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Process development
Process conditions and heat recovery
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=P~L Where are we ?

v Heat recovery potential

v AT, . :minimum approach temperature for heat recovery

v Heat recovery by composite curves
v Energy conversion to close the energy balance
v Choose the resource
v Conversion technologies
v Heat supply & distribution
v Cogeneration
v Heat pumping
v Refrigeration
>~ Changing the process conditions
> Plus-Minus + Heat pumping
= Exergy analysis of the energy conversion system
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EPFL Maximum heat recovery Target with A7, . assumption

Minimum Energy Requirement
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ePFL 3 Independent sub-systems
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ePFL 3 Independent sub-systems i
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ePFL 3 Independent sub-systems
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cPFL Penalizing heat exchangers

No hot utility below the pinch point

+Qc
A T(°K)
Exchangers creating penalty
A A +Qh
- B
C
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) H (@) 4
K / No cold utility above the pinch point
vy ! —
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No heat exchange across the pinch point
The heat load across is the penalty

M IPESE
Industrial Process
and Energy Systems ‘g,
Engineering



cPFL Mixers may be penalising heat exchangers

Elowsheet representation
T1=80"°C
M1 =1.0 kg/s
Cp1=4.0 kJ/kg/°C
T3=31.25°C
O——> M3=4.0kgls
Cp3=4.0 kJ/kg/°C
T2=15°C
M2 = 3.0 kg/s
Cp2=4.0 kJ/kg/°C
| I E . identificat
Cold streams above the pinch
T1=80"°C T1b=45°C
M1 =1.0 kg/s M1 = 1.0 kg/s
Cp1=4.0 kJ/kg/C
140 kW T3=31.25°C

O———> M3=4.0kg/s
Cp3=4.0 kJ/kg/°C

T2b = 26.7 °C
M2 = 3.0 kg/s

T2=15C 140 KW

M2 = 3.0 kg/s
Cp2=4.0 kJ/kg/°C

Hot streams below the pinch
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Heat transfer requirement
a Hiclden heet exchanger
T1=80°C g T1b=31.25°C
M1=10kgls __ M1 = 1.0 kg/s
Cp1=4.0 kJ/kg/°C
T3=31.25°C
195|kW i O——> M3 =4.0kgls
Cp3=4.0 kJ/kg/°C
T2=15°C T2b =31.25°C
M2 = 3.0 kg/s M2 = 3.0 kg/s
Cp2=4.0 kd/kg/°C'
Hot and cold streams of the mixer
T & ‘ Q1 =140 kW .
80°C | 3 E v
) Q2i= 140 kW
o Process pinch
45°C / Hot temperature
31.25°C
26.7°C : :
: Q (kW
15°C il —}r-

55 140 195



ePFL Who is creating a pinch point ?

= Pinch are always created by inlet conditions of a stream (or a change of
slope, when the H-T profile is not linear)

(a) Hot streams (b) Cold streams
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cPFL Plus - Minus principle : Increasing the heat recovery potential

Across the pinch
Transfer hot streams from below to above the pinch : to allow them supply heat to
the cold streams above the pinch where there is a heat deficit
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~ Cold composite curve Hot utility
\’\"3 Hot composite curve : “ : )
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0 5000 10000 15000 20000 25000 30000
Q(kW)
Transfer cold streams from above to below the pinch : to allow them recover heat
= IpESE from the excess of heat in the hot streams below the pinch
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cPrL Grand composite analysis (Heat cascade)

= The overall balance is not changed !
- Hot streams from below to above the pinch
« Cold streams from above to below

° Q limited by the creation of a new pinth point
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cPFL Plus - Minus principle : possible action 1

Modify the AT, . assumption

600 | L — S — e — e — -
o Cold composite curve Hot utility 1. Change AT, ;. /2 of hot or cold
Ssso b Hot composite curve ===, S R — 2. Recalculate the heat recovery potential:
| | | | | AMER
00 T lhotstreams /2 e 7 3. Calculate cost balance
i ? 1
L L I A : ; ] +
0 @ ~AMER - Voo - 1op 2 — + Dppn(Apgy)
400 b g L emmnrl — 4 with Alypy(Ayey) additional heat exchanger
—=/ .- Rfmin_ : network investment
350 b/ pom e e —~ ) - | . . .
o @ 1 AMER - v\, - t,, savings in operating cost
wo | (ome S )T o T
‘r) N F Heait recovery S
250 cold ytility i i ; |
0 5000 10000 15000 20000 25000 30000
Q(kW)
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EPFL Onion diagram

= Hierarchy in the process unit operations

Separation

X
Production supP©"

Waste treatmet™
Utility system

Heat exchange's
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cPrL Heat transfer interfaces of unit operations

= Same unit operation : different heating and cooling profiles

= Process engineering analysis of the role of heating and cooling for the
unit operation

Cooling water

TIK!

, . Electricity

¢

Black box

. Process
Cold Stream profile flows
Process
grey box flows

white box Unit i
‘ Separation
Condensate

Hot Stream profile

QW] e
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ePrL Changing the process demand interface

s s ,
Actual process representation Actual process representation

Steam 400 K

Steam 400 K
Water 300 K

Reaction Reaction
R1 310K 340K | 340K R1 310K 340K | 340K
N\ .
T F Y - ~
New process demand
400 K =
: Water 340 K
380 K : Heat sink
Water 300 K
360 - Pinch
340 K h Heat source
: Reaction
320 K R1 310K .R1 340K| 340K 340 K
L Q (kW g
300 K ; QW) . )
100

- Changing the process demand profile allows to change the temperature at which the heat is
mavsiiprocess 7] asked or made available by a process operation
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cPFL Plus - Minus principle : change the heat requirement ”

Transfer hot streams from below to above the pinch : to allow them
supply heat to the cold streams above the pinch where there is a heat

deficit
600 R — N =
P Cold composite curve ——— Hot utility
\% Hot composite curve / ¢ f NN
550 A e e I ]
00 o Hotseams/. | e N
sof S— e
wl e - 14— =B
s /O g T i
320K
300 F [ A / A SR A 4 00k L QW)
s N * Heait recovery N 100 Ri3i0K
0 5000 10000 15000 20000 25000 30000

Q(kW)

Transfer cold streams from above to below the pinch : to allow them
recover heat from the excess of heat in the hot streams below the pinch
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cPFL Changing the operating conditions

Heat integration of two distillation columns

Condenser 2
Condenser 1
[ - i } Column 2
:F]—} ---| Column1 LV,ZE
Boiler 2
Boiler 1
600
T(K) [€ MER
550 \\\
500 ™~
Reference case /
450
Boiler 1 /
400 -
e - ABoiIer 2
UTTUCT IO L I
350 Condenser 2 /
300
250 \L\-‘ Qlkw)
0 2000 4000 6000 8000 10000 12000

= pEse Column1 operates at P1 - Column 2 operates at P2 < P1
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cPFL Example : two columns integration : pressure change

= Increase pressure of column 1 using a pump

Condenser 2

= verify column hydrodynamics Condenser
N
Il
_____ Column 2
T} ---| Column 1
o -4
Boiler 2
Boiler 1
* The heat of condensation in the 600 ~
condenser is higher when pressure is T(K) [ MER \
increased > .
* Choose the pressure so that the 550 VIER
condenser 1 temperature is higher then
the boiler 2 temperature 500

Reference cas

~

After pressure modification

T~

/
450 /

Boiler 1*

Boiler 1 /

400 Condenser 1%
oiler 2

s ] a
LUTTUCTTIOTT 1

Fé

7
350 Condenser 2 / Condenser 2 /
300

L — - QW)

0 2000 4000 6000 8000 10000 12000

250
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cPFL Modifying the process integration opportunities

= Modify the process units heat transfer interface

= Modify the process units operating conditions
- to increase the heat recovery potential
- e.g. change the operating pressure of a unit

= Externally change the temperature of the requirement
- Heat pumping/ expansion

20



cPFL Example 2 : the multi-effect evaporator

= Multi effect evaporators are used to
« Concentrate liquid streams
- are large steam consumers
- food and pulp and paper industry

Ethanol gronmeenasen Ethanol
condensate‘ - vapour

EVAPORATOR STAGE 1
6 t/adt (EAT)
11.8%

------ Steam

N\ Evap.

2

S

o

=
—_—————

Liquor -
from cooking DILUTED ’ P,
LIQUOR w
9t/adt TANK |27 t/adt\ (6.8 t/adt) = | (1.9 t/adt 50.1%
11.8% 11.8% | \14.1% :\ 1160.0% CONCEN-
—/ Evap. B /! TRATED [907%
LCIC i — LIQUOR

To boiler or
to be sold

TANK

(EA3)

11.8% f EVAPORATOR STAGE 3 jﬂ

—— Liquor path e Steam

""""" > Steam/Evaporated water path
F (t/adt)\ Liquor flowrate (ton/air-dried ton pulp produced)
X (%) Liquor concentration (%)
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From the actual model of evaporators...

EVAP WATER ~ EVAP WATER n:+1

v HEX

[ EFFECT J Qn [ EFFECT ner j

A
LIQOUT ny TLIQINN p\ v TLlQlNNH

g

Qns1

wLIQ OUT nst

——» Liquor path

.................... > Evaporated Watel’ path
————— » Thermal stream
—— Production of warm water

Warm water

I HEX

=) e

S @~

A

LIQIN n«2

»

N

PREHEATING

CONDENSATE |
\ 4

-/ MU
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£PFL Single effect modeling 2

= Understanding the unit operation
Condensation

—A

Preheating Evaporation

A

v
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cPrFL ...to the simplified model of evaporators

The evaporated water [ — Amount of heat recovered
leaving each effect is cooled
down to ambient temperature

HEX HEX HEX
EVAP WATER n T AmBIENT EVAP WATER n+1 T amBIeNT EVAP WATER n+2 T AMBIENT
............................... )_\/\_) ) ) )_\/\_>
Q'n E Q'ni E Q'ns2 E
[ EFFECT u ] A { EFFECT nor ] .Y QN”{ ] Y
Q! Q, Q,
v \ 4 \ 4
LIQ OUT LIQIN LIQIN HQIN w2
V LIQ OUT ns1 vV \/\_ ¢
PREHEATING
— % Liquor path Evaporation heat load is at
.................... > Evaporated water path Constant temperature
————— » Thermal stream

Preheating is possible between effects
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cPFL Actual process requirement

= Multi-effect system for one concentration

400 A s e ¥ p———

380

360 |*

< 340

320
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ePFL Applying plus-minus principles

T(K)

T(K)
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a) From reference case to scenario 1

400 f
)\
380 \
\
AN
360 fru X
K &
340 S = o
¥_\ =
N
320 -
300 p--f INCrease pressure of effects STIOEAT and ST1 1EA1\ ]
Hot utility from 14 405 to 14 164 kW J K
280 : : ; :
0 2000 4000 6000 8000 10000 12000 14000 16000 1800(
Q(kw)
¢) From scenario 2 to scenario 3
400 e
A
380 1
= ,
\
360 < >
hﬁ .
340 P
~— =3
AN =
320 \ B
Increase pressure of effect ST13EA1
Decrease pressure of effect ST4AEA3
300 -\ Hot utility from 12 360 to 10996 kW / H
280
0 2000 4000 6000 8000 10000 12000 14000 1600(
Q(kw)

400

380

360

340

320

300

280

400

380

360

340

320

300

280

b) From scenario 1 to scenario 2

l

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

L.........{ Decrease deltaTmin/2 of evaporating stream of ST7EA2
Hot utility from 14 164 to 12 360 kW

Q(kw)

d) Scenario 3 - used for heat pumps integration

\__\

\_ "

\ AN
<

N N
\ ~
AN
SN
~N
(Hot utility of 10 996 kW)

0 2000 4000 6000 8000 10000 12000 14000 16000

Q(kw)

Note that the effect is limited by the activation of an other pinch point
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cPrL Comparison of energy saving scenarios
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Pinch point (corr temp) (K)
Hot utility requirement (kW)
Cold utility requirement (kW)
Hot utility cost (k€ /y)

Cold utility cost (k€ /y)

Cost total utilities (k€ /y)
Total HEX area (m2)
NminMER

HEX area (m2)

Cost total HEX area (k€)

Cost total HEX arealy (k€ /y)

Scenario 0

359

14 405

17 843

1245

154

1399

3875

16

242

603

70.43

Scenario 1

354

14 164

17 616

1224

152

1376

4058

16

254

633

73.95

Scenario 2

344

12 360

15813

1068

137

1205

5286

16

330

749

87.55

Scenario 3

378

10 996

14 447

950

125

1075

6176

16

386

763

88.99




cPrL Comparison of energy saving scenarios

Scenario 0 Scenario1 Scenario2 Scenario 3

Comparison with the reference case

Utility demand (%) - -1.5 -12.6 -21.1
Cost total utilities (%) - -1.6 -13.9 -23.2
Total HEX area (%) - +4.7 +36.4 +59.4
Cost total HEX area - +5.0 +24.3 +26.4
year (%)

As the curves are closer one from the other, the heat recovery area and the associated investment cost is going to increase
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ePFL Changing operating conditions : Mechanical Vapour Recompression

= From below the pinch to above the pinch

. + ;
Thigh )+ high

VaporQTy;gn, Phigh
T(°C) QTzaw

PLUS

F _I'@_, LiquidQT}ou, Phign PINCH =a--eeofemmmaaaaaaaccenn- -
X Qsavings,cold

N+ Liqu'id@ﬂowa Plow

COP = QTh"gh Process MINUS E+
o+ i' -_
E 07,

7—}OW

VaporQTow, Prow

Process

Economic evaluation

3+ 3+
) ) . . 1 Tiion Or
+ + + _ n + _ + 0 ig low
(QThigh ) VhOl + (QThigh QTlow) ’ vCOld E ' Vel) . top T IrmV( UhATh , E, ( UlOWA]-}OW ))
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cPrL Correct integration : Partial flows are possible *

Recompressed stream

®

— XLiquid cooling Liquid cooling
Compressor /Condensation recovery Compressor / Condensation recovery
Mcon
e N . . . 4 )
Mecond T MMV R = Mtotal /\/\
Evaporation

. _—
— | Evaporation Recovery

Evaporation

\I\/I/ \l\_/l/
Ill |l|

Process requirements In practice

B IPESE if only part of the heat load is useful, then it is always possible to compress only part of the flow in order to reduce the compression power
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cPFL Multiple heat pumps integration

= Multi -effect evaporator case

440 A 1 1 1 ! L !
Others )
420 r y Mech. power - T
400 : . - -
| i
380 i S !
S i
: N\
< 360 ——— B T
— . 7 A = N
340 - COP:Qsavi'ngs,hot < _ |
E+ <
COP=7 < ~
320 ~ !
300 F -
280 : = : : : : >
-6000 -4000 -2000 O 2000 4000 6000 8000 10000

Q(kw)
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ePFL Energy saving options

Operating, investment and total costs and savings for heat pump integration scenario

oc*  AOC IC AIC  AlIC/y TC Savings
(k€ly) (k€ly) (k€)  (k€) (k€ly) (k€ly) (k€ly) (%)
Original scenario 2807 0 4452 0 0 2807 0 0

Process improvements 2143 -664 5019 592 69 2212 595 12.2
Improved scenario + HP 1647 -1160 7007 2555 376 2023 784  27.2

% OC: operating cost, AOC: operating cost reduction, IC: investment cost, AIC: investment cost reduction, AlC/y: annualized investment cost, TC: total cost

Reduction of the minimum energy requirement by 20%
Reduction of the utility cost by 23%
Heat exchange integration

Process improvements (decrease
ATmin and increase/decrease pres-
sures of evaporation effects)

Heat pump (HP) integration
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