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Energy conversion system
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Grand composite curve/Heat cascade

e Corrected temperature domain

e Graphical plot of the heat cascade : [ R, T*] r=1,n,
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The Grand composite is the heat cascade representation in the corrected temperature domain. it represents the flow of energy in the system
from higher temperatures to lower temperature. Above the pinch point is also represents the heat-temperature profile of the heat to be
supplied to the system and below the pinch it represents the heat-temperature profile of the heat available in the process and to be removed

from the system.



Grand composite and utility integration

Counter current analogy
Hot utility - cold process
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Multiple utilities

Maximise the use of the cheapest utility
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Different fuels

For the same MER !!!

Different utility heat
loads
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Cogeneration system : Energy Balance
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Cogeneration : gas turbines

~1400°C
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Energy available or excess

CAPEX = 1000 - 2500 CHF/kWe
Size = 50000 - 1000 kWe
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Cogeneration engines

CAPEX = 800 - 4000 CHF/kWe
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Combined heat and power
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Example : Rankine cycle E = ncarnot - Qrot - (1 — =——)
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Carnot Factor between the high (source) and the low (sink) temperature of the source can be used to
approximate the mechanical power production. The 0.55 efficiency with respect to Carnot is a good
aproximation. Mean temperatures are logarithmic mean temperatures.

Heat sink
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Steam network integration
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How to integrate mechanical power production ?

1 thermal kW

1mechanical kW

Above the pinch point :

1 cold utility kW

1 mechanical kW

Below the pinch point :

Across the pinch point:
Separate production
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The pinch constraints limit the CHP production

The cogeneration unit integrates a hot and a cold stream in the heat cascade. The flow will therefore be
limited by the activation of a utility pinch point. This pinch point will define the maximum combined
production of heat and electricity for the selected system.
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Profitability of a cogeneration system

e + Operating costs (CHF/s -> CHF/an)
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The benefit of the system mainly depends on the negociated prices
for Electricity (net balance to be considered) and heat

Importance of the operating time : t
cPrL



e Explain the conditions of integration of heat
pumping systems.
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Heat pump and refrigeration
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Heat pumping always from below to above the pinch
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Miss placed heat pumps : above or below the pinch

Above pinch

Below pinch point

Hotu :
QMER - (W)

ﬂ / Electric heater

N

w) ]

Q+W \Jl
=

- Coldu :
Omer +W

Electric heater of the environment

EPFL



Refrigeration
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Increasing the flow of the cold water
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Refrigeration cycle integration

Single stage cqpling
o
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The system integration plays here an important role. Refrigeration consume high value energy (electricity) it

therefore requires careful integration. The solutions explained above show that there are a lot of options for the

refrigeration system integration, including the choice of the fluids, the operating conditions and the system .=P FL
[ -
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Integration of the energy conversion

system

e Energy conversion units with unknown flowrates

Technology w with nominal flow

Creative engineers !
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by simulation we can generate the hot and cold streams associated to a predefined level of usage (or flow).
the questions are : do | use the technology ? if yes what is the level of usage.
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MILP (Mixed Integer Linear Programming) formulation
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The mixed integer linear programming formulation allows to solve the heat recovery by using the heat

cascade in the list of constraints, the electricity balance , differentiating import and export and

considering the cost of the energy resources used in the system. flows in the system are calculated to

close the energy balance and existence of a energy conversion solution is decided using an integer

variable. The min and max bounds are used to avoid the usage of technologies that are out of the range

of their typical application E PFL



Results : Balanced composite curves
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The balanced composite curves include the process and the utility streams. The balance is now
closed has no magic hot or cold utility is used.
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Evaluate : the Integrated Composite Curves

The goal is to understand the solutions

Hot and cold streams

Sub-set A

Nk NBw npg ——
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Choose a reference : pinch point of the procgss streams

The integrated composite curve represent the way a sub-system is integrated with the remaining system.

, A ]
<lIPESE (|

—



1CC for utility system integration
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Steam network integration
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ICC of the steam network
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Mechanical production

Note that for a closed cycle like refrigeration or Rankine, the sum the hot stream - the sum of

the cold stream is the net mechanical power (i.e. the distance between the two extreme

points is equal to the mechanical power). Here for the steam cycle. Note that it is therefore

easy to very that the cogeneration cycle is well located wrt the pinch point. -(l)ﬂ.




