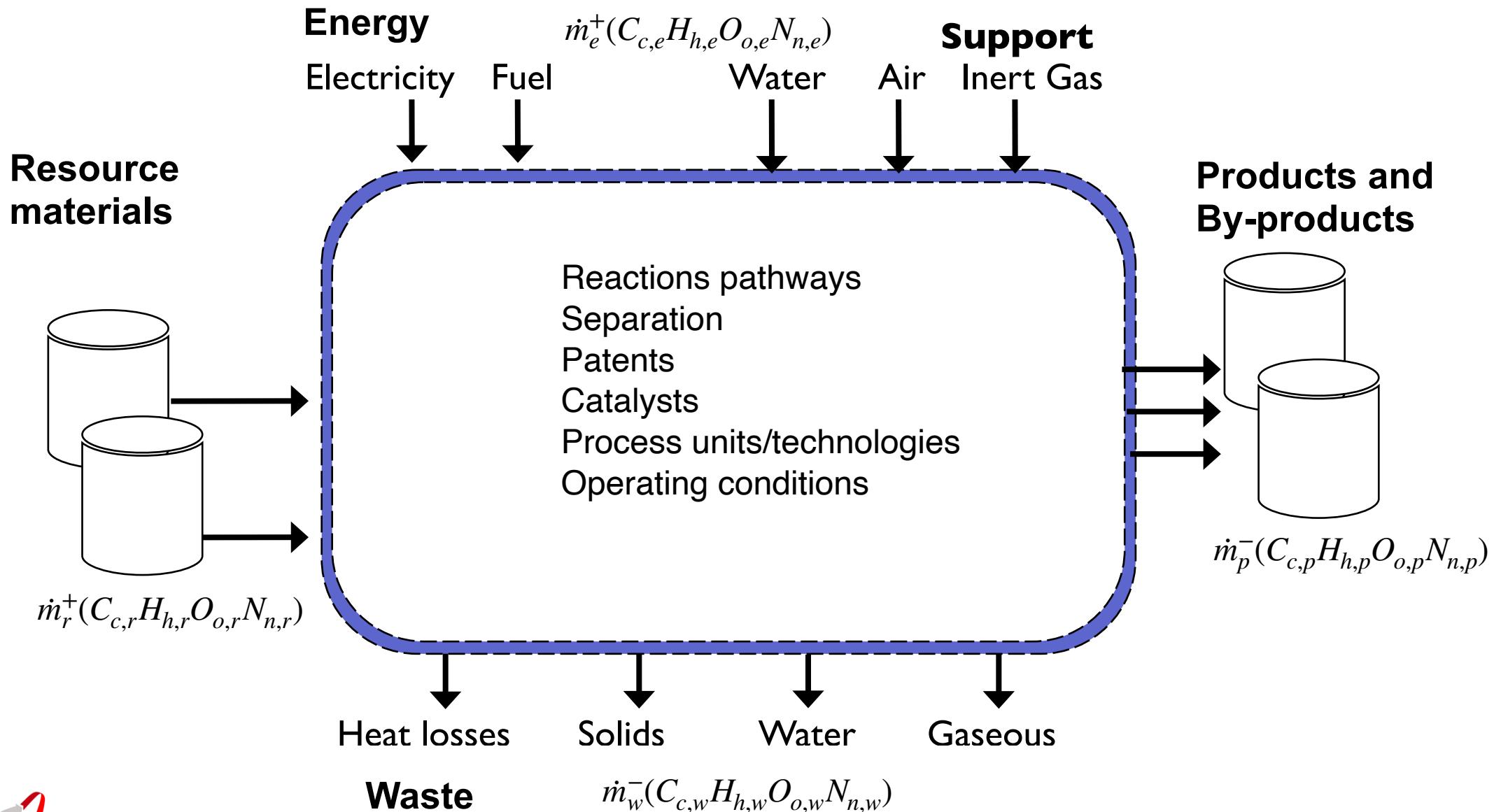
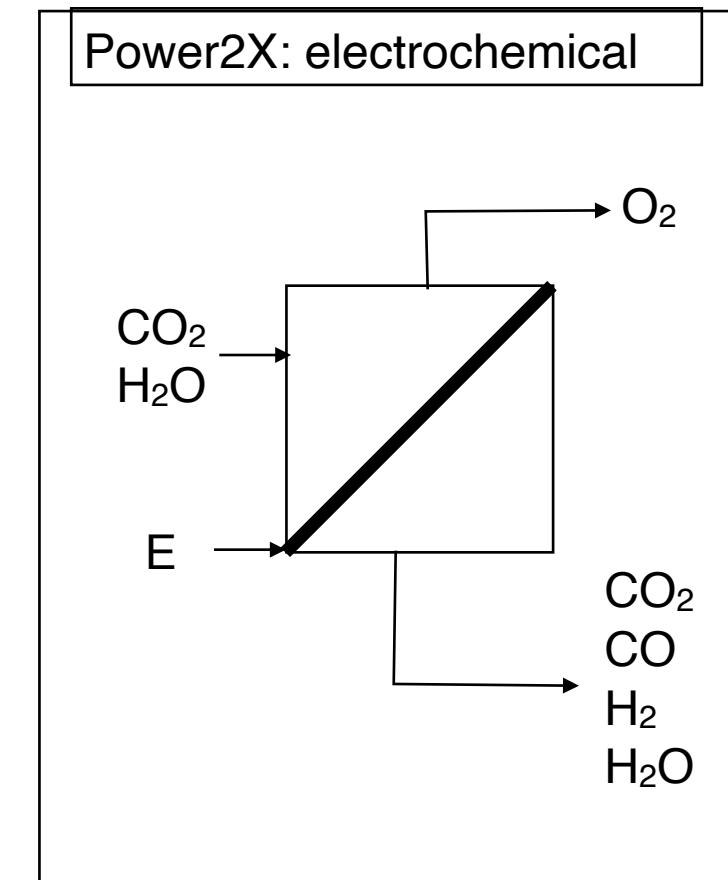
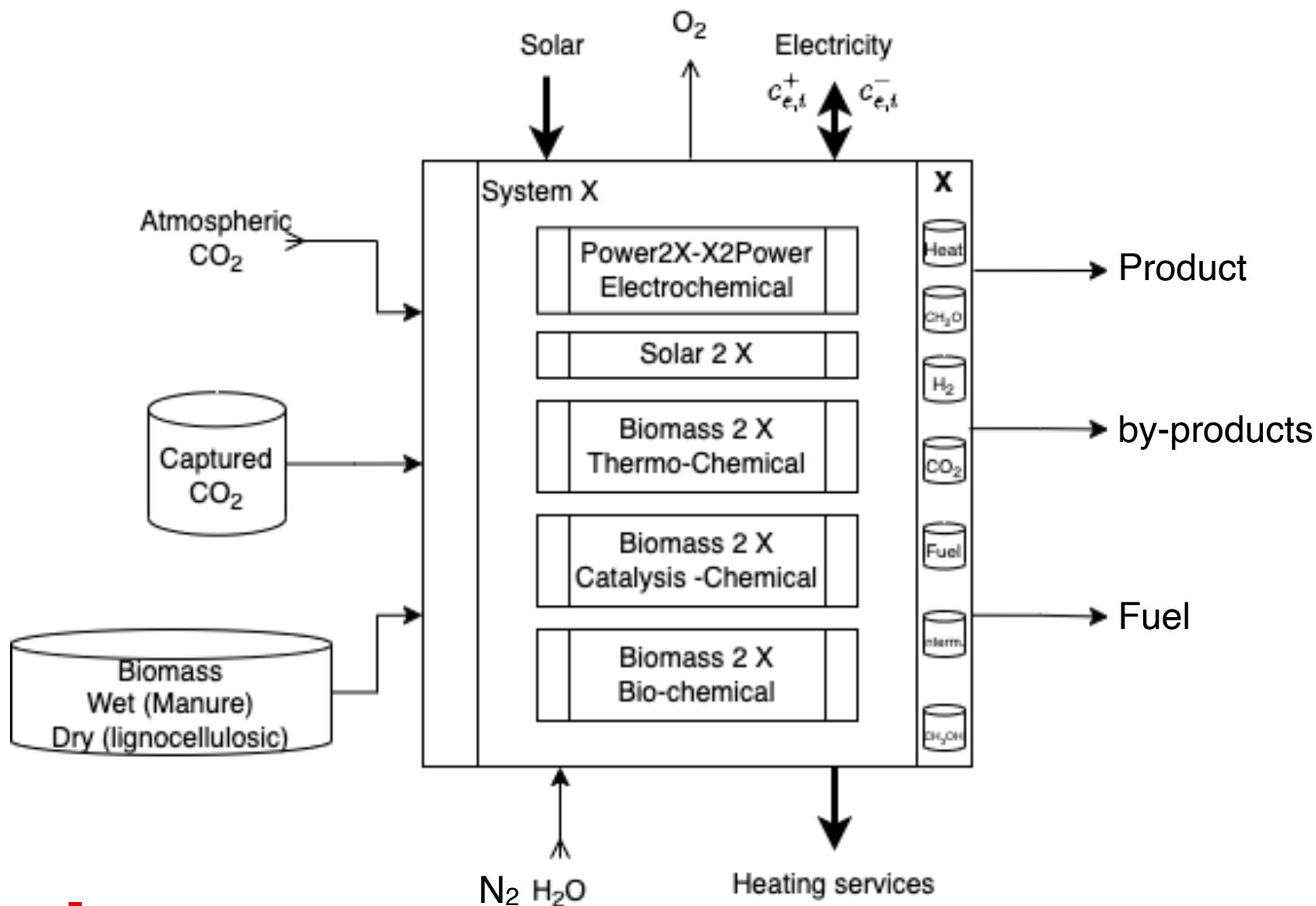


Process development Selection Criteria


François Marechal



2025

February 24: Selection Criteria

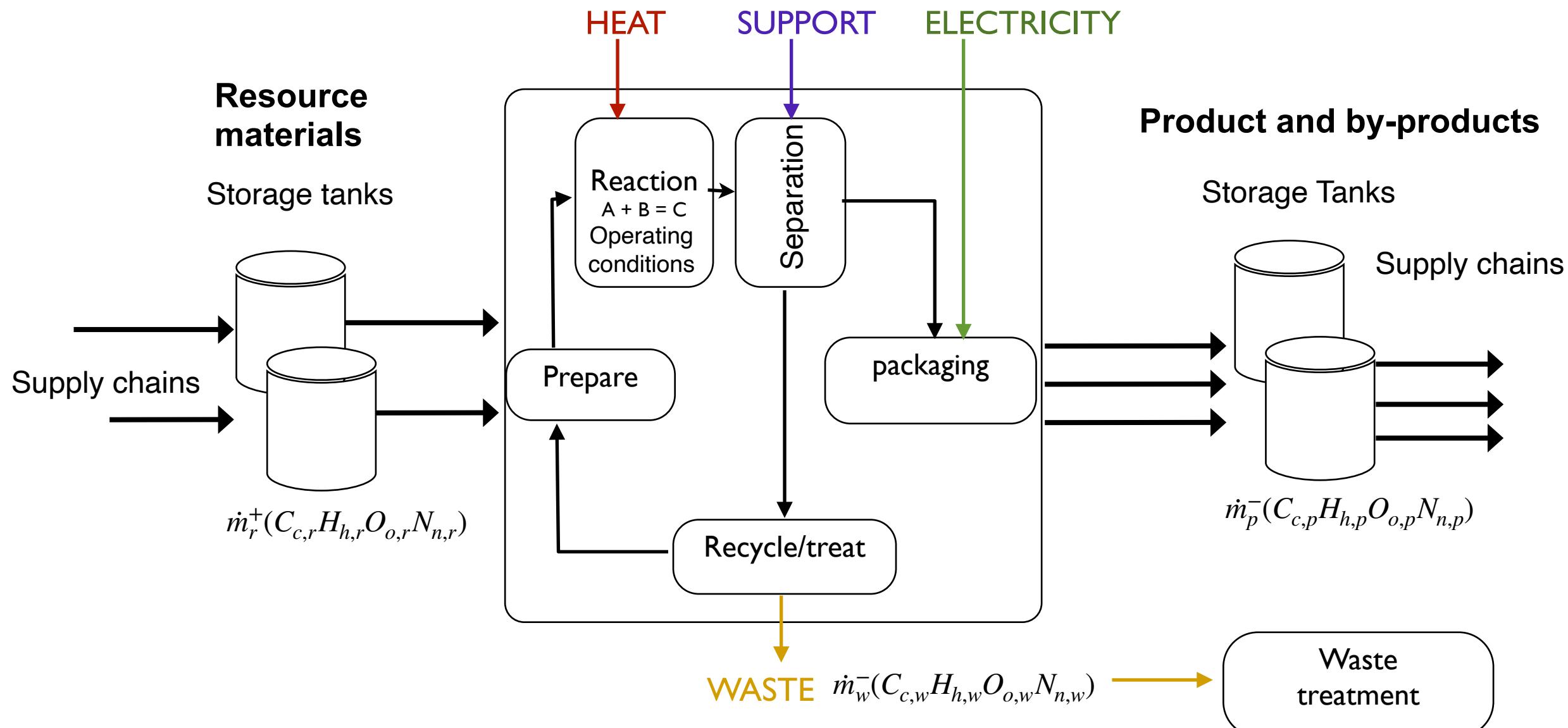
- 08:30 - 09:00 (François) Selection Criteria
- 09:00 - 09:20 (Meire) Process flow diagrams
- 09:30 - 10:30 (Catarina) Aspen Tutorial I: Physical Properties
- 10:40 - 11:10 Quiz 0 (Not graded)

- 11:10 - 16:00 Teamwork
 - Gate 1: Identify and characterise process routes
 - Two rooms are available for you CE1 101 and CE1 103

- Product and each By-products (see production routes)
 - Chemical characterisation
 - Chemical composition
 - Chemical and physical properties
 - Storage and distribution
 - Typical production routes
 - Hazard and safety
 - Environmental impact (scope 1, scope 2 and scope 3 CO2 emissions, ...)
 - Markets : today and future
 - Applications
 - Markets :
 - Production volumes [t/year]
 - Locations : EU - US - Asia
 - Value [CHF/t]
 - Typical Process size [t/year]

- Chemical (CAS) : $C_c H_h O_o \alpha_a \Rightarrow$ Thermodynamic (T_c, P_c, T_{eb}, ω), toxicity, hazard
- Typical State on market :
 - Mass flow : $\dot{M}_i^+ \text{ [kg/s]}$ Distribution/transportation
 - Molar flow : $\dot{N}_i^+ \text{ [kmol/s]}$ Storage : T,P,State and density [m3/t]
 - Composition and specs : $\dot{x}_{i,j} \text{ [%]}$
- Cost or market value : $c_i \text{ [CHF/kg]}$
 - Market sizes : quantity and typical production sizes
- Energy : $h \text{ [kJ/kmol]} = h^0 + \int_{T_0}^{T_{storage}} cp \cdot dT$
 - includes enthalpy of formation and therefore a predefined reference
- Exergy / Gibbs free energy : $e \text{ [kJ/kmol]} = h^0 - T_0 \cdot s^0$

- Chemical and thermodynamical characterisation
 - [Challenge] : names of products and chemical formula
 - [Challenge] : thermodynamic properties
 - [Challenge] : transportation, storage, safety and hazard properties
- Economical characterisation
 - [Challenge] : present production rates and major producers
 - [Challenge] : markets values, major usage and applications,
 - [Challenge] : future markets and applications
- Environmental characterisation
 - [Challenge] : Resources and feedstocks used : cost and availability
-> choose the region
 - [Challenge] : Energy consumptions & CO2 emissions (scope 1, 2 and 3)
 - [Challenge] : Environmental impact (LCA)



- Make a literature search to identify the major production routes:
 - **Raw materials and feed stock** (same approach as for the products)
 - **! should be from CO₂ or waste or Biomass resource (not products)**
 - Location, scarcity of raw materials or feedstocks (states, distribution)
 - Environmental impact (impact of sourcing)
 - **Other Resources** needed : e.g. energy, catalysts, solvents, chemicals (!!!)
 - $H_2O, N_2, C_cH_hO_oN_nS_sX \dots x\dots$
 - **Process route**
 - Chemical reactions paths
 - Separations paths
 - Operating conditions
 - Temperature, Pressure, Phases :Gas-Liquid-Solid Phases
 - Investment
 - Complexity (number of unit operations)
 - Hazard and operation (HAZOP)
 - **By-products** : => market and future markets
 - **Waste + emissions**
 - Waste treatment techniques
 - End-of-life release in the environment

EPFL Gate 1: Process selection → Make a block flow diagram

9

Block Flow Diagram : Interconnected process operations
Process steps defined by their function in the production route

- Accumulation = IN - OUT (steady state Accumulation =0)
 - 1rst principle of thermodynamics
- Mass Balance (steady state : No accumulation)

$$\forall a \in atoms : \sum_{i=input} \dot{M}_i^+ \cdot x_{o,a} = \sum_{o=output} \dot{M}_o^- \cdot x_{o,a}$$

- Energy Balance (steady state : No accumulation)

$$\sum_{i=el_{input}} \dot{E}_i^+ + \sum_{i=input} \dot{M}_i^+ \cdot h_i = \sum_{o=el_{output}} \dot{E}_o^- + \sum_{o=output} \dot{M}_o^- \cdot h_o + \sum_{l=losses} \dot{Q}_l^-$$

- Exergy Balance

Exergy losses

$$\dot{L} = \sum_{i=el_{input}} \dot{E}_i^+ + \sum_{i=input} \dot{M}_i^+ \cdot k_i - \left(\sum_{o=el_{output}} \dot{E}_o^- + \sum_{o=output} \dot{M}_o^- \cdot k_o \right)$$

$$k_i = h_i(T_i, P_i, x_i) - T_0 \cdot s_i(T_i, P_i, x_i)$$

■ Mass balance

- No mass losses but by-products to market, emissions & waste
- Chemical reactions (not complete + side reactions)
- Enabling chemicals (to be considered as resources in the market)
- Supply chains and storage

■ Energy Balance

- Energy is conserved but can be lost in the environment
- Enthalpy includes the energy of formation (chemical reactions)
- Lower Heating Value is the energy of formation of a fuel
- Losses \neq Ignorance (i.e. not the error of the energy balance)
- Energy flows to the environment to be characterised

■ Mass flows :

$$\sum_{o=output \notin products} \dot{M}_o^- \cdot h_o$$

■ Heat

$$\sum_{l=losses} \dot{Q}_l^-$$

- **Thermodynamic**
 - Heat of reaction
 - Gibbs free energy of reaction or exergy
 - Materials flows: atomic balances and flows,
 - Energy flows: energy balance and flows
- **Economic**
 - Products, energy and feedstock costs
 - Investment
 - Production support chemicals
- **Environmental**
 - Supply chains : feedstocks - energy - waste
 - Life cycle impact assessment (LCA)
 - CO2 emissions (scope 1, 2 and 3)
- **Hazard and operation**
- **Complexity**

- How to choose/compare processes ?

1. Make a list of criteria

2. Define a metric for each criteria

1. Define a KPI (Key Performance Indicator) : a quantity that qualifies the criteria for each process options

2. Associate a Grade to each KPI ($Grade(KPI_{c,p})$)

1. e.g. 1 to 5 to compare the processes

2. Grades can be associated to quantities or to quality (low-high)

3. Define weights (relative importance of the criteria)

1. Consensus in the group

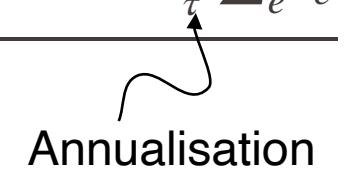
4. Compare the processes in a matrix

- Thermodynamic

- Atom economy $\frac{\sum_p^{products} \sum_a^{atoms} \dot{n}_{a_p}}{\sum_f^{feedstocks} \sum_a^{atoms} \dot{n}_{a_f}}$ $[kmol_{a,p}/kmol_{a,f}]$!!! different atoms !!!
- Specific energy $[MJ/kg_{product}]$
 - ! comparing different sources of energy ! electricity vs fuel

Gibbs free energy :
$$G = \frac{\sum_{out} (\dot{m}_{out} h_{out} - T_0 \dot{m}_{out} s_{out}) - \sum_{in} (\dot{m}_{in} h_{in} - T_0 \dot{m}_{in} s_{in})}{\dot{m}_p}$$
 $[MJ/kg_{product}]$

- Economic


- Operating expenditure : OPEX [CHF/year] or $[CHF/kg_{product}]$
- Capital expenditure : CAPEX [CHF/year] or $[CHF/kg_{product}]$
- Footprint : $[m_{land}^2]$

- Environmental

- Global warming potential $[kg_{CO_2^{eq}}/kg_{product}]$
- Resource depletion $[kg_{resources}/kg_{product}]$

- OPEX [CHF/ CHF product] :
$$\frac{\int_{t_0}^{t_f} \left(\sum_{F=1}^{n_F} \dot{M}_F^+(t) c_F^+(t) + E^+(t) c_e^+ - E^-(t) c_e^- - \dot{M}_{P-}^-(t) c_{P-}^-(t) \right) dt}{\int_{t_0}^{t_f} \left(\sum_{P=1}^{n_P} \dot{M}_P^-(t) c_P^-(t) \right) dt}$$
- CAPEX [CHF/kg product(s)] :
$$\frac{\sum_e I_e}{\int_{t_0}^{t_f} \left(\sum_{P=1}^{n_P} \dot{M}_P^-(t) \right) dt}$$
 or [CHF/CHF products]
$$\frac{\sum_e I_e}{\int_{t_0}^{t_f} \left(\sum_{P=1}^{n_P} \dot{M}_P^-(t) \cdot c_p^- \right) dt}$$
- Specific Cost [CHF/kg product]:
$$\frac{\int_{t_0}^{t_f} \left(\sum_{F=1}^{n_F} \dot{M}_F^+(t) c_F^+(t) + E^+(t) c_e^+ - E^-(t) c_e^- - \dot{M}_{P-}^-(t) c_{P-}^-(t) \right) dt + \frac{1}{\tau} \sum_e I_e}{\int_{t_0}^{t_f} \left(\sum_{P=1}^{n_P} \dot{M}_P^-(t) \right) dt}$$

Annualisation
- Energy used [kJ/kg] ? :
$$\frac{\int_{t_0}^{t_f} \left(\sum_{F=1}^{n_F} \dot{M}_F^+(t) l h v_F + E^+(t) - E^-(t) \right) dt}{\int_{t_0}^{t_f} \left(\sum_{P=1}^{n_P} \dot{M}_P^-(t) \right) dt}$$

EPFL Gate 1: process selection

16

- Define a list of selection criteria :
 - $Grade(KPI_{c,p})$: rank of the key performance indicator for criteria c of process p
 - w_c : importance of criteria c in selection
- Make a selection matrix : choose $p \mid \max_p(C_p = \sum_c w_c \cdot Grade(KPI_{c,p}))$

	Weight w_c	Process 1	Process 2	Process 3
Reference		[1,2]	[2,3]	[3,4]
Criteria 1 : Atom economy	0.2	$Grade(KPI_{c,p})$...	
Criteria 2 : Energy	0.3	:		
Criteria 3 : Economy	0.3			
Criteria 4 : HAZOP	0.1			
Criteria 5 : complexity	0.1			
Total		$\sum w_c \cdot Grade(KPI_{c,1})$		

Analyse: define the goals and the criteria

Generate: collect the information, define the KPI

Interpret: define the grading system, define the relative weights, negotiate importance

Report: make a matrix and explain your choices